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Introduction to Microlocal Analysis

by

Tetsuji MIWA*, Toshio OSHIMA** and Michio JIMBO*

§ 1. Hyperfunctions, Microfunctions and

the Exact Sequence of Sato

The most important example of a hyperfunction is the d-function of
Dirac. It can be characterized up to constant multiple by the differential

equation

1-1 (zD,+1)f(x) =0,

and the support property

1-2) f(x)=0 if >0 or x<0.

Even if we omit the condition (1-2), we cannot find any real analytic
function other than zero which satisfies (1-1) in a neighborhood of zero.
Therefore it is necessary to generalize the concept of functions.

If we consider (1-1) in the complex plane, its solution is
(1-3) F(2) =const. L .
z

It is holomorphic in the upper half plane and also in the lower half
plane. If we can attach some meaning to the phrase “the boundary
value of F(2) from upper (lower) half plane”, we can find non trivial

solutions of (1-1). These are hyperfunctions
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These two solutions form a basis of the solution space of (1-1). Now
we can find a solution which satisfies (1-2) taking the difference of
(1-4) and (1-5). Adjusting the constant, we have the well-known for-
mula

(1-6) a<x)=~i< 1 1 )

2ri\z+40 z—1i

Thus 0(x) can be expressed as a sum of two boundary values.

Definition 1.7. A hyperfunction is a sum of real boundary values

of holomorphic functions.

To give rigorous and mathematical meaning to the above definition
we use cohomology theory, the theory of residue class. (It is only a
sky-scraper made of the same material which we use to construct rational
numbers from integers.) In the case of one independent variable, the

space of hyperfunctions in an open set U in R is defined by

1-8) BU) =O(VH)BO(V))/0(V).

Here V is a complex neighborhood of U which contains U as a closed
subset, and V;(V,) is the intersection of V and the upper (the lower)
half plane. (Fig. 1.9)

Z-plane
Y real axis
NS
Fig. 1.9

If F;(z) is holomorphic in V; we write the hyperfunction defined
as the boundary value of F;(2) like

(1-10) F,(x+10).
Similarly we define a hyperfunction

(1-11) F,(x—10).
A hyperfunction #(z) has an expression

(1-12) f(x) =Fi(z+10) + F,(x—10).
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If f(zx) =F,(x+i0) +F,(x—170) is another hyperfunction, f(x) = f(z) if
and only if

(1-13) Fi(x+:0) —F (x+:0) e,
1-14) Fy(x—i0) —F,(x—i0) e A,
and

1-15)  (Fy(z+10) —F,(x+170)) + (Fy(x—70) — Fy(x—170)) =0.

We can summarize (1-12)~(1-15) in the following exact sequence

the exact sequence of Sato.
(1-16) 0> A5 B"E e, d%,—0.

In (1-16) %.(%,) is the space of the element (1-10) ((1-11)) where
two elements like (1-13) ((1-14)) are identified.

Exercise. 1.17 Examine that differential operators operate on B,

%, and %, as local operators.

We have characterized 0(x) by (1-1) and (1-2). To characterize (1-4)
and (1-5) we can use (1-16). (1-4) ((1-5)) is an element in B whose
image under sp,(sp,) vanishes. We can illustrate these three cases of

“support property” by the following diagram. (Fig. 1-18).

(@) &x) (b) ! (c)  ——
+i€ +i§
x=0 §=0 £=0
-i§ -i €

Fig. 1.18 The notation =i will be understood when we explain the case
of several independent variables.

Remark. 1.19 The diagram for a general hyperfunction is not so
simple. Nevertheless it is important to note that a kind of hyperfunction

as F(x+10) (F(x—170)) has no support below (above) the axis {£=0}.

Before proceeding to the case of several independent variables, we
give several examples of hyperfunctions with one independent variable.

We consider a differential equation with one complex parameter A.
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(1-20) (zD,—2)u=0.

Two independent solutions of (1-20) are

1-21) (z+10)*

and

(1-22) (x—1i0)*

for 150, 1,2, ---. Here we choose the branch such that 2*=1 for z=1.
The diagrams for (x-+:0)* and (x—:0)* are (b) and (c) of (1-18).
For A=—1, —2, ---, we can construct a solution of (1-20) whose diagram

is like (a) of (1-18). The solutions are the (—A-+1)-th derivative of
0(x)

(1-23) PN (@), A=—1,—2, .

In contrast, for A2 Z we cannot construct such solutions. Instead we
can construct two more solutions with characteristic support property.
(Fig. 1.24).

(a) x} (b} x?

Fig.1.24

Ezxercise. 1.25 Express z% and x* as linear combinations of (1-21)
and (1-22). Show that they are meromorphic with respect to 4 and have
simple poles at A=—1, —2, ---. (Hint. Compare the values at x= +1,

and calculate their Laurent expansions at 1&Z.)

(1-26) A= ((—z4i0) — (~z—i0)%},
27 sin A
i L g0yt — (z—i0) )
2 sin 7w

For 1=0,1,2, ---, (1-21) and (1-22) are the same and there is one

more independent solution of (1:20). Thus we have the following three
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solutions with characteristic support property any two of which form a

basis of the solution space of (1-20). (Fig. 1.27)

x" x? x7
13 ié
x=0 x=0
£ =0 ¢=0 £§=0
x>0 xX<0 ‘
-ié ' -i§
Fig. 1.27
(1-28) 2t =—2" {log(—z+i0) —log(—z—i0)},
271
(1-29) :c’l=2x—n.{log(.r—i—i0) —log (z—i0)}.
e

Summary. 1.30 The dimension of the solution space of (1-20)
is 2. The structure of support of solutions are classified into three clas-
ses.

I 1¢Z
II. 2=0,1,2, -
L. A=-1, -2, --.

Later we explain that this difference is due to the difference of alge-

braic structure of the equations.

Ezxercise. 1.31 Show that
(1-32) |zt =2k + 2L

is a meromorphic function of A with simple poles at 1=-—1, —3, ---

Calculate its Laurent expansion.

To illustrate how the structure of solution space become simple, we
state some theorems about more general ordinary differential equations.

(The proof is easy, try yourself.)

Theorem 1.33. P(x, D) :f a.(x) D* is an ordinary differential
a=0
operator defined in a neighborhood U of the origin, ordya, denotes the
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degree of zero of a,(x) at x=0.

(a) BU)TF->B(U)—0 is exact.

(b) dim B(U)* =m+ordya,

where B(U)T represents the space of hyperfunction solutions in U
of the equation P(x, D)u=0.

Now we go back to the formula (1:6). It is easy to see that the

well-known formula
(1-34) [r@o@—nde=ro
is equivalent to the Cauchy’s integral formula (Fig. 1.35)

The path of integration in (1.34):
z- plane

real axis

¢

The path of infegration in (1.36):

Z-plane
@
o

Fig.1.35

(1-36) f F) gy F(w).

2t

(1-36) tells us every function imaginable can be expressed as a hyper-
function, that is, as a sum of boundary values. In fact, take any “function
of one real variable” f(x). We assume its support is contained in the

interval I=[—1,1]. Then we can define a holomorphic function outside

I by
(1-37) =1 Jf (®) gz

27

Then we have

(1-38) f(z) =F(z +i0) — F (x—10).

Exercise. 1.39 Show that for any real analytic function g(z)
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jf(x)g(x)dx= j{F(x-{-iO)—F(x—iO)}g(x)dx.

This argument can be easily extended to the case of several indepen-

dent variables using the formula

| U T 0 S RS S
(1-40)  F(wy, -, w2) (27ri)"§ §(ZI dzye--d, .

_wl)...(zn_w)

Exercise. 1.41 Find the holomorphic region of the function defined
by

: 2z =t (o [ S 2 -dz
G ez (ziri)“f J(xl—zo---(xn—zn)dx‘ o

where f(xy, **, x,) is a function with bounded support.

Thus any hyperfunction can be expressed as a sum of 2" boundary
values of a holomorphic function which is holomorphic in 2" quadrants
(1'43) Vel...anz {(zl’ °y, zn) S Cn! (Im Zi) 81>O} for 1:1’ e, 7

where g;=+1. (Fig. 1.44)

Im 22
Vot Vis
> Im 2z,
V__ V+_
Fig.1.44

More generally we can define the boundary value from a tube domain.

Let U be an open set in R" and V be a complex neighborhood of
Uin C"=R"++/—1R" which contains U as a closed subset. V is real
27 dimensional and U is embedded in V as a submanifold of real
codimensions 7#. Let us consider #-dimensional cone I'. " is an open
convex subset of R" which is closed under the multiplication by positive
real numbers. Then VN (U++/—1I") is a union of n-dimensional cones

attached to real points in U and is called a tube domain. When we consider
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this tube domain only near x we also denote it by x+i0I". We shall
use the notation z= (g, ', 2,). Let F(2) be a holomorphic function

in VN (U++/—1I"), then we denote by
(1-45) F(x+:0I")

the boundary value to U of F(2). Here the symbol 0 in front of I”
means a residue class of tangent vectors of X at « modulo tangent vectors
of the real manifold U.

Now we can define a hyperfunction as a sum of boundary values.
(1-46) f(x)*——;F,-(x-i-iOF,).

To complete the definition we must define when such expression repre-

sents zero. It requires the cohomology theory and we omit it.

Before we proceed on, let us explain some geometrical concepts.
Let M be an n dimensional real analytic manifold and X be its
complexification. You may imagine M=R" and X=R"++/—1R". There

is an exact sequence which defines a normal vector at x& M.
(1-47) 0 (TyX) o (TX) ;. (TM),<0.
The dual exact sequence

(1-48) 0—(Ty*X) ,— (T*X) ,— (T*M) ,—0

defines a conormal vector a cotangent vector of X at x which is

zero at tangent vectors of M at x. There is a canonical isomorphism
(1-49) V=1T*M=T,*X.

x € M is identified with a zero vector in v/ —1(T*M),.* Then we define
(1-50) vV —=1S*M=S*X

as (W —1T*M—M)/R, and (T/*X—M) /R, (residue class modulo real
positive multiple). We denote an element of (1-49) and (1-50) by («x,
i§) and (x,700§). There is a natural projection v/ —17T*M—M and
vV —1S*M—M. We denote them by 7. (x,i00f) represents an infini-
tesimal half space of X attached to M at z. (Fig. 1.51)
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joof

Fig. 1.51

We denote this half space by x+il ..
(1-52) z+ils={x’ +i0y| x’ =z, {i0y, ico&) = —y, §)>0}.

Definition (1-53) (Microanalyticity). A hyperfunction is said to
be microanalytic at (x, i00&) if it can be expressed as a sum of boundary
values of holomorphic functions which are holomorphic in tube domains

contained in x+12I,.. (Fig. 1.54)

toof

Fig. 1.54

Definition 1.55 (@(,,;e)- A residue class of hyperfunctions at o
modulo those which are microanalytic at (x, i00§) defines a microfunction
at (x,1008).

We collect € iy to define the sheaf % of microfunctions. This
is a sheaf on 4/ —1 S*M.

Theorem 1.56. (The exact sequence of Sato)

0> A5 BBr, 20 .
Here w,% is a sheaf on M whose stalk at x is the set of micro-

Sunctions defined on ' (x).

For a hyperfunction f(x), support of spf(x) is called the singular

* In this sense M is called the zero section of v —1T*M.
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spectrum of f(x). We denote it by S.S.f(x).® It is a closed subset
in 4/ —1 8*M where f(x) is not microanalytic.

Exercise. 1.57 Show that
S.S.F(x+10I') C {(x, i00§) |01, 10&><0}.

Example 1.58 S.S.0(x;)0(x,)

£
=2 “'ﬁ £,
L/

V=Is"M 2 8" =71 (x)

Example 1.59 S.S.(x, cos &+ x, sin a +120)*

---Jd O=

S N
i
1
|
]
1
]
U

¥
1
i
1
]
!
]
.
1
'
.

~
[N QN
v

* We also denote by S.S. f(x) the support of a microfunction f(x). A hyperfunction
f(x) is real analytic if and only if S.S. f(z)=4.
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Exercise. 1.61 Show that {(x;cosa + x,sin @) + i(—x, sin @ +

x, cos @)*—i0}* cannot be defined.

Example 1.62 S.S.(x)—x,*—m*+i0)* (x,>0)

n\\e= 2_”:/‘/_

'
i
'
!
|
]
]

1 1

Ezxample 1-63 S.S. 2430 z3+70

\-
|
\

X2

77,
7

1 1
Z,+30 T 2, +40

Exercise 1-64 Compare S.S.( > with (1.63).

In examples (1-59) ~ (1-62) each hyperfunction can be expressed as a
boundary value from a half space. Therefore its singular spectrum consists
of at most one point in 77'(x). In contrast, singular spectrum of §(x,) -
0(x,) spreads all over 7#~'(0). This is concordant with the well-known

plane wave expansion of 0(x).

. _ (n—1)! On-1()
(1-65) 7D = oy Jo. (x, & +i0)"

where {x, £>=x,&,+ - +x,&, and w,-,(£) is the surface element on S*7L
Let I'; and I'y be cones such that I',U";is convex. Then Cousin’s
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lemma in the theory of functions with several complex variables asserts

that there is a decomposition
(1-66) F(x+:0( NTI,))=F(x+:0I') + F,(x+1:0I,).

We can proceed with this decomposition until I" reaches at a half space.
(Fig. 1.67). From this point of view Exercise (1-57) and Definition
(1-53) may be well understood.

F(z)
F (2) Fa(z)

Fig. 1.67

Another way to understand the “singular spectrum’” is the Fourier
transform, and micro-analyticity and macro-causality in physics are con-

nected by the Fourier transform. Here we do not enter into this subject.

§ 2. Micro-differential Operators and Holonomic Systems

In §1 the sheaf B of hyperfunctions was introduced naturally
through the study of differential equations and the sheaf & of microfunc-
tions was introduced through the study of the structure of manifolds.
The third step is to generalize the concept of differential operators so as
to fit with & and 4/ —1S*M.

Let us consider a differential operator D;=0/0x;. A solution of the

equation

@1 D, f(x) =g (z)

always exists but is not unique. Its ambiguity is a hyperfunction 4 (x,,

--+, ) independent of x;. It is easy to see that

2-2) S.S.hC {(x,ic§) €4/ —1S* M| £,=0}.
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ico §y

ico &
ik,

Fig. 2.3 S.S. h(xs, zs)

Therefore if we consider (2-1) microlocally in the neighborhood
of a point (x,i00f) in 4/ —1S*M with &=~0, the microfunction solution
is unique. In other words, D;,”' is well defined micro-locally on

v/ —18*M if §-0.

Definition 2.4. Let (x,, o0&) be a point of P*X *, and P,;(x, &)
(—oo<j<m) be a holomorphic function defined at (xy, &) and homo-

geneous of degree j with respect to £ We require that

(2-5) TP (@ O/ (=N (—oo<i<m)

are locally uniformly bounded. Then the formal expression
2-6) P(z,D)= 3 Py(z, D)
Jj=—o

represents a microdifferential operator defined at (&, 00&;). Microdifferen-

tial operators defined at (zy, ©0&,) form a non commutative ring &, wey-

Through the two-fold embedding
27 V=18*M—-P*X

we consider P*X as a complexification of 4/ —1S*M. Then &, iwe Op-

erates on %, iws-

0
Example 2.8. Let P(x,D)= Y a;(x) (—)'D’.
jo—o

P(x,D)0(x) = OZ a;(x)x, ™.

* P*X=(T*X—-X)/(C—{0}) (See (1.50.)).
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0 0
Then at (0, Zoodz)=( Y] a;(x)x7)0(x) where Y a;(x)x™ is convergent
J=—0c0 J=—o0

because of (2-5). Thus a microdifferential operator can be replaced by a

multiplication of a holomorphic function in this case.

Definition 2.9. We call P, (xz, £) in the expression (2-6) the prin-
cipal symbol of P(x, D). We denote it by ¢(P). It has an intrinsic
meaning as a homogeneous holomorphic function on 7*X independent

of coordinate transformations.

(2-10) a(P-Q)=0(P)o(Q)
(2-11) o([P, QD ={c(P),0(Q}
where { , } means the Poisson bracket

: — s (0f 89 _ 8f 99
(2-12) fhor=2 <a P as,>'

Through out this section and § 4, we shall see how “commutative” principal

symbols control “non-commutative” micro-differential operators.

Theorem 2.13.
If 0(P) (xy, 08&)#0, P(x,D) has a unique inverse in &, wep-
We call P(x, D) elliptic.

Corollary 2.14.(Sato’s fundamental theorem) If a microfunc-

tion f(x) satisfies a micro-differential equation
(2-15) P(z,D)f(x) =0,
then we have

(2-16) S.8.f(x) C {(x, i) €4/ —1S*M|c (P) (z, i§) =0}.

Thus a system of microdifferential equations enables us to estimate the

singular spectrum of a microfunction which satisfies the system.

Ezercise 217. Prove Weyl’s lemma from (2:16) and (1-56).
Weyl’s lemma: a solution of an elliptic linear differential equation Pu=0

is real analytic.
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Exercise 2.18. Determine S.S.0(x,) ---0(x,) (1<7<n) by the above
method.

Let us consider a system of micro-differential equations
(2-19) Pu=0, -, Pyu=0.
A solution of (2-15) satisfies
(2-20) Qu=0 for Q=R,P,+-+RyPy.
But ¢(Py) (x,£) =0, -+, 0 (Py) (x,76) =0 do not always imply ¢(Q) («,

7€) =0. Thus we require a more intrinsic definition of what is a system

of micro-differential equations.

Definition 2.21. A system of micro-differential equations is a co-
herent left &-Module. This means that a system { has a representation

(not unique)

(2-22) 0 «— M «— & «— &t
v v
P1u1+ ""l'Psus(—'(Ply ) Ps)
w V)

(; -RjPJ'l’ B ; Rijs)H(RI: H) Rt)

where %, «-, u;,& M and (Pj;) j-1,.... is a matrix of micro-differential oper-
k=18

ators. This representation corresponds to a usual expression

(2-23) S P =0 (=1, -, )%
k=1

Exercise 2.24. Show that differential equations

(2-25) (xD—D)u=0
and
(2-26) (xD—2+1)v=0

are different representations of the same differential equation if and only

* Hom gy (M,C) represents the sheaf of microfunction solutions of JH. The image of

a set of generators (ui, -, %s) by an &-homomorphism from M to C represents a
solution of (2.23).
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if 20. If we consider (2-25) and (2-26) as a micro-differential equation
at (0,z008) (£5£0) they represent the same equation.

Definition 2.27. The characteristic variety of ¥ is the support of
M as a sheaf on P*X. We denote it by S.S..H.

From now on we assume that s=1 and we fix a generator # and

a coherent left ideal 4 such that

(2-28) M=Cu=E/9 .
This means

(2-29) Pu=0 for Pef4.
Then we have

(2-30) S.S. M= {(x, &) e P*X|0(P) (x, &) =0 for VP 4}.

Ezercise 2.31. Prove (2-30) using Theorem (2.13).

Let V be a subvariety in T*X. V is called involutory when

(2-32) f=¢g=0 on V implies {f,¢}=0 on V,

and isotropic when

s

(2'33) 1d€j/\dijVEO.

-,
1

If V is conic, this is equivalent to

3

(2-34) = &,dx;|y=0.

A hypersurface in T7*X is involutory. A submanifold defined by
x;=0 and & =0 is not involutory. A submanifold defined by z;=":-=z,
=§,.,=-+-=§,=0 is involutory and isotropic.

The dimension of an involutory subvariety is equal to or more than
n, and the dimension of an isotropic subvariety is equal to or less than .

We identify a conic (in &) subvariety (other than the zero section X)
in T*X with a subvariety in P*X.
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Theorem 2.35. (Fundamental theorem in the theory of linear
differential equations). The characteristic variety of a system is

involutory.

Corollary 2.36. dim S.S.H=n.

Exercise 2.37. Prove (2.35) under the assumption that
(2-38) J=the ideal in Oy generated by {0c(P)|Pcy}

is reduced, that is, f(x, §) €J if and only if f(x, ) =0 on S.S. M. (Hint.
Use (2-11).)

Definition 2.39. An involutory subvariety with # dimensions or
equivalent to say an isotropic subvariety with »# dimensions is called hol-

onomic. A system M is called holonomic if S.S.H is holonomic.

Theorem 2.40. The solution space of a linear differential hol-

onomic system is finite dimensional.

A function with a natural origin maybe satisfies a holonomic system.
“Study functions microlocally through holonomic systems.” This is the
principle of MICROLOCAL CALCULUS and Theorem (2-40) gives a
basis to our principle. We call solutions of a holonomic system holonomic

hyper-(micro-) functions.

Let Y be an irreducible subvariety in X. If Y is non-singular the
conormal bundle 73*X can be defined as (1-48). In general we define
T3y*X to be the Zariski closure in T*X of the conormal bundle of the

non singular part of Y.

Theorem 2-41. T*X is an irreducible conic holonomic subvar-
iety. Conversely if A is an irreducible conic holonomic subvariety,

we have
(2-42) A=Ty*X
where Y=n(A).
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Exercise 2.43. Prove theorem (2-41). It is sufficient to prove it

when Y=r(A) is a nonsigular submanifold.

Let 2% be the sheaf of #z forms on X. We can define a sheaf of

(micro=) differential operators which operate on v 2%.

(2-44) D=V RDRQV 2%
and
(2-45) Er=V O RELRQV 2% .

This means that vdzP(z, D,)vdz ' and vdyQ(y, D,) Jdy™? are
equal if and only if

@-46) N % P(z,D.),/ %5" =Q(y,D,)

where x and y denote two local coordinates. In this sheaf not only

principal symbol but also the following next symbol is invariant.

1 & 9P
2-47 1 - = .
(2-47) Pai@®) =g B30 2 ()

Ezxercise 2.48. Check in some simple cases (2-47) is invariant under

the coordinate transformation.

Then it is easy to see that for P(x, D) € Dy or Exy, L= J%_ILP«/%
is a first order linear differential operator defined in 7*X independent

of local coordinates, where

1 n a?Pm *)
2 510,08,

(2-49) Lp=Hp,+Ppn_i(z,§) —

Let M=Eu=E/4 be a holonomic system whose support is a non-
singular holonomic manifold 4. Then for P(x, D)< 4, Lp is a differ-

ential operator on A and the system of differential equations on 4

(2-50) Lps=0, P(z,D)ed

* Hp, (f)={Pn f}.
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where s/ 27 ®\/.Q} "% has finite dimensional solutions. Here Hpy, op-

erates on v 2% as the Lie derivative Ly, **.

From now on we assume that M is simple on 4, thatis, J in (2-38)
is reduced. Then (2-50) has a unique (up to constant multiple) analytic
solution on 4. We denote it by ¢,(%#) and call it the principal symbol of
the holonomic system Cu=¢&/4.

Definition 2.51.
04(#) is homogeneous in & and we call its homogeneous degree the

order and denote it by ord,(z).¥*¥

Ezxample 2-52.
g:,@x1+...+_@xr+g)Dr+l+...+QDn’
A:{(x’ E)}xlz.":xr:5r+1:"'_:En:O}’

0‘4(2{):/\/ déf"dfrd.r,.ﬂ---dxn ,
dxy-dzx,dzx, --dx,

ord, () =—;— .

Example 2-53.
I=D(x,D,—a) + D(x.D,—B) +DDs+ -+ DD, ,
A={zx,=x,=&=---=§,=0},

A={x,;=§=§="--=§,=0},

o — g -a-lg —g-1 dSIdSdeS'“dxn ,
a @) =& S dxdx,dxs--dzx,

* s is well-defined up to constant multiple. If 4 and M are real, s is defined without
ambiguity as a section of VV,@V V! where €V denotes the sheaf of volume

elements.
_— n af 1z . _0a; JE—
3k n — —L F— ) i-1Z7%
- 12—:1%(1) a{i‘ S Ve nde {21 a:(z) ox: (@) 2 ig'l( ) 6x¢f(z)} Vdzip-1d s

*+* Note that ‘principal symbol’ and ‘order’ are defined only if we fix a generator of
M. An exchange of generators causes a difference of an integer in orders. See
Exercise (2.24).
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ord,,(w) =—a—F—-1,

s | dédx,dxs---dx,
dz.dz,dxy Az,

04, (u) = &7y

ordy, (#) = —a—% .
Example 2-54.

4= % x1D1+x2D2+a> +,@{%<% D1+xlD2>D1+ﬁD2},

4,= {51:-732:0}’,
A= {x2=x12, & +213152:O},

¢ — =28 a—f—1 dxld&,
u () =208 dx,dx,

ord, (u) =a—f— —;— ,

Go () = 28— 1g a+B-32 dx,d¢, ,
1, (%) T T drdz,

ord,, () =a+F—1.

To study singular points of a characteristic variety only a singularity
of codimension 1 (that is of dimensions #—1) plays an essential role.
In this sense it is important to determine if two (or more) irreducible
components of the characteristic variety have a codimension 1 intersection
or not. The structure of a holonomic system is visualized by ‘holonomy
diagram’ which represents the configuration of irreducible components of

the characteristic variety.

§ 3. Several Operations on Functions and Systems

In this section we show by an example how the Feynman amplitude
can be defined as a hyperfunction. In the course we explain several
operations (substitution, integration, product and compactification).

Consider the following Feynman graph (Fig. 3.1).
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Ky
P *—<>—> Pe
k2
Fig.3.1
The Feynman amplitude with parameter 4, of this graph is an integral

of the form

1
(b —m +10)

2 [[s-t-morhth)

1

X . dk.dk, ®
(ks:— my*+10) *2

To define (3-2) as a hyperfunction we prepare several operations.
Let f: N->M, y»x=f(y) be a real analytic map. We have the

following diagram
Nx —1T*M (v, V=18
(3-3) 4 M N\ v \o
J=IT*N I M (v VI L) o), TR
We define Tx*M by an exact sequence
(3-4) O—>TN*M——>N]>W< T*M—T*N—0.
In a local coordinate

(3-5) S edre Ty* M
=1

if and only if i Eiafi =0 for any j.
=1 0y;
We shall not only identify the zero section of v/ —17*M with M but

also identify a conic set of 4/ —17T*M—M with the corresponding set
in 4/ —1S8*M. We consider a hyperfunction #(x) as a microfunction de-
fined all over /—1T*M. Therefore it is real analytic if and only if
S.S.u(x) C MA¥

(i) Substitution.
Let z(x) be a microfunction on v/ —1T*M. u(f(y)) is defined as

* p; and &; are v dimensional Minkowski vectors.
** We consider the relations between T#X and P*X, and Dy and Ex likewise.
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a microfunction at (y,4/ —17) €4/ —1T*N if
(3-6) 0:m " (S.Su(x))—>/—1T*N

is proper in a neighborhood of (y,4/—17). For a hyperfunction this is
equivalent to

(37 T (S.Su(x)) N/ —1Ty*M=N¥>.

We can estimate S.S.(f(y)).

(3-8) S.Su(f(y)) co(@(S.S.u(x))).

(ii) Integration.
Let v(y)dy be a microfunction density on 4/ —17*N. f v(y)dy
1@
is defined as a microfunction at (x,+/—18) v/ —1T*M if

(3-9) w: 0 (S.Sv(y)dy) >/ —1T*M

is proper. We can estimate S.S.I v(y)dy.
7-1(2)

(3-10) S.S. ( L oy VOB ST SV ) ).

(iii) Product.
Let 2, (x) and #,(x) be hyperfunctions on M. % (x) -u,(x) is defined
as a hyperfunction on M if

(3-11) S.S.u, () NS.S.u,(x) M

where S.S5.%u,(x) ={(x,v/—18) v/ —1T*M| (x, —/ —18&) €S.Su,(x)}.

We can estimate S.S.(u; (x)u,(x)).

(3-12) S.S. (u () us(2)) C{(x, i) e/ —1T* M (x, i§,) €S.S.u, (x)
(I=1, 2) such that & +&,=¢}.

We show how to apply these formulas (i) ~(iii) to define (3-2)
and estimate its singular spectrum.

First we define the integrand @g(p, k) as a hyperfunction on N= {(¢,,
Do ki, k). We denote by z; and v, the dual coordinates of p; and k%

* N means zero vectors.
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in /—1T*N. (3:6) is always satisfied if f is a smooth map.* There-
fore 0(pr—Fki—ky), 0(Py+kit+ky), (BP—m2+i0)"" and (k°—m,*+:0) "

are well-defined. Their singular spectra are given by

(38-13)  SSO(i—k—k) ={(t, kv — 12 d(s—ki—k)) €V —1T*N|

21—k —k,=0},
S.S.0(petki+k) ={(p, b,/ —12:(2+ ket ko)) E/ —1T*N|
P2+k1+k220},

S.S. (ot — gt +40) =4 = {( £k, V=12 i —m) ) e V/=IT*N]|
a120 , a, (klz —m,*) = 0},
S.S. (ki — my? 4+ 0) ~s = {( £k, V=1% Ak —ma) ) e V=IT*N]|

azgo , (27 (kzz—mzz) =0}.

Then using (3-12) we have

(3-14) S.5.0,(p,k)={(p, k,+/ —1(x,v)) €4/ —1T*N]|
3, >0 such that p,—k —k,=0, p,+k +k,=0,
al(k1z“m12)=0, (b’ —my")=0, v, +x,— 2, — .k =0,

Uy, — Xy — ke, =0} .
If we apply (3-10)** we have

(3-15) S.S.Fe(p){(B,v/ —1x) Ev/ —1T* Mk, ks, 0,0,
.20, pr—ki—k=0, py+k+k=0, a,(k’—m")=0,
x—x, =0k, (I=1,2)}.

These are the well-known Landau equations. There are two irreducible
components. One on which ;%0 (I=1,2) is called the leading Landau
singularity and is denoted by Ag.
The other is the conormal bundle of the submanifold p,+$,=0, on
which a,=0 (I=1,2). We denote it by Ayintcu,y Or 4, in short.
The condition (3:9) fails on A,. To overcome this difficulty we

* fis smooth by difinition if Ty*M=N. See also the footnote on page 28.
** Note that o(NX T*M) ={(p, k, ¥ —1(z,0)) € V—1T*N}
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construct a compactification of (%, %,)-space. We projectify each v vector

kl, kg.
(316) {(Pbpb (kl, 51); (k2; 52))} gR"vaxvaPv .

Carrying out the integration of ¢ functions we can rewrite (3-2) as an
integral over the space of loop momentum.

(3-17) Niooy={(?, k) EN|py— ks — ks =p,+ ki +k, =0}

The closure of Ny in (3:16) is defined by

bk

S S2

(3-18) Pr— 0.

Therefore it is non singular and as a local coordinate we may take p,
and (%, s;). Abbreviating suffix 1, we define the integrand at infinity

as the form
(8:19) |s|* %2R — s*m 2 4 10) "4 ((k—sp)2— s*m,t+10) “d (s, k).
This is a hyperfunction density along the fiber with parameters /;, /.

It is mermorphic in 4;, 4, with simple poles at

(3-20) AIHZ—%:Q —1, -

Exercise 3-21. Examine the well-definedness of (3-19). (Hint.
+10 plays a role.)

Ezxerise 3-22. Show that the singular spectrum of the integral of
(38-19) is contained in AgU 4.

We have explained how to define a hyperfunction and estimate its
singular spectrum. Further we shall explain how to construct the system
which it satisfies and how to estimate its characteristic variety.

We define the formal adjoint P*(x’, D,.) of a microdifferential operator
P(z, D;) by
(3-23) P(x,D)d(x—x") =P*(z’, D,.)0(x—x').

Then & operates on £xXL2% from the right by

(3-24) (Q(z, D)dx)P(x, D) =P*(x, D)Q(x, D)dz .
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We define Eyiy to be the following holonomic system tensored by £%
from the right.

(3-25)
Errad (2 —F(3)) Q2%
=5yXX/( > Crax (#—fi()) + 32 Erx (Do = 2 o Dm) ®mx).
i=1 j=1 i=1Q

j
We denote the generator 0(x—f(v))Xdx by ly.x
The characteristic variety of Ey.y is the conormal bundle of the
graph I' of f: Y—>X. We identify it with YXT*X

(3-26) TH(YXX)=YXxT*X
Erox is a (left &, right £x)-Module.

Several operations on systems.

(i) Substitution.
Let Sy be a system on T*X. The induced system

(3-27) my:f*ﬂxzp* (€Y—»X@Lﬂ’lx)

is defined as a system at (y,7) €T*Y if
(3-28) 0: W (S.S.My)>T*Y

is proper (hence with finite fibers) in a neighborhood of (y,7). If
(3-28) holds we say My is non-characteristic with respect to f. We
can estimate S.S..My.

(3-29) S.S. My o(@(S.S. Myx)).

If My is holonomic, My is holonomic. If My is simple holonomic with
a generator # and @ is transversal to A=S.S.My and 0|z is an

embedding then ffu=1,.;Qu& My generates a simple holonomic system

and

(3 . 30) Ordp(m-m) (f*u) = ord,, (u) .

Ezxercise 3-31. If Y is a submanifold of codimension 1 in X and

Dy=Dy/ DyP(x, D), what is the condition (3-32) and what is JHy?
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Ezxercise 3-32. If Y={x;=:=2,=0}C X={(xy, ***, g, Y1, ***»
YVoa)} and Mx=Exu=Ex/Jx then the ideal which annihilates 1y Qu
d
consists of P(y, D,) such that P(y, D,) +> ) z:R;(x,y, D;, D,) € 4x
i=1

(ii) Integration
Let My be a right coherent Module on 7*Y. The induced system

(3-3D) SeMy=a, (ﬂygé’px)

is defined as a right coherent Module at (x, &) eT*X if
(3-32) w: 07 (S S My) >T*X

is proper and with finite fibers. We can estimate S.S.f My
(3-33) S.SSeMyCw (0 (S.S.My)).

If My is holonomic, f,, My is holonomic. If Hy is simple holonomic with
a generator u# and 0 is transversal to A=S.S. My and @|,-1(s is an embed-
ding, then fou=u@®ly. xS My generates a simple holonomic right Mod-

ule and

(3-34) ord,, (dy~'®u) —% dim Y

=ord, 1y (dzx7 '@ fy1t) ——;- dim X .

n(4) (=1, 6)

1 ¢=0

2 k2_t2m22=0

3 (tp—k):—t'mi*=0

4 t=F=0

5 k*—*m,*=0,

zero section tp*—2p-k+t(my*—m,*) =0
6 t=k'=p-k=0

2nd type leading

n(4)  (G=1,2)

1 Pz—(M1+m2>z=O
2 p*=0

Each segment represents an intersection

zero section of codimension 1.

Fig.3.36 The holonomy diagram of a self energy graph.
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Ezxercise 3.35. If fis a projection Y= {(z,y)}>X={x} and My
Eyu=CEv/ 9y, then the ideal which annihilates #@1ly.x consists of P(xz,
D,) such that P(x, D,) —i—i D, R;(x,y,D,,D,)€4y. The condition
(3:23) is slightly restlrictivei._1 It can be weakened for holonomic systems
under some natural conditions so that the finiteness of the fiber is unneces-
sary. We give the holonomy diagram of the integrand and the integral
of (3-2) after carrying out an integration of § function. (Fig. 3.36)

§ 4. Quaniized Contact Transformation

A contact transformation
4-1) F: T*X->T*Y
is an isomorphism defined by
(4-2) 1:=Si(x, §)
yi=0:i(x,§) (=1, n),

such that f;(x,£) is homogeneous of degree 1 with respect to & and
g:(x, &) of degree 0 and the canonical 1 form i'l]idyi is pulled back to
i=1

é &dxi.
i=1

(4-3) F* (32 udy) =33 filw, ) dga(, ©
= é Szdxi .

There are two projections mx:T* (XX Y)—>T*X and ny: T* (XX Y) >T*Y
deﬁned by ﬁx(x, Y, 59 _77) = (.Z', 5) and nY(x, y, 5: ——77) = (y’ 77)'
Let us consider the graph 4 of F.

(4-4) A={(z,y,§, —n) €T (XX V)| n=fi(x, ),
yi:gi(x: S), (Z:]., "t n)}-
4 is holonomic, and conversely if the graph of an isomorphism is holo-

nomic it is a contact transformation.

Exercise 4-5. Check the above equivalence.
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A holonomic manifold is given by a generating function. We explain
this in the case ACT*X={(x,, >+, Zn; &1, =+, En) }.

We write 2’ = (&, -, Z4), "= (Zas1, **» Xn), & = (&, -++, &) and &”
= (8441, =" &n). A function of the form F(x’,£”) and homogeneous of
degree 1 with respect to & (we assume d=£7) is called a generating

function. A defined by
or or

. — * [ ’ en " VY]
@ A= {@HeTXE=-0w ¢, =L@, e

is holonomic and any holonomic manifold is given likewise.

Exercise 4-7. Check the above equivalence.

Example 4-8.

Consider the icecream cone diagram (Fig. 4.8).

Icecream cone diagream G.

P, K,

X3 X

kg k3
X3
Py
Fig. 4.8

The leading Landau singularity A4z is given by Landau equations.

(4'9) P1=k1+kz+ka, p=—ki—ktk, Ps:_ks_k4a
klzzmlz (l=15 2, 3),
Ty = ki =k, Ti—Xs=0ks, ZTi—XTy=auk,.

We can take a generating function

(4-10) H(x) =m1\/(x1_x2)2+mz‘/(x1”‘x2)2+ms\/(x1_xs)z
+mV (2,—135) 2.
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Ezxercise 411. Check p=aai1 is equivalent to (4-9)
z

<Hint. k = (i — ) « _V(@—z)® etc.>

y =
‘/(1'1 -732)2 my

We call H(x) a potential function. Consider a generating function

(4-11) jz_lpjx, (myV (x,— x3) 2+ mgV (2, —25) %) .
It defines the following contact transformation. <Here we let ky= @"_((:C#_—x)a)z
X1— X3
and k,= my (%, — x3) >
V (xy— x5) 2
(4'12) §1=P1—‘ks, ﬁzzpz—k“ §s=Pa+ks+k4,

Zy=z; (=123).

(4-12) reduces (4-9) to

(4-13) D=k+k, P=—k—k, 7=0
kBP=m (I=1,2),
Ti— =tk =k, .

This is the leading Landau singularity 4, o of the subgraph G,- 4,4
019

obtained from (4-7) by deleting two lines k; and k. (Fig. 4.14)

The subgraph GIo-l3,4}. The contracted graph G/ {1,2}.
P2 ]
(A X2 X I X = X2
X3 Xs
T’; P3
Fig. 4.14 Fig.4.15

Ezxercise 4-15. Into which the non-leading component Ag, 4,5, (cor-

responding to the contracted graph G/{1, 2}, Fig. (4-15)) is transformed
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by the above contact transformation? Show that Az and Ag g, have

a codimension 1 intersection.

Let ACT*(XXY) be the graph of a contact transformation (4-2)
and M be a simple holonomic system with generator K(x,y) with the
characteristic variety 4. On MXLy Ex operates from the left and Ep
from the right.

The equation

(4-16) P(z, D,) K(z,y)dy
=K(z,y)dyQ(y, D,)
=0Q*(y, D)) K(x,y)dy

gives an isomorphism between &y and &y Because M is simple, there

exist microdifferential equations of the forms
4-17) {D,,—fi(x, D,) +lower order}K(x,y) =0
{v;—g:(x, D,) +lower order}K(x,y) =0 (=1, ---, n).

We can eliminate D,s and y;’s from the lower order terms of (4-17)
and get the isomorphism (4-16).¥ Therefore principal symbols are in-
variant under a quantized contact transformation. But we cannot specify
a unique quantized contact transformation for a given contact transforma-
tion.

If M and N are real, and F: T*M—T*N is a real contact transfor-
mation, the integral transformation defined by the kernel function K(x,

y)dy is an isomorphism from &y to Zu.

(4-18) €y —> Cn
) v
u) v [K@nuwds.
Exercise 4-18. Apply the formulas given in § 3 to study (4-16).

Exercise 4-19. Show that these two isomorphisms of & and @

are compatible.

* We call this isomorphism a quantized contact transformation.
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Ezxample 4-20. Quantization of (4-12).

We take as a kernel function
(4-19) FGIO_{I’z}(p—ﬁ) dp

where Fg, - (p) is the Feynman integral of the subgraph obtained from
(4-8) by deleting two lines %, and k..

Then it transforms FG.r 4 into Fj
o

—L2 IAGI‘,—{s,qU pt, !AGU"G/{IJ}J .

Structure Theorem 4-21. Let M be a system of microdifferen-

tial equations with one generator. Assume that

(4-22) the characteristic variety V is non-singular of codimen-

sions d (1<d<n—1) and 3. £:dz:|y=-0, and that
i=0
(4-23) the symbol ideal J is reduced.
Then M is transformed into

(4-24) Du=0, -, Dju=0.

To prove this theorem we first straighten the characteristic variety
by a suitable contact transformation. Then by a corresponding quantized

contact transformation the system is transformed into
(4-25) (Di+Qi(x, D))v=0, -+, (Ds+Qu(x, D))v=0.

Then using the following two theorems (4:25) is reduced to (4-24).

Theorem 4-26. Let P(x,D) and Q(x, D) be microdifferential
operators with the same principal symbol P, (x,&). Consider a point

(x0, &) where P, (x,§) wvanishes and assume that

(4-27) Aiz,eyPn (x, §) x 21 §dx; .

Then there exists an elliptic microdifferential operator R(x, D) such
that

(4-28) RPR™'=Q.

Theorem 4.29. Let P(x, D) be a microdifferential operator de-
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fined at (0,--,0,00(1,0,:--,0)) €eP*X. Assume that o¢(P)(0,---,0,1,
0, -, /5L is holomorphic and never vanishes at §,=0. Then any
microdifferential operator Q(x, D) can be divided by P(x,D) with
residue R(z, D) =:§_]1R‘f> (z,D'YD; where D' =(D,, ---, D,_y).

(4-30) Q=SP+R.

We shall explain structure theorems for holonomic systems and holo-
nomic hyperfunctions.
(i) Let M be a holonomic system with support 4. We assume that
A is non-singular and ¥ is simple.

By a suitable contact transformation, A4 is transformed into
(421) x1=$2..—_...:$".
But (4-27) fails to hold and the structure admits a parameter 4 and
takes the form

(4‘22) 6’A’/é’lz’ (x1D1“'i) +8XD2+ +8XDn*) .

(i) Let #(x) be a hyperfunction such that spz satisfies a holonomic
system M =Eu with support A, a conormal bundle of a hypersurface
{f(x) =0} where grad f(x)=<0. We assume that ¥ is simple and
ord,(u) = — </H—%>. We take x;=f(x), then by a suitable elliptic micro-
differential operator Q(x, D) of order O defined at (0, dx;,) € P*X we can

represent M =CEv as follows.
(4-23) (x;D;—)v=0, D,w=0,--,D,v=0,
where v=0Q(z, D)u.
Then using (2-8) and (1-56) we can determine the form of u(x).
4-24) I Q€&Z) Fi(x) (fx) +i0) 4+ Fu(x) (f(x) —i0)*+ Fy(x)
II. (2=0,1,2, ) F,(z)f(z)*log (f(x) +1i0)
+ Fo(x)f(x)* log (f(x) —i0) + Fs(x)
oL A=-1,-2,-) Fi(x) (f(x) +i0)*+ F,(z) (f(x) —i0)*
+ Fy(x)log (f(x) +10) + Fy(x) log (f(x) —i0)

* Different 4’s give isomorphic systems if and only if the difference is an integer. If
we use micro-differential operators of fractional order any 2 gives the same system.
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where F;(x) and F,(x) are real analytic and either=0 or =<0, F;(x)

and F,(x) are real analytic.

Example 4-25.

We have transformed
FG]AGUAG/(l.z},-.- to FGID—{S,A)[/‘GIO_(;;,.;}Ul‘pt,r

in (4-20). Now we can determine the structure of Fs, e
0 i

In general Fy;(p) satisfies a simple holonomic system of order
(4-26) ord,,aFG=%{N+»(n-N)}

where N=#{internal lines} and n=2{vertices}. We can write
(4-27) FGIn_{“) (B1s B> Bs) =F(21) 0(B1+ 52) 0(Ps).

Then f($,) is a holonomic hyperfunction with singular specturm in

(4'28) {(51, \/Tloozu‘d;u) I 512: (m1+m2) 2}
and of order 1 ——;— or A= ”2;3

Thus we have one of the canonical forms of (4-24), where F,(x)
=0.%

Similarly the structure of a Feynman amplitude at a generic point of

any intersection Az, Adgr,ur,. of codimension 1 is one of the forms
I~III with F,(x)=0.*
(iii) Let M be a holonomic system with support A=4,U 4, We assume
that A;, 4, and A4;N A4, are non-singular and A4; N 4, has dimensions z—1.
Moreover we assume that T, (4, N 4,) = (Tp4;) N (Tp4;) for any pE 4, N 4,,
and the symbol ideal J is reduced. Then M is transformed to Example
(2-53). In (2-53) B=ordy, (%) —ord (%) -—% has an essential meaning.
According to the value of 8, M is classified into three classes. This
we have already explained in Summarize (1-30) by examining the solution
space, where we use 4 in place of .

Now as a final remark we explain the difference of their algebraic

properties. (The proof is straightforward.)

* In case III, Fy(x)=O0.
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Theorem 4:-29.
I If & Z, M is an irreducible Ex-Module.
II. If 3=0,1,2, --- there is an exact sequence of &z-Modules

0—->M,—>M—>M,—0

where supp M;C4; (i=1,2).
III. If f=—1, —2, -+ there is an exact sequence of &x-Modules

0> My—> M—>M,—0

where supp M;C4; (i=1,2).



