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Holonomic Systems of Linear Differential Equations
and Feynman Integrals

by

Masaki KASHIWARA* and Takahiro KAWAI**

The purpose of this report is to show that the (generalized) Feynman

integral should satisfy a holonomic system***' of linear differential equa-

tions. We also discuss the analyticity of the defining functiont} of

the Feynman amplitude in complex domain as a corollary of this result.

Our main result, i.e. the existence of holonomic system, gives an affirma-

tive answer to the conjecture of Regge [15], who first understood and

emphasized the importance of the role of systems of differential equations

in the investigation of Feynman integrals. In his report a homological

approach to this problem is suggested. It is very illuminating but seems

to be accompanied with many technical difficulties, as Professor Regge

himself points out in the report. This important property of the Feynman

integral has also been conjectured and proved in simple cases by Sato

[16] independently and in a little different context See also Barucchi-

Ponzano [1], Kawai-Stapp [11], [12] and references cited there. Note

that Kawai-Stapp ([11], [12]) discusses the ^-matrix itself, not the indi-

vidual Feynman integral, as Sato [16] originally proposed. We also give

the diagramatic description of the characteristic variety of the system

involved. It enjoys a nice physical interpretation as is shown by Kashi-
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f A denning function of a hyperfunction is by definition a holomorphic function
whose boundary value attains the hyperfunction in question. See Theorem 4 below
for the precise definition.
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wara-Kawai-Stapp [10]. We discuss the case of the generalized Feynman

integral after Speer [19], though we do not make full use of the para-

metric representation of the integral except in the proof of Theorem 7.

In this report all relevalent particles are supposed to be massive

and spinless. In the sequel we use the same notions and notations as

in Kawai-Stapp [11], [12], Nakanishi [14], Sato-Kawai-Kashiwara [17]

and Speer [19] and we do not repeat their definitions here.

Since the main purpose of this report is to discuss every Feynman

integral of any order, we discuss in a separate paper (Kashiwara-Kawai-

Oshima [9]) more specific topics which should be covered also under

the same title of this report. There, for a limited class of Feynman

integrals we discuss the explicit form of Feynman integrals near the

Landau surface (of the first kind and the second kind) and the hierar-

chical principle (Landshoff-Olive-Polkinghorne [13]) in terms of holo-

nomic system of (micro-) differential equations.

We would like to express our heartiest thanks to Professor Regge

and Professor Stapp for many stimulating and interesting discussions with

them.

The detailed argument of this report will be given in a forthcoming

book of Kashiwara-Kawai [8].

Our argument essentially relies on the following theorem. (Cf.

Kashiwara-Kawai [7], Kashiwara [5], Kashiwara-Kawai-Stapp [10].)

Theorem I- Let cp3(x) (j = l, ~',d) and fi(x) (/ = !,•••, JV) be

real valued real analytic functions defined on a real analytic manifold

M. Denote by X a complexification of M. Denote by Y the variety

defined by {x^X\ ^(x) = •- = (pd(x) =0}. Assume that Y has codi-

mension d in X and that Y is irreducible and nonsingular except for

proper analytic subset Ysing of Y. Assume that ft\Y^0 (£ — 1, • • • , N)
N

and that Ysing is contained in {x^X; XI/zOO —0}. Assume that d)(x) =
A N 1=1

= II 8(0/(.r))H(fi(x) + z'O)AZ is a -well-defined hyperfunction in x^M
j=i 1=1

which depends holomorphically on A= (Ai, • • • , A#) in a neighborhood of
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A°=(A!°, • • - , V).*} T&ra ®(x) satisfies a holonomic system M^MK of

linear differential equations. Further the characteristic variety of

cSK is contained in WQ' = {(x, rf) eT*X; there exist a sequence xm^X

such that cpj(x^) = 0 (J = l, • • • , d} and that converges to x and sequences

Sm = (s1
(m\-,sN

M)^CNand t^W'.-.t^eC* such that s™/^
N d

converges to zero (7 = 1, • • - , N) and that £] sl™gradxfl(xm') +XI £/m) X
1=1 j=i

CO converges to ??}.

As discussed in Kashiwara-Kawai [7], the proof of this theorem is

essentially based on the desigularization theorem of Hironaka (Hironaka-

Lejeune-Teissier [3] ) .

The generalized Feyiiman integral FD(p\K) associated with a Feyn-

man diagram D with n vertices, n' external lines and N internal lines

is by definition the following integral up to a constant factor. (Cf. Naka-

nishi [14], Speer [19] and the references cited there.)

a)
1=1

Clearly it can be rewritten in the form

(10

The function obtained by factorizing out the over-all 5-function
:?~]Pr) from the generalized Feynman integral, i.e. the second fac-

J.r
tor in (I 7) j is called by definition the generalized Feynman amplitude.

Since the integral given by (1) is an improper integral, we inves-

tigate a corresponding integral defined on a suitable compactification of

R*N. Here we use [P(R^~]N as a preferred compactification of R*N

= (I?4) N
9 that is, we use the projective compactification with respect to

each internal momentum kL EE R4. This compactification procedure is known

* By making use of the desingularization theorem of Hironaka, it is easy to see that
®(x) is well-defined and holomorphic in A for ReAz>0 (1=1, •••, N).
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to give rise to the same function as that discussed by Speer [19] in terms

of parametric representations. (See Sato-Miwa-Oshima-Jimbo [18].)

Using this compactification of R4N, we investigate the integral whose

integrand ®D is expressed in the following form (2) near the points at

infinity by making use of the homogeneous coordinate (-Ki,Ci)i^^v on

(P (««))'.

(2) 0D(p,K,

H Si S U: r] H cvpt + f] D": /] v

X II \ci I "'co (Klf c,) • • • ffl (KN, CN) .

Here A=2^ + 4#{j; [j:/]^0> -5 = 2^ + 3 and (d(Kl9d) is the vol-

ume element on P(J?4).

It is known (Sato-Miwa-Oshima-Jimbo [18]) that 0D(J>, K, c\ X)ti)(K,c)

is a well-defined differential form with hyperfunction coefficients for

generic ^ if ra^O, that is, @D(p, K, c\ X)a)(K, c) depends meromorphically

on A.*}

Since 0D satisfies conditions of Theorem 1>**) we conclude that 0D

satisfies a holonomic system of linear differential equations. Then Lemma

5 of Kashiwara-Kawai [7] proves that FD(p; A) =f@Do) should satisfy a

holonomic system <3tt=3tt]L of linear differential equations in p as long as

A is generic. Furthermore, combining Lemma 1 of this note and (7) of

Kashiwara-Kawai [7], we can find the maximum possible set for the

characteristic variety of JA. Thus we have the following theorem:

Theorem 2. Generalized Feynman integral FD(J>\K) defined by

$@j)Q) satisfies a holonomic system <3tt=Jtt(D,X) of linear differential

equations in p as long as A= (A1? • • • , A#) is generic. The characteristic

variety of 3tt is contained by the following set X (D) (extended Lan-

* Though the well-definedness of ®D is discussed only for external diagram D in Sato-
Miwa-Oshima-Jimbo [18], their argument applies to the general case.

** Note that \f\l is a linear combination of (jf+z"0)A and (f—ity*' as long as /I is not
an integer.
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dau variety associated -with Feynman diagram D) . Here X denotes

C471'.

£(D) ={(p',u) eT*X; there exists a sequence of scalar s ct
(m} and

ai™(l = l,.~,N) and four-vectors pr™, «r
(w)(r = l, -,»/), V°(J = 1,

~-,N) and v/1"* (j = l, • • • , n) which satisfy the folio-wing relation (3)}.

(3)

> = 0 0=1, -, »)
1=1

- — 0 (/=!,-, AT)

- >0 (Z=l, -.,N)

is bounded (/=!,-,#)

w is bounded (/=!,•••,#)

), ^(m)^(m)) -^->0 (Z=l, • - • , AT)

Remark 1. Note that the usual Landau variety is not necessarily

holonomic,*) while the extended Landau variety is always holonomic.

This indicates that the employment of the extended Landau varieties is

more natural than the employment of the usual Landau varieties in our

context, i.e. from the view point of holonomic systems, which are expected

to control the behavior of the Feynman integral at the points far away from

the physical region. (Cf. Theorem 5 below.) In fact, it is obvious that

the extended Landau variety reduces to the usual Landau variety in the

positive-^ region (i.e., under the additional assumption of reality of every

quantity involved, positivity of aL's and finiteness of ^'s) , while there is

no a priori reason for believing that (the complexification of) the usual

Landau variety (even after being supplemented by the second type sin-

* In this sense the terminology "Landau holonomic variety" used by Sato-Miwa-
Oshima-Jimbo [18] is an abuse of the language and seems to be misleading.
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gularities) should give the maximum possible set of the singularity for

Feynman integrals outside positive-a region. One should recall that the

celebrated argument of Landau and Nakanishi for the derivation of Landau

equations (or Landau-Nakanishi equations) is essentially based on the

positivity of a.

Remark 2. Theorem 2 holds without any change even when some

internal masses mt's are zero.

Since S.S.FD(p; /I), hence S.S.fD(p; A), is confined to the positive-^

Landau variety (Chandler [2], Sato-Miwa-Oshima-Jimbo [18]), it is easy

to see that there exists a unique holomorphic function fD(p\ A) in p^C^n'

with X]D°:r]A = 0 whose boundary value attains generalized Feynman
j,r

amplitude f&(p;X). In fact, in view of Proposition 1.5.4. of Sato-Kawai-

Kashiwara [17] Chapter I, it suffices to show that S.S./^(^>; /I) is contained

in a proper convex set in the sense of the proposition quoted above.

This fact immediately follows from Landau equations as follows:

E Or, «r>
r=l

XXIX.; :i I

' <0 .

Since fn(P',^) satisfies holonomic system JVL of linear differential

equations, fo(P\^) should satisfy the same system JVL. Obviously this

fact must give a strong restriction on the functional character of fn(p\ A).

The first general result in this direction is following Theorem 3. Some

applications of this result to the rigorous derivation of pole-factorization

theorem will be found in lagolnitzer-Stapp [14].
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Theorem 3, Let J^l be a holonomic system of micro -differential

equations. Assume that the characteristic variety V of 3tt is the

conormal bundle of a hyper surf ace {x ; xl = 0} , i.e. { (x, fj) ; xl = 0, ??2 = • • •
= 77n — 0}- Let f(x) be a microf unction solution of Jtt defined in a

neighborfood of { (x, V — IT?) ; xl = 0, ^>0, % = • • • = yn = 0} . Then f(x)

has the folio-wing form:

(4) H Pl(x,Dx)(x1 + iQr(log(x1 + iO)y'.
i,«,i

Here indices I, a and j run over a finite set, j's are integers and

PI (x, Dx) is a micro -differential operator of possibly infinite order.

The proof of this theorem is given by reducing to the problem of

the 1-dimensional case by making use of Theorem 5.3.1 of Sato-Kawai-

Kashiwara [17] Chapter II.

When the characteristic variety of ^M, is more complicated than the

case treated by Theorem 3, we cannot expect to have such a concrete

expression of a microf unction solution f(x) of <SA. However, we still

have the following general result when c5K is a holonomic system of

linear differential equations. In case 3tt is a holonomic system of micro-

differential equations, the argument becomes very complicated, so we will

discuss it in a separate paper. Here we only mention that the results

of Kashiwara-Kawai [6] turn out to be useful in this case.

Theorem 40 Let M be a real analytic manifold and X its com-

plexification. Let c_5K be a holonomic system of linear differential

equations defined on a complex manifold X. Let VdP*X be the

characteristic variety of 3A,. Denote by n the projection from P*X to

X. Let Y be the union of the components ofn(V) of co dimension 1.

Let f(x) be a hyperfunction solution of Jtt defined on M. Assume

that there exists (p^r(U,Jl) for an open subset U of \/ — iSM with

convex fiber such that /=a(^).*) Then -we can find a multivalued

analytic continuation <p of (p -which is analytic outside Y.

See § 1. 5 of Sato-Kawai-Kashiwara [17] Chapter I for the definition of sheaf <JL and
map a.
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This result applied to the generalized Feynman amplitude entails

the following:

Theorem 5. Denote by Y the linear subspace C4rl/~4 of X=C*n/

defined by ^\j:r\pr = Q. Define the extended Landau "surface"
J,r

associated with a Feynman diagram D by the projection of the ex-

tended Landau variety 2(D)dP*Y to the base manifold Y'.*) De-

note by L0(D) the union of the components of L(D) of codimension

1. Then the defining function fD(p\ /I) of generalized Feynman ampli-

tude fD(p;X) can be extended as a multivalued analytic function de-

fined and analytic on Y— Z/0(Z>).

Remark. This result is a basic one in understanding the monodromy

problem for Feynman amplitudes from the view point of holonomic systems.

This topic will be discussed elsewhere. Here we only note that the existence

of holonomic system entails that all the branches of analytically continued

function are locally a linear combination of finitely many fixed branches.

This is a starting point of the investigation of the monodromy groups

relative to Feynman integrals. (Cf. Regge [15] and references cited

there.)

Thus far, we have discussed generalized Feynman integrals keeping

parameters Aj's to be generic. However, it is also possible to discuss

the renormalized integrals by making use of the celebrated procedure of

analytic renormalization due to Speer [19].

In order to find the holonomic system which the renormalized integral

should satisfy, we apply the following general result:

Theorem 6. Let f(x\X) be a hyperf unction in x -which depends

* Though extended Landau variety ~£(D) was defined to be a subvariety of T*X
(Theorem 2), the same equations define a variety in T*Y under the convention that (p; u}
and (/»'; u') define the same point if p=pf and if ur=u/+a (r=l, •••, n'} for a four-
vector a. Furthermore, here we have excluded the zero-section of -£(D), i.e. the
component where «=0, from the investigation so that we may consider it as a sub-
variety of P*X. Note that Feynman amplitude fD (p', A) is well-defined only on Y.
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maromorphically on A= (Ai, • • • , A^). Assume that there exist linear

differential operators Ps(x,Dx\K) (j = l,~-,N) in 5)J&C\}+, • • - , /U]

5&dz ^A<2£ P/Or, £>*; /O/O; A) =0 (j = l, • • - , JV) AoWs. Assume further

that PJ(X, Dx; /I0)/(.r) =0 (j — 1, • • • , AT) defines a holonomic system for

any fixed A —A0 . Assume further that XI (2 (^~l))/(-^; /O
Kc{i,-,#} zex

defines a hyperfunction in x -which depends holomorphically on A ZTZ

a neighborhood of h = 1 (/ = !,•••, AO. Then

Nl*eeiN)(2ni)N Joffw

is a 'well-defined hyperfunction which satisfies a holonomic system of

linear differential equations in x, if -we choose the contours Ck by

{Ae C; | A —1| =Rk} for constants Rk satisfying

(6)

(7) -R,>E R, .
y=i

Here 6 denotes a permutation on {1, • • - , A7}.

By making use of parametric representation of generalized Feynman

amplitude fD (p ; A) , Speer [19] has shown that it is holomorphic in A

after being multiplied by a factor XI ( 2 (^z~~l)) and that
KC{1,-,N} l&K

S^^C/D^; A)) gives rise to a renormalized amplitude. Therefore, by

virtue of Theorem 2 and Theorem 6 one obtains following Theorem 7.

Theorem 7o Analytically renormalized Feynman amplitude
(WN(fi>(P',^ satisfies a holonomic system of linear differential equa-

tions -whose characteristic variety is contained in the extended Lan-

dau variety JL (-D) .

References

[ 1 ] Barucchi, G. and G. Ponzano, Differential equations for one-loop generalized Feyn-
man integrals, J. Math. Phys. 14 (1973), 390-401.

[ 2 ] Chandler, C., Some physical region mass shell properties of renormalized Feynman
integrals, Commun. math. Phys., 19 (1970), 169-188.

[ 3 ] Hironaka, H., M. Lejeune, and B. Teissier, Resolution des singularites des espace



140 MASAKI KASHIWVRA AND TAKAHIRO KAWAI

analytiques complexes. To appear.
[ 4 ] lagolnitzer, D. and H. P. Stapp, Pole factorization theorem in 5-matrix theory. To

appear.
[5] Kashiwara, M., On the rationality of roots of ^-functions. To appear.
[ 6 ] Kashiwara, M. and T. Kawai, Micro-hyperbolic pseudo-differential operators I, t7.

Math. Soc. Japan, 21 (1975), 359-404.

[7] , Micro-local properties of f l f f i , Proc. Japan Acad., 51 (1975), 270-272.

[ 8 ] , Theory of micro-differential equations, KSdansha, Tokyo. In preparation.
[ 9 ] Kashiwara, M., T. Kawai and T. Oshima, Micro-differential equation theoretic ap-

proach to Feynman integrals. In preparation.
[10] Kashiwara, M., T. Kawai and H. P. Stapp, Micro-analytic structure of the -S'-matrix

and related functions. To appear. A summary is given in this proceeding.
[11] Kawai, T. and H. P. Stapp, Micro-local study of the -5-matrix singularity structure,

Lecture Notes in Physics, No. 39, Springer, Berlin-Heidelberg-New York, pp. 38-48
(1975).

j-^2] ^ Discontinuity formula and Sato's conjecture. This proceeding.
[13] Landshoff, P. V., D. I. Olive and J. C. Polkinghorne, The hierarchical principle

in perturbation theory, Nuovo Cimento 43 (1966), 444-453.
[14] Nakanishi, N., Graph Theory and Feynman Integrals. Gordon and Breach, New

York-London-Paris (1971).
[15] Regge, T., Algebraic topology methods in the theory of Feynman relativistic am-

plitudes, Report of Battelle Rencontres, Benjamin, New York, pp. 433-458 (1968).
[16] Sato, M., Recent development in hyperfunction theory and its application to physics,

Lecture Notes in Physics. No. 39, Springer, Berlin-Heidelberg-New York, pp. 13-29
(1975).

[17] , T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential
equations, Lecture Notes in Math. No. 287, Springer, Berlin-Heidelberg-New York,
pp. 265-529 (1973).

[18] Sato, M., T. Miwa, M. Jimbo and T. Oshima, This proceeding.
[19] Speer, E. R., Generalized Feynman Amplitudes, Annals of Mathematics Studies,

No. 62, Princeton University Press, Princeton (1969).


