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Discontinuity Formula and Sato's Conjecture

by

Takahiro KAWAI*)1)2) and Henry P. STAPP**)3)

Abstract

The -S-matrix discontinuity formulas are used to show that in neighborhoods of
many physical points the /S-matrix is a holonomic microfunction.

In this paper we shall use the microlocal form of the 5-matrix

discontinuity formula to show that the /S-matrix is a holonomic micro-

function near many physical points.

A microfunction is holonomic only if it satisfies a holonomic system

of micro-differential equations.***} The holonomicity of the ^-matrix has

been conjectured by Sato [!]„ This property, if true in general, would

mean that the ^-matrix has, in a well-defined sense, the simplest possible

type of singularity structure, and that this structure is amenable to study

within the framework of the theory of holonomic microfunctions (Sato-

Kawai-Kashiwara [2] .T))

According to the basic microanalyticity postulate the singularities of

the S-matrix at physical points are associated with Landau diagrams.

Consequently they can be classified in accordance with the complexity

of these diagrams. Near singularities of the simplest class the holonomi-

city of the 5-matrix follows directly from the microanalyticity postulate
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and the discontinuity formulas. To treat more complicated cases we

introduce a complexified version of the microanalyticity postulate. This

complexified version asserts that the singularities of the ^-matrix near a

physical point are confined to the local complexifications of the positive-a

Landau surfaces, and enjoys there a certain boundedness property. Using

this assumption we shall extend the analysis to a much broader class

of singular points and show that the ^-matrix near these points again

satisfies a holonomic system of micro-differential equations whose charac-

teristic variety is the union of the local complexifications of the positive-

CC Landau surfaces, as demanded by our interpretation of the conjecture

of Sato.

The method of proof suggests that an inductive procedure might

yield the same result near all physical points but we have not obtained

this result. In fact, our analysis covers only cases where the relevant

Landau diagrams have at most two lines connecting any pair of vertices.

Thus three-particle threshold points are excluded, along with all singularities

that are locally related to singularities at three-particle threshold points.

In § 0 we recall the definition of Landau varieties and related

notions needed later. In § 1 we write down the microlocal form of the

discontinuity formula, and in § 2 we give a detailed study of the S-matrix

singularity structure under the assumption that the relevant Landau

diagrams are simple (i.e., that at most one line joins any two vertices.)

In § 3 we discuss the case where the relevant Landau diagrams contain

double internal lines. Singularities associated with Landau diagrams

having more than two lines joining a pair of vertices are not considered

in this work. In § 4 we examine points where the simple triangle dia-

gram singularity surface meets the associated normal threshold singularity

surface, and in § 5 we summarize our conclusions.

Some of the results of this paper have been announced in Kawai-

Stapp [3]. The general procedure is to proceed in stages and investigate

at each stage the singularities of the /^-matrix that arise from the inter-

play of the singularities of the ^-matrix proved at an earlier stage to

be controlled by a holonomic system with singularities associated with

the explicit mass-shell delta functions, which are also known to be con-

trolled by holonomic systems.
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§ 0. Preliminaries - Space-time Landau equations,

Landau variety in the cotangent bundle,

and related notions and results

In this section we give the definition of the Landau equations, and

also some related definitions that will be needed in the later sections.

We also state and prove the structure theorem for bubble-diagram func-

tions so that the significance of the space-time Landau equations becomes

clearer.

Throughout this article it is assumed that the masses of the particles

are strictly positive and have no accumulation point. Furthermore, it is

assumed, for simplicity, that all the relevant particles are spinless. If

k is a four-vector, k = (k^ &1? kz, kz) = (kQ, &), then k2 means kQ
2 — k* — k2

2 — k2.

Definition 0. I.

A Landau diagram D is a graph consisting of external lines Lr
e

(r = l, m"9n)9 internal lines Ll (1=1, • • - , JV) and vertices Vj 0"=1, • • • ,^ / ) .

Each line is oriented and the orientation is denoted by an arrow ->-.

The structure of D is determined by a set of incidence numbers [j: r]

and \_j: l~\ defined as follows (cf. Nakanishi [32] p. 14) :

[j: r] is — 1, + 1, or zero according to whether the line Lr
e begins

on VJ9 terminates on Vj9 or neither begins nor terminates on Vj. The

numbers [j: l~\ are defined in the analogous way. For each internal

line LI there is a unique index j~ (7) that satisfies \_j~ (/) : Z] = — 1 and

a unique index j+ (I) that satisfies [j+ ( /) : /] = + 1. Thus the internal

line LI begins at V3--^ and terminates at VJ+M. For each external line

Lr
e there is a unique j(r) such that \_j(f) : r} = gr^0. If sr= + ly then

Lr
e is called an initial line, if er— — 1 then Lr

e is called a final line.

Each internal line LI is associated with a stable particle the mass of

which is a positive scalar mL^>0. Each external line Lr
e is associated

with a stable particle the mass of which is a positive scalar

Definition 0.2.

If for each pair of vertices V^ and Vj2 of a Landau diagram D there

exists at most one internal line Lt that connects VSl and Vjt (i.e., such
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that [ji:/]=^=0 and [_J2-l~\=^=ff) 9 then D is called a simple diagram.

All diagrams D used in this work are partially ordered.

Definition 0. 3.
A Landau diagram D is said to be partially ordered if and only if

there is a partial ordering > of the vertices Vj of D so that V^^^>Vj.^

holds for every 1. A partially ordered diagram D can be drawn with

V/+(i) standing to the right of Vj-^ for every /. Our diagrams D will

always be drawn in this way.

A flow line is a path in a Landau diagram that runs always from

left to right, and cannot be lengthened.

Definition 0.4*

A signed Landau diagram D is a Landau diagram D such that each

internal line LI of D carries a sign 6t. This sign fft is independent of

the orientation of LI.

Definition 0. 5.

A set (/>!, "'9pn', Ui9 • • - , #n) = (/>; u) consisting of n real four-vectors

pr and n real four-vectors ur is said to be a solution of the Landau

equations associated with the signed Landau diagram D if and only if

there are sets of real four-vectors kt (/=!,•••, JV) and v3 (j=l, ••- ,# ')

and real scalars oil (£=1, • • • , JV) and /?r (r=l, • • • , n) such that the follow

ing equations are satisfied:

n N

•=1 1=1

kL
2 = mi

2, kla>0 1=1,—,N (O.lc)
(0.1)

I l U - - l ] v j = alkl 1=1,—,N (0. Id)

Wr= ~Sr(^j(r)-jSrA) ^=1, • • - , « (0. 1 e)

/=!,..., AT (O. l f )
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Definition 0. 6.
The set of all solutions (p; u) of the Landau equations associated

with D is denoted by J? (D) .

If D is unsigned then Definitions 0. 5. and 0. 6. still hold, except

that the sign conditions (0.1 f) are dropped from the Landau equations

(o.i).

Definition 0.7.

If every internal line Lt of D carries a positive sign o~i = + 1, then

D is called a positive-a diagram. A corresponding solution of the Landau

equations is called a positive-a solution. The symbol Z>+ represents a

diagram that is the same as D except that every sign fft is positive.

Similarly we define J^Q(D+) as follows:

Definition 0.7.1.

-Co(D+)=J?(D+)-{(p;u);(p;u) is a solution of the Landau

equations associated with D+ in which some ai = Q}.

An important property of _£*0(£)+) is the following:

Theorem 0.0.

Suppose D is an unsigned diagram and (pQ ; &0) lies on J?0 (^
+) -

Then every solution (pQ ; UQ) of the Landau equations associated with

D is a strictly positive-a solution -with all

Proof.

Suppose (pQ; u0} were a solution corresponding to D with some

A result of Pham [4] says that the corresponding kt
9s are fixed by the

mass-shell constraints and energy-momentum conservation equations alone,

since p lies in positive-a Landau surface. (See also Stapp [5] I. 19)

Therefore each vector kt must coincide with the vector kt of the cor-

responding positive-a solution. Then the linearity of the Landau equation

with respect to (u, v, a, (f) with fixed pr and kt ensures that we can
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find some solution (p',u) with all a^O and some ai = Q of the Landau

equation associated with D. This contradicts the assumption that (pQ;uQ*)

lies in J?o(£>+). Q.E.D.

Corollary.

Suppose that D is unsigned and that (p ; u) belongs to J^0 (D+) .

Assume, furthermore, that no pair of four vector (pr, p/) with r=^r'

and e r=e/ are parallel. Then no solution (p/ ; u') = (p ; 0) satisfies

the Landau equation associated 'with D.

Proof.

The above theorem implies that the u = Q solution must be a strictly

positive-a solution. However, under the nonparallelness condition on

the pr there is no u = 0 solution with all <2z>0. This completes the

proof of the corollary.

Definition 0. 8.

A set (ply • • • , />» ; Ui, • • • , Un) = (p; u) consisting of n complex four-

vectors pr and n complex four-vectors ur is said to be a complex solution

of the Landau equations associated with the Landau diagram D if and

only if there are sets of complex four-vectors kt and vj and complex

scalars 0,1 and /Jr such that the complexified equations (0.1 a — e) are

satisfied.

Definition 0.9.

The set of all complex solutions of the Landau equations associated

with D is denoted JLC (D) . If there is no fear of confusions we omit

the superscript C.

By virtue of these definitions the sets J? (D) and J?c (D) , resp.,

are subvarieties of S*Rin and P*C4ri, resp.*} Here we have identified

the cotangent vector gradfc k
2 with k itself by making use of the Minkowsky

* For a real analytic manifold M, we denote by S*M the cotangential spherical bundle,
i.e., (T*M— M)/R+. For a complex manifold X, we denote by P*X the cotangent-
ial projective bundle, i.e. (T*X-X)/C*.
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metric k2 = kQ
2 — k* — kz

2 — kz
z. Furthermore, under the convention (0.2)

((0.3), resp.) specified below, the set JL (D) (J^c (D) , resp.) is a sub-

variety of S*<M (P*Jtt°, resp.), where JVL is the mass-shell manifold

Jfit — {p e R*n ; pr
2 = /jtr

2 r=!9"-.>n} (and 3ttc is its complexification i.e.,

"n\pr
z = lir

2 r = l, • • - , n}. The conventions are:

(0.2) Two solutions (/>;&) and (p' ; u') of the Landau equations are

considered to be the same point if and only if both pr'=P/

(r = ~L,--,?i) and ur — ur
f = yrpr (r=l, "-,n) hold for some real

scalars yr (r = l, • • • , # ) .

(0. 3) The same rule as in (0. 2) except that jr is allowed to be com-

plex.

We may introduce another convention (0.2') ((0. 3'), resp.) so

that _£(Z>) (J?c(£>), resp.) defines a subvariety of S*3tlr (P*JKr
c, resp.),

71

where JMr is the restricted mass-shell variety <3ttr— {p^R*n; ][] erpr = 0
r=l

and pr={J-r for r = l, •• - ,«} and J^r
e is its complexification i.e., c5Kr

c

;I]£rA-0 and A2 = ̂ r2 for r=l, -,»}.*>

(0. 2r) Two sets of four-vectors (p;u} and (p';u') are considered to

be equivalent if and only if pr=P/ (r = l9~-9ri) and ur — u/

= TrPr-r£r<z (r = ! ,•••,«) hold for some real scalars jr and some

real four-vector a.

(0. 3X) The same rule as in (0. 27) except that fr and a are allowed

to be complex.

It is clear that these conventions are consistent with Landau equa-

tions (0. 1) . Hereafter, we shall often employ these conventions with-

out explicitly citing them. Note that these conventions are the natural

counterpart of the fact that the ^-matrix S(p) is a well-defined hyper-

function on <_5K and the scattering amplitude s(p) is a well-defined

* In order to avoid the singular point of JMr and <3ttT@', we consider the points where
not all the pr's are parallel.
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hyperfunction on 3ttr except for the singular points of 3Ar. (See (1. 2. 1)

of S-K-K [2] Chapter I. See also Lemma 0. 2 at the end of this sub-

section.) Note also that ur= — urer where ur is defined by (0. le), is

the set of vectors to points on the straight space-time trajectory line that

passes through Z7y(r) and is parallel to pr. This set of points is called

the trajectory of the line Lr
e.

Note finally that we sometimes regard JL (D) as a subvariety of

the pure imaginary bundle V — lS*<Jttr or V —1*5*^ by the isomorphism

(P\ ^ )—>(£; V^I#). This is because the sheaf of microfunctions is

defined on the pure imaginary bundle.

In connection with this geometric meaning of (0. 1 e), one can

rewrite the equation (0. 1) in the following form, which is used in

Kashiwara-Kawai-Stapp [6].

Definition 0.10 {Another form of the Landau equations)

A set (p',tt) consisting of n real four-vectors pr and n real four-

vectors ur is said to be a solution of the Landau equations associated

with the signed Landau diagram D if and only if there exist real scalars

@L}+ and &,_ (1=19"-9N) and /3r (r=l, • • - ,« ) and real four-vectors kt

and iii (/=!,•••, AT) and v3 0"=1, • • • , n') which satisfy the following:

^r=U.r, A,0>0 r=l, • • • , » (0.4b)

y = W, kl>a>0 1=1,-~,N (0.4 c)

(0.4)

1=1,--,N (0. 4d)

r=l,-,» (0.4e)

'i,+ -/3i,_)>0 for every line Z (0. 4 f)

It is clear that the equations (0. 4) are equivalent to the equations

(0. 1). In (0. 4 d), HI enjoys the same geometric interpretation as ur.

Because of this symmetry of the quantities associated with the internal
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and external lines, the Landau equations given in the form of (0.4)

are often more convenient and appeal more to intuition than the equa-

tion given in the form (0. 1).

A solution to (0. 4) can be interpreted as a space-time diagram D

that has the topological structure of D with each space-time trajectory

parallel or anti-parallel to the corresponding vector kt according to

whether ffi = + or —.

We have introduced the notion of the complexified Landau variety

JHC (D) as the set of all complex solutions of the equation (0. 1). Some-

times it is more convenient to consider the "local" complexification of

J?(D+), in order to extend the "positive-a conditions" into the complex

domain. For this purpose, we introduce the notion of the local com-

plexification J?°(D+;co) of JL. (D+) over an open set a).

First we define the connected component of J?C(D) relative to an

open set in (/>; it) -space.

Definition 0.11.

Let a) be an open set in the complexification of ^~—IS*3ttr. A

connected component of Xc (D) relative to to is by definition a part C

of the variety defined by (0.1) in complex (p9 u, k, v, a, jS) -space that

satisfies the following condition:

(0.5) C lies over a) and is connected in (py u, k, v, a, /?)-space.

Definition 0012.

Let (pQ; UQ) be a point on J? (Z>+), and let a) be a neighborhood

of (PQ;UQ). Then Jlc(Z)"1"; to) is the projection on complex (p;u)-space

of the union of all the connected components of JIC (U) over o) that

contain a strictly positive-a solution.

The solutions of the Landau equations discussed above are points

in the cotangent bundle. The usual solutions of the Landau equations

arise by projecting the nontrivial solutions of the Landau equations

defined above into p space. (A nontrivial solution has by definition some
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<3/zz=0). Thus the usual solutions of the Landau equation are a set in

JVi (or c5Kr or its complexification). This set will be called the Landau

"surface," though it is not necessarily of codimensionl. We denote

it by L (£)), and its complexification by Lc (D}.

An important subset of L(D+) is the surface L0(Z)+) defined as

follows:

Definition 0.13.

The restricted positive-^ Landau surface LQ (D+) is defined by

L0(D
+)^L(D+) — {p; there is some nontrivial solution (p',ii) with some

ai = 0 of the Landau equations associated with D+}.

The restricted positive-a Landau surfaces enjoy several nice pro-

perties, that we shall use in §2. (See Chandler-Stapp [7].)

The set J^+ is the union of the sets _£*(jD+). Its importance arises

from its close connection to the singularity spectrum of the /^-matrix

(See Chandler-Stapp [7], lagolnitzer-Stapp [8], Pham [9], Sato [10],

Kawai-Stapp [11] and lagolnitzer [12]). There are, however, some ex-

ceptional points where the Landau equations fail to adequately limit the

singularity spectrum. To deal with these points a modified system of

equations has been proposed by Kashiwara-Kawai-Stapp [6]. However,

that approach has not yet been sufficiently developed, so we shall in the

present article merely identify the exceptional points, and exclude these

interesting but troublesome points from our investigation.

The first kind of exceptional points are the so-called J>K0-pomts.

Definition 0.14.

A point p = (ply --,pn) ^M is called an ^lQ-pomt if and only if pr

and p/ are parallel for some r=f=r' with e r=e/. An <_5^0-point is a

special case of the u = Q point defined below, in the sense that for any

<_5ff0-point p one can find a positive-^ Landau diagram D+ for which p is

a u = Q point.

Definition 0» 15.

A point p= (p1} • • • , p^) is said to be a u = 0 point for a Landau
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diagram D if and only if (p; u) = (^;0) is a nontrivial solution of the

Landau equations associated with D.

The connection between J^+ and the singularity spectrum of the

5-matrix is specified by the following microanalyticity property, which

is equivalent to the macrocausality property of the /S-matrix (lagolnitzer-

Stapp [8], lagolnitzer [12]).

POSTULATE,,

The singularity spectrum of the S-matrix is confined to

, outside

The set J?+ enjoys a finiteness property that guarantees that

is an analytic set. First recall the following theorem (Stapp [5]).

Theorem 0» I.

D+) and L+ -

The finiteness property is this (Stapp [13]):

Theorem 00 2.

Suppose that R is a compact set in 3AT. Then the number of D+

such that L0(D
+) (~}R^(f) is finite.

This theorem guarantees that L+, hence JT+
? is a well-defined

analytic set.

Manipulations with the unitarity and cluster decomposition properties

of the 5-matrix lead to the so-called bubble diagram functions, which

are defined as follows:

Definition 0, 16.

A bubble diagram B is a diagram obtained by assigning a sign ffj

to each vertex Vj of a partially ordered Landau diagram. (Pictorially,

the vertex Vj of a Landau diagram is represented as a point, whereas

the corresponding signed vertex of a bubble diagram is represented as
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a bubble b that contains the associated sign ff^ffj. See Fig. 1 below.)

Fig. 1. A partially ordered Landau diagram D and a
bubble diagram. B constructed from it.

Definition 0.17.

The incidence numbers [&:r] and [&:/] are defined in the same

way as corresponding numbers [J: r] and [j:/], i.e., [£:r] is — 1, +1

or zero according to whether the line Lr
e begins on b, terminates on b,

or neither begins nor terminates on &, etc.

Definition 0.18.

The bubble diagram function FB (p) is the function obtained from

the bubble diagram B applying the following procedures:

(0. 9) Replace each plus bubble b of B by the connected part of the cor-

responding covariantly normalized ̂ -matrix element ^pb°^\S\pb
iny,

where pb
out is the set of momentum vectors associated with the

lines of B that begin on bubble b and pb
in is the set of momentum

vectors associated with the lines of B that terminate on b.

(0. 10) Replace each minus bubble b of B by minus the connected part

of the complex conjugate of the matrix element (pbin\S\pb
outy

with pb
in and pb

out defined as above:

(0. 11) Replace each internal line LL of jB by a factor ]T] 2nd+ (kt
2 — rat

2)
i

= X] ̂ nd(kl
2 — m?) Y(&M), where Y is the Heaviside function,

i
and the sum is over particle-types £, and mt is the mass of

particles of type t.

(0. 12) Perform an integration I d*ki over the momentum vector
C^TT) J

kt associated with each internal Lt of B.
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(0.13) Divide by nl9 where n is the number of independent symmetry

operations of B. Here a symmetry operation means a trans-

formation 6 = (ffl3 0"2) of the indices j — l-+f and / — *->lf such that

[j':J] = [ff iC/) : f f i (0] and \j\ r~] = [^(j) : r] hold for every j,
Z and r.

Remark.

It is obvious that procedures (0. 11) and (0. 12) can be combined

so that the integration procedure is performed on mass-shell as follows:

(0.14) Substituting ^ ki2+mL
2 for kiiQ and performing an integration

-
16n3

T] - 1 .- l = over each internal line L/ of B.
6n3 J^

Definition 0. 19.
A Landau diagram D is said to fit into a bubble diagram B if and

only if D is a signed diagram that can be constructed by replacing each

bubble b of B by a connected partially-ordered Landau diagram Z>&,

which may be simply a point. The initial (final, resp.) lines of the

diagram Z>& that replaces bubble b are to coincide in a one-to-one way

with the lines of B that terminate (begin, resp.) on that bubble. Each

internal line of the diagram Db that replaces a bubble b is to carry the

sign ffb of that bubble. The remaining internal lines of Dff
y which are

precisely the internal lines of the original bubble diagram, can carry any

signs.

The set of D that fits into a bubble diagram B is denoted by B.

B •

Fig. 2. An example of a Landau diagram D that fits into bubble diagram B.
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Remark.

The lines of a bubble diagram B are sometimes called explicit lines,

to distinguish them from the lines of a D^B that are internal lines of

some Db.

In Definition 0. 18 we inserted the connected part of S or its com-

plex conjugate S^ multiplied by ( — 1) for each vertex of D. Sometimes

we use instead the function obtained by inserting the entire /^-matrix

S(p) itself, or its complex conjugate S* (p) 5 for certain vertices. In

such a case one uses a small box, with a plus or minus sign inside,

instead of a small bubble. The connectedness required in Definition

0. 19 for the diagram Db that replaces a bubble b is not required for

the diagram Db that replaces a box b.

Fig. 3. An example of a diagram with boxes.

Since the (local) analytic properties of the function corresponding

to a diagram with boxes can be immediately derived from those of the

bubble diagram functions we discuss here only the analytic properties

of the latter.

Definition 0. 20.
A solution of the Landau equations associated with a bubble diagram

function FB (p) is, by definition, a solution (p',zi) of the Landau equation

(0.1) corresponding to some D that fits into B. If (p\u) = (p\G) is

a solution with some a^O of the Landau equation associated with some

Z)eS, we say that p is a u = 0 point of FB' (p).

Definition 0.20 is justified by the following structure theorem (Stapp

[14], lagolnitzer [15] and Kawai-Stapp [16]).

STRUCTURE THEOREM 8

If the singularity spectrums of the bubble diagram functions
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**'(/»', A, -, A) (/>' = (A+i, -, AO
AiO) ar^ confined to solutions of the associated Landau equations, ex-

cept possibly at u = Q poi?its, then the bubble diagram function FB (p'9
p"} corresponding to the bubble diagram B obtained by joining BI

a?id B2 -with respect to ply • • - , / > * has the same property,

The usual formulation of the structure theorem follows from a

repeated application of the above theorem, starting from bubble diagrams

BI and B2 consisting of single bubbles. For these simplest diagrams the

micro-analyticity postulate for the ^-matrix validates the assumption of

the theorem outside J^f0-points. In fact, J^-points are the only u = 0

points for these simplest diagrams. Moreover, the macro-causality pro-

perty discussed by lagolnitzer-Stapp [8] does not give any conditions on

the singularity spectrum of the iS-matrix at the c5K0-points. Accordingly,

the u = 0 points are excluded in the hypothesis of the structure theorem,

and they are also excluded from the conclusions. (Progress on the ex-

tension of the Structure Theorem to u = 0 points has been made by

Kashiwara-Kawai-Stapp [6] , but we shall not describe those results here) .

In view of the importance of the structure theorem, we give here

a simple proof of the theorem based on the theory of microfunctions

(S-K-K [2] Chapter I) . An analogous proof based on the theory of

essential support of distributions developed by Bros-Iagolnitzer [17] has

been given by lagolnitzer [15]. The proof given here will both

establish our terminology, and also prepare the way for similar argu-

ments to be given in subsequent sections.

Proof of the Structure Theorem.

Let 3A,^3A,i, and M be the mass-shells on which FB*(p'9pl9 - - - , A ) >

FB* (Pi, " ' , P*9 P") andFsO',y) are defined, respectively. Denote by JM

the manifold defined by {(/>', ply • • • , />„/>") ; (p'9 A, •", A) ^^i and

According to Definition 0. 18, FB (p'9 />") is given by a sum of terms

(0.15) * f... f **'(/»',*, "•,A)n
n\(2rt) J J 1=1
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We first show that the integrand of (0. 15) is a well-defined hyper-

function on M'={(p',pl9 •••,A,£ / /)e tJf; O',£") is not a w = 0 point

of F*}.

Theorem 2. 4. 1 of S-K-K [2] Chapter I asserts that the singularity

spectrum of FBi regarded as a hyperfunction on Jtt' is given by

(0.16) A1

and H" = 0}.

Analogously the singularity spectrum of FBz regarded as a hyper-

function on c5K' is given by

(0. 17) A2= {(p', ply ...,p,,p"; J=I(u'9 ul9 -., ^SJ O) e S=IS*Ji';

and ^x = 0>.

s 1
Since JJ — ===== is analytic, it does not give any effect on the

«=i V pi*+/£i*
singularity spectrum of the integrand of (0. 15) .

Corollary 2. 4. 2 of S-K-K [2] Chapter I asserts that FB^FBz is a

well-defined hyperfunction on jtt' if Ai^\Az
a = (l).

Suppose there were some point in Ai^\A^. This would imply the

existence of a set of vectors (p', ply • • • , ps, p" \ uly • • - , &s) such that:

(0. 18) (//,A, ...,A; 7

and that

(0.19) (P1,-,P,,P";

The point (p',pi, • • • , ps, p") satisfies

and



DISCONTINUITY FORMULA AND SATO'S CONJECTURE 171

For such a point the condition that (/>', />") not be a z^ = 0 point

of FB implies that (p'y Pi, ••-, ps) is not a & = 0 point of .F*1. For from

a u = 0 solution of the Landau equations associated with BI one can con-

struct a u = Q solution of the Landau equations associated with B by

placing at the origin all vertices of B that are not vertices of BI.

The condition that (p',pi, m " 9 p s ) not be a u = 0 point for Bl9 together

with the hypothesis of the theorem implies that S.S. FBl is confined to

the solutions of the Landau equations associated with BI. The same is

true for S.S. FBz. Thus the set of vectors (/>', pl9 • • - , ps; 0, uiy • • • , «,)

appearing in (0. 18) is a solution of the Landau equations associated with

Bl9 and the set of vectors (pi, • • • , ps, p" ', — uly • • • , — ws, 0) appearing in

(0. 19) is a solution of the Landau equations associated with B2. In

particular, there exist four-vectors vjw and Vjw and constants bL and 5Z

such that the equations

hold for I=l9"-9s. The four-vector VJM gives the position of the ex-

ternal vertex of BI that is connected to line /, and VJM gives the

position of the external vertex of B2 that is connected to line /. The

above equation implies

which are the only Landau equations associated with B that are not

entailed by those for BI and B2. Thus the set of vectors (p' 9 pi, • ~ , ps,

p"; 0, ui, • • • , us, 0) corresponds to a solution (p'y p" ; 0, 0) of the Landau

equations associated with B. But the existence of such a solution would

mean that (//, p") is a u = 0 point for diagram 5, contrary to the con-

dition on Jit'. Thus this condition on JK' implies that ^n^^^, and

hence, by Corollary 2.4.2 of S-K-K [2] Chapter I that the integrand

FBlFBz of (0. 15) is well-defined as a hyperf unction on M' .

Corollary 2. 4. 2 of S-K-K [2] Chapter I may be used again to

obtain information about S.S. (FBiFBz \ j£/) . In particular, equations (0. 16)

and (0. 17) imply that S.S. (FBiFB*\%,) is contained in

(0.20) {(p',pl9 --,ps,p"; V-W, 7i,-, V., ^))eV^IS*Jr; there
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exist non-negative real constants c\ and cz with Ci + c^>0 such

that the following conditions (0. 21) ~ (0. 25) hold} .

(0.21) Tf = c&'

(0.22) y^cM + cfa l=l,~>,s

(0.23) y"=c2u"

(0. 24) (/>', pl9~',p, ; V:zl («', HI, • • • , H.) ) is contained in

S.S.^CZ-v^TiS*^!.

(0-25) (/>!, • • - , />„ />" ; ^-I(ui9 -•,%„ O) is contained in

Note that sing supp F^=7r(S.S. F*') -Supp FB* holds on JW, (j=l,

2, resp.) in our case (because of the conservation-law ^-function factor

in FBj") . This implies that FBiFB* is zero as a hyperfunction on 3& if

either (p'9 pl9'~, ps) $ sing supp FBi or if (pl9--9 p,9 p"} $ sing supp FB\

Thus there is no contribution to S.S. (FBlFBs) from the set where FBl

is analytic and FBz is not analytic or from the set where FBl is not

analytic and FBz is analytic.

Restricting (p'9 p") to <3&r we may, using arguments given before,

write

(0.26) &i = vm — bipi and Qi = ̂ JW— bipi (I=l9-"9s).

Now we can apply Theorem 2. 3. 1 of S-K-K [2] Chapter I to the

integral given by (0. 15) . Because of the partial ordering condition on

bubble diagrams the region of integration is compact, for (p' , p'') in

compact sets, and hence the integration procedure is legitimate as an

integration of a hyperfunction,, Thus Theorem 2. 3. 1 of S-K-K [2]

Chapter I applies to the integral given by (0. 15) , and it asserts that

S.S.F*(p'9p") is contained in

(0.27) {(p',p"; V=I(il',il"»GS=lS*Jk'9 there exists a set (A,-,

A) such that (p',pl9 ••',p»p"'9 V^0?',0, -,0,7")) is in ^e

set defined in (0.20)}.

Substituting (0.26) into (0.22) with ^ = 0, i.e., into ^MI + £2££ = 0

(£=!,••• ,$) , one obtains
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(0.28)

These are precisely the Landau equations associated with B that are

not already implied by the conditions demanded in (0. 20) . Since c\ and

cz are non-negative and £i + £2>0, the signs of the Landau constants cci

are preserved in the sense of (0. 1 f) . That is, the signs of the oil as-

sociated with lines of B that are internal lines of the Landau diagram

associated with BI or B2 are preserved. But the signs of the at associated

with the lines corresponding to Pi9"'9pf are not restricted.

This completes the proof of the theorem.

So far we stated and proved the structure theorem for bubble

diagram functions. However, the bubble diagram function FB (p) con-

tains an over-all ff-f unction <J4 (]T] £rpr) - It is sometimes useful to have
r

the structure theorem for the reduced bubble diagram function fB(p)

= F*(£)/(27r)4<J4(I] firA)*' defined on the reduced mass-shell manifold J/lr.
r

For this purpose we prepare the following lemma, which has also its

own interest.

Lemma 0. 2.

Let N be a real analytic submanifold of a real analytic manifold

M. Let n be a hyperfunction defined on N. Denote by §N the 8-

f unction supported by N and define the hyperfunction v by v^jj.$N«

Then

S.S. v = p-1(S.S. /O U J=ISS*M.

Here p is the canonical projection from ^/—lS*MxN — <J — ~LSN*M

to S=

Proof.

Corollary 2.4.2 of S-K-K [2] Chapter I claims that S.S.

p'1(S.S.j^)\J^f^ISN*M. So, it suffices to show that

(p-'CS.S. /O U V^LVM) CS.S. v .

* If a function M(p) is known to have the form (2;r) 4fl4 (S frpr) m (p) with some

function m(p), we sometimes use the notation M(p)/(2;r)*S*(S £rpr) to denote m(p),
though m(p) is well-defined only on {p; S £r^r=0}.
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This sphere indicates a fiber
of S*M at x0 s M:

This circle indicates a fiber
of S*N at x0 i

Fig. 5.

Since the statement is of local character, we fix a local coordinate

system x = (xl9 • • • , xd\ xd+1, • • - , x^) = (V; x") eM such that N is given

by j;' = 0. We denote the corresponding cotangent vector by y= (yf', ^").

Clearly v (•£) satisfies the (differential) equation

(0.29) *,v = 0 (j=l,...,d).

Therefore, a fundamental theorem on propagation of analyticity of solu-

tions of linear micro-differential equations (Theorem 2. 1. 7 of S-K-K

[2] Chapter III) tells us that the following two conditions are equivalent:

(0. 30) (0, x"; V^ (a, 97") ) e S.S. y for some a e I2d

(0. 31) (0, x"• V^-l (a, rj")) e S.S. y for any ae Bd

On the other hand, it is clear that

1'
Therefore, by Theorem 2.3.1 of S-K-K [2] Chapter I (0,.r";

V—1(0, ^x/)) must be contained in S.S. y if (x" \ \l — lij") is contained in

S.S. p.(x"}. Then, taking into account the equivalence of (0.30) and

(0.31), we conclude that p'^S.S. fi) is contained in S.S. v. It is clear

that V^l5^*M(ZS.S. v, because Supp vCiV. (See Proposition 2.1.3 of

S-K-K [2] Chapter III.) Thus we have shown that

S.S. v = p-1(S.S. 0) U <S=ISN*M.

This completes the proof of the lemma.
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As we noticed earlier, the Landau equation (0. 1) defines a sub-

variety of S*Jttr under the convention (0. 2'). Then, applying Lemma

0.2 to our case, it is easy to see that Structure Theorem holds for

reduced bubble diagram functions as it stands, if we consider the Landau

equation to define a subvariety of S*3ttr.

§ 1. Microlocal form of the S-matrix discontinuity formula

The presently existing derivations of the general iS-matrix dis-

continuity formula rely on the assumption of "mixed-a cancellation."

This assumption circumvents two problems. The first problem is the

failure of the structure theorem to give any information at u = Q points.

The second problem is the possibility that certain singularities associated

with nonpositive-a diagrams might fail to cancel among themselves in

the expected manner.

The problem with u = 0 points poses a serious problem for the deriva-

tion of the discontinuity formula solely from the unitarity and macro-

causality properties of the ^-matrix. Even in the simplest case of the

pole-factorization theorem certain of the occurring bubble diagram func-

tions have open sets of u = 0 points that would disrupt the proof were

they not ruled out by the mixed-a cancellation assumption (See lagol-

nitzer-Stapp [18]).

Examples indicate that these open sets of u = Q points are, in general,

not actually singularities. They are allowed to be singular by the

presently existing structure theorem, but they are in fact not actually

singular. What is needed, therefore, is an improved version of the

structure theorem that deals more effectively with these u = Q points and

rules out the spurious open sets of singularities allowed by the present

theorem. The recent work of Kashiwara-Kawai-Stapp [6] is an initial

step toward the construction of a more adequate structure theorem.

After resolving this problem of u = 0 points there will remain the

problem of showing that the singularities associated with nonpositive-a

diagrams cancel among themselves in the expected manner. In the work

of lagolnitzer-Stapp on the pole-factorization theorem it was shown that

the necessary cancellations were entailed by an analyticity requirement
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that goes beyond microanalyticity. This requirement demands a limited

amount of analyticity in a complex neighborhood of the physical region.

Arguments making full use of the results of Kashiwara-Kawai-Stapp,

and employing a stronger analyticity assumption, have not yet been

developed to give a proof of the general discontinuity formula not relying

on the mixed-a cancellation assumption. However, the strong version

of the mixed-a cancellation assumption needed for the presently existing

derivations of the general formula is not fully justifiable, a priori. Thus

we shall give here an alternative derivation that covers the cases used

in the present work. This alternative derivation is based on the require-

ment of "separation of singularities." This requirement is more satis-

factory than the mixed-a cancellation assumption, and provides a powerful

new tool for the analysis of the ^-matrix singularity structure.

The present work is based on the microlocal version of the dis-

continuity formula. To state this version we first recall the definitions

of "contraction" and "contain."

Definition 1.1.

A signed Landau diagram DI is said to contract to a signed diagram

D2 if and only if there is a one-to-one mapping of the internal lines of

D2 onto a subset s of the internal lines of £>! such that the contraction

to points of all the internal lines of Dl9 not in s reduces Dl to D2 in-

cluding signs. Each part of DI that reduces to a vertex of D2 must be

connected.

The internal lines of D2 can be separated into subsets such that

the subset a(r,t) consists of all internal lines of D2 that run between

vertices r and t of D2. The subset s of the internal lines of D1 sepa-

rates, accordingly, into a set of disjoint subsets sa. Two such subsets

sa' and sa" are said to be strongly equivalent if sa' and s<? define the

same set of flow lines and the sum of the (rest) masses associated with

the lines in sa' is the same as that in sa".

Definition 1. 2.

DI is said to contract to D2 in an essentially unique way if the

following conditions are satisfied:
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There is one subset / of the internal lines of Dl that map one-to-

one and onto the internal lines of D2 in the manner described in Defini-

tion 1. 1 and for any other such subset s" the subsets sa' and sa" are

strongly equivalents for all a.

Definition 1. 3.

A signed Landau diagram DI is said to contain a signed Landau

diagram D2 if and only if there is a correspondence of the internal lines

of DI and Dz that satisfies the conditions required in Definition 1. 1

except for the connectedness requirement on the contracted part of Dlm

The notion that Dl contains D2 in an essentially unique way is

defined in complete analogy to Definition 1. 2.

Example-

D =

£>, =

D2 contains D, but Dl does not. Neither Dl nor D2 contracts to D.

Using these definitions we can state the definition of the set J?2 C^+) -

Definition 1. 4.

)e^0(D+); (/>;«) lies in X (A+) only if A+

contains D+ in an essentially unique way.}

The central part of the derivation of Coster-Stapp [19] of general
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S-matrix discontinuity formula constitutes a proof that for any D+ and

any point (pQ; </^Iu0) in ~C2(D
+) there is a neighborhood of (^ojV^T^o)

in which one can derive solely from the unitarity and cluster decom-

position properties of the ^-matrix, an equation

(1.1) S = T(D+)+R(D+) microlocally near J?2(D+)3

where T(D+) and R(D+) have the properties described below.

The function T (D+) has the form

For each vertex b of D+ the quantity Sb is the ^-matrix corresponding

to the process indicated by b. The incoming and outgoing particles for

this process correspond to the incoming and outgoing lines of b, re-

spectively. For each pair of vertices (br, b^) of D+ the set a (r, f) is

the set of lines of D+ that join br to bt9 and 3Ca(r,v ^s tne Hilbert space

corresponding to the associated set of particles. The quantity Sa is the

restriction of S to Ma and S^1 is the inverse in 3£a of Sa. The sup-

pressed arguments of the factors Sb and S^1 are the variables pr and

^^ associated with the appropriate lines of the diagram exemplified below,

and there is a mass-shell integration over all internal variables kt. The

phase space factors (2ft) ~sS+(kt
2 — m*)d*ki are the same as for the bubble

diagram functions. These integrations bring the product (1. 2) to the

form of a product of partially ordered operators.

Example.

Let D be the diagram

D =

where each line is associated with some particular particle, and the letters

a, 0 and 7" label the sets of lines joining pairs of vertices. Then the
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function T (D+) is represented by the diagram

Note that if the set f consists of only one line, as in this example,

then S^1 is nothing but the operator defined by the kernel function

27r5+ (ki — m-i) •> where mi is the mass of the particle associated with line

I of D.

Definition 3L 5.

A Landau diagram Dl is said to fit into T(Z)+) if and only if DI

fits into some bubble diagram that occurs (with nonzero coefficient) in

the sum obtained by applying the cluster decomposition: (i) to each

function Sb corresponding to a vertex b of D+ (or to a plus box b of

the corresponding diagram, as in the example) and (ii) to each function

Ra = Sa — 1 in (1.2), where each SgT1 is represented by the expansion

S<x~1== 2J (~R)n (See Coster-Stapp [18] §4 for a discussion of certain
n=0

cancellations that occur in this latter sum) .

The function R(D+) has the form

(1.3) R(D+)= I] FB

where Q (R, D+) is a set of bubble diagrams with the following pro-

perty:

(1.4) No A that contains D+ fits into any Bs=£!(R9D
+).

This property (1.4) of IB (R, D+) 9 in conjunction with the Structure

Theorem described in § 0, shows that if only positive-a diagrams need

be considered in calculating the singularity spectrum of R(D+) near

J!2(D
+) then the following formula holds:

THE MICROLOCAL DISCONTINUITY FORMULA

(1.5) S=T(D+) microlocally near X>(D+).
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Several methods have been used to justify the assumption that only

positive-a diagrams need be considered in calculating the singularity

spectrum of R(D+) near J?2(D+). One is to take this assumption as an

ansatz, and then show, using (1.5), that all singularities of R(D+) near

J?2(.D
+) n°t associated with positive-a diagrams cancel among themselves.

This cancellation has been confirmed in many special cases, but no

general proof has been given.

This assumption that the singularities associated with nonpositive-a

diagrams give no net contribution to the singularity spectrum of R(D+)

near J?2(D
+) is the strong version of the mixed-a cancellation assumption.

A weaker version of the mixed-a cancellation assumption has been

introduced by Coster-Stapp [19]. This assumption is that in equation

(1.1) [or more generally in any equation ^FB = 0 derived solely from

the unitarity and cluster decomposition properties of the S-matrix] the

singularities associated with all positive-a diagrams cancel among them-

selves, as do the singularities associated with all nonpositive-a diagrams.

This assumption permits one to prove the desired result (i.e., that the

singularities of R(D^) associated with nonpositive-a singularities cancel

among themselves near J?2(jD+)) by proving this result rather for

T(D+), since S has only positive-a singularities. This latter task is

generally simpler than the former one, and is more amenable to general

arguments since T(JD+) has a simple standard form.

An argument suggesting that T(Z>+) has no net singularities as-

sociated with nonpositive-a diagrams has been given by Coster-Stapp

[19], However, a complete proof would require some additional as-

sumptions.

The weak mixed-c£ cancellation assumption described above is a

particular case of the general idea that in equations of the form ^FB = 0

derived solely from unitarity and cluster decomposition there is never

any cancellation between singularities associated with different diagrams:

i.e., each singularity of bubble diagram function FB can be associated

with some particular signed Landau D that fits into B, and the singu-

larities associated with each D cancel out among themselves in the sum

2J FB. In other words the association between singularities and digarams

is invariant under manipulations that depend only on unitarity and cluster
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decomposition.

It is not obvious that the singularities associated with each diagram

must cancel among themselves in such equations. On the other hand,

it is probably impossible to satisfy all the interrelated conditions entailed

by unitarity and microanalyticity if singularities associated with different

diagrams must cancel against each other. For singularities associated

with different diagrams generally have different characteristics, and these

different characteristics make systematic cancellations among them difficult

to achieve.

This idea that the singularities of each bubble diagram function FB

can be apportioned among the diagrams D that fit into B, and that the

association between singularities and diagrams is not altered by manipula-

tions involving only the unitarity and cluster decomposition properties

of the 5-matrix can be formulated as follows:

THE PRINCIPLE OF SEPARATION OF SINGULARITIES

Near any point (A;V—Iw0) of V — \S*3Ar any bubble diagram

function FB can be locally decomposed into a sum of micro functions

FB (D \ PQ, u^), each one defined for all (p',^ — lu) in some neighborhood

of (PQ', V^T^o), such that

(1. 6 a) FB = £J FB (D; pQ9 UQ) microlocally near (pQ; V^T^o)
D

(1.6b) FB(D',p0,u0}=Q unless (pQ; J~-luQ} GE 2 (D) and DeB, where

_£. (D) is defined below.

Furthermore, if for some sets I and J of bubble diagrams one can

derive the equations

(1. 6 c) ^FB* = ̂ FB* microlocally near (A;V—l^o) solely from uni-
iei j<=j
tarity and cluster decomposition, then for every D

(1. 6 d) 2] FBt(D; pQ9 u^) = XI FB'(D; pQ, «0) microlocally near (pQ; V^^o).
<e/ j&J

That is, in equations of the form ^FB = Q derived solely from unitarity

and cluster decomposition the singularities associated 'with each diagram

D cancel among themselves, not against singularities associated with

other diagrams.
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The set J2 (D) occurring in (1. 6b) is the set defined by Kashiwara-

Kawai-Stapp [6]. However., for present purposes it can be identified

with £(D}.

This principle of separation of singularities can be used in the

following way. Suppose one can derive solely from unitarity and cluster

decomposition a set of equations

(1.7 a) ^FBt = ̂ FBi=»- microlocally near (pQ;^^luQ) .
ieii ie/2

And suppose for every signed D satisfying (pQ; V— l&o) ^ -C CD) there

is some index n(D) such that for every z in In(U)

Then separation of singularities implies, for each ny that

(1. 7c) ^FBi = 0 microlocally near (A;v/:rl^o)
i<=In

The points (p',V—Iu) studied in the present article are limited to

cases such that the sets of lines a (r, f) of the relevant diagrams contain

at most two lines, and such that the sum of the masses of the cor-

responding pairs of particles lies below the lowest threshold for the

production of three or more communicating particles. The remainder of

this section is devoted to showing how the microlocal discontinuity

formula can be derived from the principle of separation of singularities

for the cases needed in the present work.

From unitarity and cluster decomposition one can derive (Coster-Stapp

[18]) the following four equations:

(1.8) S

= R(D+) microlocally near J?2(Z)+).

Here Tfi(D+) is the same as T(D+) except that all the factors S^1

are eliminated by multiplying them into the factors Sb that stands on

their right. These Sb then become the left-truncated functions (Stapp

[5]). The TL(.D+) is similarly defined, with left and right inter-

changed.

We wish to show, for any (pQ ; V— 1^0) e J?2 (^
+) 9

 an(l an7 signed

diagram DI satisfying (^o jV— l&o) ^~C(Pi) that there is one of the
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four members of (1. 8) such that Dl fits into no Bt that corresponds to

a term FBi that occurs in that member. That is, no signed diagram Dl

fits into all four members of (1. 8) . Once this is shown then (1. 7)

implies the microlocal discontinuity formula

(1.9) S

=0 microlocally on X>(£*+).

All positive-^ diagrams D^ are immediately eliminated by the fact

that the only positive —a diagrams Z>i+ such that J? (A+) f]~Cz(D+) =f=$

are D±+ that contain D+, by the definition of J?2(D
+}, and no such A+

fits into 3) (R, D+) , by construction.

No nonpositive-a diagram fits into the diagrams that represent S.

Thus it is sufficient to show that no signed D± with a negative sign ffL

fits into T(D+), T*(Z>+) and TL(D+).

The condition that Dl fit into T(D+) entails that DI contain a

signed diagram D that is equal to D+ except for signs. Thus DI must

have at least one cut Ca. A cut Ca is a set of lines of Dl that cor-

responds to the set a = a (s,t) of D in a correspondence that shows that

DI contains D. The diagram Dl may have several cuts strongly equiva-

lent to Ca.

The requirement that D± fit into T(Z>+) entails (below the thre-

shold for the production for three or more particles in the channel

defined by C^) that every minus line of DI lie on a cut strongly equiva-

lent to a cut Ca. The requirement that Dl lies in Tfi(Z)+) implies that

no cut strongly equivalent to Ca can have all positive lines and stand

to the right of a strongly equivalent cut that contains a minus line.

This follows from the defining properties of the left-truncated functions.

Similarly the requirement that DI fit into Ti(Z)+) entails that no cut

strongly equivalent to Ca can have all positive lines and stand to the

left of a strongly equivalent cut that contains a minus line. Thus no

cut strongly equivalent to Ca can have all positive lines unless every

cut strongly equivalent to Ca has all positive lines. Since at least one

cut strongly equivalent to some Ca must contain a minus line there must

be some cut Ca such that every cut equivalent to it contains a minus
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line. In our case, where each cut equivalent to any cut Ca contains at

most two lines, this means that the removal of the trivial vertices that

separate the various cuts equivalent to each Ca will reduce D^ to a

diagram D2 that has precisely one cut Ca equivalent to each set a of

jD+, and one of these cuts Ca must contain a minus line. Moreover,

every minus line in D2 must lie on one of these cuts Ca. But then the

argument used to prove Theorem 0. 0 shows that D2 can be changed

into a positive-a diagram D5
+ such that (/>0;V^l#o) lies on J? (Aj+) 5

but such that D3
+ does contain D+. This conclusion contradicts the re-

quirement that (^0;V — l&o) lies on J^2(D
+). Thus there can be no

signed diagram Dj that fits into all four members of (1. 8). Hence the

microlocal discontinuity formula (1. 9) used in the present work follows

from the unitarity of S, the microanalyticity postulate, and the principle

of separation of singularities. This proof circumvents both the strong

version of the mixed-a cancellation assumption, which has no a priori

justification, and the failure of the structure theorem at u = 0 points.

This use of the principle of separation of singularities to prove the

/S'-matrix discontinuity formula provides an alternative to the method

based on a stronger analyticity assumption (see § 5) and improved

Structure Theorem (Kashiwara-Kawai-Stapp [6]).

§ 2. Verification of Sato's conjecture for simple diagrams

In this section we prove the holonomicity of the ^-matrix near points

where only simple diagrams are relevant.

§ 2.1. Study of the holonomie structure near a point where only

a single simple Landau diagram D+ is relevant

We begin our investigation by proving the following Theorem

2. 1. 1. The case covered by this theorem is rather simple, but the

results obtained here will be used later.

Definition 2.1.1.

Let D be a simple diagram. Then a point p in L(D+) is said to

be elementary with respect to D+ if and only if the following condition



DISCONTINUITY FORMULA AND SATO'S CONJECTURE 185

is satisfied:

Let ki(p) be the unique5*0 value of ki that permits a solution at p

of the Landau equations associated with D+. And for each vertex b of D

define the corresponding set of vectors

(2. 1. 0) p"^ { (Pr, kt (p) ) ; [A : r] ^=0, \b :

Then for every b the following condition holds:

That is, each b the point pb is a regular point of the scattering function

sb occurring in

The set of all />eL(D+) that are elementary with respect to D+

is denoted by Le(D
+") .

Theorem 2.1.1.
Let PQ be a point in J^ — JVL^. Assume that

( i ) there is a unique unsigned D such that pQ lies on

L0(D
+)-3HQ.

(ii) This diagram D is simple and connected.

(iii) PQ lies on Le (D
+) .

Then the S-matrix S(p) satisfies a simple holonomic system 9JJ of micro-

differential equations on V — lS*W in a neighborhood W of p0 in <3tt.

The characteristic variety of 3JI is the set {(p; u);p^ W\}Lf(D)9

u = gradp (j) (p) , -where 0 (p) = 0 defines LQ (D) near pQ} , and the order
3

of 2JJ is a = a(U) = — — N+2n'9 where N denotes the number of in-
£j

ternal lines of D and nf denotes the number of vertices of D,

Proof.

Since pQ belongs to L0(jD+) for a unique Landau diagram D+
} which

is connected, the ^-matrix at pQ is equal to its connected part. For if

Sc were different from S at p09 then this point would have to lie on

) in a disconneted diagram D^9 contrary to assumption.

Since pQ lies on L0(Z)+) — J^0, we can find a real-valued real analytic

* Note that ki is uniquely determined by p at any positive-a Landau point. See the
proof of Theorem 0.0. See also the proof of Theorem 2.1.4. below.



186 TAKAHIRO KAWAI AND HENRY P. STAPP

function 0(/>) so that LQ(D+) = {p^M ; <p(p) =0} and u = gradp

in a neighborhood of />0. Note that the micro-local result automatically

proves the local result in this case, because a point p in Z/0(Z)+) near

pQ determines a unique point in JH (Z)+) .

Condition (i) of the theorem insures that (pQ; gradp 0(/>0)) lies on

^(Z)"4"), since if ^>0 lies on L(D+) for some diagram that does not con-

tain £>+ it must lie on L0(A+) for some D3
+^=D+. (See Chandler-Stapp

[7] Theorems 5 and 6) .

Now the microlocal discontinuity formula tells us that the /S-matrix

(regarded as a microf unction) is equal to the threshold function T(Z>+)

near (PiV^lu) e J?2(D+). Since the diagram D is simple, T(D+) has

the form

(2. i.i) f ft s, (p, K) ft £+ (*,« - mv ft ^ .
J .7=1 Z = l Z = l

Here Sj (p, k) is the 5-matrix inserted at vertex j of D. Since ^0 lies

on Z/e(D
+) this integral (2.1.1) is evaluated at points where S j ( p , f c )

has the form (2;r) 4c?4 CC [ j": rJ/v + SL/: ^]^)^(A *) with a real analytic
r J

function s,- (^?, &) .*) Therefore it suffices to show that

(2. 1. 2) ffi ^(A *) ft 54(I][j: r]pr + SD': Z]*«) ft 8+W-mfi ft <^.

satisfies a holonomic system of micro-differential equations in a neigh-

borhood of PQ. In order to see this, we first show that the integrand

satisfies a holonomic system. Once this is shown, then Theorem 3. 5. 5

of S-K-K [2] Chapter II can be applied to prove the existence of a
n'

holonomic system that the integral must satisfy. Since JJ Sj (p, k) is an
.7=1

analytic function, it suffices to show that

A = fi V (S D': r] A + S [j: Z] A,) ft £+ (V - W)
j=l r Z Z=l

is holonomic. An important step in showing this property is the follow-

ing lemma:

* Strictly speaking Sj(p,K) is defined only on the mass-shell manifold within the frame-
work of the on-shell S-matrix theory. However, #723; analytic extension of Sj(p,k) off
mass-shell gives the same result, because the mass-shell delta functions d*(kiz—miz}
eliminate all off-shell contributions.
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Lemma 2. 1. 2.

Let $ (x) be a real-valued real analytic function defined on a real

analytic manifold M. Denote by X the complexification of M upon

which $ (x) is defined. Assume that grad^ 0 (x) never vanishes on

H= {x e X; (p (x) — 0} . Then f(x) = d($ (x) ) is a solution of simple

holonomic system 2Jt^ of (micro-} differential equations whose charac-

teristic variety V^ is given by the conormal bundle PH*X supported

by H, i.e., {(x; 77) eP*^; 0(;c) -0, 77 = c grad^ 0 (x) , c^=0} . Its order*"*

is 1/2.

Proof of Lemma 2. 1. 2.

Since the problem is of local character, one may assume </>(x) = x±

for a local coordinate system (x1? • • • , x^) . Then it is clear that f=S(x^

satisfies the following holonomic system

Then all the assertions of the lemma are obvious. Q.E.D.

Proof of Theorem 2. 1. 1. continued.

We now apply Proposition 4. 2. 4 (4) and (2) of S-K-K [2] Chapter

II (or Theorem 3. 5. 9 and Theorem 3. 5. 3 of S-K-K [2] Chapter II)

to conclude that A satisfies locally a simple holonomic system of (micro-)

differential equations. The conditions of the above quoted propositions

are clearly satisfied under the following condition:

(2. 1. 3) For all p in some complex neighborhood of pQ the real surfaces

(r = 1, - - -, ») , k* = m,\ kl}Q>0 (*=!,...,#) and

ki = 0 (j=l,--,n) cross transversally.

This transversality property follows from Theorems 5 and 6 of

Chandler-Stapp [7]. If ^0eL(Z>+) — c5K0 for a unique diagram D+ then

(2.1.3) is true, unless there is at p=pQ a u= (uly • • • , un) =0 solution,

* See S-K-K [ 2 ] Chapter II § 4.2 for the definition of the order of (simple) holonomic
( = maximally overdetermined) system.
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with some a^O or some $r=f=Q, of the following equations:

(2.1. 4)

j=l,-,»' (2. 1.4 a)

r = l , . .- ,» (2.1.4b)

1=1,—, N (2.1. 4c)

E[j:Z]vi = aikl 1=1, —,N (2.1.4d)

r=l,-,» (2.1.4e)

These equations are just the Landau equations given in § 0. Ac-

cording to Theorems 5 and 6 of Chandler-Stapp [7] these equations

admit no strictly positive-a or strictly negative-a u = 0 solution for any

p^JM — 3A§. Thus they admit no such solution at pQ. Hence it suffices

to show that they admit no mixed-a or zero-a solution (/>; u)

= (A;0).

Actually, (the proof of) Theorem 6 of Chandler-Stapp [7] shows

that the a's in (2. 1. 4) are uniquely determined up to a single overall

factor at any point of L0(Z)+) — <_5K0. Thus no mixed-a solutions are

allowed at these points, since a positive-a solution (with u^O) is pre-

sent. On the other hand, if all ai = 0, then all the vj are equal, and, the

condition u = Q implies, for p&JttQ, that all @r = Q. Thus the trans-

versality condition is satisfied, and the above-quoted proposition of S-K-K

[2] combined with Lemma 2. 1. 2 shows that A satisfies, locally, for all

p sufficiently close to pQ and all k with Re ki]0^>0, a simple holonomic system

of order a(J) = — x4n' + —N.

The characteristic variety of the holonomic system 2Jt that A (p, k)
_ n'

satisfies, and hence that of the holonomic system 3Jf that JJ Sj(py k)d(p, k)
.7=1

satisfies near pQ, is given by the following equations considered in P*Y,

where Y denotes the complex manifold over which (p, k) runs. Here

ur^ (vui, resp.) stands for the cotangent vector corresponding to pr (kiy

resp.) .

* Precisely speaking, UT is a representative of a cotangent vector corresponding to pr,
since pr is confined to the mass-shell manifold Jli= {pr

z = /tr*, r=l,---,n}. See §0.
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^ = 0 j=l,-,n' (2. 1. 5 a)
1=1

PT* = VT*, ReA,o>0 r = l,-,« (2. 1. 5 b)

(2.1.5) <! kt2 = mi2, Re£M>0 /=! , ••- , N (2. 1. 5 c)

1=1,-", N (2. 1. 5d)

r=l, - - - , r c (2. 1. 5e)

Next we use Proposition 4. 2. 4 (3) (or Theorem 3. 5. 5) of S-K-K

[2] Chapter II to show that the integral T(£)+) satisfies near pQ a simple

holonomic system of micro-differential equations. In order to see this,

it suffices to show that the at and kt are uniquely determined by (p; u)

on the intersection of the variety defined by (2.1.5) with "Wi = 0 (£=1,

•• - , JV) in the sense that at and kt are determined by the implicit func-

tion theorem. This is exactly what Chandler-Stapp [7] have shown

(p. 852) under the conditions of Theorem 2. 1. 1, since the intersection

of the variety given by (2.1.5) and rvi = 0 (Z=l, • • • , A f ) is equivalent

to the complexification of the Landau equations (2.1.4). Note that the

proof of Chandler-Stapp [7] holds without any change in a sufficiently

small complex neighborhood of the real point pQ in question, because the

rank condition used there is an open condition. This proves that jT(Z)+)

satisfies near pQ a simple holonomic system of micro-differential equations

whose characteristic variety is given by (2. 1. 5). Furthermore, Pro-

position 4.2.4 (3) of S-K-K [2] Chapter II tells us its order a=a(D)

is given by a (A]

Theorem 2. 2. 1.

1 3is given by a(J) —— x4N=2?2/ — —N. This completes the proof of

Remark.

In Theorem 2. 1. 1 we discussed the ^-matrix itself. However, the

scattering amplitude s(p) can be discussed without any essential changes

of the argument. The differences needed are the following:

Since s(p) is considered on the reduced mass-shell manifold Jttr,

equation (2. 1. 5 e) , hence (2. 1. 4 e) , should be replaced by

(2. 1. 4 e7) ur= — U(r) : r] (vj(r)+(3rpr + a) with some four-vector a,
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(Cf. (0.2').)

Also, as an effect of the absence of the over-all ^-function, the order

of the system involved must be reduced by 2.

This remark should apply to all cases discussed below.

An important corollary of Theorem 2. 1. 1 is the following result

which specifies the explicit form of singularities of the scattering matrix

£(/>).

Corollary 10

Let $(p) be a local defining function of LQ(D+) such that at

points p in Wf\ {pE^Jtt ; $(/>) =0} the pair (p\u) = (p\ gradp $(/>))

satisfies the Landau equations. Then S(p) has the folio-wing form in

a real neighborhood of a point pQ satisfying the conditions of the

theorem :

3
if — a + — is neither a positive integer nor zero

£
or

S4 (S U; r] A) (Ax (P) $ (P} -"+* log (0 (p~) + io) + h2J,r

3if — a+ — is a positive integer or zero.
<Li

Here hi (p) and hz {p) are analytic functions.

Proof.

Since L0(D
+) is of codimension 1 in 3ttr, the scattering amplitude

s(p) must have the following form. (Theorem 4.2.5 of S-K-K [2]

Chapter II.)

i (#) (^ (P) + iO) * + h, (p) (0 (p) - *0) * +

+ Cl (*! (p) log ($ (p} + £0) + k, (p} log (q> (p) - fO) ) + A2 (/>)

if h is neither a positive integer nor zero, where c^ = 0

(2.1. 7) unless A is a negative integer

or

h, (p} <i> (p} A log (0 (/O + f0) + A! (p) 0 (#) Hog (0 (/>) - zO) + hz (p}

if /I is either a positive integer or zero.
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Here A= - (a(D) -2) -1= -a(D) + - and h,(p) , h,(p} *,(/>), &(/>)

and hz(p) are analytic. Furthermore, one can easily verify that c^ = 0

in view of the support property of T(D+).

On the other hand, S.S. S(p) is contained in J^ (D+) if p lies in

a neighborhood of p0. (Microanalyticity postulate on the /5-matrix: See

Chandler-Stapp [7], lagolnitzer-Stapp [8] and Kashiwara-Kawai-Stapp

[6].) Therefore, hi(p) must be identically zero. This proves Corol-

lary 1.

Remark.

This result shows, a posteriori, that the holonomic system 3Jf that

the 5-matrix satisfies near pQ can be chosen to be a holonomic system of

linear differential equations.

Corollary 2.

Under the conditions of Theorem 2. 1. 1 the singularity of the

scattering amplitude s(p) is at most a simple pole, i.e., it is a logarithmic

singularity or a square root singularity (more precisely, at most a

simple inverse powei~ of a square root singularity) o?~ a simple pole.

Proof.

Because of the transversality condition (2.1.3), the dimension of

the following manifold M is 4H + 4N— ^nf — n — N=3n + 3N— 4n'.

(2.1.8) M={(p,k^R^N-^ti:rlpr + ^[j:l-]kl==() 0=1, -X),
r I

Pr2 = Vr2 (r=l, .»,»), kf^m? (Z=l, .»,#)}.

On the other hand, denoting by TTP (M) the projection of M to Hp
4n

we have dim np (M) <dim M. Since L0(£>+) is of codimension 1 in the

reduced mass-shell manifold (Chandler-Stapp [7]), dim TTP (M) = 3n' — 5.

Therefore we have

(2. 1. 9) 372 - 5<3n + 3N- 4n'.

This implies

'(2.1.10)
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This is the required result in view of Corollary 1. Q.E.D.

The way in which Theorem 2. 1. 1 is proved suggests that its micro-

local version should follow from the microlocal form of the discontinuity

formula. To prepare for a theorem giving this result we introduce the

following definition.

Definition 2. 1. 2. (Natural point of J?0(£>+)).

Let (pQ\ &0) be a point of J?0(D
+). Let the set of diagrams {Dj\

j=l, • • • , jo)} consist of all the contractions of D that satisfy pQ^LQ(Dj+).

Suppose the following three conditions are satisfied:

(a) The local defining functions (f)j(p) of the surfaces L0(Dj+)

satisfy the condition that the vectors grad <f>} (po) are linearly

independent.

(b) There is a neighborhood a) of (/>0; #o) such that 7r(J?°(.D) n
Jo

d H LQ
C (-D/) . (Note that the corresponding real relation is

j=i
true.)

(c) For each complex solution of the Landau equations associated

with D such that (p; u) ^J2(D) H f t> the corresponding vectors

ki satisfy for each j9 and for all I such that ai=£Q in the solu-

tion corresponding to Dj9 the relation

Here kt
u^ (p) is the value of the energy-momentum vector of

line LI in the solution at p corresponding to Djt (Note that

the corresponding real condition is true.)

If these conditions are satisfied then (pQ; u0) is called a natural

point of j:o(D
+).

Theorem 2. 1. 2/

If (PQ', u0) is a natural point of J^Q(D+) then for some neigh-

borhood (j) of (PQ;UQ} the set £vC(D){}ti)' is a nonsingular manifold

and ki and cii (£=1, -"9N) are analytic functions of the local coordi-

nates on this manifold.
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Proof.

By Pham's result used in the proof of Theorem 0.0 k i ( J l ) ( p )

= k i ( J l ^ ( p ) if p lies in LQ(Dj^) r\LQ(Dj{) and 0,1 is different from zero

in the solutions corresponding to both DJt and Dfc Since kL
(J'1^ (p)

(ki(S'l\P)9 resp.) is analytic in p for p in LQ(Dj^ (LQ(Dj{), resp.) and

since LQ(Djj) and LQ(Dj{) intersect transversally by assumption (a)?

W»(p) = *,(''}(/0 holds for p^Lf(D^ r)Loc(Z>/f). Therefore, the set

of conditions (c) of Definition 2. 1. 2 are compatible.

Now define UJ(p') =gradp <^O). The result of Chandler-Stapp [7]

entails that there exists a unique Aj= (<Xi(J'\ • • • , ##(y)) corresponding to

(^; gradp <^-). Note that ai(J'^ = 0 in A} if LL is contracted to obtain Dj
/o

from D. Furthermore, (P',^ejUj(p)) satisfies the Landau equation
j=i

associated with D for any (ej) eC-7"0, since the u vector allowed

by the Landau equation is linear with respect to a's once p's

and &'s are fixed. The corresponding (k, a) is, then, clearly
Jo

(k (p), XI ejAj). Therefore, J?0 (P) c is nonsingular and (k, a) is analytic
j=i

in the local coordinates (xl9 • • • , x^\ el9 • • - , e^ of the manifold J?Q
C(D)

near (^0;«o). Here JCj, •••,^-0 are the local coordinates of the manifold

C\LQ
C(Dy) near £0. Q.E.D.

j=i

Theorem 2.1.3.

L^ ^o ̂  <2 point in Jtt —^1Q. Assume that (pQ;*J—IuQ) e V— lS*<3tt

satisfies, the following conditions:

(2.1.11) (i) there is a unique unsigned D such that (/>0;V^l#o)

lies in J^0(D
+*)e

(ii) This D is simple and connected.

(iii) pQ lies in Le(D
+).

(2. 1. 12) (pQlJ^lud is a natural point of J^0(D
+).

Then the S-matrix S(p) satisfies a simple holonomic system 3JJ of

micro-diffrential equations in a neighborhood of (jV>V—Iw0) e V—lS*<3M,9
2

<2?z^ /^5 orJ^r is a (D) = 2?zr — —N. The characteristic variety of 3Ji
^

coincides locally with J?c (D).
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Proof.

The microlocal discontinuity formula tells us that the connected

part of the 5-matrix is given by T(D+) in a neighborhood of (pQ
m,^ — l&o)-

Furthermore, T(£)+) has the form (2.1.2), under the assumption of

the theorem. Then the corollary of Theorem 0. 0 shows that pQ is not

a u = Q point for the diagram D. This implies that the integrand of

T(D+) satisfies a simple holonomic system of micro-differential equations.

On the other hand, cd and kt are determined uniquely in terms of

p and u by virtue of (2. 1. 12) and Theorem 2. 1. 2'. Therefore we can

apply Proposition 4. 2. 4 of S-K-K [2] Chapter II to T (£>+), and conclude

that T(Z>+), hence (the connected part of) the ^-matrix, must satisfy a

simple holonomic system of micro-differential equations whose charac-

teristic variety is given by JHC (U) . Its order is calculated in the same

way as in the proof of Theorem 2. 1. 1. Q.E.D,

We complete this subsection by showing how to extract out the

"positive-a part" [T(D+^+a from T(D+) in the situation discussed in
this section. More precisely, we show that the restriction of T(-D+)

to a real neighborhood co of (/>„; V — l&o) coincides with [T(D+)]+a, as

microfunctions.

Theorem 2. 1.4.

Assume that (pQ; V— l^o) belongs to J^Q(D+) for a unique positive-

ex, Landau diagram Z)+, -which is simple and connected, and that pQ is an

elementary point with respect to D+. Then for some sufficiently small

neighborhood CD of (p0',V— l&o) in ^ — lS*Jttr and some sufficiently small

positive values of the constants st and e/ (/=!,-••, N) there is for

each j a collection of off-mass-shell extensions of Sj (p, k) such that the

integral [T(D+)]+a defined by (2.1.14) below is well defined in cd

and satisfies

microlocally in co.

The function [T(D+)]+a is defined by

(2.1.14) _L^ f n^(A^)54(E[j:r]A+f][j:/]^) X
(2m) J j=i r=i 1=1
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Y (^'o) Y (k* ~ m* + e * ~ *x
1=1

Proof.

Let W be a neighborhood of ^ and define

G={(p,K);peW, S[j:r]A+SD':/]^ = 0 0=1, -,»'),
r=l Z = ]

Pr2 = jUr2 and />r,o>0 (r = l, - • • , TZ),

-2/<^2-W<£. and &M>0 (/=!, ••-,#)}•

Then the projection map from (p, k) to p is proper (i.e., the inverse

image of a compact set is compact) when it is restricted to G, since the

diagram D is partially ordered. In fact, if we cut the diagram D by

any vertical line /(. that does not intersect any vertex then the sum of

the energies associated with the lines cut by /[ is bounded, if p is con-

fined to a bounded set. Hence kh the vector part of kt, must be bounded

in G, because k^+m^—e^^k^Q^k^ + m^+ei. Therefore by the im-

bedding theorem of Grauert [20], we can find some off-shell extensions

Sj (p9 k) that are defined in a neighborhood of G for sufficiently small

ez>0, e/>0 and W.

For each j we now choose any fixed one of these off-mass-shell

extensions Sj (p, K) , and prove the following lemma.

Lemma 2* 1. 5*

The integral [T(D)]ff defined by (2. 1. 15) below is a well-defined

hyperfunction and its singularity spectrum is contained in the set de-

fined by (2.1.16). Here tf= ($1, •••,O~N) and each o"t is either +1 or

— 1. The function \T(U)~]ff is defined by

(2m)

v TT '.o - mt t- Mx n - — - - II a KI ,

-where n(<5} = # {l\ fft= — 1} , a^ z'̂ 5 singularity spectrum is confined to

the set {(P;v/^::lu') e V^l-S'*^; 2^A^r^ £.rz"j£ a^, j9r, vy ^72^ ^ which
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satisfy (2. 1. 16) below}

]*, = 0 ./=1,-X (2. 1.16 a)

(2.1.16)

r=l

& = !*?, A-..>0 r=l,-,» (2. 1.16 b)

a,(V-m,f-0,)=0 /=!, -,JV (2. 1.16 c)

S [j: Z] v, = aa (*,) A, Z= 1, • • -, 2V (2.1.16 d)
.7=1

ur + 0TPr=-\.J(r):r']vjm r = !,-,» (2. 1. 16 e)

-ii'<k?-mt<&i. and *,,„><) Z=l, -,JV (2. 1. 16 f)

Here $; z's allowed to be either sh £/, or 0

if &i = Si or

Proof of Lemma 2.1. 5.

First recall that

(2. 1. 160 S.S. <K0C*0) = {(*; V^

(2. 1. 17) S.S.

(2. 1. 18) S.S.

hold if 0(^:) is a real-valued real analytic function defined on M with

the property that giadx^(x) never vanishes on {x e M\ $ (x) = 0} .

Therefore, applying Theorem 2. 4. 1 of S-K-K [2] Chapter I to the

integrand of [ T ( D ) ^ f f 9 we find that its singularity spectrum is confined

to the set defined below:

{(P, k-,^f^I(u, zeO); there exist ai9 $r and Vj which satisfy (2. 1. 19)

below}

f IlU-.rlpr+'ZV-.Qk^O j=l,-,n' (2. 1.19 a)
I r=l 1=1
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azO&i'-W!1-^) =0 1=1, ~.,N (2.1.19 c)

= wi 1=1,-,N (2.1.19 d)
.7=1

- [j(0 : r]t^w r=l, • • • , » (2.1. 19 e)

Here we have used the Corollary of Theorem 0. 0.

On the other hand, the integral [T(D)~\ff is a proper integral (as

an integral of a hyperfunction) in the sense that the support of its in-

tegrand G is compact as long as p is confined to a compact set.

Therefore Theorem 2. 3. 1 of S-K-K [2] Chapter I is immediately

applicable to our case and we obtain (2. 1. 16). This completes the proof

of Lemma 2. 1. 5.

Proof of Theorem 2.1. 4 continued.

Since §(k? — m?)= r(— —— —— —— J holds, and

since [T(D)]ff is a well-defined hyperfunction for any G, T(D+) is equal

to 2] [TOO)],. Hence Lemma 2.1.5 implies that [T(D)], = 0 (as a
a

microfunction) in a neighborhood CD of (A^V — l#o) unless (7= ( + 1, • • • ,

+ 1). Here we have used the following two facts:

First, for a sufficiently small neighborhood o) of (/>„; V — Iw0),

_£* (Dff (?7Zi2 -f- ffj)) H ft> — ̂  ^ 0"¥=( + l, • • • , +1). Here Dff (mf + di) denotes
the same Landau diagram as the original D+ except that the masses as-

sociated with LI is mf + di and the signs GI are given by G. In fact,

Theorem 0.0 says that (/>; V —1&) does not belong to J? (Dff), for

(T=^=( + l, • • • , H-l), hence, by the continuity of ~C (Dff (mf-rd^} with

respect to flz, we can find such a neighborhood CD.

Secondly, we claim that X (D+ (mt
2 + di} ) D CO = 0 if some 5^0, for

sufficiently small a). In fact, as in the proof of Theorem 2.1. 3, we can find
Jo

Dj+(j= 1, • • -, j0) such that ^0 e n^o (£>/) . Recall the fact that L0 (D^+) de-
j=i

fines a nonsingular hypersurface in J^r (Chandler-Stapp [7] Theorem

6). Furthermore, the argument there also shows that

defines a nonsingular hypersurface of <3ttr:
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= # (internal lines of DjJ) and that we can choose a defining function

$j (P, miz) °f this hypersurface so that

2 r-1 n =,:.,dpr 0wi8' 1=1; :::;£, *=i,..,^

Therefore LQ(Dj+(mt
2^ n^0(A'+(^/2)) =0 if m^mS and the internal

line Lj corresponds to an internal line of Z)y. On the other hand, each

internal Lt of D+ corresponds to some internal line of some diagram

Dj+. This follows from the construction of Chandler-Stapp [7], which

expresses the a's of D+ as positive linear combinations of the a's of the

DJ+, and the fact that ( />;V— 1&) lies on J?Q(D+), which implies all

o:^]>0. This proves the second assertion above.

Thus we have verified that [T(Z))]+a = T(Z)+) microlocally near

(pol^— l^o) for sufficiently small £z? £/>0 and certain off-shell extension

of $j (p, K) . This completes the proof of the theorem.

§ 2. 2o Study of the holonomic structure near points where several

simple Landau diagrams are relevant

In § 2. 1 we investigated the holonomic structure near points where

only one diagram D+ is relevant. In that case, the point (p;^/ — lti) in

question belongs to only one Landau variety, and the characteristic

variety of the holonomic system that the /S'-matrix satisfies is nonsingular

there. However, to understand fully the holonomic structure of the

jS-matrix it is necessary to investigate it also near points where the ir-

reducible components of the characteristic varieties associated with several

different Landau diagrams meet. The following theorem covers cases

of this kind in which all the relevant diagrams are simple, and some are

contractions of others.

Theorem 2.2.1.

Let (p0°,^/ — !UQ) be a point in V— 15* (JA — <_5K0) • Let D be a

simple connected Landau diagram. Suppose the following conditions

are satisfied:

(2. 2. 1) O0; ^^TO lies on £2(D
+}.
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(2. 2. 2) For each vertex b of D the vector pb defined in (2. 1. 0)

satisfies one of the following two conditions:

(a) pb^L+

(b) The following three conditions are satisfied.

( i ) There is a unique Db such that pb lies on LQ (£>&) .

(ii) This Db is simple and connected.

(iii)

(2. 2. 3) There is no nontrivial solution (p', u) = (pQ; 0) of the com-

plexified Landau equations associated with any Dt that fits

into T(D+) and satisfies (£0; V^O e= J?(A+) .

(2.2.4) There is a complex neighborhood o) of (A>; v7— l&o) such that

for each (p',u)^o) and each internal line Lt of D the set

of values of cci allowed by the complexified Landau equations

associated "with T (D+) consists of at most a single point in

C1. M or ever the allowed value of 0,1 ranges over a compact

set as (p; u) ranges over a compact set.

Then the S-matrix S(p) satisfies a holonomic system 3Ji of micro-

differential equations in a neighborhood of (pQ; V— l^o) • Furthermore,

the characteristic variety of 9JJ is given by the union of the com-

plexified Landau equations associated -with the diagrams Dt specified

in (2.2.3).

Proof.

The microlocal discontintuity formula and conditions (2. 2. 1) , (2. 2. 2)

and (2. 2. 3) entail that the ^S-matrix S(p) be given in a neighborhood

of (pQ; V— l&o) (as a microfunction, and apart from constant factors) by

(2. 2. 6) n S" (p, k)[d+ W -
J 6 Z = l

where b runs over the boxes of T(D+) (or vertices of D), and k

denotes the set of energy-momentum four-vectors associated with the

explicit internal lines of T(Z)+). Furthermore, by condition (2.2.2)

each Sb is evaluated at a regular point or at a point of Le (D&) .

Now we apply Corollary 1 of Theorem 2. 1. 1 to Sb (p) . Then the

integral (2. 2. 6) can be rewritten in the following form
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(2. 2. 7) fn (V (p, K) 0,,, (fa (p, K) + »0) + V (A ,
J &

& r Z 1=1

where

if A is not a negative integer

(-
if A is a negative integer (7*: Euler constant)

and

We next seek the holonomic system that the integrand should

satisfy.

First define b± (T) as the unique box b such that the incidence

number \b±(t): Z] = ±1. And define b(r) as the unique box b such that

[£(r): r]=£0. Then Theorem 3. 5. 3 of S-K-K [2] Chapter II guarantees

the existence of a holonomic system satisfied by the integrand provided

the following equation (2.2.8) does not admit a solution (p,k;u,C)

= (p,k;09 0) for any sets of four-vectors u^= (u^\ • • • , z/n
(6)), w(&) =

= (te>i(&), • • • , w^(6)) and complex scalars c&. Here & runs over the boxes

of T(Z)+), ?z denotes the number of the external lines of D, and AT de-

notes the number of internal lines of D.

(2. 2. 8) <

(A, A,; «<'>,«»
Z such that [

(«««,«) /gr

with every r such that [£: r]=^0 and every

satisfies either

* Since wr
(5) (wz(6), resp.) is zero if [£:r]=0 ([^:/]=0, resp.) such components of w(

and tyc&) are disregarded in the above.
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or

with some four-vector a(b\ for r with \_b:r]^=Q and I with

[£:/]^0, according to whether Sb is evaluated at a point

of Le(Db) or at a regular point.

On the other hand, {(pr, k^ ur
(b\ W&)) with [&:r]^0and [£:Z]^0;

0& (/>, £) = 0, (ur
(b\ w^ = c grad(Pr,fcz)0& (p, £) , c> 0} coincides with

J?Q(Db
 +) by virtue of the choice of $&(/>, &). Therefore, replacing

(&(6), w(6)) by (c6w(6), £6w(&)), the intersection of variety defined by (2. 2. 8)

and {(/>, £; u, C) "> C — 0> ^— 1> •", N} defines the Landau variety associated

with a A that fits into T(D+). (See the Landau equation given in the

form of (0.4)). Therefore for all (pm,ii) in some sufficiently small

neighborhood of (pQ-9 UQ) , assumption (2.2.3) guarantees that there is

no solution of (2. 2. 8) of the form (p, k; u, Q = (p,k; 0, 0) .

Then the same Theorem 3. 5. 3 of S-K-K [2] asserts that the in-

tegrand of (2. 2. 7) satisfies a holonomic system of micro-differential

equations whose characteristic variety is given by (2. 2. 8) .

On the other hand, Theorem 3. 5. 5 of S-K-K [2] Chapter II

guarantees that the integral given by (2. 2. 7) satisfies a holonomic

system if the equation (2.2.8) supplemented by £j = 0 (Z=l, • • • , -AT) de-

termines £j (£=1, • • ' ? A0> &(&) and w(6) uniquely by (/v; &r), and they are

confined to a compact set as long as (pr\ u^) runs over a compact set.

Furthermore, Theorem 3. 5. 5 asserts its characteristic variety is given

by setting £i = Q (/=!, ~'9N) in (2.2.8). As noticed earlier, the variety

thus obtained is precisely the Landau variety. Hence it suffices to show

the determinancy and boundedness of &(6) and wc&).

As discussed earlier (cf. the last part of the proof of Theorem

2. 1. 4) ki's are determined uniquely by p and bounded. On the other

hand, the c^'s associated with the internal lines of D are also determined

uniquely by (p;u) and are bounded by assumption (2.2.4). Since the

Landau constants associated with the internal lines of Db are uniquely

determined by p and k, this assumption entails the required uniqueness

and boundedness assertion on (u(b\ w(6)) . This completes the proof

of Theorem 2. 2. 1.
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To understand the relationship of Theorem 2.2. 1 with the "hierar-

chical principle" (Eden et al. [24]), we shall discuss two simple cases

in a little more detail. More complete arguments can be found in

Kashiwara-Kawai-Oshima [22] .

The first case is that in which only two diagrams are relevant, both

are simple, and the second is obtained by contracting a single line of

the first.

Example 1.

Suppose all the conditions required in Theorem 2. 2. 1 are satisfied,

and condition (2. 2. 2 a) is satisfied for all b except one. Suppose this

one b satisfies (2. 2. 2 b) with a (pole) diagram Db that has precisely

one internal line. Let A be the diagram constructed by inserting this

Db for the corresponding vertex b of D=D2. Assume that J?0(A) and

-To (A) intersect transversally at (pQ\ &0) . Assume further that the

following condition is satisfied:

Lrtft(P,u,k,v,a,P)9 i = 2,---,i(D)^4(n + N+n')-}-n' + N, be the

set of the defining equations of the Landau variety (0. 1) other than

k* = mi. Let Qi be k^ — m^ and let h± be a\. Assume that the following

conditions are satisfied:

(2. 2. 9) dim X (A) , dim £ (A) >4^ - 1

(2. 2. 10) rank > i > * > ~'>«» = { (£))
\

(2. 2. 11) rank >*> -»«*) = i (jD)
\

(2. 2. 12) rank ( 9(Ai» A -»/«"») ] = i (£>)
\ d ( P , u , k , v , a , f f ) I

Then the holonomic system 5K derived in Theorem 2. 2. 1 is simple

in the sense that its symbol ideal is reduced. (See Kashiwara-Kawai-Oshima

[22].) Furthermore, its order on _£0(A) is given by a (A) and that

on J?0(A) is given by a (A) ( = a(A) -— )•
\ ^5 /

Note that all the conditions above are satisfied if at least two ex-

ternal lines are attached to each vertex of A- Note also that the order
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of the holonomic system that the scattering amplitude satisfies is de-

creased by 2 as a result of factorizing out the over-all (J-function.

An interesting subcase is the case where 7r(J?(A)) and n (JH (A))

define real nonsingular hypersurfaces HI and H2, respectively (in the

restricted mass-shell manifold) . In this case, the transversality of _£* (A)

and J? (A) entail that HI and H2 are tangent to each other exactly to

the second order along Hif}H2. Thus we can find a local coordinate

system (x) = (xly •-, x^ in a neighborhood of p0 so that HI is given

by {x\ h^x) = x1 — x2 = 0} and H2 is given by {x; h2(x) = x1 = 0}. Then
def. def.

a result of Kashiwara-Kawai-Oshima [22] tells us that a system that is

simple and whose characteristic variety is confined to J? (A) (J _£ (£)2) can

be brought to the following canonical form under a suitable "quantized"

contact transformation:

ft T* (v T"(/-OS (J"Ln

where

and

Hence, after some calculation (Kashiwara-Kawai-Oshima [22]), one

can conclude the scattering amplitude s(p) regarded as a microf unction

has the following form (2.2.13) in this coordinate system:

) -2) - (a(A) -2) +1 =1

(2 .2. 13) Vl (*)/(«, A ; x} + V2 (x}f a + , * - ;
\ & & /

where ^ (a:) and ^>2 (X) are analytic and /(a, A, .r) =

A, a, — ;
'
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Here F(a, /?, 7*; z) stands for hypergeometric series.

By making use of this concrete expression, one can easily conclude
3

that the scattering amplitude is locally square summable if a(Di) — — <0,
3 3 ^i.e., if — N — 2n/Jr — >0, and hence one can define the product of the
Z* £

scattering amplitude s(p) and its complex conjugate s(p)^ in a neigh-

borhood of p0. In this case, the singularity spectrum of the resulting

function is confined to <J=IS*Hl<3Hr\J </=IS*Ht<3HrU V^S|irW2<_5Kr. Here

one encounters an extra singularity at H1r\HZ9 which is not described

by the ordinary Landau equations. This observation will lead us naturally

to extend the notion of Landau variety when we are dealing with mixed-CK

singularities. This is one of our motivations for introducing the notion

of the extended Landau variety J? (D) . (See Kashiwara-Kawai-Stapp [6]

for the definition of the extended Landau varieties Jl (U) .)

In Example 1, the holonomic system involved is simple. However,

this is a rather exceptional case and, in general, we cannot expect its

simplicity. This is closely tied to the following fact: if some Sb is

evaluated at LQ(Db)9 and if a(Db)^=5/2, then LQ(Db) is a branch point

(not a pole) of s*9 the scattering function obtained from Sb by factorizing

out the over-all 5-function.

To explain the situation in a more concrete way we restrict our-

selves to the case in which D^ is 'external' in order to avoid technical

complexities.

Example 2*

Assume all the conditions of Example 1 except that now the unique

Db is a simple diagram with one closed loop, and that D=D2 is obtained

by contracting out this closed loop Db of Dlf Assume further that at

least two nonparallel external lines are attached to each vertex of Dl9

as in the diagrams below:



DISCONTINUITY FORMULA AND SATO'S CONJECTURE 205

Assume further that a (A) ¥=5/2 (hence a(Db)<5/2 by (2.1.10)).

In this case the same analysis as in Example 1 shows the following:

The scattering amplitude s(p) is a sum of two functions f i ( p ) and

fz(p) which satisfy the following:

/i (p) satisfies a simple holonomic system 9}^ whose characteristic varie-

ty is confined to _C (Dl) U ~T(A)> while f2(p) satisfies a simple holonomic

system 3JJ2 whose characteristic variety is confined to _£* (A) - Further-

more, the order of 3Jli on J?Q (A) is a (A) — 2 and that on J?0 (A) is

a (A) — 2. However, a (A) ¥^ (A) —— in this case. In fact, a (A)
LJ

= a (A) + (pt CA) — 2). In this case it is known (Kashiwara-Kawai-

Oshima [22]) that there is no micro-differential operator Q(p, Dp) that

sends f i ( p ) to f z ( p ) . Such an operator Q does exist in the case of

Example 1, and this is the reason why simplicity holds in that case.

We should, however, emphasize that this result does not necessarily

mean that there is no relation between /i and f2. It is highly probable

that the unitarity relation entails some functional relationship between

/! and fz that cannot be described by linear micro-differential equations.

At least, the result of Zimmermann [23] on the two-particle threshold

singularity structure (cf. § 3. 1) suggests that such a connection should

exist.

§ 3» Verification of Sato9s conjecture for diagrams

with at most double lines

In this section the results of § 2 are extended to the case where
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the relevant diagrams contain at most double lines (i.e., at most two lines

connect any pair of vertices) . The arguments rely on the square-root

character of the singularities at two-particle threshold points. The square-

root character of these singularities are derived in the first subsection

from the general ^-matrix discontinuity formula by employing the methods

used by Zimmermann [23] to study the leading normal-threshold singu-

larity in the 2 to 2 case.

§ 3. 1. Singularity structure of the S-matrix at two-particle

threshold points

In this section we derive the square-root character of the 5-matrix

at two-particle threshold points.

Definition 3. 1. 1.

A two-particle threshold point is a value p of the argument of a

scattering function s(p) that satisfies the following five conditions:

(a) Let {Dj\j^J} be the set of unsigned diagrams such that

p^LQ(Dj+). Then every Dy-
+ in this set is a two-particle

normal threshold diagram, which is a diagram with exactly two

internal lines and exactly two vertices.

(b) For each j in J there is a pair of distinct vectors

taken from the set (Pi9
 mtm

9p^)=p9 such that er(/) = £»•'(/)

the surface LQ(Dj+) consists of the points p^JMr such that pr^

is parallel to Jvcy).

(c) For every sufficiently small complex neighborhood 5 in the

space of Lorentz scalars such that its inverse image a) in <3ttr
c

contains p the function s(p) is multi-valued analytic and bounded

over

0- U {*,(/>)=yeJ

where

A scattering function is said to be multi-valued analytic

over a region co' if and only if the multi-sheeted analytic con-
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tinuation of s(p) along any path that starts at a physical point

and remains always over co' encounters no singularity.

(d) For each j^J the two-particle threshold value 6j=ffj (p) lies

below the lowest threshold for the production of three or more

particles in the channel j.

(e) Extended unitarity holds at p.

Remark on extended unitarity.

Near a two-particle threshold point p the extended unitarity equation

says that for some e>0 the unitarity equations can be extended into the

domain

iPG<3Hr
c',ffj>ffj(p)>ffj-e, all j'eJ}

with the functions s(p) and s~ (p) in this region defined by analytic

continuation through Im<F/>0, all j^J, and Im<7y<CO, all jeJ, respec-

tively. This extended unitarity property entails that the general ^-matrix

discontinuity formula holds at two-particle threshold points p^JM0, where

the usual arguments break down. (Coster-Stapp [24].)

Remark about the definition of analyticity.

Two-to-two processes in which the sum of the two initial-particle

masses, //i + /£2, equals the sum of the two final-particle masses, /£$ +fJL&9

are important in the following discussions. At a forword-scattering point

p of such a process the four energy-momentum vectors pi9 (i= 1,2, 3, 4)

are all parallel. Hence p lies at a singular point of the restricted mass-

shell <3l/tr and the notion of analyticity must be specified.

The restricted mass-shell Jttr is a normal analytic set (Hepp [25]).

This means that all of the usual definitions of analyticity agree, and are

equivalent to the following one:

A function f defined only on the restricted mass shell JMr is analytic

at p if and only if this function has a local analytic extension f into

the imbedding space C4n such that / is analytic at p in the usual sense.

For uniformity we shall adopt this definition also at the regular
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points of <3ttT even though this definition involves the introduction of

trivial off-mass-shell extensions that are not uniquely defined. The mass-

shell results are not affected by these ambiguities.

We assume throughout that each 2-to-2 scattering function s(p),

for spinless particles, is a Lorentz scalar, and that its domain of holo-

morphy is describable in terms of Lorentz scalars. Any 2-to-2 function

f(P) with these two properties is analytic at a point p^3ttr if and only

if it is analytic in the variables o~ = (Pi+p2)z and t= (pi—ps)2 at the

point ff = ff^(p1 + p2y and t = t^(pl-pzy. (Hepp [25].) In place of

t one could use u = (Pi—p*)2. A more convenient variable is the sym-

metric combination

Thus analyticity of the 2-to-2 function f(p) near a two-particle threshold

point p is equivalent to the analyticity of f in the variables 6 and y at

ff = ff and » = iJ = Q.

The 2-to-2 case will be considered first. Then the general case

will be treated by using the 2-to-2 result and the general 5-matrix

discontinuity formula.

Theorem 3. 1. 1.
Let s (/>!, p29 Ps, pi) be the scattering function of a 2-to-2 process, i.e.

S(p) = (2nySi(piJrp2-ps-p^s(p). Then in a neighborhood of any
two-particle threshold point p the scattering function has the form

(3. 1. 0) s(p) = a(p) +b(p) vV-tf-M'O, where a(p) and b(p) are ana-

lytic.

Proof.

First define the 2-to-2 function

near G = Mi=(miw\-mi'U))* by the equation:

Oi ^

= 0
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Here Qi = I—Pi, where Pt is the projection operator on states for which

the sum of masses of the corresponding particles is equal to, or greater

than, M*. Then it is known (Coster-Stapp [24]) that s* =

= Sc
i/(27i)*d(piJrp2—ps—pi) has the minus continuation around 6 = M?, i.e.,

it is a boundary value of a holomorphic function attained from the domain

Im tf<0.

On the other hand, unitarity (or extended unitarity) implies that

in the region 6<^M?, below the z'-th threshold. Thus the function s* in

the region (J^M? is the counter-clockwise continuation of the scattering

function to under-neath the cut that begins at ff = Mt
2. Furthermore,

the argument of Coster-Stapp [24] § 5 shows that

(3.1. 2)

holds, if we define

by

(3. 1. 3)

The function Zjd^Ml^I thus defined coincides (near the threshold

point (T = Af/, which is the point of interest to us) with the ( — a)-box

introduced in § 1, with z in place of a.

Now we define p((7) by

where Mt =ml(i} — m^(i')9 and fix Mt
2 at the value ff. Then we define

p+ as the boundary value of p((T) from the domain Im(7>0, and p* as

that from Im (3*<CO, choosing the branch of p so that

(3.1.5) \P
+~~*P

IP — P for
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Now following Zimmermann [23] we first expand

©
into partial waves, i.e., we expand s into the form

(3.1.6)

Thus 0i+(<T)=0i f(<7) for <r<M,2.

If we define 0,+'r by (J^H-.A.p+flj) and 0rir by

then

fl^
2

The quantity in the bracket vanishes by virtue of (3. 1. 2) .

This implies that 0l
+ir ( = 0t-

ir) is actually an analytic function

0L
ir($) near tf = M/. Thus the solution

exhibits the square-root singularity in each partial wave. The bounded-

ness condition (c) ensures that the domain ft) can be made small enough

so that all denominators appearing in the above arguments are nonzero.

To obtain the analogous square-root property of the scattering func-

tion itself one must examine the domain of convergence of the partial

wave series. The arguments of Zimmermann then show that if the

domain o) has the form

then the function

5(£;cos0)^s((f ;cosf l )

is holomorphic in

{(£, cos 0); \S\<e1
l/\ cos

where E((f) is the largest open ellipse with foci at +1 and —1 that
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fits into the circle in the cos 6 plane defined by

|v(ff, cos 0) | = 127T2(7pi2(ff)p34(Ocos 0|<£2,

where $12(6) and p34((T) are the phase space functions associated with

the pairs of mass (jul9 #2) and (^3, #4), respectively.

Now the equation

defines 5 (5, v) for all 0<fl<ei1/2 and all v in the ellipse Ev((f) that is

the y-spaee image of

£,(00 SE {v ; cos fl (v,

This ellipse approaches the disk

as 6 goes to 5s. For 0<!<7 — ?|<£i the expansion of £(£,)/) as a power

series in v converges for all |v|<£2. since the ellipse Ev(<f) contains

points that approach the circle [v| = e2. Thus s(Sy v) is holomorphic in

except for a possible isolated singularity at $ = 0. The boundedness

condition (c) then implies that s ( d , v) is holomorphic in ft. Thus s(d2, v)

= s(tf, v) has the square-root form demanded by the theorem. The fact

that s(ff, }i) is defined at real points by the limit from Im(T]>0 is part

of the extended unitarity property. Q.E.D.

For our purpose, the following version of Theorem 3. 1. 1 is more

convenient.

Theorem 3.1.2.

There exists an operator
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'which satisfies the following conditions:

-< \ > /* (/ * \
-i

1/2

it?
(3.1.8) P'-W-1 I \ > / I h^r-^^3 _ P|-

r2

(3.1. 9)

be written as the product of Y(ff — ff) with a function that

is analytic in {p^3AT
c\ |tf(» -ff|<e, |v(£)|<e} for some e>0.

Proof.
We shall again use the partial wave expansions. Using the same

notations as in the proof of the previous theorem, we rewrite the uni-

tarity relation SS^ = I in the form

(3. i. io) ( (p+) -1

if ff is near M* and

Define the partial-wave amplitude of the square-root operator by

Then we find

(3.1.11) A,p+A l=((p+)-1-^iT0,+),

which is the partial-wave form of (3. 1. 8) . On the other hand, the

partial wave form of (3. 1. 9) is, for

(3. 1. 12) / •'"(*) \ /I - f

-v2

which is nonsingular at o~ = d=.

Since the convergence of the partial wave series can be verified as

before one obtains from the analyticity of (3. 1. 12) at 6 = M? the desired

property of (3.1.9) at ff = M*. Q.E.D.

We now generalize Theorem 3.1. 1 to many-particle amplitudes.
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Theorem 3.1.3.

In a neighborhood of a t-wo-particle threshold point pQ the scatter-

ing amplitude s(p) is simply a product of normal-threshold factors

, where 0<y and 0O- are analytic.

Remark.

This result validates Sato's conjecture in the neighborhood of any

two-particle threshold point, in the sense that it shows that s(p) satisfies

a holonomic system. In fact, choosing the various variable o~j as inde-

pendent variables, each normal-threshold factor is clearly a solution of

a holonomic system of (micro-) differential equations in these variables

(with order — 1) . Hence as a product of these functions, the function

s(p) is also a solution of a holonomic system. However, the charac-

teristic variety is not given by the Landau equations (0. 1) at J^-points.

On the other hand, Sato makes his conjecture for the off-shell quantity.

Proof of Theorem 3. 1. 3.

First consider the case where only two external lines are parallel

and there are no (communicating) pairs of particles with a smaller sum

of masses. The discontinuity formula then asserts that

Here

denotes the discontinuity of the scattering amplitude in the (pl9 pz) -channel.

Since

holds, by the definition of box diagram, (3. 1. 13) can be written
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(3.1.14)

Now we analytically continue both sides of (3. 1. 14) around the

threshold surface ff==(p1 + p2y= (^i + ^2)2 in the (7-plane counter-clockwise

starting from (#i-h/*2)2+ £ (£>0). Then, by the definition of

the function

becomes

On the other hand, by the two-sheeted structure of

-Pi
-P2

obtained earlier this function (with the two-particle phase-space factor

included) becomes

-Pi
-P2

after this analytic continuation. Therefore the right-hand side of (3. 1. 14)

takes the form

On the other hand, post-multiplying (3. 1. 14) by

we get
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Therefore the left-hand side of (3. 1. 14) changes into

©
after the analytic continuation around 6= (#1 + ttz)2- This proves that

has a two-sheeted structure in the (T-variable. Then, by virtue of the

boundedness condition (c), this function has the form

0i2 O) V (J - Mf + zO + 012 (p),

where 012 and 012 are analytic.

The above argument covers only the leading two-particle threshold

in any channel. However, by using the z'-box formula (3. 1.2) and

replacing everywhere the minus box

by the minus-z" box

one immediately obtains the generalization to the nonleading case.

Before completing the proof, by extending the argument to the general

case where several pairs of lines are relevant, we state and prove two

related theorems.

Theorem 3.1.4.

Let p be a two-particle threshold point of a function

having only one pair of parallel vectors at p, namely pl and pz. Then
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1/2

is the product of Y(u~ — o~) -with a function that is analytic at ff =

Proof.

The proven part of Theorem 3. 1. 3 claims that

has the form

with A(p) and B(p) analytic near ff = M*. By Theorem 3.1.1 the

function

has the form a(p)Jrb(p)p+ with a(p) and b(p) analytic near 6 = Mi*

On the other hand, the discontinuity formula shows that

(3. 1. 15)

Therefore, using again the partial wave expansion, we find that

(3. 1. 16)

holds for any (I, ra). Here rL
JrSip+ are the coefficients of the partial

wave expansion of p+ times

From (3. 1. 2) we obtain by the same reasoning that

(3.1. 17) (a, + ̂ p+) (rt + 5,p+) - (a, - £,p+).

Combining (3. 1. 16) and (3. 1. 17) we obtain

(3.1.18) Al
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for any (7, m), where c (<7) is analytic in ff, apart from isolated singu-

larities, since A™ (ff), B™ (<7), at((f) and &, (tf) are all analytic.*} Then

the result from Theorem 3. 1. 2 that

1/2

+.nu-L_i_H^
is the product of Y(ff — o~) with an analytic function implies the same for

''/2 P!
Pa

at the partial-wave level, apart from poles. But no partial wave pole

can be introduced by multiplication by

-I

1/2
\ t
) Ii

provided £1 has been chosen small enough so that this factor has no

poles in CD. This result at the partial wave level is carried to the level

of s(ff, ]i) by the same argument as before. Q.E.D.

Theorem 3.1. 5.

Let p be a two-particle threshold point. Let

J/2

have a factor

on each pair of lines j^J. Then the corresponding function sQ(p) is

* The trivial no-scattering case ai(a}=bi(a}, all a, is easily treated by a separate
argument.



218 TAKAHIRO KAWAI AND HENRY P. STAPP

the product of JJ Y(o"j—d=j^) with a function that is analytic in a
JEJ

neighborhood of p.

Proof.

Consider first the case in which there are precisely two pairs of

parallel vectors at p. Let the two corresponding variables be (Jl and (72,

and let z1 = o~1 — o~1(p), and z2 = G2 — $2 (P) • Let the domain o) be

(0=

where 2'= (zs, • • • , 24^-4)5 and the e/s are smaller than the corresponding

£s's for the two 2-to-2 processes. Then the argument of the previous

theorem, applied first to the variable 6± shows that the domain of holo-

morphy of f(p) contains the set

X {0<x*<ei,yi = 0} X {*' = *' (£)^*'}

The same argument applied to the variable o~2 shows that the domain

of holomorphy contains the set

A2 = {Q<x1<el9y1 = 0} x {|*2|<£2} x {*' = *'}

But then Bremermann's continuity theorem (See Bros-Epstein-Glaser [26])

implies that the point p belongs to the domain of holomorphy. To see

this one can consider the disc

{|*i|<ei} x {x2 = t,y2 = Q} x {z' = z'}

This lies in Al for 0<^<O2. And D(T) contains the point

fe-£l/2}xfe-0}xK-z/}

that lies in A2. But then by Bremermann's theorem the disc D(T) lies

in the domain of holomorphy of s0(p). But the disc Z)(l) contains the

point

£=(0,0, 2')-

This argument is easily extended to cover the general case.

Q.E.D.

The usefulness of these results arises from the fact that the part

of T(Z>+) that relates to a two-particle threshold singularity has the

form
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(3.1.19)

Thus if one breaks the ( — z)-box into the two square-root factors and

multiplies one factor into each of the two plus bubbles then the square

root singularities in both of the bubbles are removed. Thus this part

of the integral can be replaced simply by the phase space integral

(3. 1. 20)

multiplied by some analytic functions. This fact is used in the later

arguments.

Completion of proof of Theorem 3. 1. 3.

From the identities (3. 1. 5) and (3. 1. 8) one obtains

1/2 J/2

and

J/2 . J/2

Thus we define

1/2

and

-4

\

j
'

+

Applying these operators to sQ(p) of Theorem 3.1.5 we find that the
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singularities of s(p) near p are contained in a product of separate factors,

one for each j"e<7. Q.E.D.

§ 3. 2. Study of holonomic structures near a point where a single

Landau diagram D+ with double lines is relevant

Making use of Theorem 3. 1. 5 we can generalize Theorem 2. 1. 1

to the case where some of the factors in the integrand of the discontinuity

function T(D+) are evaluated at two-particle threshold points. First we

need the following definition.

Definition 3. 2.1.
Let D be a connected diagram that has at most double internal lines

i.e., at most two lines connect any pair of vertices of D. Then a point

p^L(D+) is said to be elementary with respect to D* if and only if

the following condition is satisfied:

For each vertex b of D+ the vector pb defined in (2. 1. 0) satisfies

one of the following two conditions:

(a) pb&L+ (i.e., pb lies at a regular point of the scattering function

sb occurring in T (D+) ) .

(b) pb is a two-particle threshold point of sb such that the pairs

j^J of parallel vectors of (pib, •••, J^n6) correspond exactly to
the pairs of double internal lines of D that touch b, and each

corresponding two-particle threshold variable 6b lies below the

lowest threshold for the production of three or more particles

in its associated channel j.

The set of points p<=L(D+) that are elementary with respect to D+

is denoted by Le(Z)+).

Theorem 3.2.1.

Let po be a point in JA—MQ. Assume that

(i) There is a unique D such that pQ^LQ(D+) — 3ttQ.

(ii) This D is connected and has at most double internal lines.

(iii) pQ(ELe(D+).

Then the S-matrix S(p) satisfies a simple holonomic system 3J1 of

micro-differential equations on V— lS*W in a neighborhood W of pQ
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in JVL. The characteristic variety of 3Jf is given by the (complexified}

Landau equations and the order of 3Ji is given by a (D).

Proof.

Under the assumptions of the theorem, the microlocal discontinuity

formula tells us that we can express microlocally the ^-matrix S(p) or,

equivalently, T(D+) by the bubble diagram function FB (p) with B given

by first replacing each vertex of D by the corresponding connected part

of the xS-matrix Sj (p, k), keeping simple internal lines of D as they are,

and finally replacing each pair of double internal lines by a minus-a

box,

Example.

An example of D and the associated bubble diagram B

Then in view of Theorem 3. 1. 5, the resulting function has the form

(3.2. 1)
,7=1

with some analytic functions fj (p, k) determined by the scattering ampli-

tude inserted into Vj of D. This integral is of the same form as the

integral studied in Theorem 2. 1. 1. Hence we can apply the argument

given there to conclude that the 5-matrix S(p) satisfies (micro-) locally

a simple holonomic system of micro-differential equations whose charac-

teristic variety is given by the Landau variety associated with D and

whose order is a(D). Q.E.D.

Since Corollary 1 of Theorem 2. 1. 1 depends only on the existence

of a simple holonomic system and the codimension 1 character of the
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Landau "surface", we have also the following result:

Corollary,

Under the assumptions of Theorem 3.2.1, the S-matrix S(p) has

the following form :

(3. 2. 2) <

FCgL^rl/vXAi

if — a + ~2 =

integer nor

or

S'CpU-.rlp

z/ -aH

(^WC/O+iO)--
i/2+A2O)

3
= — a (D) + -9- « neither a

zero

rHhi(p^(pra+*/2

3 .
--0- z^ ^ positive

log($5(/>)

)

positive

+ z'0) +A

integer or zero.

In view of the microlocal form of the discontinuity formula, it is

easy to obtain a result corresponding to Theorem 2. 1. 3 even when D+

has some pairs of double lines, by the same reasoning given above. We

leave the details to the reader.

§ 3. 3o Verification of Sato's conjecture at the points where several

Landau diagrams with double internal lines are relevant

In this section we generalize Theorem 2. 2. 1 to the case where

the relevant diagrams allow pairs of double lines.

Theorem 3.3.1.

Let (PQ'^^-I^UQ) be a point in J^IS* (M -J^0). Let D be a

connected Landau diagram -with at most double internal lines. Suppose

the following four conditions are satisfied:

(3. 3. 1) Same as (2. 2. 1)

(3. 3. 2) For each vertex b of D the vector pb defined in (2. 1. 0)

satisfies one of the following three conditions:

(a) p^L+

(b) The following three conditions are satisfied:

(i) there is a unique Db such that pb lies on



DISCONTINUITY FORMULA AND SATO'S CONJECTURE 223

(ii) this Db is connected and has at most double internal

lines.

(iii) #»eL.(lV)
(c) Same as condition (b) of Definition 3. 2. 1.

(3. 3. 3) Same as (2. 2. 3)

(3. 3. 4) Same as (2. 2. 4)

Then the S-matrix S(p) satisfies a holonomic system 2JI of micro-

differential equations in a neighborhood of (pQ',^/— 1&0). Furthermore,

the characteristic variety of 9JI is given by the (complexified} Landau

equations.

Proof.

Under the assumptions of the theorem, T(D+) has the following

form:

(3. 3. 6) f n AA WSP: rbr + SEA: *]*.)!! ff+ (*,'-
J & r I I

where sb(p,k) has the form

(3. 3. 7) A" (p, k) 0, (f (p, K) + »0) + B» (p, K)

with analytic functions Ab and Bb. Here Ab is zero if Sb is evaluated

outside its Landau varieties or at the two-particle threshold points. As

in the proof of Theorem 2. 2. 1, A is given by a(DB) — -=- if Ab=^Q.
£i

Since (3. 3. 6) has the same form as (2. 2. 7) , the argument in § 2, 2

applies immediately to this case, and establishes the required results for

On the other hand, the microlocal form of the discontinuity formula

claims that the *S-matrix S(p) is equal to T(D+) in a neighborhood of

(^ojV^T^o). Hence we obtain the required results for the AS-matrix.

Q.E.D.

Remark,

In Theorem 2. 2. 1 and Theorem 3. 3. 1, we considered exclusively

points where the corresponding Sb is evaluated either at two-particle

threshold points or at Le(Z)&) or at its regular points. However, it will
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be obvious that more complicated singularities can be now considered by

inserting the results obtained in examples at the end of § 2. 2.

One should be able by iteration to obtain the holonomic system of

micro-differential equations that the /S-matrix satisfies as long as the

number of relevant (complexified) Landau varieties are finite, and the

point in question is not a u = Q point for any of the relevant Landau

diagrams.

§ 4. Structure of the S-matrix at points where the Landau

surface associated with a triangle diagram meets the

surface associated with the self-energy diagram

The analysis in § 2 and § 3 does not cover the case described by

the title of this section. For the analysis of this case we shall impose

a condition on the singularity structure of the scattering function in a

complex domain. This condition, which is condition (c) below, is analo-

gous to condition (c) of Definition 3. 1. 1. It does not follow (by local

analysis) from the microanalyticity, unitarity, and Lorentz invariance

properties of the jS-matrix.

Consider a scattering function s(p) and a value p of its argument.

Suppose the following conditions are satisfied:

(a) Let {Dj\j^J} be the set of unsigned diagrams such that

P^L0(Dj+). Then this set consists of the following two dia-

grams:



DISCONTINUITY FORMULA AND SATO'S CONJECTURE 225

(b) /^i + ^2<^i + ^2 where pr
2 = jUr

2 and kL
2 = mi2.

(c) For every sufficiently small complex neighborhood 3 in the

space of Lorentz scalars such that its inverse image o) in 3ttr
c

contains p the scattering function s(p) is multi-valued analytic

over o) - ( {fa (p) = 0} U {fa O) = 0} ) , where fa (p) - 0 defines

Lc (A) near p and 0 (p) = 0 defines I/7 (A) near £.

(d) The variable ff= (pi + p2Y lies below the lowest threshold for

the production of three or more particles in the channel cor-

responding to particles 1 and 2.

In this case we shall show that the scattering function s ( p ) has,

near p, the form described in (4. 2) below. To describe this form we

introduce a local coordinate system in a neighborhood of p so that p is

the image of the origin x = 0 and TT ( J?c (D4") ) =LC (D+) is given by

{x;x! = x2
2} and n (£c ( A+) ) = Lc ( A+) is given by {x ; x, = 0} . We may

assume further that it ( X (D+) ) C {x real and ^1 = ^2,^2^0}. Then in

a sufficiently small neighborhood of p

(4. 2) 5 O) - fa (x) V^ + zO log (v/x1 + zO + j;2) +

+ $62 (x) log ( V:ci + *0 + x2) + 03 (x)

+ 04W

with analytic functions (pj(x) (j"=l, • • • , 4).

We now show how this expression can be obtained:

First define the function

by the integral

^FD* (P) = 2 S(pl9 pz, k2, k^S(kz, pz, kl9 pJS(kl9 h, p5,
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That is, FD+ (p) is constructed by rules that are the same as those used

to construct bubble diagram functions except that a signed internal line

LI is replaced by a factor

whereas an unsigned internal line LL of a bubble diagram is replaced by

A slight generalization of the arguments in § 2. 1 shows that F(p)

near p0 is a well-defined hyperfunction, provided the constants £L and g/

are chosen sufficiently small (1=1, 2, 3). Furthermore, those arguments

show that the singularity spectrum of F(p) is confined to J?(D+) lJJ^(Di+)

near the origin (cf . the proof of Structure Theorem in § 0) . Therefore
6

f(p)=F(p)/(2nY$*(lLl £rA) is a boundary value of a holomorphic func-
r=l

tion f ( p ) that is defined and holomorphic in {x ; Im x^> 0} fj {x ; Im (xi — x2
2)

>0} H {^:j^i|2+ |.r2|
2<O} for some positive g. Moreover, the result of

§3.2 entails that S (ply p2, k2, kz) has the form

S^Pi+Pz-kz-kz) ($(p, k) V (k2 + ks)2 - (mz + m^f + zO + 0 (A £))

with 0 and 0 analytic functions of (^, ^) at the point where they are

evaluated. Therefore in a neighborhood of the point p

.7=2

n

x
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3 —— n d% >1=1
1=1

where 0y (J= 1, 2, 3) are analytic.

By the same argument as in § 2. 2, we can conclude that f ( p ) has

the form

(4. 3) f ( p ) = (*! Or) V^TfO + a, (*) ) X

X (<23 Or) log ( /£! + *() + x2) + a, (x)

with the a j ( x ) y j=l,--,5, analytic.

To complete the proof we show that

is analytic in £=\/.ri and xf = (x2, x") = (x2, xz, • • - ,
By our assumptions, the function

is expressed as a boundary value of a holomorphic function that can be

analytically continued outside {x1 = x2
2} U {^1 = 0}. On the other hand,

the discontinuity formula implies that M (x) can be analytically continued

throughout the intersection of a real neighborhood of the origin with

•^2^0, except at {.r^O}. And the microanalyticity assumption entails

that this same property holds also in {x2>0}. Thus the following lemma

implies that M(x) is multivalued analytic in a complex neighborhood

of the origin except on {xl — 0} .

Lemma 4. 1.

Suppose a function f(z) has a domain of holomorphy £DdCn that

contains all real points in the region

(4.4) tt' = ti— {z\ Zi = Q or z1 = z2
2}9

-where a) is a closed neighborhood of the form

(D={z; |zi|<e<, £*>(), z"=l, • • • ,»} .
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Suppose f(z) can be analytically continued along any path lying

over a/; i.e., f(z) is multivalued analytic over a)'. Suppose the original

domain of holomorphy 2) contains two interior points of o) of the form

X! = a\ x2 = a, yi = y2 = Q, <2>0,
(4.5)

xl = a\ x2=~a, yi = y2 = 0,

-where xt and yt are the real and imaginary parts of zim

Then f(z) is multivalued analytic over

(4.6) u>n{z:0<\Zi\<B22, |*<|<e,, i=l,--,n}

Proof.

Let t be a real parameter that runs from 0 to oo. Consider the

one-parameter family of discs

={z1 = z1(£), \z2\<e2, all other zl fixed with !^!<£j},

where the function Zi(f) defines a continuous path in zi space that starts

at 2:1(0) =az. Then the initial disc D(Q) lies in 3) because only singu-

larities with z2= ±a are allowed by (4.4), and these are excluded by

(4.5). Since domains of holomorphy are open, all disc D(t), 0<£<^,

must lie in 3) for some sufficiently small ij. Let the path in z\ space

be any continuous path through z^ = a that lies in

(4.7)

Then, by virtue of (4. 4) , any singularity that appears in the (moving)

disc D(t) must appear at an interior point of the disc. This is precluded

by the Kontinuitatssatz (Behnke and Sommer [27]. See also Wightman

[28]). Thus the part of CD satisfying (4.7) is free of singularities on

all sheets. This gives the required result (4. 6) . Q.E.D.

This lemma shows that M(x) is multivalued analytic near the origin

outside of {xi = 0} . Thus the function

S f ( 8 , *') ̂ M(d\ *') =M(xl9 *')

must be analytic near the origin except on 5 = 0. However, the result

(4. 3) combined with the result of § 3. 2 on the square-root character of

the two-particle normal-threshold singularity of the »S-matrix implies that
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near the origin M(d,x') is analytic on d = 0 except possibly at xz = Q.

This possible isolated singularity at S = 0 that is allowed only for x2 = Q

is also ruled out by the Kontinuitatssatz. Thus M(d, x') is analytic at

d = x' = 0 and M(x) must have the form

MO) - ml (x) + mz (x) V

with analytic ml and m2. Combining this result with (4. 3) one obtains

the desired (4.2). Q.E.D.

§ 5. Maximal analytlcity and holonomielly

We have shown in several cases involving only simple diagrams that

the holonomicity of the ^-matrix follows directly from microanalyticity

and the general 5-matrix discontinuity formula. However, for more

complicated cases a stronger analyticity requirement was needed. This

assumption, when cast into general form, asserts the following:

Let p = (pl9 • • • t P n ) beany point in 3ttr and let z(p) = (z,(p\ --,Zi(p))

be the corresponding point in the space of all the bilinear Lorentz scalars

formed from the vectors of p. Let &(p}={z\ 1^ — ̂ (^)|2<£i, £j>0,z"=l, • • - , A}

be a polycylinder in z space centered at z(p) and let a) (p) be its (inverse)

image in 3&r. Then for any p in JHr and every sufficiently small 3(/>)

the singularities of the multi-valued analytic continuation of s(p) over

CO (p) are confined to the union of the local complexifications over a) (p)

of the positive-^ Landau surfaces that pass through p. The local com-

plexification over o) (p) of a positive-a Landau surface is the set of solu-

tions of the complexified equations that can be reached by a path in the

space of the variables (p, u, k, v, a, /3) that starts at a positive-a solution

and remains always over o ) ( p ) .

This analyticity assumption is physically reasonable: if the singularities

at real points are confined to the positive-a solutions, then the singularities

at nearby points should be confined to nearby solutions.

From a mathematical point of view the question arises whether

holonomicity could be derived from a weaker assumption. However, the

more important question for physics, at least from the viewpoint of S-

matrix theory, is not how weak the analyticity assumption can be made

without losing holonomicity, but rather how strong the analyticity as-
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sumption can be made without violating the microanalyticity, unitarity or

Lorentz invariance properties of the /S-matrix. For the principle of

maximal analyticity (Chew [29], Stapp [30], Gunson [31]) asserts that

the iS-matrix has the minimal singularity structure consistent with these

three principles: it instructs us at each stage of our understanding of the

analytic structure of the (S-matrix to demand the minimal singularity

structure compatible with that understanding.

As an initial application of this general principle we can demand

"local maximal analyticity", which is the property enunciated at the

beginning of this section and exemplified in the analyticity properties (c)

of § 3. 1 and § 4. 1. One can also include in local maximal analyticity

the condition that s(p) be bounded near p, provided p lies on no LQ(D+)

for which a,(D) =5/2 or 2. Local maximal analyticity, defined in this

way, appears to be in no way incompatible with the microanalyticity,

unitarity, and Lorentz invariance properties of the S-matrix.

The analysis of the preceding section shows that if we assume micro-

analyticity and the general discontinuity formula then at many points p^MT

local maximal analyticity entails local holonomicity. Two questions thus arise:

(1) Does local maximal analyticity entail local holonomicity at every

point p<Ejttr?

(2) If not, then is local holonomicity at least consistent with local

maximal analyticity, and the other iS-matrix principles and results,

including in particular the general discontinuity formula?

If local holonomicity is consistent with these other requirements then

it should, according to the general principle of maximal analyticity, be

accepted as a general property of the 5-matrix.

The present work has answered neither of these two questions.

We hope it has laid an adequate foundation for their further study.

Local holonomicity at points p^.Jttr places a condition on the charac-

ter of the singularity structure of the S-matrix at physical points. It is

therefore of interest in its own right. But its greater potential impor-

tance lies in its relevance to the deeper questions of whether it is possible

to demand global holonomicity of the S-matrix, and what the impact of

such a condition would be on the allowed form of the iS-matrix. These

deeper questions also remain unanswered.
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