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Introduction to Microlocal Analysis

by

Tetsuji MlWA*, Toshio OSHIMA** and Michio JlMBO*

§ 1. Hjperfunetions, Microfunctions and

the Exact Sequence of Sato

The most important example of a hyperfunction is the ^-function of

Dirac. It can be characterized up to constant multiple by the differential

equation

(1-1) (xD, + Vf(x)=Q,

and the support property

(1-2) f(x) = 0 if x>0 or x<0.

Even if we omit the condition (1 • 2) , we cannot find any real analytic

function other than zero which satisfies (1 -1) in a neighborhood of zero.

Therefore it is necessary to generalize the concept of functions.

If we consider (1 • 1) in the complex plane, its solution is

(1-3) F(z)= const. — .
z

It is holomorphic in the upper half plane and also in the lower half

plane. If we can attach some meaning to the phrase "the boundary

value of F(z) from upper (lower) half plane", we can find non trivial

solutions of (1 • 1) . These are hyperfunctions

(1-4)
x+iQ

and

(1-5)
x —
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These two solutions form a basis of the solution space of (1 • 1) . Now

we can find a solution which satisfies (1 • 2) taking the difference of

(1 • 4) and (1 • 5) . Adjusting the constant, we have the well-known for-

mula

(1-6) 0(;c)=__

Thus (J(.r) can be expressed as a sum of two boundary values.

Definition 1670 A hyperfunction is a sum of real boundary values

of holomorphic functions.

To give rigorous and mathematical meaning to the above definition

we use cohomology theory, the theory of residue class. (It is only a

sky-scraper made of the same material which we use to construct rational

numbers from integers.) In the case of one independent variable, the

space of hyperfunctions in an open set U in R is defined by

(1-8)

Here V is a complex neighborhood of U which contains U as a closed

subset, and V1(V2) is the intersection of V and the upper (the lower)

half plane. (Fig. 1.9)

z- plane ^ ----- -\

/ U| ^V
- real axis

Fig. 1. 9

If F I ( Z ) is holomorphic in Vi we write the hyperfunction defined

as the boundary value of F I ( Z ) like

(1-10) Fifcc + zO).

Similarly we define a hyperfunction

(1-11) Ft(x-iO).

A hyperfunction u(x) has an expression

(1 • 12) /O) =F1(x + iff) + F, (x - iff).



INTRODUCTION TO MICROLOCAL ANALYSIS 269

If /(X) = -Fi(.r + z"0) +F2(x — z'O) is another hyperfunction, f(x) =f(x) if

and only if

(1-13) (̂.r + z'O) -^O + zO) e JZ ,

(1-14)

and

(1-15) (J

We can summarize (1 • 12) ~ (1 • 15) in the following exact sequence

the exact sequence of Sato.

In (1-16) ^1(^2) is the space of the element (1-10) ((1-11)) where

two elements like (1-13) ((1-14)) are identified.

Exercise. 1.17 Examine that differential operators operate on <$,

9*1 and &2 as local operators.

We have characterized d(x} by (1 • 1) and (1 • 2). To characterize (1 • 4)

and (1-5) we can use (1-16). (1-4) ((1-5)) is an element in & whose

image under $A(5A) vanishes. We can illustrate these three cases of

"support property" by the following diagram. (Fig. 1 • 18).

( a ) £ ( * ) ( b )

x = 0

Fig. 1.18 The notation ±i£ will be understood when we explain the case
of several independent variables.

Remark. 1.19 The diagram for a general hyperfunction is not so

simple. Nevertheless it is important to note that a kind of hyperfunction

as F(x + z'O) (F(x — z'O)) has no support below (above) the axis {f = 0}.

Before proceeding to the case of several independent variables, we

give several examples of hyperfunctions with one independent variable.

We consider a differential equation with one complex parameter L

x +/() l ' x - / 0

x = 0
t ^

-S - U
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(1-20) (xDx-Z)u = 0.

Two independent solutions of (1 • 20) are

and

(1-22) (x-iOy

for A^O, 1, 2, • • • . Here we choose the branch such thatz* = ~L for 2 = 1.

The diagrams for (x -f-z'0)A and (,r —z"0)* are (b) and (c) of (1-18).

For A= — 1, —2, • • • , we can construct a solution of (1-20) whose diagram

is like (a) of (1-18). The solutions are the (~A + l)-th derivative of

n .OQ^J fi("~*+1)(r^ ; ——1 — 9 ...V^JL £j\jJ (J \*^/ > *^— -*-> ^j •

In contrast, for 2.&Z we cannot construct such solutions. Instead we

can construct two more solutions with characteristic support property.

(Fig. 1.24).

(a) *i ^) xf

= 0 j =0
x > 0 x < 0

Fig. 1.24

-/'*

Exercise. 1.25 Express x+ and ^1 as linear combinations of (1-21)

and (1-22). Show that they are meromorphic with respect to A and have

simple poles at A=— 1, —2, ••• . (Hint. Compare the values at x= ±1,

and calculate their Laurent expansions at

(1-26)
2z sin

2z sin

For A = 0, 1, 2, ••• , (1-21) and (1-22) are the same and there is one

more independent solution of (1-20). Thus we have the following three
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solutions with characteristic support property any two of which form a

basis of the solution space of (1-20). (Fig. 1.27)

vn yn vn
x *+ A-

= 0 =0
x >0

Fig. 1. 27

(1-28) ** = - — {log (--,* + £0) -
27TZ

(1 - 29) x* = — {log O + zO) - log (x - zO) } .

Summary. 1.30 The dimension of the solution space of (1-20)

is 2. The structure of support of solutions are classified into three clas-

ses.

I. l&Z

II. A-0,1,2, •••

III. A=-l, -2, .-- .

Later we explain that this difference is due to the difference of alge-

braic structure of the equations.

Exercise. 1.31 Show that

(1-32) \x\l = a*++zL

is a meromorphic function of A with simple poles at A = — 1 , — 3, • • • .

Calculate its Laurent expansion.

To illustrate how the structure of solution space become simple, we

state some theorems about more general ordinary differential equations.

(The proof is easy, try yourself.)

m
Theorem 1.33. P(x9 D) =]£] aa(x)Da is an ordinary differential

a=0
operator defined in a neighborhood U of the origin, ordQam denotes the
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degree of zero of am(x) at x = Q.

(a) ^(C7)P->^(I7)->0 is exact.
(b) dim ® ( IT) p = m + ord0am

'where 33(IT)P represents the space of hyperf unction solutions in U

of the equation P(x,U)u = Q.

Now we go back to the formula (1 • 6) . It is easy to see that the

well-known formula

(1-34)

is equivalent to the Cauchy's integral formula (Fig. 1.35)

The path of integration in (1.34):

z- plane

real axis

The path of integration in (1.36):

z- plane

Fig. 1. 35

(1-36) J
2

(1 • 36) tells us every function imaginable can be expressed as a hyper-

function, that is, as a sum of boundary values. In fact, take any "function

of one real variable" f(x). We assume its support is contained in the

interval 1= [ — 1,1]. Then we can define a holomorphic function outside

I by

(1 - 37) F(z) =^ [l&L dx .
2-R.i J x — z

Then we have

(1-38) f(x)=F(x + iQ)-F(x-iG).

Exercise. 1.39 Show that for any real analytic function g(x)
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) g (x) dx = {F (x + iff) -F(x- zO) } g (x) <ir .

This argument can be easily extended to the case of several indepen-

dent variables using the formula

(1-40) F(wl9 •-, uO -T^-T f •• f
2 7 T z n J J(27Tz)n

Exercise. 1.41 Find the holomorphic region of the function denned

by

(1-42) F(z1,..;Zn)=^— f.
2m J

where f(xl9 • • • , o:n) is a function with bounded support.

Thus any hyperfunctioii can be expressed as a sum of 2n boundary

values of a holomorphic function which is holomorphic in 2n quadrants

(1-43) V.1...e,,= {(z1,-,zB)eC'|(Imzi)

where e t=±l. (Fig. 1.44)

Im z,

Fig. 1.44

More generally we can define the boundary value from a tube domain.

Let U be an open set in Rn and V be a complex neighborhood of

U in C7l:=r.RTi'+V~l-Krl which contains U as a closed subset. V is real

2/z dimensional and U is embedded in V as a submanifold of real

codimensions ;z. Let us consider ^-dimensional cone F. F is an open

convex subset of Rn which is closed under the multiplication by positive

real numbers. Then Vfl (UJr^ — ~LF} is a union of ^-dimensional cones

attached to real points in U and is called a tube domain. When we consider
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this tube domain only near x we also denote it by x -MO/7. We shall

use the notation z= (zly • • - , £n). Let F(z) be a holomorphic function

in VCl (Z/HV—IJ7)* then we denote by

(1-45)

the boundary value to U of F(z). Here the symbol 0 in front of F

means a residue class of tangent vectors of -X" at x modulo tangent vectors

of the real manifold U.

Now we can define a hyperfunction as a sum of boundary values.

To complete the definition we must define when such expression repre-

sents zero. It requires the cohomology theory and we omit it.

Before we proceed on, let us explain some geometrical concepts.

Let M be an n dimensional real analytic manifold and X be its

complexification. You may imagine M=Rn and X=Rn+^/ — lRn. There

is an exact sequence which defines a normal vector at xEiM.

(1-47) 0*- (7VX) ,<- (TX) ,<- (TM) ,<-0 .

The dual exact sequence

(1 • 48) 0-> (TM*X)x-> (T*X)^-> (T*M)s->0

defines a conormal vector a cotangent vector of X at x which is

zero at tangent vectors of M at x. There is a canonical isomorphism

(1-49) </=! T*M= TM*X.

x^M is identified with a zero vector in \/ — ].(T*M)X*'* Then we define

(1 - 50) V^ S*M^SM*X

as M^IT*M-M)/R+ and (TM*X-M)/R+ (residue class modulo real

positive multiple). We denote an element of (1-49) and (1-50) by (x9

z'f) and (x, z'oof). There is a natural projection \/ — lT*M—^M and

V~"l S*M-^>M. We denote them by 7T. {x, z'oof) represents an infini-

tesimal half space of X attached to M at x. (Fig. 1.51)
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We denote this half space by

(1-52) x + ire=ix' + iQy\x't*sj:9 <iOy, xoof>= -<y,

Definition (1-53) (Microanalyliclty) . A hyperfunction is said to

be microanalytic at (x, z'oof) if it can be expressed as a sum of boundary

values of holomorphic functions which are holomorphic in tube domains

contained in x + iFf. (Fig- 1.54)

\

Fig. 1. 54

Definition 1.55 (^(a,,^)) • A residue class of hyper functions at x

modulo those which are microanalytic at (x, z'oof) defines a microf unction

at (x,ioog).

We collect ^te.ioos) to define the sheaf ^ of microfunctions. This

is a sheaf on \/ —

Theorem 1.56. (The exact sequence of Sato)

0-*JZ-^^>7r*8>->0 .

Here 7T*^ is a sheaf on M -whose stalk at x is the set of micro-

functions defined on n~l(x).

For a hyperfunction f(x), support of sp/(.r) is called the singular

* In this sense M is called the zero section of V — 1T*M.
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spectrum of f(x). We denote it by S.S.f(x)*^ It is a closed subset

in «J — \S*M where f(x) is not microanalytic.

'Exercise. 1.57 Show that

Example 1.58 S.S.d(x1)S(x2)

Example 1.59 5.5. (^ cos a + x2 sin a + z'O)A

0 = a

Example 1.60 5.5. { (^ cos a + xz sin a) + z ( — xl sin a + ̂ :2 cos a)2 + z'O}

* We also denote by 5.5. f(x) the support of a microfunction f(x). A hyperfunction
f(x) is real analytic if and only if 5.5. f(x) = (f>.
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Exercise. 1.61 Show that {(_xl cos a + xz sin a) + i(^ — xl sin a +

xz cos a)2 — z"0}A cannot be defined.

Example 1.62

Example 1-63 5.5.^

Exercise 1-64 Compare S.S. - r^ + - - with (1.63).
\XI-TI\J -

In examples (1 • 59) ~ (1 • 62) each hyperfunction can be expressed as a

boundary value from a half space. Therefore its singular spectrum consists

of at most one point in TC~l(x}. In contrast, singular spectrum of 8(x^) •

d(x2) spreads all over n'1^. This is concordant with the well-known

plane wave expansion of d(x).

(1-65) d&= (

where <(^r, O==-2:i^H ----- h-^nfn and tOn_!(f) is the surface element on Sn~l.

Let FI and .Tg be cones such that Fl U F2 is convex. Then Cousin's



278 TETSUJI MIWA, TOSHIO OSHIMA AND MICHIO JIMBO

lemma in the theory of functions with several complex variables asserts

that there is a decomposition

(1-66) J-fcr + tOCAnr,)) = F1(x + iOri~) + F2(x + iOr2).

We can proceed with this decomposition until F reaches at a half space.

(Fig. 1.67). From this point of view Exercise (1 • 57) and Definition

(1 • 53) may be well understood.

F(z]
F, (z) F2(z)

Fig. 1. 67

Another way to understand the "singular spectrum" is the Fourier

transform, and micro-analyticity and macro-causality in physics are con-

nected by the Fourier transform. Here we do not enter into this subject.

§ 2. Micro- differential Operators and Holonomie Systems

In § 1 the sheaf 3$ of hyperfunctions was introduced naturally

through the study of differential equations and the sheaf ^ of microfunc-

tions was introduced through the study of the structure of manifolds.

The third step is to generalize the concept of differential operators so as

to fit with <g and ^/^-

Let us consider a differential operator D1 = d/dx1. A solution of the

equation

(2-1) Dlf(x)=g(x)

always exists but is not unique. Its ambiguity is a hyperfunction h(xz,

-••,.rn) independent of x^ It is easy to see that

(2-2)
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/oo

ioo?2

Fig. 2. 3 S.S. h(xz,x^

Therefore if we consider (2-1) microlocally in the neighborhood

of a point (x, z'oof) in ^/ — ~LS*M with fi=^=0, the microfunction solution

is unique. In other words, D^1 is well defined micro-locally on

V^7! S*M if 6=^=0.

Definition 2.4. Let (XQ, oof0) be a point of P*X *}, and

( — oo<j<^w) be a holomorphic function defined at (:TO, f0) and homo-

geneous of degree j with respect to £. We require that

(2-5)

are locally uniformly bounded. Then the formal expression

m
(2-6) P(x,D-)=gPi(x,B)

represents a microdifferential operator defined at (XQ, oo^0). Microdifferen-

tial operators defined at (XQ, oof0) form a non commutative ring <?teo, oof0).

Through the two-fold embedding

(2-7)

we consider P*X as a complexification of ^ — lS*M. Then <? te,<oof) op-

erates on ^te.toof).

Example 2. 8. Let

(See (1.50.)).
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0 0

Then at (Q,ioodx) = ( X] &j-(x)x~J')8(x) where £] aj(x)x~j is convergent

because of (2 • 5). Thus a micro differential operator can be replaced by a

multiplication of a holomorphic function in this case.

Definition 2.9. We call Pm (x} ?) in the expression (2 • 6) the prin-

cipal symbol of P(x,D). We denote it by tf(P). It has an intrinsic

meaning as a homogeneous holomorphic function on T*X independent

of coordinate transformations.

(2-10)

(2-11)

where { , } means the Poisson bracket

dg -df dg
~

Through out this section and § 4, we shall see how "commutative" principal

symbols control "non-commutative" micro-differential operators.

Theorem 2.13.

If (T(-P) Cr0, oof0)^0, P(x,D) has a unique inverse in <£(Xoi00$Q).

We call P(x,D) elliptic.

Corollary 2.14. (Sato's fundamental theorem) If a micr of unc-

tion f(x) satisfies a micro- differential equation

(2-15) P(

then *we have

(2-16) S.S.f(x) c {(x, zoo?) <=^=IS*M\G(P) (x, if) =0}.

Thus a system of microdifferential equations enables us to estimate the

singular spectrum of a microfunction which satisfies the system.

Exercise 2.17. Prove Weyl's lemma from (2-16) and (1-56).

Weyl's lemma: a solution of an elliptic linear differential equation Pu = 0

is real analytic.
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Exercise 2.18. Determine S.S.8(x^ -~S(xr} (1<><X) by the above

method.

Let us consider a system of micro-differential equations

(2-19) Pi« = 0, —, J> = 0.

A solution of (2-15) satisfies

(2-20) Qu = 0 for £2 = 1?^ + — +RNPN.

But (T(P!)(j:,zO=0, ••- , (T(P Jy)( j : , f f )=0 do not always imply ff(Q)(x,

if) — 0. Thus we require a more intrinsic definition of what is a system

of micro-differential equations.

Definition 2.21. A system of micro-differential equations is a co-

herent left 5-Module. This means that a system JM, has a representation

(not unique)

(2.22) o <— M <— ss <— et

where ul9 •••,us^<3tt and (Py*)y=i,...,t is a matrix of micro-differential oper-

ators. This representation corresponds to a usual expression

s
/o OQ\ x i ~p ,. f\ / • "1 j.\ ^«)

fc=l

Exercise 2.24. Show that differential equations

(2-25)

and

(2-26)

are different representations of the same differential equation if and only

(Jft, C} represents the sheaf of microfunction solutions of 3tt. The image of
a set of generators («!,•••,«,) by an <?-homomorphism from Ji to C represents a
solution of (2.23).
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if ^^0. If we consider (2-25) and (2-26) as a micro-differential equation

at (0, z'oof) (f r^Q) they represent the same equation.

Definition 2. 27. The characteristic variety of 3tt is the support of

JK as a sheaf on P*X. We denote it by S.S.M.

From now on we assume that 5 = 1 and we fix a generator u and

a coherent left ideal § such that

(2-28) 3tt = £u

This means

(2-29) Pu = 0 for

Then we have

(2-30) S.S.Jk = i(x9°ofts=P*X\ff(F)(x,£)=0 for

Exercise 2.31. Prove (2-30) using Theorem (2.13).

Let V be a subvariety in T*X. V is called involutory when

(2-32) jfeg^O on V implies {/,g}^0 on V,

and isotropic when

(2-33) S^A^/li^O.
j=i

If V is conic, this is equivalent to

(2-34) S £/<**/ 1 r=0.

A hypersurface in T*X is involutory. A submanifold defined by

JCi = Q and fi = 0 is not involutory. A submanifold defined by xl = ••• =xr

= £r+i = '" — ?n — 0 is involutory and isotropic.

The dimension of an involutory subvariety is equal to or more than

n, and the dimension of an isotropic subvariety is equal to or less than n.

We identify a conic (in £) subvariety (other than the zero section X)

in T*X with a subvariety in P*X.
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Theorem 2.35. (Fundamental theorem in the theory of linear

differential equations). The characteristic variety of a system is

involutory.

Corollary 2.36. dim S.S.Jtt^n.

Exercise 2.37. Prove (2.35) under the assumption that

(2-38) J=the ideal in CW generated by {tf(P)|P€E^}

is reduced, that is, f(x, f) €E J if and only if/(.r, ?)=0 on S.S.3W,. (Hint.

Use (2-11).)

Definition 2.39. An involutory subvariety with n dimensions or

equivalent to say an isotropic subvariety with n dimensions is called hol-

onomic. A system c_SK is called holonomic if S.S.JIrt is holonomic.

Theorem 2.40. The solution space of a linear differential hol-

onomic system is finite dimensional.

A function with a natural origin maybe satisfies a holonomic system.

"Study functions microlocally through holonomic systems." This is the

principle of MICROLOCAL CALCULUS and Theorem (2-40) gives a

basis to our principle. We call solutions of a holonomic system holonomic

hyper- (micro-) functions.

Let Y be an irreducible subvariety in X. If Y is non-singular the

conormal bundle TY*X can be defined as (1 • 48). In general we define

TY*X to be the Zariski closure in T*X of the conormal bundle of the

non singular part of Y.

Theorem 2-41. TY*X is an irreducible conic holonomic subvar-

iety. Conversely if A is an irreducible conic holonomic subvariety,

ive have

(2-42) A = TY*X

-where Y=n(A).
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Exercise 2.43. Prove theorem (2-41). It is sufficient to prove it

when Y=7i:(A) is a nonsigular submanifold.

Let J2J- be the sheaf of n forms on X. We can define a sheaf of

(micro = ) differential operators which operate on \/J2J.

(2-44) ®x

and

(2-45) Sz

This means that -J^xP(x, Dx} <J^lx~l and JdyQ(y, A,) *J~dy~l are

equal if and only if

(2 - 46) L P(x, Dx~) = Q (y, Dv)
™ ay ™ ay

where x and y denote two local coordinates. In this sheaf not only

principal symbol but also the following next symbol is invariant.

(2 - 47) Pm_, (x, f ) — S -- Or, f ) .
2 i^dxjdgj

Exercise 2 AS. Check in some simple cases (2-47) is invariant under

the coordinate transformation.

Then it is easy to see that for P(x, D) ^3)x or £z, LP= V ' dx~lLp^ dx

is a first order linear differential operator defined in T*X independent

of local coordinates, where

(2-49) L p = H m _ f 2

Let 3tt=Su = £/$ be a holonomic system whose support is a non-

singular holonomic manifold A. Then for P(x9D)^^9 LP is a differ-

ential operator on A and the system of differential equations on A

(2-50)
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where seV$]i (R)V$J *} has finite dimensional solutions. Here HPm op-

erates on v7^ as the Lie derivative LHpm**\

From now on we assume that <_5K is simple on A, that is, J in (2 • 38)

is reduced. Then (2 • 50) has a unique (up to constant multiple) analytic

solution on A. We denote it by 6A(u) and call it the principal symbol of

the holonomic system Qu —

Definition 2.51.

GA(U) is homogeneous in f and we call its homogeneous degree the

order and denote it by ord^(^^

Example 2-52.

ff (V)- /VA\U) — ./
™

Example 2-53.

* 5 is well-defined up to constant multiple. If A and M are real, s is defined without
ambiguity as a section of V^^^ V^y^-1 where ^ denotes the sheaf of volume
elements.

** L n 9 f(x
SaiC^)^T

*** Note that 'principal symbol* and 'order' are defined only if we fix a generator of
JM. An exchange of generators causes a difference of an integer in orders. See
Exercise (2.24).
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ord^(w) = —a — (3 — l,

(?Az (u) = Si-*-1

ord,, («) = -«--• .
£

Example 2-54.

To study singular points of a characteristic variety only a singularity

of codimension 1 (that is of dimensions n — T) plays an essential role.

In this sense it is important to determine if two (or more) irreducible

components of the characteristic variety have a codimension 1 intersection

or not. The structure of a holonomic system is visualized by 'holonomy

diagram' which represents the configuration of irreducible components of

the characteristic variety.

§ 3. Several Operations on Functions and Systems

In this section we show by an example how the Feynman amplitude

can be defined as a hyperfunction. In the course we explain several

operations (substitution, integration, product and compactification) .

Consider the following Feynman graph (Fig. 3.1).
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Fig. 3. 1

The Feynman amplitude with parameter h of this graph is an integral

of the form

(3-2) .n.(V— mi + iff)

X *>.
-m,1 + «))'•

To define (3-2) as a hyperfunction we prepare several operations.

Let f:N->M, y^>x=f(y) be a real analytic map. We have the

following diagram

„/ M x«
(3-3) ^ \

/ZTT*JV 1T*M y,

We define TN*M by an exact sequence

(3 • 4) o-vzy

In a local coordinate

(3-5)
i = l

n QJT

if and only if ]T] f ̂ -^- = 0 for any j.
*=1 93^ _

We shall not only identify the zero section of ̂  — ±T*M with M but

also identify a conic set of \/ — lT*M—M with the corresponding set

in ^/ — lS*M. We consider a hyperfunction &(.r) as a microfunction de-

fined all over ^/ — 1T*M. Therefore it is real analytic if and only if

S.S.u (

(i) Substitution.

Let u(x) be a microfunction on ^/ — 1T*M. u(f(y)^) is defined as

* pj and ki are v dimensional Minkowski vectors.
** We consider the relations between T*X and P*X, and S)x and (?z likewise.
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a microfunction at (y, V~~l^) ̂ V — lT*N if

(3-6) piW

is proper in a neighborhood of (y, \/ — 1^) . For a hyperfunction this is

equivalent to

(3-7) W

We can estimate S.S.u(f(y*)).

(3-8) 5.5.«CfGy))

(ii) Integration.

Let v(y)dy be a microfunction density on V"!^*^- I v(y)dy
_ _ _ J/'K*)

is defined as a microfunction at (X\/ — If) ^V" lT*M if

(3-9) 0 : p-1 (5.5. v (y) ̂ y) -V11

is proper. We can estimate S.S. I v(y)dy.
J/-1^)

(3 - 10) S.S. ( f t; (y) rfy) c 07 (p"1 (5.5. v (y) rfy) ) .
\ J/-K*)

(iii) Product.

Let «! (x) and «2 (-^) be hyperfunctions on M. u^ (x) • U2 (x) is defined

as a hyperfunction on M if

(3 - 11) 5.5.«, (x) n 5.5."̂  (x) C M

where
We can estimate S.S. (u^x

(3-12) 5.5. fa (*)«,(*)) c {(x, zf) eV^lT*M|3(^, fft) e5.5.«!(j;)

(Z = l,2) such that fi + & = £}.

We show how to apply these formulas (i) ̂  (iii) to define (3 • 2)

and estimate its singular spectrum.

First we define the integrand ®G(p, K) as a hyperfunction on N= {(pi,

pz,k1,k2)}. We denote by x3 and vt the dual coordinates of p3 and kt

* N means zero vectors.
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in V — 1T*N. (3-6) is always satisfied if / is a smooth map. *} There-

fore d(p1~k1-k2)9 d(p2 + k1 + k2)9 (kf-mf + iOy** and (kf-mf + iG)-1*

are well-defined. Their singular spectra are given by

(3-13)

• = ()},

S.S. (V-

** = p, k, V"=T ^

Then using (3 • 12) we have

(3-14) S.S.6

^0 such that A — *i — fe = 0,

l—xz — azk2 = 0} .

If we apply (3-10)**) we have

(3-15) S.S.FG(p^{(p, ^^lx) tEV^IT*M\ikly k2, a^O,

x1—x2 = alkl (1 = 1, 2)}.

These are the well-known Landau equations. There are two irreducible

components. One on which a^O (Z = l, 2) is called the leading Landau

singularity and is denoted by AG.

The other is the conormal bundle of the submanifold Pi-\-p2
 = Q, on

which <2i=0 (Z = l, 2). We denote it by 4>0int,r<i,z> or ^ in short.

The condition (3-9) fails on Apt. To overcome this difficulty we

*/is smooth by difinition if TN*M=N. See also the footnote on page 28.
** Note that p(Nx T*M) = {(p, k, V^lfe 0)) e V^
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construct a compactification of (kl9 &2) -space. We projectify each v vector

kl9 kz.

(3 • 16) { ( f r , p 2 , (k,, 5,), (fc, 52)) } = R" X R" XP" XP-.

Carrying out the integration of S functions we can rewrite (3-2) as an

integral over the space of loop momentum.

(3-17) N}oop={(p9K)GNlp1-k1-kt=pt +& + & = <)}.
The closure of A^op in (3-16) is defined by

(3-18) A_*l-*2=0.
Si S2

Therefore it is non singular and as a local coordinate we may take pl

and (&i, 5j). Abbreviating sufEx 1, we define the integrand at infinity

as the form

(3-19) | s\zai+^ -y~l (kz - szmz + fO) -^ ( (k - 5/02 - szmz + f 0) -'^(5, A).

This is a hyperfunction density along the fiber with parameters Al9 12.

It is mermorphic in AI, ̂ 2 with simple poles at

(3-20) ;i1 + ;i,—L = o, -1, ••-
£j

Exercise 3-21. Examine the well-definedness of (3-19). (Hint

+ z"0 plays a role.)

Exerise 3-22. Show that the singular spectrum of the integral of

(3-19) is contained in AG\J Apt.

We have explained how to define a hyperfunction and estimate its

singular spectrum. Further we shall explain how to construct the system

which it satisfies and how to estimate its characteristic variety.

We define the formal adjoint P*(x'9 DXS) of a microdifferential operator

P(x,Dx~) by

(3-23) P(x,D)8(x-x')=P*(x',Df,')8(x-x').

Then Qx operates on c?;r (X)J2J from the right by

(3-24) (Q(x, D)dx-)P(x, D) =P*(x,
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We define £Yl*x to be the following holonomic system tensored by Q\

from the right.

(3-25)

S S7xx(xt -ft (y) ) + S <?rx^
*=i .7=1 \

We denote the generator 8(x—f(y)}§§dx by 1Y->x-

The characteristic variety of £Y-*x is the conormal bundle of the

graph r of /: Y->X. We identify it with YxT*X.

(3-26) T

GY-+Z is a (left <?7, right 6^) -Module.

Several operations on systems.

(i) Substitution.

Let 3&x be a system on T*X. The induced system

(3 • 27) JKF=/*J

is defined as a system at (y,

(3 -28) p : W~l (S.S. JK

is proper (hence with finite fibers) in a neighborhood of (y, 7^) . If

(3-28) holds we say «_5Kjr is non-characteristic with respect to f. We

can estimate S.S.<3ttY-

(3 - 29) 5.5.J«7c p (GT1 (S.£JKz) ) .

If «_^jr is holonomic, c_5K7 is holonomic. If 3ttx is simple holonomic with

a generator w and W is transversal to A = S.S.Jttx and p|oriu) is an

embedding then f*u = IY^x®u^J\iY generates a simple holonomic system

and

(3 - 30) ordp(w-u, Cf^) = ord, («) .

Exercise 3 • 31. If Y is a submanifold of codimension 1 in X and

3)z=3)z/3)xP(x9D)9 what is the condition (3-32) and what is MJ.
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Exercise 3-32. If Y= {xl = ••• = xd = 0}C^X= {(xly • • - , .rd, yly • • - ,

yn-<*)} and <3ttx~£xU = £x/(:}x, then the ideal which annihilates lF_>x®w

consists of P(y, £>„) such that P(y, A,) + *,£,(*, y, Dx, £>„) ^gx.

(ii) Integration

Let 3ttY be a right coherent Module on T*Y". The induced system

(3-31) f*3ttY=
SY

is defined as a right coherent Module at (x, £ ) EE T*X if

(3-32) W-p-l(S.S.JHY)-*T*X

is proper and with finite fibers. We can estimate S.S.f^Jtty

(3 • 33) S.S.f^Yd W (p-1 (S.S.MY) ) .

If c_2Kr is holonomic, f%JMY is holonomic. If 3&Y is simple holonomic with

a generator u and p is transversal to A = S.S.^LY and 0|p-i(^) is an embed-

ding, then f^.n::=u^)\Y^z^f^J^iY generates a simple holonomic right Mod-

ule and

(3 - 34) ord^ (Jy-1®^) - — dim Y
£i

= OTdri(A) (dx~l®f*u) - — dim X .
£j

(t = l,-, 6)

zero section t-hz—2

2nd type leading

Each segment represents an intersection
f}\

^A Jzero section of codimension 1.

Fig. 3. 36 The holonomy diagram of a self energy graph.
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Exercise 3.35. If / is a projection Y= {(x, y)}->X= {x} and 3ttY

GYU = £Y/SY, then the ideal which annihilates u§§\Y-*x consists of P(x,

Dx) such that P(x,Dx)-^f^DyiRi(xyy9Dx,Dy^^Y. The condition

(3 • 23) is slightly restrictive. It can be weakened for holonomic systems

under some natural conditions so that the finiteness of the fiber is unneces-

sary. We give the holonomy diagram of the integrand and the integral

of (3-2) after carrying out an integration of 5 function. (Fig. 3.36)

§ 4. Quantized Contact Transformation

A contact transformation

(4.1) F:T*X-»T*Y

is an isomorphism defined by

(4-2) ft =/<(*,£)

yt=Qt(x,& (*=1, • • - ,» ) ,

such that fi (x, £) is homogeneous of degree 1 with respect to £ and
n

Qi (x, f ) of degree 0 and the canonical 1 form ]T] flidy^ is pulled back to
1=1

II Stdxt.
i=l

(4 • 3) F* (± 7idy<) =±ft (x, f ) dgt (x, £ )

There are two projections 7TZ:T* (XX Y) ->T*X and 7T7: T* (XX Y) ->T* Y

defined by 7tz(x, y, ?, -?/) = (j;, f) and 7Tr(^, y, f , — if) = (y, ?y) .

Let us consider the graph A of .F.

(4-4) ^={(^y,f,-

^d is holonomic, and conversely if the graph of an isomorphism is holo-

nomic it is a contact transformation.

Exercise 4-5. Check the above equivalence.
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A holonomic manifold is given by a generating function. We explain

this in the case AdT*X= {fa, • • - , xn\ ft, • • • , fn)}.

We write xf = (xl9 • • • , xd), .r" = (.rd+1, • • - , o:n), f = (&, —, ?d) and f"

— (?<*+!> ""? fn)- A function of the form F(xf,£") and homogeneous of

degree 1 with respect to f (we assume d=f=ri) is called a generating

function. A defined by

(4-6) A =

is holonomic and any holonomic manifold is given likewise.

Exercise 4-7. Check the above equivalence.

Example 4-8.

Consider the icecream cone diagram (Fig. 4.8).

Icecream cone diagram G.

The leading Landau singularity AG is given by Landau equations.

(4-9) A = *i

a22 , xl — xz = azs , xz — xs =

We can take a generating function

(4-10) H(x) =m^(xl-xz
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rP J-f
Exercise 4.11. Check p = - is equivalent to (4-9)

dx

Hint. t "i*i-*, ai= (*-*_ etc.
\ V (xl — x2)

 2 ml I

We call H(x) a potential function. Consider a generating function

(4-11)
.7=1

It defines the following contact transformation. ( Here we let kz — , 1

and k^

(4-12) pl=Pl—kS, p2=P2 — k4y ps^Pz + ks + kl,

%j=Xj 0" = 1,2,3).

(4-12) reduces (4-9) to

(4-13) p1 = k1 + k29 p^-h-kz, ?3-0,

k^mf (J = l,2),

x1—x2 = a^ — ajkz .

This is the leading Landau singularity AGj. _ of the subgraph G/0_{3j4>

obtained from (4-7) by deleting two lines kz and k4. (Fig. 4.14)

The subgraph ^j0-{3,4). The contracted graph G/ {I f2}.

Fig. 4.14

Exercise 4-15. Into which the non-leading component AG/{1>2}iT (cor-

responding to the contracted graph G/{1,2}, Fig. (4-15)) is transformed
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by the above contact transformation? Show that AG and AG/{li2},r have

a codimension 1 intersection.

Let JcT*(XxY) be the graph of a contact transformation (4-2)

and «_2K be a simple holonomic system with generator K(x, y) with the

characteristic variety A. On J%(X)^J Qx operates from the left and GY

from the right.

The equation

(4-16) P(x,

= Q*(y,Dy)K(x,y)dy

gives an isomorphism between £x and Sy Because <_5K is simple, there

exist microdifferential equations of the forms

(4 • 17) {Dyi -ft (x, Dx} + lower order} K(x, y} = 0

{y*-0i(*, AT) + lower order} K(x, y) = 0 (z = l, — , ri) .

We can eliminate Dyt's and y/s from the lower order terms of (4-17)

and get the isomorphism (4-16).*} Therefore principal symbols are in-

variant under a quantized contact transformation. But we cannot specify

a unique quantized contact transformation for a given contact transforma-

tion.

If M and N are real, and F: T*M->T*N is a real contact transfor-

mation, the integral transformation defined by the kernel function K(x,

y)dy is an isomorphism from %?N to ^H.

(4-18) &N -> &M
UJ UJ

u(y) H> \K(x,y)u(y)dy .

Exercise 4 • 18. Apply the formulas given in § 3 to study (4 • 16) .

Exercise 4-19. Show that these two isomorphisms of Q and &

are compatible.

* We call this isomorphism a quantized contact transformation.
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Example 4-20. Quantization of (4-12).

We take as a kernel function

(4-19) F°It-w<fi-ft'i$

where FG (p) is the Feynman integral of the subgraph obtained from
I0 — {1,2}

(4-8) by deleting two lines ki and kz.

Then i t transforms ^ c l u into ^ l ,u •

Structure Tlieorem 4-21. Let <_5K be a system of micro differen-

tial equations 'with one generator. Assume that

(4-22) the characteristic variety V is non-singular of codimen-
n

sions d (l<,d<^n — 1) and ^ £idXi\v^Q, and that
t = 0

(4-23) the symbol ideal J is reduced.

Then <_5K is transformed into

(4-24) A" = 0,

To prove this theorem we first straighten the characteristic variety

by a suitable contact transformation. Then by a corresponding quantized

contact transformation the system is transformed into

(4-25) (

Then using the following two theorems (4-25) is reduced to (4-24).

Theorem 4-26. Let P(x,U) and Q(x,D} be micro differential

operators with the same principal symbol Pm (x, £ ) . Consider a point

(^o> fo) where Pm(x,£) vanishes and assume that

(4 • 27) «*(„„?„ (x, 0 / g War, .

Then there exists an elliptic micro differential operator R(x, D) such

that

(4-28)

Theorem 4. 29. Let P(x, D) be a microdifferential operator de-
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fined at (0, • • - , 0, oo(l, 0, • • - , 0)) eP*X Assume that <J(F) (0, - - - ,0 ,1 ,

0> '",$n)/£nP is holomorphic and never vanishes at fn = 0. Then any

microdifferential operator Q(x,D) can be divided by P(x,D) with

residue R(x9 D) =£jR<') (x, D')A/ where Dr = (A, -, Ai-i).
j=i

(4-30) Q^SP + .R.

We shall explain structure theorems for holonomic systems and holo-

nomic hyperfunctions.

(i) Let <_5K be a holonomic system with support A. We assume that

A is non-singular and c_5K is simple.

By a suitable contact transformation, A is transformed into

But (4-27) fails to hold and the structure admits a parameter A and

takes the form

(4 • 22) ex/Gx (x, A - A)

(ii) Let u(x) be a hyperf unction such that sp u satisfies a holonomic

system ^i=Su with support A, a conormal bundle of a hypersurface

{f(x) = 0} where grad /(.r) 7^0. We assume that 3& is simple and

ord^(^) = — (A + -0-). We take Xi=f(x), then by a suitable elliptic micro-
\ ^ /

differential operator Q(.r, D) of order 0 defined at (0, dx^) ^P*X we can

represent 3&=Qv as follows.

(4-23) (^A-A)t;-0, D2v = 0, ...,Dnt; = 0,

where v = Q (x, D) u.

Then using (2-8) and (1-56) we can determine the form of u(x).

(4-24) I. (*<£Z) F1(^)(/(^)+£0)J + F2(^)(/(x)-z-0)HJF3(^)

II. (I = 0, 1, 2, • • -) F, (x)/(^) ' log (f(x) + fO)

+ F2 (x)f(x) * log (/(*) - £0) + F3 (x)

III. (A = - 1, - 2, -) J1, (x) (/(^) + £0) * + ̂ 2 O) (/(x) - zO) '

+ .F3 (x) log (/(x) + zO) + ̂ 4 (a;) log (/(*) - £0)

* Different A's give isomorphic systems if and only if the difference is an integer. If
we use micro-differential operators of fractional order any A gives the same system.
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where Fl(x) and F2(x) are real analytic and either=0 or =^=0, F$(x)

and F±(x} are real analytic.

Example 4-25.

We have transformed

•^ GMfiflMff/{l,2} tr tO °/o- {M} ' ^ffr,,- {3, 4} ̂  ^P*. r

in (4-20). Now we can determine the structure of FGr ro .
•* o — H 4>

In general FG(p) satisfies a simple holonomic system of order

(4-26) oT&AaFa = — {N+v(n-N)}
£

where N— $ {internal lines} and n = % {vertices}. We can write

(4-27) *V{M}(?'> &> ^ =/(?i)ff (?> + ?«)*(?•)•

Then jf(?i) is a holonomic hyperfunction with singular specturm in

(4 - 28) { (p1} V=T°°?n ' dp^ | p* = (m, + m2}
 z}

and of order 1 — -0- or A = — « — .£ £
Thus we have one of the canonical forms of (4-24), where Fz(x)

Similarly the structure of a Feynman amplitude at a generic point of

any intersection AG/Il.r U AG/Ii\jIztV of codimension 1 is one of the forms

I— III with FifctO^O.*'

(iii) Let «_5K be a holonomic system with support A = A1 U A2. We assume

that ^, A2 and J j f l^ are non-singular and A1C]A2 has dimensions TZ — 1.

Moreover we assume that Tp(^ f| A2) = (TPAJ fl (TPA^) for any ̂ e^ fl ̂ 2,

and the symbol ideal J is reduced. Then c5K is transformed to Example

(2-53). In (2-53) /3 = ord^2(^) — ord^C^) — -^- has an essential meaning.

According to the value of /?, «_SK is classified into three classes. This

we have already explained in Summarize (1 • 30) by examining the solution

space, where we use A in place of /?.

Now as a final remark we explain the difference of their algebraic

properties. (The proof is straightforward.)

* In case III, Ft(x)=Q.
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Theorem 4-29o

I. If /3$Z, M is an irreducible ^-Module.

II. If $ = 0,1,2, ••• there is an exact sequence of 6^ -Modules

where supp c5KfC^f (£ — 1, 2).

III. If $=—1, —2, ••• there is an exact sequence of ^-Modules

where supp JttidAi (z = l, 2).


