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Irregularity of Characteristic Elements
and Hyperbolicity1}

by

Hikosaburo KOMATSU*

§ 1. Irregularity of Characteristic Elements,,

Let

(1) P(x,D}= S aa(x^D«
\a\^m

be a linear partial differential operator with holomorphic coefficients aa(x)

defined on an open set V in Cn. We denote the principal part by p (x, D):

(2) P(x,D)= H aa(x)iy
\a\=m

and assume that it is not degenerate or that p (.r, Z)) 7=0 for any fixed

x in V. Since we consider only local problems, we may assume without

loss of generality that the coefficient of D™ is equal to 1.

If an element (x\ f°oo) eP*F= (T*V- Y)/CX (?°oo stands for the

class of £°eTJ0Y) is on the non-singular part of the variety

(3) N(p*) = {(x, £oo) e P* V; p (x, £) = 0},

it is called a non-singular characteristic element of P(x,D). Then

/>(.r, f) is factorized in a neighborhood of (x°, f°) as

(4) ^(x,f)=p(x,f)(?1-^^r))a

with holomorphic functions p(x, f) and k(x, fx) homogeneous in f and

such that p (x°, f°) =^0. The integer J is the multiplicity of the charac-

teristic element.

Let 0 be the ring of germs of holomorphic functions on a neighborhood

Received October 9, 1976.
* Department of Mathematics, Faculty of Science, University of Tokyo, Kongo, Tokyo,

Japan.
1} Preliminary results were announced at the conference on Structure of Solutions of

Partial Differential Equations at RIMS on October 24, 1975.



234 HlKOSABURO KOMATSU

of x° and let 0[£] be the ring of polynomials with coefficients in 0. These

rings are known to be unique factorization domains. Therefore we can

find an irreducible homogeneous polynomial K(x,$) in 0[f] such that

fj — A(.r, ?') divides K(x,£) in a neighborhood of (x°, f°). The irreduci-

bility of K(x,£) implies that ^1 — X(x, ?') is a simple factor of K(x,g}

and that if fj — A(x, f) divides a polynomial A(x, f) in 0[f] as a holo-

morphic function, then K(x,£) divides A(x, f) in 0[£] (see [17]).

In particular, there is a homogeneous polynomial Q(x, f) in 0[£] such

that

(5) X^O^QG^W^r.

We have Q (x\ f °) ̂ 0. P (x, D) - Q (x, D) K(x, U) d is a differential

operator of order at most m — 1. If its homogeneous part Pm~1(x,D)

of order m — 1 is equal to zero, we set dm-i = oo and Qm-1(x, D) =0.

Otherwise, we can facto rize Pm~l(x, f) in 0[f] as

P™-1 (x, f ) = Qra_I (x, f ) K(x, I) *-' ,

so that Qm-1(xJ ?) does not vanish identically on a neighborhood of (x°,

£°) in the zeros N(K) of X" or of fj — &(x, f'). We continue the same

procedure up to order zero and obtain the following decomposition of

P(x,D) due to De Paris [4]:

(6) P(*, D} =Q(x,

where Qi(x, D*)K(x, D)di is either zero or a differential operator of order

z with a homogeneous polynomial Q^ (.r, f ) which does not vanish identi-

cally on a neighborhood of (x\ f °) in ^(jK) .

Now the irregularity ff of the characteristic element (.r0, ?°oo) (or

the factor K(x, D) ) is defined by

(7) <r = maxll, ^4 (z = 0,l,-,m-

We remark that 1<J(T<^. The De Paris decomposition (6) depends on

the coordinate system but the irregularity does not.

When <T = 1, P(x, D) is said to satisfy Levi's condition at (*°, f°oo).
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§ 2. Estimates of Coefficients of Formal Solutions.

A holomorphic function (p(x) on a neighborhood of x* is called a

characteristic function of P(x, D) if it satisfies

(8) £(X

We assume that grad <^(x°) oo =f°oo. Then (p(x) is actually a solution of

d<p(x)\Q
—— I— U.

Let @j(t),j^Z, be a sequence of functions of one variable t satisfying

(10) — 0,00 - 0, i (0, j <EE Z.
dt

Then we can construct a unique formal solution

(11) u(x)

of

(12) P(

under the initial conditions

/"I ON (j U j(13) ——^

where fk(x') are arbitrary holomorphic functions defined on a neighbor-

hood of x°''. Uj{x) do not depend on the sequence ®j(f). Employing

Hamada's method in [9], we can prove that Uj(x) are holomorphic on

a fixed complex neighborhood V0 of x° and that there is a constant C

depending only on fk(x') such that

(14) \u,(x)\<&+1J\, J^O;

C-y+i ^-^i

(15) \uj(x)\<\ \ (-J)!

.0, <T=1, /

(see [17]). When ff = l, this is known since De Paris [5]; Hamada

[9] obtains essentially the same estimates with the irregularity ff replaced

by the multiplicity d.



236 HlKOSABURO KOMATSU

The following proposition shows that (15) is the best estimates of

this sort in general. It is not always, however, because Qt (x, f ) in the

De Paris decomposition may vanish on the subvariety {(x, grad (p(x) oo)}

of N(K).

Proposition 1. If tf>l and if Qi(x°, grad (p(x*)} does not vanish

for some i<^m zuith d—di = ff(m — i), then there are data f k ( x ' } such

that zve have

(16) !«,(*

on a neighborhood ofx° with a constant c^O for infinitely many j

§ 3. Hyperbolici ty.

From now on we assume that P(x, U) is a linear differential operator

with real analytic coefficients aa(x) defined on an open set Q in Rn.

Since the coefficients are continued analytically to a complex neighborhood

V of J2, all results in the preceding sections hold good. For the sake

of simplicity we assume that .r0 = 0=(0, • • • ,0) .

The operator P(x, Z)) is said to be hyperbolic with respect to the

hypersurface S={x1 = Q} if the Cauchy problem

is correctly posed. Of course, the hyperbolicity depends on the function

space £F to which the Cauchy data zUj(x') and the solution u(x) should

belong. We consider three cases:

Case I. The space Q of infinitely differentiate functions and dually

the space S)f of distributions.

Case II. The spaces Q™ and £{s} of Gevrey classes of functions

and the spaces 5)(s)/ and 3){s}/ of ultradistributions. Here 5>1 and

(18) 6w(Sl)={f

(19) <?w(fl) = {/

where
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(20) sup \Daf(x) \ ^
x<=K

and 3){S}'(Q} are defined to be the duals of 3)^ (fl) =

and 3){s} (8} = 3) (Q) n£{s>G£) equipped with natural local con-

vex topologies (see [16]).

Case 711. The space Jh of real analytic functions and the space

3$ of hyperfunctions.

If the coefficients of P(x, D} are constant, a complete characterization

of hyperbolic operators is known in each case (I. G. Petrowsky [32] and

L. Carding [7] for Case I; E. Larsson [19] and C C Chou [3] for

Case II; T. Kawai [14] and P. Schapira [34] for Case III).

Therefore we will be concerned with the variable coefficient case.

Usually the hyperbolicity condition consists of three parts:

Condition A. The initial surface is non-characteristic;

Condition B. The characteristic roots are real, i.e. the roots Ci of

the algebraic equation

(21) x*,Ci,n=o
are real for any x and g'^R71'1 ;

Condition C. Some conditions for lower order terms.

The necessity of Condition A is proved by constructing null-solutions.

J. Hadamard [8] and S. Mizohata [25] proved the existence of Ck null-

solutions for simple characteristic surfaces and De Paris [4] extended to

the case of characteristic surfaces of irregularity 1. We have proved the

following theorem in [17] (cf. J. Persson [31]).

Theorem 1. Let S: 0(x) =0 be a real analytic hyper surf ace such

that (x, grade/; (x) oo) is a non-singular characteristic element for every

If ff is the irregularity, then for each l<^5^(T/(cr —1) and

there are null-solutions exactly in 8{s} and exactly in S)^' on

a neighorhood of XQ.

Sketch of Proof. There is a holomorphic characteristic function

(p(x) with the same zeros S as (p(x). Let u3(x) be the coefficients of

formal solution (11) with the initial data fk(x') =S0,k. If we choose
the sequence
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VQ (w)dw9 J>0,

(22)

where

0-1)!

(23) 00 (*) = -— L f "-JL- d exp ( - *-"<
27TZ Jo 2; — £

or

(24) ^0(2)

then it is shown that the formal solution (11) converges in the complex

domain in the respective topology. The estimates (15) play an essential

role. Lastly we take the boundary value of the solution on the real

domain.

The necessity of Condition B in Case I was proved first by P. D. Lax

[21] when the characteristic element is simple and then by S. Mizohata

[24] without any restrictions on multiplicity. When the characteristic

element is non-singular, we have

Theorem 2. Let (0, (Ci, f ') °°) be a non- singular characteristic

element of irregularity 1 cwith f real non-zero and Im Ci>0- Then

for each l<Cs<C°° there is a solution u(x) of (17) exactly in G{s}

defined on the positive part &Q
+ = {x^.@Q\ -^iSjO} of a neighborhood

Q0 of 0 with Cauchy data tvk(x') having singularity spectra at (Or,

f'oo) and such that u(x} cannot be extended to any hyp erf unction

solution of P(x,~D}u(x) =0 on any neighborhood of 0.

Sketch of Proof. We construct a characteristic function (p(x) with

=0 and (0, grad 0?(0) oo) = (0, (Ci, £') oo) and such that Im <£>(0, *')

unless x' =Q. If we employ

(25) 00 (*) = ̂ 1 P^— - d exp ( - i-'/c-D) ,
2iti J° iz — t

and define ®j(z) by (22), then the formal solution converges as in the

proof of Theorem 1 and turns out to be a solution exactly in £>{S}(J20
+)
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with the Cauchy data having singularity spectra at (O',f oo). It is actu-

ally real analytic on J30
+\{0}.

If it were continued to a hyperfunction solution on a neighborhood

of 0, then it would follow from Holmgren's theorem and Sato's funda-

mental theorem [33] that the integral

1
be continued real analytically to a fixed interval ( — e, e) for any real

analytic function f(xly x') on a neighborhood of ( — e,e)xK'. But for

a suitable f(xl7 x'} we can prove the divergence at — e/2.

Suppose that (x, (Ci, ?') oo) is a characteristic element with Im Ci>0

and f £: jR71"1^^}. Since the singular part of N(^K) forms a subvariety of

N(K), we can find in an arbitrary small neighborhood of (x, (d, £') oo)

a non-singular characteristic element (x°, (Ci°, f0 ')00)- Since the non-sin-

gular part of N(K) is locally parametrized by (.r, f'oo), we may assume

that f is real and that Im Ci°>0.

Now let (0, (Ci°, f°') °°) be a non-singular characteristic element such

that f0/ is real and Im Ci°!>0. As in the proof of Theorem 2 we con-

struct a holomorphic characteristic function (p(x) satisfying ^(0) =0 and

(0, grad^(O) oo) = (0, (Ci°, f0/) oo) . If e>0 is sufficiently small, the domain

V0 of definition of the coefficients u^x} of formal solution (11) around

x°=(-e, 0, - - - , 0 ) contains 0. Let

(26) ( J 0 ( Z )=11

and define $j(z) similarly to (22). Then the solution u(x) defined by

(11) converges on the complex domain {.rEE VQ; Im <£>(.r)^>0}, ^vhich in-

cludes the real domain J20
+ = {x<= Vor]Rn; ^i>0}. On the other hand,

we can prove in the same way as above that u(pc) can not be extended

to any hyperfunction solution across the hyperplane xl = — s. If we shift

the Xi coordinate by — e, we obtain the following

Theorem 3. Suppose that P(x, D) has a non- singular character-

istic element (0, (Ci, ?0 °°) such that Im Ci>0 and f'eJR71"^^}.

Then for any sufficiently small neighborhood &Q of 0 and any £>0
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there is a real analytic solution u(x) of (12) defined on

^> — e} 'which cannot be extended to any hyperf unction solution across

the hyper surf ace Xi = — 2s.

When the characteristic element is simple, H. Nakamura [28] has

proved that there is a real analytic solution which cannot be extended

to any ultradistribution solution on a larger domain.

We can generalize Theorem 2.2 of P. D. Lax [21] to the effect

that if the Cauchy problem (17) has, for every *wk(x'} <E£(S) (J2') with

a fixed domain Qf containing 0', a solution u(x) e.S){*}/(J2w) in some

domain containing 0, then there is a common domain J20 of existence for

all solutions. Thus we obtain

Corollary. Let J2' be a domain containing O'eJK71"1 and let s,

t>l. If the Cauchy problem (17) has, for every wk(x') e£(s) (£')

a solution u(x) ^.3){t}' in some domain containing 0, then the roots

Ci of the equation

(27)

are real for any

K. Kataoka [13] has proved the necessity of Condition B for Case III

by showing that if there is a characteristic root Ci(f') with ImCi<CO,

then the Cauchy data ze>fc(.r') for solutions u(x) in x^>Q satisfy a pseudo-

differential equation.

J. M. Bony-P. Schapira [1] proved that Conditions A and B are

sufficient for hyperbolicity in Case III.

Originally Levi's condition (7 = 1 was introduced as Condition C in

Case I by E. E. Levi [23], A. Lax [20], M. Yamaguti [35], S. Mizohata-

Y. Ohya [26] and J. Chazarain [2]. They proved that the Cauchy

problem (17) is correctly posed in Q and S)' if Conditions A and B

hold and if every real characteristic element is non-singular and of ir-

regularity 1. Necessity of Levi's condition is also proved by S. Mizohata-

Y. Ohya [27] when the multiplicity d is at most 2 and by H. Flaska-G.

Strang [6] in the general case. More strongly we have the following
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Theorem 4. Suppose that Conditions A and B are satisfied and

that P(x,D) has a non-singular characteristic element (0, f oo) of

irregularity (7>1.

Then for every s>(T/((T — 1) there are Cauchy data °wk(x
f) e

G™ (Q'} on a neighborhood Qf of 0' in Rn~l such that the solution u(oc)

of (17) does belong to S)™' (Q^) on any neighborhood J20 of 0 in Rn.

On the other hand, for every neighborhood Q of 0 in Rn there

are Cauchy data *wk(x') e£wC0') , -where 5 = c7/((7 — 1) and Qr ~3®(\

Rn~\ such that the solution u(x) of (17) does not belong to <2){s}/(£).

Sketch of Proof. We construct a real valued real analytic character-

istic function <p(x) such that 0?(0) =0 and (0, grad ^(0) oo) — (0, f oo).

Since N(IC) is a real hypersurface, we rotate <?' a little if necessary

and may assume that the assumption of Proposition 1 is satisfied.

Suppose that for any Cauchy data ivk(x'} ^G™ (Qr) the solution

u(x) belongs to <£D(S)/(J2W) on some neighborhood Qw of 0 in I?71. Then

employing S. Mizohata's technique in his proof of Lemma 1.1 of [24],

we can prove that there is a common neighborhood $0 of 0 such that

all solutions u(x) belong to <2)(s)/(<£?o).

Thus we may assume that there are sufficiently small open sets

.G'ciir1"1 and @0c:Rn such that O'efiofW^C.fi' and that for any

wfc(.r')e £*($') the solution u(x) of (17) is in ^)*/(^0), where * is

either (5) or {s}, and will prove a contradiction.

Let /e <?*(!?). We restrict ourselves to the solutions u (x) defined

by (11), where we take

rJo
,0-1)!

(28)

In view of (14) we can easily prove that

(29) a+(*)=f;«,(*)0.,(K*))
j = 0

converges in <?* (J20) . On the other hand, it follows from (15) that

(30) u. (x) = f] u-k (a:) tf _fc (^ (^) )
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converges in QW-W'(£„) and that the Cauchy data

/ O - I N(31) 1 = 1,2, ->,m

belong to <?*(£') •

By the assumption U-(x) must belong to 3)*' (Q^) for every /"€=

<?*(JR). We consider the linear mapping T: 5)*(JR) -»<D *'C00) defined

by Tf—U-. Since T is continuous as a mapping from 3)* (K) into

£D(ff/(ff~i:>:" (£!Q), it has a closed graph and hence is continuous. As we

will prove in [18], the kernel theorem holds for the ultradistributions

of class * . Hence there is an ultradistribution T(t,x)^£D*'(Rx£}o) such

that

(32) u_ (x) =

We may assume without loss of generality that <p(x) —xn. Then

we can write

(33) u_ (x) = Tf(x) =

Hence it follows that the support supp T of the kernel is contained in

the hyperplane {(t, x} &RX@0', t = xn} . By the structure theorem of

ultradistributions with support in a submanifold (see [18]) we have

(34) T(t, *)=!>, O) <*"' (*. - 0 .
fc = 0

where vk(x) are ultradistributions in 5)*/(iG0) satisfying the following

estimates :

In case #=($) (resp. *={s}^, we can find, for every compact set

^ in *00, constants h, L and C (resp. for every compact set K in JS0

and A, Z/>0, a constant C) such that

(35) l|f»(^)l|c»i"-»)'^CLV (*!)'.

Comparing (33) and (34), we have vk(x) =U-Js(x). Then the es-

timates (35) contradict (16) .

If we wanted to prove only the necessity of Levi's condition, we

needed only the Schwartz kernel theorem and the Schwartz structure

theorem of distributions with support in a submanifold. Then the proof
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is very similar to J. Peetre's characterization of linear differential operators

[30].

V. Ya. Ivrii-V. P. Petkov [12] and L. Hormander [11] investigate

necessary conditions for hyperbolicity in £ at singular characteristic ele-

ments.

As we remarked above Levi's condition (7 = 1 is known to be sufficient

for hyperbolicity in Case I when there are no singular characteristic

elements. In case II we have

Theorem 5. The Cauchy problem (17) is correctly posed in £(s}

and S)^f (resp. in S{s} and ^){s>/) if Conditions A and B hold and

if every real characteristic element is non- singular and of irregularity

(T^s/(s-l) (resp.

A little weaker results have been obtained by Y. Ohya [29], J.

Leray-Y. Ohya [22] and Y. Hamada-J. Leray-C. Wagschal [10]. Theo-

rem 5 may be proved by each of their methods. We can also prove it

by constructing the fundamental solution as the superposition of Hamada's

solutions [9] with polar Cauchy data as in T. Kawai [15]. Again esti-

mates (15) play an essential role.
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