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Local Cohomology of Analytic Spaces

by

Zoghman MEBKHOUT*

The purpose of this paper is to show that the local cohomology of a complex
analytic space embedded in a complex manifold is a holonomic system of linear differential
equations of infinite order and its holomorphic solution sheaves are a resolution of the
constant sheaf € in this space which provides the Poincaré lemma. The proof relies on
the theories of the &-function and holonomic systems due to M. Kashiwara ([2] and [3])
and A. Grothendieck’s theorem on the De Rham cohomology of an algebraic variety ([1]).
I am very much indebted to M. Kashiwara from whose papers I learned so much.

Notations

We use the following notations:

(X, 0y : complex smooth manifold.

Y : reduce analytic subspace of X.

I : coherent ideal sheaf defining Y.

D=9 : sheaf of differential operators on X.

Dy=9 : sheaf of differential operators of finite order.

D(A) : derived category of the category of A-modules if A is

any sheaf of rings.
A complex means a bounded complex. The sheaf &) is coherent and the

sheaf 9= is flat over 9.

§ 1. Main Theorems

The local cohomology RI'y(Dy) of Y is an object of D(9>) because
any injective £=-module is flabby. The algebraic local cohomology of Y is
the object of D(J) defined instrinsically by

RF[Y](@J::R l_i_r;x ?‘/WQX(OX/Jk§ Ox).
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Theorem 1.1 1) The local algebraic cohomology is a complex
with 9D-holonomic cohomology. i) We have the canonical morphism
in D(Cy)

R Jﬂm_zp (RF[YJ(G)[), @X:>Cy.(l)

The natural morphism RI»(0f) -RI'y(Qf) induces a morphism in
D(Qc:)

(%) _@@er (On) = D* @ RI'try(O) >R+ (0.

Theorem 1.2 The morphism (%) is an isomorphism in D (D)
and the local cohomology sheaves of Y are D -holonomic and admissible

modules.

The theorem (1.1) is the Poincaré lemma because it gives a resolution
of the constant sheaf Cy in terms of analytic structure of Y. The flat-

ness of 9* over 4 gives the following formula for every p:

Ky (Ox) =D lim 22470, (Ox/I*; Ox) .
e

We get an expression of the local cohomology of a space in terms
of the extension sheaves in analytic geometry which is useful in appli-
cations, for example in the proof of the theorem B. We have also the

resolution

R ngm(Rry(@X); @X-A—J)Cy .

We give the sketch of the proofs.

§ 2. The Algebraic Local Cohomology

To be coherent with the notations [S.K.K.] we denote by B3y the
cohomology of RI11(Ox) [codim Y]. To show that By x are 9-holonomic
we construct or canonical complex L'(0Ox) on X which has the same
cohomology as RIr(Of). This complex reduces to the dualizing com-
plex L'(Qx) of J. P. Ramis and G. Ruget [8] if Y=X. We first sup-
pose that codim(Y) =1. In this case

™ T was told by J. P. Ramis that he gets this formula with B. Malgrangs by using
cristalline cohomology.
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L'tn(Ox) =RItn(Ox = li_gn ety (Ox/9%; Ox) [—1] =By x[ 1]
k

To see that By x is D-holonomic system we can suppose that ¥Y=5"1(0)
where feI' (X, Ox) and

Brix=>0x[f]/0x.

The singular supports SS(Ox[f"]) and SS(Byx) are the same because
SS(Oy) is empty and it is enough to show that Ox[f '] is D-holonomic.
But it is just a consequence of the fundamental theorem of M. Kashiwara
([3]) which says that the D-module Jl=9D[s]f* is a coherent purely
(n—1)-dimensional 9-module if 7=dim X.

Indeed, this theorem proves the the existence of the &-function of f

and this b-function gives
OxLf1=9D.f7"
for a natural number N large enough. We have the exact sequence
00— (s+N)D[s]1f*->D[s]f>D.f—-0.

This sequence shows that Ox[f '] is a coherent &-module and a classi-
cal fact in dimension and multiplicity implies that dim SS(Ox[f~']) =#—1
which means that Ox[f] is D-holonomic. Let us define L'y;(Qx) when
codim (Y)>2. Remember that for any regular noetherian scheme (X, O%)

over € the cousin complex,
L' Oz =% z2.,O%)

is an injective hence a flabby resolution of @3. For a compact KCX we
denote by (X(K), Oxu) the affine scheme defined by ©(K) and by
Y(K) the subscheme defined by the ideal I(K) of the vanishing func-
tions on Y in a neighborhood of K. For a point x&X the fiber of
Ly (Ox) at x will be I'yey (L (Ozw)) which is just the local coho-
mology of Y (z) in the local scheme X (z). To glue the different fibers
we take a compact polycylinder K, the ring O(K) is noetherian and
the cousin complex L' (Oxx)) is a flabby resolution of Oy If xEI%,

the morphism O (K)—0, gives a morphism

Tz (L (Ozx)) > T (L (Oxn))

Lemma 2.1 When K runs over the neighborhoods of x, the morphism
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li_n; I'vao (L (Qxw)) > T oo (L (Ox)) is an isomorphism.

K>z

This lemma glues together the fibers and and the complex Lp(Ox)
will have the same cohomology as RIry(Ox) because of the expression
of the local cohomology of a closed space in a noetherian scheme in
terms of the extensions. Now to prove that By are coherent D-modules
it is enough to prove that for any small polycylinder KI'(K, B¥x) are
D (K)-module of finite type and that the morphism

F(K, %f’le) ® @z*%ﬁz,z
Ox)

is an isomorphism for every zek (see [6]). If fi,---,f,(q=2) are
functions of @ (K) defining Y in a neighborhood of K we can compute
I' (K, B x) as the Cech cohomology of the Zariski-Cech covering 1= U U,
of X(KN\Y(K) where U;=X (K)\V(f). The Cech complex C'(U, @X(K))
is a complex of & (K)-module of finite type in vertue of the codimension
one so I'(K,®B¥x) are of finite type. The module O, is flat over O (K)
if zeK so the tensor product with O, over O(K) commutes with the
cohomology. But we have in vertue of the one codimensionality the

following isomorphism,

C W, Ozw) ® 0,~C U, Oxw).
O&)

Taking the cohomology in the both hand side we have the isomorphism

I' (K, Bfx) ® 0.5Bfix.x,
o)
and the 9-modules By are coherent. To see that these modules are
holonomic we just notice that the object of the complex Iy (L' (Ox))
have dimensions z—1 as 9, modules if we compute it by the Cech-

Zariski cohomology.

§ 3. The De Rham Complex of RIy(Dyx).

We denote by 7" the tangent vector bundle of X and by 2=
the De Rham complex of X. The first Spencer sequence D& A'(T)
V)

x
is a projective resolution of @y in the category of &-modules. For any

complex ' of D-modules we have
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R Hom' 5 (Ox; M) = Hom' o (D g@ A (T ; ) S Hom' oy (A (T7); M)

=20,QM" .
These isomorphisms hold in D(Cy). The complex R Hom o(Ox; M) is
called the De Rham complex of * and is denoted by DR(S") By the
Poincaré lemma we have R Homgy(Ox; Ox)S2SCx in D(Cx). The
naturel injection RIr(QOx) >RI'y(Ox) gives a morphism

(*) R J@m_q) (@X; Rr[y](@x))—-)R ’Z/amﬂ) (@X; RFY(©X))
SRIYR Homg(Ox, Ox) SRIv(Cx).

Theorem 3.1 The composed morphism R Hom' 5(Ox; RIr1(Ox))
—RI'y(Cx) is an isomorphism in D (Cy).

The question is local. We can suppose that J=(f, -, f,). Let
Ji=(f1, -, fer), o= (f,) and Y, and Y, the spaces defined by J; and
J,. We have Y=Y,NY, and Y,UY; is defined by (fify, - Sfe-1S0)-
We have a triangle

@ RI'tv,ur(Ox)
+1 % N
RI'rn(Ox) — RIr1(Ox) DRIr3(Ox)

To see that (1) is a triangle in D (&), it is enough to see it on each
fiber because of the nature of the Cousin complex. But if x=X the

triangle
RIy,ura(0x),

Ve AN
RI'ri(Ox),» — RItr1O0x), : DRIy 1(Ox), »

+1

is just the Mayer-Vietoris sequence of the subspaces Y;(z) and Y,(z)
in the scheme X (). We can also use Artin-Rees lemma and cofinality.
The functor R Hwng(Ox; x) from D(D) to D(Cx) is a #-functor and
transforms triangle (1) into the triangle (2)

(@) DR (RIr,ur1(Ox))

+1 % N
DR(RItr(Ox)) —> DR(RI'w3(0x)) DDR(RIr3(Ox)).
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The Mayer-Vietoris sequence of Y; and Y, in X gives the triangle (3)

3 1 RIy, v, (€Cx)
Y N
RIry(Cy) — RI'y, (Cx) @an (€Cx)

The morphism of the theorem 3.1 is a morphism of the triangle (2) to
triangle (3). By induction on g the proof of the theorem 3.1 is reduced
to the case J=(f). If Y=5"1(0) let U be X\Y and j the injection
of U in X. In this case

RI'tn(Ox) =By x[ - 11 =0x[f1/0x[-1]

We have the triangle in D (Cy)

DR (B5:x)

+1 / N
DR(Ox) —> DRO«[f'D

and the triangle in D(Cy)
) RI'y(Cx) [1]
Ty N
Cx — Rj,Cy
But the following composed morphism
DR (Ox[f7]) = jx2 05 Rjp & v—> RjCo
is an isomorphism by the Grothendieck’s theorem [1]. Finally we get
R Hong(Ox; RItn(Ox)) S Ry (Cx)

and the proof of theorem (3-1) is complete.

§4. Verdier Duality

Remember that a C-analytic finitistic sheaf of € vector spaces (C-
analytiquement constructible in French) is a sheaf & of finite C-vector
spaces such that there exists a stratification | X; of X and the restric-
tion F|x, on each stratum is locally constant. ' By M. Kashiwara [2] the
complex R Homgy( M, Ox) has finitistic cohomology if H is a D-holonomic

system. Because the category of finitistic sheaves is a stick subcategory



LocarL COHOMOLOGY 253

of C-vector spaces the complex R Hemg (M, Ox) has finitistic cohomology
if M is a complex with -holonomic cohomology, We call a complex
with finitistic cohomology a finitistic complex. So by the first part of
theorem 1.1 the complex R Homy(RIr(Ox); Ox) is finitistic. Using
the topological duality of Verdier and devissage [12] we can see that
R omg , (F°, Cy) is finitistic if & is a finitistic complex and the natural

morphism
>R Homg, (R Home, (97, Cx); Cx)
is an isomorphism in D(Cy). The sheaf Cy is finitistic and we have
CySR Home, (R Homey (Cr; Cx); Cx).
We have also
R Homg (RI'x1(Ox); Ox)
SR Homey (R Home (R Homg (RIx1(Ox); Ox); Cx); Cx)

To prove that Cy SR Homg(RIr(Ox); Ox) it suffices to prove that
R Homg,(Cy; Cx) = RI'y(Cx) S R Homg, (R Homg (RItry ©Ox); Ox); Cx).
By theorem 3.1 we have RI'y(Cy) =R Homy(Ox; Ry (Ox)) and we
must prove that

R Sbomg (@X; RF[Y] (@X)) SR d%‘mcx (R Homg (RF[Y] (@X>; @x) 5 Cx) .

This can be done by the following theorem which completes the proof
of the theorem (1,1):

Theorem 4.1 Let M be a complex with D-holonomic cohomology

then we have a canonical isomorphism in D (Cy)

R Homg(Ox; M) SR Homg, (R Homg(M; Ox); Cx).

§5. T.V.S. Homological Algebra

To prove theorem 4.1 and theorem 1.2 we need to define the
functor R Homtsp'o (F; G) if F* and &G are complex of 9 r-module
locally free with differential operators of finite order. Roughly speeking
it is the “derived” functor of Hembsay,(F; G) which represents the

continuous homomorphisms of Fréchet-nuclear sheaves. This category
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is not abelian. J. P. Ramis had noticed [10] and [11] that Cy is just
the Libermann complex B° [5] and using the graded ring B* he could
define R Homispy,(F; G). We do not give here the precise definition
but we recall the formula

R aI/OMlOﬂCX(OX; @X) =R JMF@X(JM, @X)

where J,, is the sheaf of infinite jets; see [9]. We list the properties

of this functor in the following theorem:

Theorem 5.1 We have the following isomorphisms;
a) R Homtspey,(Ox; Ox) 5D

b) R Homtopc,(Ox; 2) S0 [—n]

¢) R Homtspg, (F; G) SR Home,(F; G7) if G- finitistic.

We can now prove theorem 4.1. The natural morphism

oj/omc’x(g; g)@;}) jM.—_)‘[/mCX(J/mQ(ﬂ.; g)’ g)!

where & and M are left 9D-modules, gives rise to the morphism of

functors
R e’/mgx(g'; g) éﬂ—*ﬂ Homg, (R Homg (N “Y); Q) .
G

Notice that the structure of right 9-module of Hemg,(F*;G") comes
from the structure of left 9-module F*. This morphism of functors is
an isomorphism if #* has 9-coherent cohomology by the way out “left”

functor lemma. We have a natural morphism in D(Cy)
R Homtopg, (Ox; ) >R Home,(Ox; )

which give a morphism by composition with the last one

(%) R Hombrpg,(Ox; 2) é) M —R Homg (R Homg (M ; Ox); 2°).

Theorem 5.2 Let M a complex with D-holonomic cohomology
then (%) is an isomorphism in D (Cy).

The question is local. We can suppose that J/* is a single holono-
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mic @-module admitting a free resolution. In this case R HAomgy (M ; Ox)
is a complex of free (Oymodules with differential being differential
operators of finite order and R Hembspy,(R Homg(M; Ox); £) has a
meaning. The morphism (%) transit via the morphism R AHomibspg,
X (Ox; 2) (>L§ M— R Homitspg (R Homg(M; Ox); ). The last morphism
is an isomorghism by the technique of the way out “left” functor lemma.
The theorem 5.2 is a consequence of the property c) of theorem (5.1)
because R Homg( M ; Of) is finitistic. In D(Cy) we have £ 5Cy and
R omtopy,(Ox; ) S [—n], from the isomorphism (%) we have

L
Q"R M [—n] SR Hont' g, (R Homg(HM.; Ox); Cx)
9
and the theorem 4.1 follows if we notice that

Ik Q}) M [—n]SDR(IM) =R Hom 5(Ox; H).

§ 6. Local Cohomology of Y.

The natural morphism of functors in the argument ¥
L
R Homg,(Ox; Ox) Q M >R Homgy (R How o (M5 O0x);Ox)

is an isomorphism if ' has &D-coherent cohomology by the way out left

functor. The natural morphism
R Homtopg, (Ox; Ox) >R Homgy(Ox; Ox)

gives the morphism

L
(k) R Homitopg,(Ox; Ox) (? M — R Homg, (R Homg (M ; Ox); Ox).

Proposition 6.1 The morphism (%) is an isomorphism in D (Cyx)

if M has D-holonomic cohomology.

The question is local. We can suppose that ' is a single D-
holonomic system admitting a free resolution. We finish the proof in
the same way as in the last section We apply this situation to %°
=RIr1(Ox). We have
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L L
Q)w (? RF[H(@X) S@w ® Rr[y](@x) ::;R dglaﬂﬂlﬂﬁcx(@x, OX) ® Lc/-n.
- 2 9

SR '74{%0,1’ (R Homyg (Rr[n (OX>; Ox); Ox)

and by theorem 1.1 R Homgy(RIr(Ox); Ox) SCy. So

Qm %} Rr[m(Ox) SR oI/WCX(Cy; @X) ZRry(@X) .

The proof of theorem 1.2 is over. The details will appear elsewhere.
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