
RubL RIMS, Kyoto Univ.
12 Suppl. (1977), 247-256.

Local Cohomology of Analytic Spaces

by

Zoghman MEBKHOUT*

The purpose of this paper is to show that the local cohomology of a complex
analytic space embedded in a complex manifold is a holonomic system of linear differential
equations of infinite order and its holomorphic solution sheaves are a resolution of the
constant sheaf C in this space which provides the Poincare lemma. The proof relies on
the theories of the ^-function and holonomic systems due to M. Kashiwara ([2] and [3])
and A. Grothendieck's theorem on the De Rham cohomology of an algebraic variety ([!]).
I am very much indebted to M. Kashiwara from whose papers I learned so much.

Notations

We use the following notations:

(X, Ox) : complex smooth manifold.

Y : reduce analytic subspace of X.

I : coherent ideal sheaf defining Y.

3)x°° = 3)co : sheaf of differential operators on X.

3)x = 3) : sheaf of differential operators of finite order.

-D(c_^T) : derived category of the category of ^-modules if ^JL is

any sheaf of rings.

A complex means a bounded complex. The sheaf 3) is coherent and the

sheaf 3)°° is flat over 3).

§ 1. Main Theorems

The local cohomology RFY(3)x) of Y is an object of D(3)°°} because

any injective «2)°°-module is flabby. The algebraic local cohomology of Y is

the object of D(3)) defined instrinsically by

(0X=R lim
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Theorem 1. 1 i) The local algebraic cohomology is a complex

-with 3)-holonomic cohomology, ii) We have the canonical morphism

in D(C*)

R

The natural morphism RPiYi(Px) — >I?/~V(0.r) induces a morphism in

Theorem 1.2 The morphism (sfc) is an isomorphism in

and the local cohomology sheaves of Y are S)°°-holonomic and admissible

modules.

The theorem (1. 1) is the Poincare lemma because it gives a resolution

of the constant sheaf CY in terms of analytic structure of Y. The flat-

ness of «2)°° over S) gives the following formula for every p:

We get an expression of the local cohomology of a space in terms

of the extension sheaves in analytic geometry which is useful in appli-

cations, for example in the proof of the theorem B. We have also the

resolution

R Jf**^ (JR/V(0z) ; Ox^Cy.

We give the sketch of the proofs.

§ 2, The Algebraic Local Cohomology

To be coherent with the notations [S.K.K.] we denote by 35*!̂  the

cohomology of RFiYi(Px) [codim Y"]. To show that ^8y\z are 5)-holonomic

we construct or canonical complex L'm(0^) on X which has the same
cohomology as Rrm(0z). This complex reduces to the dualizing com-

plex L'(0x) of J. P. Ramis and G. Ruget [8] if Y=X. We first sup-

pose that codim (y)=l. In this case

(1) I was told by J. P. Ramis that he gets this formula with B. Malgrangs by using
cristalline cohomology.
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L'm (Ox} = RTm (Ox) ^ lim £*P0z (Ox/ 3" ; 0Z) [ - 1] = 33^ C ~ 1]
k

To see that 5&Y\x is <£D-holonomic system we can suppose that Y=f~~1(Q)

where /e= r (X, 0*) and

The singular supports 5f/S(0jr[/~
1]) and -^(SSri^r) are the same because

SS(Ox) is empty and it is enough to show that Ox\_f~l~\ is .ffl-holonomic.

But it is just a consequence of the fundamental theorem of M. Kashiwara

([3]) which says that the ^-module <3l = 3) \_s~\f* is a coherent purely

(n — 1) -dimensional ^-module if n = dim X.

Indeed, this theorem proves the the existence of the ^-function of f

and this ^-function gives

Ox[f-1]= £)./-»

for a natural number N large enough. We have the exact sequence

This sequence shows that Ox\_f~l~^ is a coherent ^-module and a classi-

cal fact in dimension and multiplicity implies that dim SS(Ox\_f~l~^) =n — I

which means that Ox\_f~r\ is <£D-holonomic. Let us define L'm(Px) when

codim(Y)>2. Remember that for any regular noetherian scheme (X,

over C the cousin complex,

is an injective hence a flabby resolution of 0jf. For a compact KdX we

denote by (X (K) , OX(K^) the affine scheme defined by 0 (K) and by

Y(K) the subscheme defined by the ideal I(K) of the vanishing func-

tions on Y in a neighborhood of K. For a point x^X the fiber of

L'm(Px) at x will be /Y (a:) (L° (O^(xy) ) which is just the local coho-

mology of Y(x) in the local scheme X (x) . To glue the different fibers

we take a compact polycylinder K, the ring 0 (K) is noetherian and
o

the cousin complex L' (0X(K\) is a flabby resolution of Oj(K}. If

the morphism 0(K)-^0X gives a morphism

Lemma 2. 1 W7ze?2 Kruns over the neighborhoods ofx, the morphism
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)) is an isomorphism.

This lemma glues together the fibers and and the complex L*m(px)

will have the same cohomology as RFiY}(Px) because of the expression

of the local cohomology of a closed space in a noetherian scheme in

terms of the extensions. Now to prove that S3*|̂  are coherent ^-modules

it is enough to prove that for any small polycylinder Kr(K9^&Y\z) are

-module of finite type and that the morphism

is an isomorphism for every x^K (see [6]). If fl9 --,fq (#2j2) are

functions of 0(K) defining Y in a neighborhood of K we can compute

F (K, 33*|2r) as the Cech cohomology of the Zariski-Cech covering U= (j Ut

of X(K)\Y(K) where Ut = X (K)\V(fJ . The Cech complex C'(U, Oicjo)
is a complex of £D(K} -module of finite type in vertue of the codimension

one so r(K9$8*\z) are of finite type. The module Ox is flat over 0(K)

if x^K so the tensor product with Ox over 0(K} commutes with the

cohomology. But we have in vertue of the one codimensionality the

following isomorphism,

C- (U, 0**)) (8) 0X^C- (U, 0^) .

Taking the cohomology in the both hand side we have the isomorphism

and the «2)-modules ^8*\z are coherent. To see that these modules are

holonomic we just notice that the object of the complex Fy"^ (L' (Px(x)) )
NX

have dimensions n — I as «2/ ̂ -modules if we compute it by the Cech-

Zariski cohomology.

§3. The De Rham Complex of

We denote by T the tangent vector bundle of X and by Q'^ —

the De Rham complex of X. The first Spencer sequence
Ox

is a projective resolution of Ox in the category of ^-modules. For any

complex 3A' of j2)-modules we have



LOCAL COHOMOLOGY 251

JR Jtoria (Ox • 3*{ •) C+J/oria (2) (g) A' (T) ; JK ') ^Jto»fOx (A' (T) ; M ')

These isomorphisms hold in D(Cx). The complex R ^om'^(0x\ 3A'} is

called the De Rham complex of 3A' and is denoted by DR(3tt'} By the

Poincare lemma we have R J^om^^Ox', 0^)^Q'^CX in D(CX*). The

naturel injection Rrm(Ox}-*RrY(Ox} gives a morphism

R

Theorem 3.1 The composed morphism R ^om^ (Ox ;

Cx) is an isomorphism in D(CX}.

The question is local. We can suppose that cjT= (/i, -^fq) - Let

<$i= (fi,'~9fq-i)9 ^2= (fq) and Yj and Y2 the spaces defined by Jl and

JT2. We have Y=Y^Y2 and ^U^ is defined by

We have a triangle

(1) +v \
To see that (1) is a triangle in Z)(«®), it is enough to see it on each

fiber because of the nature of the Cousin complex. But if x^X the

triangle

\
Rrm (Ox) , , — > nr[rj (0^) , .enTcrj (Oz) , ,

is just the Mayer-Vietoris sequence of the subspaces Y1(x) and l^Cr)

in the scheme X(x). We can also use Artin-Rees lemma and cofinality.

The functor R Jtom^O x; *) from D(3)) to D(CZ) is a 9-functor and

transforms triangle (1) into the triangle (2)

(2)
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The Mayer-Vietoris sequence of YI and Y2 in X gives the triangle (3)

(3)

V

The morphism of the theorem 3. 1 is a morphism of the triangle (2) to

triangle (3) . By induction on q the proof of the theorem 3. 1 is reduced

to the case J=(f). If Y=f~1(ff) let U be X\Y and j the injection

of U in X. In this case

We have the triangle in

DRQ&iJ+v \
DR(OJ - >

and the triangle in D(Cz)

RrY(cx) [i]
+ V \

£x - > f

But the following composed morphism

is an isomorphism by the Grothendieck's theorem [1]. Finally we get

JR ^Ws (Oz ; RTm (0^) ) ̂  RFY (€x)

and the proof of theorem (3-1) is complete.

§ 4. Verdier Duality

Remember that a C-analytic finitistic sheaf of C vector spaces (C-

analytiquement constructible in French) is a sheaf S of finite C-vector

spaces such that there exists a stratification \J Xt of X and the restric-
i,

tion F\Zi on each stratum is locally constant. By M. Kashiwara [2] the

complex R &tf&mg)(3tt, Ox) has finitistic cohomology if 3A, is a «2)-holonomic

system. Because the category of finitistic sheaves is a stick subcategory
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of €-vector spaces the complex R ^o^^(JH', Ox) has finitistie cohomology

if <3tt' is a complex with .SMiolonomic cohomology, We call a complex

with finitistic cohomology a finitistic complex. So by the first part of

theorem 1.1 the complex R ^i&m^ (RFm (Ox) ; Ox} is finitistic. Using

the topological duality of Verdier and devissage [12] we can see that

R e^o.mCx(^\ €£) is finitistic if 3' is a finitistic complex and the natural

morphism

is an isomorphism in D(Cx). The sheaf CY is finitistic and we have

Cy^R ^o-mCx (R

We have also

^R ^amCx (R JhmCz (R ^omc, (Rrm (0 T) ; Ox) ; C*) ; C^)

To prove that €F^>12 ^o-m® (ftrm (Ox) \ Ox) it suffices to prove that

R ^em€x(CY; Cx) =RTY(CX^R -fa*Cz(R -fa*g>(Rrm(Oz)\ Ox); Cx}.

By theorem 3.1 we have RrY(Cx} =R ~fa*g)(0z\ Brm(0jr)) and we
must prove that

R Jhm* (Ox • RFm (Ox) ) =^R Jf«*nCx (R

This can be done by the following theorem which completes the proof

of the theorem (1, 1) :

Theorem 4* I Let Jtt' be a complex with S)-holonomic cohomology

then we have a canonical isomorphism in D(Cx)

R

§ 5. T.VoS* Homological Algebra

To prove theorem 4. 1 and theorem 1. 2 we need to define the

functor RJ/&m^p'Cx(3\Q'} if 3' and Q° are complex of ^-module

locally free with differential operators of finite order. Roughly speeking

it is the "derived" functor of ^/&m^aCx(3\ Q) which represents the

continuous homomorphisms of Frechet-nuclear sheaves. This category
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is not abelian. J. P. Ramis had noticed [10] and [11] that Cx is just

the Libermann complex B' [5] and using the graded ring B' he could

define R e^fomi&^Cx (£F ; Q} . We do not give here the precise definition

but we recall the formula

R Jhv&pcOz, Ox} =R

where S^ is the sheaf of infinite jets; see [9]. We list the properties

of this functor in the following theorem:

Theorem 5. 1 We have the folio-wing isomorphisms;

a) R

b) R

c) R Jfomiopcx (3- ; Q} ̂ R *HomCx (£F- ; £•) if £F' finitistic.

We can now prove theorem 4. 1. The natural morphism

(ff; S~) (X) JH--+JkmCl (Jh~0 (M- ; 20 ; Q.} ,

where £?" and J^l' are left j2)-modules, gives rise to the morphism of

functors

R <^<*mCz(3'',

Notice that the structure of right .2)-module of Jt&mCx(^£'\ S.'} comes

from the structure of left j2)-module 3'. This morphism of functors is

an isomorphism if JM' has j2)-coherent cohomology by the way out "left"

functor lemma. We have a natural morphism in D(C%)

R

which give a morphism by composition with the last one

R

Theorem 5. 2 Let c_5K" a complex with 3)-holonomic cohomology

then (jfc) is an isomorphism in D(fiz).

The question is local. We can suppose that i_5K' is a single holono-
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mic 5)-module admitting a free resolution. In this case R J^o-mQ (<_5K ; 0^)

is a complex of free 0z-rn°clules with differential being differential

operators of finite order and R ^&mtap.Cx (R J^om^ (<_5K ; Ox) ; J2') has a

meaning. The morphism (^) transit via the morphism R ^&m^pCx

X (CV, J3') d) ^->I? -fa*bpcz(R <M»*s> (<3tt ; O^r) ; £') • The last morphism
a)

is an isomorphism by the technique of the way out "left" functor lemma.

The theorem 5. 2 is a consequence of the property c) of theorem (5. 1)

because R <^W^(c_5H'; Ox) is finitistic. In D(C%) we have $'— »Cz

JR Jtomtof.Cx (Ox ; J3') ̂ >ST [ — 72] , from the isomorphism (>fc) we have

and the theorem 4. 1 follows if we notice that

L

3)

§ 60 Local Cohomology of Y.

The natural morphism of functors in the argument <_5K'

R Jf**cx(Px\ Ox}®3tt'-»R ^«wCx(R ^^^(M'^Ox)-^^
3)

is an isomorphism if ^H' has 5)-coherent cohomology by the way out left

functor. The natural morphism

R jfoH&pc^Ox; Ox) -*

gives the morphism

(*) R ^omt0pcx(0x; Oz)®JH--*
3)

Proposition 6.1 The morphism (^) is a?i isomorphism i?iD(Cx}

if c3K" has S)-holonomic cohomology.

The question is local. We can suppose that <_3K° is a single Q-

holonomic system admitting a free resolution. We finish the proof in

the same way as in the last section We apply this situation to c5H°

(O^. We have
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(03 ; 03 ; 03
and by theorem 1.1 R ^^(1^/^(0^) ; Ox) ^»CV- So

; 03 =RTT(P3.

The proof of theorem 1. 2 is over. The details will appear elsewhere.
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