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Singularities and Newton Polygons

by

Jean-Michel KANTOR*

It was conjectured by V. I. Arnold that it should be possible to

express all "reasonable" invariants associated to a holomorphic function,

in terms of its Newton polygon, at least for "almost all" functions with

a given polygon.

This conjecture has been worked out in many cases by the joint

results of Arnold's school (D. Bernstein, A. Kouchnirenko, A. Varchenko,

A. Xovanski) . Their results will be the subject of this talk. In partic-

ular, the work of Varchenko concerning monodromy and oscillatory in-

tegrals should be of great interest in relation with the theory of b-func-

tions.

§ 1. Newton Polygons; Generleily

1.1. Let f be a formal power series in k variables over C:

f(x) = £] anx
n, x= (xl9 • • - , XK),

n

n=(nl9 • • • ,^ f e ) .

Definition 1, The Newton polygon of /is the union of all compact

faces of the convex hull of

It is denoted by F (f) . The principal part of f is

f _ V tf rn
J ^~J <-*'7Z.*x-'

If 7 is a face of F(f)9 denote
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1.2. The above definition will apply to holomorphic functions. How-

ever, for a polynomial, a global analogue is needed:

Definition 2. Let P be a polynomial in k variables:

P(^=Hanx
n (finite).

The Newton polygon of f is the union of all closed faces not containing

the origin of the convex hull of

It is denoted jT(P). The principal part of P is defined in an obvious

way, as well as Pr.

1.3. With the above definitions, the genericity condition is the following:

Definition 3. The formal power series /^respectively the polynomial

P) is non- degenerate if for any closed face ~f of F (f) (resp. F (P))

the functions

—-, z = l, "-.k (resp.
dx, \dx{

have no common zeros in (C—0) f c .

It is clear that for a given Newton diagram, the set of degenerate principal

parts is an algebraic variety. From Sard-Bertini's theorem it follows that

non-degenerate formal power series "are dense" in the Zariski topology

(defined on their principal parts). A property true for such power series

(for example) will be said to hold for "almost all" power series with

Newton diagram fixed.

1.4. It will be essential to work with meromorphic functions of a par-

ticular type:

Definition 4. A Laurent polynomial is a finite sum of the form
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Such an f defines a function on (C — 0)fc, and non-degeneracy conditions

can be also defined.

§ 2. Solutions of Analytic Equations, Milnor and Euler Numbers

Theorem 1. If F is an integral polygon in Zk (compact convex

polygon with integral summits), then for almost all Laurent poly-

nomials (/i, •••,/&) 'with support F, the system of equations

[/*(*!, -,**)=<>

has a finite number of solutions, equal to k\ Vk (F) , 'where Vk (F) is

the k-volume of F.

This result is due to A. Kouchnirenko [1]. The proof uses the

"Newton filtration" introduced earlier by V. I. Arnold. It has been gen-

eralized (D. Bernstein) to the case where the (/$) are allowed various

supports.

2.2. Though independent of the other results, I would like to quote

the following striking result, due to D. Bernstein:

Theorem 2. If (A, "^F^ are integral polygons in Rk, the

number of integral points in (zi/^H ----- \-imFm') is a polynomial in the

positive integral numbers (il9 °-,im).

2.3.

Theorem 3. Let f be a non- degenerate analytic function at the

origin of Ck, such that it contains for each i a term ax"1 (a non-zero).

Then the Milnor number of f

is equal to the alternating sum of the (V^~), -where Vi~ denotes the
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sum of i-volumes of all intersections 'with i- dimensional subspaces

of coordinates 'with the set of points "under" the Newton polygon,

r. (/) = {te ; O^A^I, x e r (/) } .

This theorem is proved in [1]. The author has obtained a descrip-

tion "a la Milnor" in the generic case of the homotopy type of a regular

fiber of a polynomial map.

2.4. The work on monodromy of Varchenko relies heavily on the fol-

lowing statement:

Theorem 4. Suppose f is a polynomial in Cfc, satisfying the two

conditions:

The support off is a convex integral polygon F, and for any

face f of F, the functions

„ 9fr • -,
> xi - — > I — *, '">dxi

have no common zeros in (C— 0)fc, as 'well as the functions

Then the Euler characteristic of the set

is equal to (-l)*

One proves here also that the condition of f is "generic''.

2.5. The preceding results show that many informations are effectively

computable from Newton combinatorial data. As a last example, let us

mention that Xovanski has computed the arithmetic genus of the zero-locus

V of a family of polynomials in terms of their Newton polygons, and he

proved that, generically, if V is a compact birationally equivalent com-

pletion of V9 there are no non-zero global differential forms on V, except
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in top and zero dimensions.

2.6o It can very well be that a function be degenerate with respect to

its Newton polygon, for any local choice of coordinates. Arnold asks if

it is possible to make such a function equivalent to a non-degenerate one

by adding a finite number of squares of the coordinate-functions.

§ 3. Zeta- Function of the Monodromy

Let f be a holomorphic function at the origin of Cn, and suppose

it belongs to m2(m maximal ideal), and is non-degenerate (but it is not

required to have an isolated singularity).

Consider the Milnor fibration (usual notations) :

/: XVXXO) -»T\0 , X(f) =/-' (<)

and the monodromy h(f) acting on H* (X(t) , C). Then

C/ (*) = n det [Id. - zh (/) , JP (X(0 , C) ] ^

is called the Zeta-f unction of h ( f ) . A. Varchenko has proved the fol-

lowing theorem:

Theorem 5. Under the above assumptions, C/(#) can be effecti-

vely computed from the Newton polygon of f, in the following 'way:

Let 0(K), for K an integral polyhedron in Rk, be the product

of all polynomials (l-zftw))sw), where A is any (k-T)-face of K, S(A)

its volume (normalized), and A(J) the cardinal of the quotient-group

of ZK by the subgroup generated by integer points belonging to affine

space containing A.

Define in the same way 6(K^, 0(X#), by intersecting K 'with

vector subspaces of coordinates. Then C/(Z) is equal to

0-' n

The proof consists in applying the theory of toroidal imbeddings (Mum-

ford) in order to get a "weak" resolution of singularities, common to
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all functions with a given Newton diagram; the theorem of A'Campo

expresses C in terms of Euler characteristics of the divisors in a resolution

of f9 the final stroke is then Theorem 4.

§ 4. Oscillatory integrals

Let

Z(r)= f eivf

JR*

the classical notation for the oscillatory integral, where (p is smooth with

compact support, f real analytic. It is known that for t tending to infinity,

7(r) ~ >
p m = 0

where p runs over a finite family of rational arithmetic progressions,

independent of (p.

Definition 5. The index of the singularity defined by f is the

supremum of the p's such that, for any open set containing 0, there

exists a (p and an integer m such that

The number m will be called the height of /?(/).

Suppose f is non-degenerate (in the real-analytic sense) , and let T

denote the point of intersection of F (f) with the diagonal in Rk xl = - • •

=•**;

T= (*,.»,*).

A. Varchenko has announced the following result:

Theorem 6, a) If t>l,

and the height of 13 (f) is equal to the smallest dimension of faces

containing T.
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b) If 0<t<l ,

/9 (/)>-,
L

but the inequality can be strict.

Theorem 7* a) The singularity of a family of functions fa of

two variables -with "jj. constant" is constant.

b) Let (fa) denote the following functions of 3

-variables.

(n fixed) .

Then

a<0 /S(/B)= + r(») l im r (»)=0.
2 »^°o

The computation above gives a counter example to Arnold's conjecture

on the semi-continuity of /?.
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