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Quantum Field Theory in Terms of
Fourier Hyperfunctions

by

Shigeaki NAGAMACHI* and Nobumichi MUGIBAYASHI**

Abstract

The Wightman axioms are extended to the quantum field theory in terms of
Fourier hyperfunctions. The support concept of hyperfunctions is crucial for the formu-
lation of locality and spectral condition. The complete equivalence is proved between
modified Wightman axioms for relativistic theory and modified Osterwalder-Schrader
axioms for Euclidean theory.

§ I. Introduction

The aim of the present series of papers is to extend as far as possible

the framework of the axiomatic quantum field theory and at the same

time to establish the axioms for Euclidean Green's functions which are

completely equivalent to a set of axioms for the relativistic vacuum ex-

pectations (modified Wightman axioms). We have shown in previous

papers [11,12] that this aim is achieved on the basis of the theory of
Fourier hyperfunctions which was founded by M. Sato, in place of tem-

pered distributions playing a central role in Wightman's original formula-

tion of the axiomatic quantum field theory.

Several authors have attempted to extend the Wightman axioms for

quantum field theory so as to include into the theory a wider class of

fields which, owing to singular (or nonrenormalizable) interactions, are

no longer described by tempered distributions [1, 2, 8]. In the first paper

of the present series [11], which will be quoted as NM I, we succeeded

to formulate the quantum field theory in terms of Fourier hyperfunctions

which had been studied extensively by Kawai [10]. The space of Fourier
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hyperfunctions is the dual of the space of rapidly decreasing holomorphic

functions. Since the latter space contains no function of compact support

in the usual sense, we are forced to modify the statement of the locality

axiom. This problem was fortunately resolved thanks to a noticeable

notion of the "support of hyperfunctions". This concept has been effec-

tively also for the formulation of the spectral condition. The remaining

axioms do not require any essential alteration compared with Wightman's

axioms. The quantum field theory in terms of Fourier hyperfunctions

has been shown to contain all other extensions of Wightman's formulation

which were constructed concretely up to the present.

In the recent development of the Euclidean field theory it had been

revealed that the temperedness of fields bring inconvenience in asserting

the complete equivalence of the relativistic and Euclidean field theory.

In order to get a reconstruction theorem for tempered fields satisfying the

usual Wightman axioms, Osterwalder and Schrader [14] were compelled

to introduce besides the distribution axiom a technical condition, what

they called the linear growth condition, into the axioms for Euclidean

Green's functions. It is worth tempting to use hyperfunction fields in

place of tempered fields to get the complete equivalence of the relativistic

and Euclidean field theories. This approach has once been advocated

by Glaser [4]. In our second paper [12], which will be referred to as

NM II, we have realized this program. In doing so, however, we found

it necessary to make a slight extension of the Fourier hyperfunctions,

while preserving all the results obtained in NM I. The new Fourier

hyperfunction was named the Fourier hyperfunction of the second type

in distinction from the old, the Fourier hyperfunction of the first type,

which we had used in NM I and forms a subset of the former. In

NM II we proved the complete equivalence in question for the case when

Wightman functions are assumed to be Fourier hyperfunctions of the

second type for temporal variables, while they are of the first type for

spatial variables.

The symmetric treatment of time- and space-variables is recovered

in the present paper, though the results in NM II still keep their own

significance. Here we use only Fourier hyperfunctions of the second type,

so we shall omit in what follows the phrase "of the second type", except
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when we feel a special need of using it. In the fourth section Fourier

hyperfunctions of the second type are introduced in a way somewhat

different from NM I, II and Ref. [7]. For readers' convenience we shall

repeat to express some definitions and statements which are found in

NM I and II, however this time all in the language of the second type

Fourier hyperfunctions. In the last section the complete equivalence of

the Euclidean and relativistic field theories in terms of the second type

Fourier hyperfunctions will be proved.

§ 2. Notations and Conventions

2.1. Let z^Cn, z=x + iy, and x^Rn, y^Rn. We follow the

standard notations of ?2-tuple of numbers. Thus, let k=(k1,--,kri) and

/—(/ i , ••- , /„) be ;z-tuples of nonnegative integers, then xk = x1
kl'"Xn

kn and

Dl = d^/dx1
h — dxn

ln, where \l\=li+-~+ln. x>a, a^R, means that

Xj^>a for 1</^7Z. The notation \z\p is used to denote ]^ l P = J 2 : i i P H ----

+ |^JP> in particular \z\ =|^i| H ----- \~\zn - d^ is the Lebesgue measure on

Rzn:dl = dxdy = dxl • - • dxndyl • • • dyn.

2.2. The Lorentz-invariant inner product is introduced in J?4 by

writing x-y = x°y0 — x-y for two four-vectors x=(x°,x) and y= (v^jO,

where x and y are three-dimensional space-vectors. We use the notation

xn to signify a set of n four-vectors (xly •••,xT1) and write dxn instead

of dx1-"dxTl. The set of n four-vectors in reverse order (xn, • • • , x 1 ' ) is

denoted by nx. For any vector x^R* it is meant that 6x=( — x°, x)

and Cx = (ixQ, x) . This convention also applies to a set of four-vectors

xn by writing Oxn= (6xly •••,0xri) and Cxn= (cxl9 • • • ?Cx n ) . On occasion it

is more convenient to rebind xn in the form xn= {xn°,xn^m Then, regard-

ing as xn°^Rn, xn<=RSn and xn^R*n, the notations | xn° , \x_n\ and \xn\

stand for ^-=l\x/\, S^iS'^j xf\ and 25=il]5=ok/|, respectively.

2.3. For two sets of four-vectors xn and yn, the notation ((x, y])n

is the abbreviation of XI?=i(-rj myi)- Similar convention is used for their

spatial and temporal components: ([x, y])n = ̂ j=i(xjmyi) and ([x°,y°])n

= S"-î  V- Hence we have ((x, y )}n = ((x°, y°))re - {x, j}n. Finally, for the
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set of vectors, the difference vectors are defined by f0 = xl9 £3-=xj+l — x^

lfS.7^?2 — 1, in coordinate space and correspondingly £*=A+iH ----- hAw

0<jb<l7Z — 1, in momentum space, so that ((/>, x^jjn = <?0'?o + ((#, £))n-i holds.

§ 3. Test Function Spaces

Let us begin with defining

(3-1) Um={z^C;\Imz<(I + \Rez\)/m}.

Let further Oc
m(Um

n) be a Banach space of those functions which are

holomorphic in Um
nz={Um~]n

9 continuous in its closure and satisfy

(3-2) ||/||m

\\f\\m is the norm of the Banach space Oc
m(Um

n). The space of rapidly

decreasing holomorphic functions £Pn is the inductive limit of the Banach

space {Oc
m(Um

n}}: 3?n = mdm lim Oc
m(J7m

n)- When the dimensionality n is

unimportant, we write $*** instead of £Pn. £?** is a DFS-space (a dual

Frechet-Schtvartz space) and shown to be nuclear (see, in essential,

Ref. [7]).

Lemma 3.1. £P** is dense in &m

Proof. Q00 is dense in &. Let p£ (z) = (TTS) "n/2 Hy =1 exp ( - ^//2e) .

Then it is clear that f£ = p£*f^$>** f°r an7 f^CQ°° and /£ tends to / in

^ as e->0. This completes the proof.

Proposition 3.2. The Fourier transformation of £?## is a topo-

logical isomorphism.

Proof. It suffices to prove the proposition for the case of one vari-

able. We show that the Fourier transformation is a continuous map from

0c
m(C7m) into Oc

m'(Un.) with m' such that m'2/ (I + m')>m. Let /(Q

<E0c
m(£7m) and z^Um,, then we have
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where we have written z = x-\-iy, £ + iy and £= (I + m'^/m'2. If the

integration is carried out along the path ^ = a?±£, \^\^1/m/, then the

above integral converges for | cxx + y\ <[l/m', i.e. z^Um^ since \x(jfj^e)

-ry?\=\&x + y\\?\^\?\/m'^\(\/m- Thus we have shown that f(z)

= Jet2r/*(C) ̂ C for z£=Um' is convergent, analytic and satisfies the inequality

(3 • 3) sup | /(Z) [ *"i'"'^C sup j
"

The same estimate is valid for the Fourier inverse transformation. The

proof is thus completed.

Proposition 3.3. 5)
ril(X)£Pni is dense in ^Pni+n2-

Proof. See NM II.

In the Euclidean theory we need some classes of distributions, differ-

ent from those in NM II, whose test function spaces are related to the

spaces J^lim(I2n) of C00 functions satisfying the condition

(3-4) ||/|U= sup

where p~2, 3, • • • . The topology of ^i,m(Rn} is provided by a countable

set of norms {||-| | ,.p>p=2 [3].

Let xn^R^n and (?0> fn-i) be difference vectors, as defined in the

preceding section. We introduce subspaces of <9*i,m(R4n) as follows:

(3-5) gy*(in = {fE^1>m(iro; /(*B) =o if

t — xj\)/m for some

(3-6) r<m(«4n) = {/e^i.TO(«to); f(xn} =Q unless

?/>(! + \&\)/m for 0</^z-l},

(3-7) ^+-(1?471) = {/e^1§m(«to); /(*B) =0 unless

for 1

Each of these sets equipped with the induced topology of <$^i,m is a closed

subspace of ^,m. If m<m', then ^0
mc:^Q

m\ r<mcr<m' and ^+
m

C9%m'. We denote by ^0, ^< and ^+ the inductive limit of {^O
m},

{^m} and {^+
m}-
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§ 4. Fourier Hyperf unctions

We compactify Cn by identifying it with RZn. The compactification

of Rk is denoted by Dk [10]: Dk = RkUS00
k'1, where S^'1 is a (&-!)-

dimensional sphere at infinity. To each x GE Rk — {0} we associate a point

x^ on SJ*~l such that the point .r lies on the ray connecting x^ and the

origin. We identify S*"1, a (k — 1) -dimensional sphere centered at the

origin, with [Rk — {0} ]/B+, where H+ = {.r ejR; x>0}. A natural topo-

logy is given to the space Dk. (i) For x^.Rk a fundamental system of

neighbourhoods of x is the set of all open balls containing the point x.

(ii) For x^§J*~l we write x = y00 and let y be the corresponding point

on Sk~l. Then a fundamental system of neighborhoods of x is given by

{(C-\-a) U^; C^ 3yoo}, where C is an open cone generated by some open

neighbourhood of y in Sk~l with its vertex at the origin, a is some vector

in R*, so that C-\-a is a cone with its vertex at a, and C^ singnifies

the points at infinity of that cone. In what follows we write Qn — DZn,

the compactification of Cn.

Definition 4.1. (The sheaf of slozvly increasing holomorphic
GH

functions). Let Q be an open set in Qn. We denote by 0 the sheaf
G& t&

determined by a presheaf {0($)}, where 0(fi) is the set of all holo-

morphic functions f(z) ( e 0 (Q D Cn) ) such that sup,eJrnc7»|/(«) ] e~£ i 3 ' <oo

for any £^>0 and any compact set K in J2.

Definition 4.20 (The sheaf of rapidly decreasing holomorphic

functions}. We denote by 0 the sheaf determined by a presheaf

{(5(J2)}, where Q(&) is the set of all holomorphic functions f(z)

( e 0 (@ 0 C"1) ) such that for any compact set .K in $ there exists some

positive constant dK and the estimate sup2exnere I/C^) I exp(W^| ) <C°° holds.

Definition 4.3. (Topology of 0(K)). Let X; be a compact set

in IP. We give 0(K) the inductive limit topology indm lim Oc
TO(Fm),

where {VTO} is a fundamental system of neighbourhoods of K in (F,

satisfying Fm3 VTO+1, and 0c
m(Fm) is the Banach space of all holomorphic

functions /O) (^0(VmC\Cn)} that are continuous in Vm H Cn and for



HYPERFUNCTION QUANTUM FIELD THEORY 315

which \f(z)\<^Ce~\zVm holds for some constant C (depending on /). The

norm of Oc
m(VJ is defined by ||/||m = supI€=Fmnc7» |/(*)l*|I|/m. With this

topology 0(K) is a DFS-space.

Remark 1. We have used the symbol Vm:3)Vm+1 to denote that

Vm+1 has a compact neighbourhood in Vm with respect to the topology

of Qn.

Remark 2. For K = Dn we may construct Vm as given by Um
n U CL,

where C^ is the points at infinity of C/m
n. Therefore we have 3?**

Definition 4. 4. Consider a Hilbert space H. The Jf-valued

Fourier hyperfunction is an element of L(2?**,H), where L(3?**,H)

is the space of all continuous linear operators from 9?** to H equipped

with the topology of bounded convergence. In particular if one takes

C as H this defines the scalar Fourier hyperfunctions (£P**)'.

Remark. Since S** is a DFS-space and so complete and barreled,

and moreover since it is nuclear, Z,(£P**, H} = (3?**}'®H by Proposition

50.5 of Treves [18].

Proposition 4.5. A separately continuous multilinear form M

on [£Pi]n uniquely defines a Fourier hyperfunction #eE(£Pn)' such that

- - - X 0 n ) f°r 0/^2?!, 1<&

Proof. See NM II.

Now we are going to formulate the support of the Fourier hyper-

function and the sheaf of Fourier hyperfunctions. For this purpose

we need some preparations.

«>
Definition 4.6. An open set Q in Qn is said to be an 0-pseudo-

convex domain if it satisfies the condition:

( i) supflnCn, !<:,-<;„ {2| Im zj\ - 1 Re zs\ } ̂ M< oo .

(ii) There exists a plurisubharmonic function 0 (2) on J2 fl Cn having
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the properties that {z; 6(z) <^c} C ($ f| Cn} for any c<^oo and

•»0 (z) <,ML<oo for any LC-G-

The following theorem ensures that any compact set in Dn has a
«#

fundamental system of 0-pseudoconvex neighbourhoods.

Theorem 4.7. Le£ K be a compact set in Dn and U be an open
«=!

neighbourhood of K in Qn, then one can find an 0 -pseudo convex do-

main Q such that Kd@c:U.

Proof. Since K is compact in Qn, one can find {Gk} such that

KC\CnCG= \J%=iGk, where Gk is a relative compact open set in Cn or

an open convex cone in Cn and Gk(£lU. Let us define

and

where z(i)^dGn Cn, c^R and a™^Rn. Let x(.r) eC°°(H) be a convex

monotone increasing function such that %(X) =0 if .z^O, ̂ (.r)>0 if

Further we define

(4-1) #(«)=

By a suitable choice of z(l\ ct and aa) we may assume that the sum in

(4-1) is locally finite and p(z) = q(z) =0 for z^Kd.Cn. Then the do-

main V= {z^Cn;p(z)<^l, q(z^<^I} is contained in G. Since p(z) and

#(2;) are nonnegative smooth plurisubbarmonic functions, the function de-

fined by

(4-2) Q(z) = - +

is plurisubharmonic in V. Moreover $ = V, the interior of the closure
«#

of V, is an 0-pseudoconvex domain with 0(z) a plurisubaharmonic func-

tion.

Lemma 4.8. Let Q be a pseudoconvex domain in Cn and (p(z)

be a plurisubharmonic function defined on Q. We define
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Let further d be the Cauchy-Riemann operator defined in the sense of

distributions. Then the sequence X-^Y-^Z is exact.

Proof. Since it is easily checked that

i,J

this lemma follows from Theorem 2.2.1' of Hormander [6].

Lemma 4,98 Let K be a compact subset of Dn, then the coho-

mology group H1 (K, 0) — 0.

Proof. Since K has a fundamental system of 0-pseudoconvex neigh-

bourhoods by Theorem 4.7, and since Hl(B. 0) for an (5-pseudoconvexJ 7 \ 7 ^ / £T

domain B is an inductive limit of cohomology groups of covering:

H1^, 0) =ind lim jET({J2,-}, 0), ^vhere {Qj} satisfies
*** {Oj} ~

(ii) GjftCn=Vj is convex,

it is sufficient for the proof of the lemma to show that the group H1 ( {S*},

0) is vanishing.

We denote by Cs(Zloc{Vj}} the set of all cochains c={cj}9 where

^= C/o> ""? Js) £=NS+1, satisfying the conditions

(ii) For any finite subset M of N3'1

X]
J&M ,

where dk is the Lebesgue measure on U2n.

For any cocycle {d^} in ff^Sj}, 0) it may be assumed that c={cij

— dij H?=i cosh(ez^} defines an element of Cl(Zloc{Vj}} for some positive

£ and obeys the equation dc = Q, where d is the coboundary operators.

We denote by {^} the partition of unity subordinate to {V}} and put

r Since 8c = Q ^ve have Sb = c, and hence ddb = 0 because of
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dc = 0. Therefore db defines a global section/". By the assumption that
£&

Q is 0-pseudoconvex, we can find a certain plurisubharmonic function

0 (z) satisfying

(i) 2AI^*U>

(ii) supL</>(z) ^CL for any

By Cauchy's inequality we have

f |*,|V*<'><tt<S f
JVi j JVi

for any continuous function ^(z). Lemma 4.8 and the existence of

imply the existence of some function u such that du=f and

Put £:/ = i4-w V<f then 9^=0 and fc' = db = c. Clearly ^

and, on defining d! by {c//nr=icosh(£2:p)}» we have 8d' = d and

0=0.

Lemma 4.10. Let E and F be DPS- spaces and u be a continuous

linear mapping from E into F. Then the following statements are

equivalent.

1) u is a homomorphism.

2) u is of closed range.

Proof. See Grothendieck [5].

Lemma 4.11. Let Kl9 K2 be compact subsets of Dn, then the

mapping C/i, /,)-*/!-/„ where f^O(K^9 fz^O(Kz} and /x-/2e

Q(Kir\K2), is a surjective homomorphism.

Proof. By the preceding lemma it suffices to show that the mapping

is surjective, which however follows immediately from Lemma 4.9 and

the exactness of the sequence

J X Q (KJ -> j? (K, n K2) -*H> (K, U K2, 0) .

Definition 4.12. A Fourier hyperfunction /*eL (£?**, H) is said to
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be carried by a compact subset K of Dn, if jU belongs to L (0 (K) , H) .

Theorem 4.13. Suppose #<E L (9?* *> H), then there exists the

smallest compact subset of Dn 'which carries ju..

Proof. Consider two compact sets Kl and K2 which carry {JL. Let

AT be the kernel of the mapping 0 (KJ X 0 (X2) -> Q (K, fl Kz) . If (fl9

fz) £= N there is a function Q^O (Ki U -^2) ? which is an extension of /i

and /2, and we have <//, flr> = <#,/*>, z" = l> 2- Next, take any f^O(Kl

P, Xz) and write it in the form f=fi—fz with some /i GE 0 (X"€) , z = l, 2.

Then a linear mapping <X/)> is defined on Q(Ki nX"2), which is irrespec-

tive of the decomposition of f. The continuity of the linear form comes

from Lemma 4.11.

Let {Ki}iGl be an infinite family of compact sets which carry jU.

Put K= Hiei^. Then for any neighbourhood U of K there exists a

finite subset J of I such that U~D f| isr^- From the definition of the

topology of 0(K) and the above argument follows jU^L(0(K), H) .

This completes the proof.

Definition 4.14. We call the smallest compact subset in Theorem

4.13 the support of p. and denote it by supp jU.

Lemma 4.15. Let 2C=Uf=i-K'* &e the union of p compact sets
in Dn. Suppose / J L ^ L ( Q ( K ) , H ) . Then there are f j L t ^ L ( Q ( K ^ 9 H )

such that {t = ^2i=ijUi.

Proof. Since L(Q(K), H) Qz(Q(K)Y®H (see the remark after

Definition 4.4), we prove the lemma for the scalar-valued case. The

mapping 0 (K) ->II?=i Q (-K*) » namely /->{/] X«}?=i, is injective and of

closed range, and accordingly the mapping Tii=i(

namely {^}?=i-»][]?=iA, is surjective.

Definition 4.16 (See Schapira [16]) Let J2 be an open set in Dn.

We define the space of H"-valued Fourier hyperfunctions on J? by H
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Let fjt(=L(0(Dn),H). Because of Dn = (Dn - £) U fl, we can de-

compose ju = #i + #2, A ̂ L(0(Bn-ti), H) and jU2^L(0(fi),H) by Lemma

4.15. Therefore it is evident that the canonical mapping

L (0 CO) , H) /L (0 (9J0) , H) ->L (0 (D"), H) /L (0 (D» - 5) , H)

is injective and surjective.

We define the restriction mapping into a)CJ2 by

Then if TEE*5UJ2) =L(0(Dn},H)/L(0(Dn-Q),H), we denote by T|o)

its image in HSt(a)°). It is clear that if S^dS2c:S1 and T^H3i(Si) then

Therefore {*&(£)} constitutes a presheaf.

Theorem 4.17.

1) The presheaf {H3l(Q)} is a sheaf over Bn, which is denoted

by HSl.

2) H3L is flabby.

3) // K is a compact set of D\ we have rK(Dn, H&) =L(Q(K),

H) , 'where rK(Dn, HSC) is the set of sections -whose supports

are contained in K.

Proof. We here also prove the theorem only for the scalar-valued

case.

la) First we show that if Q= Uie/^ and TEzSl(@) are such that

TJ^-0 for every zGE/, then T = 0. In fact, let Te (0(Dn)Y be a

representative of T, then the image of T in (Q(Dn)Y / (Q(Dn-Qi)Y

is zero for all z'GE/. Thus we have supp TC}@i = 0 for all J2^, zG/, and

hence suppTf)$ = 0, which indicates T = 0.

Ib) Let fi = ̂  U ^2 and T< e Si (fi*) , z = 1, 2, be such that TX[ ̂  0 £2

= ^1 fli fl QZ=T. Their representatives are expressed by T EE (0 (^ fl ̂ 2) ) 7

and TiG(Q(Si)Y9 2 = 1,2. Then supp (T,- T) cfi,- (

- (fii P, fi2) U (fii-fii). If we define 5, = T,-Tand T /-T + 51 + 5f
2, we

see that T7 e (0^ U fl2))'. The image of Tr in Si (^ U 52) will be

denoted by T7. Then we have T' St = Tt because supp (Tx - TO H ^

= suppSj U fii C fij — (&! n £2) n St = 0, in which

Ic) Let fi=U«eA and T^^U^) be such that T^^ n £,- =
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H fi; for every pair (i, j). One may assume that covering is countable

and moreover by the argument Ib) that it is increasing, thus Q = \J n=ifin,

fincfin+1, Tn^3l(Sn) and Tn+p| fin = Tn for any positive integer p.

Furthermore it may be assumed that Q — fin does not have connected

components disjointed from 9(fini£n). Let Tne(0(fin))' be a repre-

sentative of Tn and dn be a distance which provides the topology of

(0(fi — fin))
7- The last assumption on Q — Qn implies that the restriction

map 0(fi-fin)-^0(9(finKn)-fin) is surjective and accordingly (0
n)-On)y is dense in (g(fi-fij)'. Therefore we can take

«")-£„) in such a way that d,(Tn+l-fa+l- (Tn-0n))

2S2~n for all y<^. The sequence converges to an element T of (0(fi))'

and we have T = T- (Tn-0n) + (Tn-0n) - (TB-0B) +limp (TP-0P

— (Tu —0U)) . Since the sequence {Tp — 0 p — ( T n —0n)}p converges in

(0(fi-fin))', we have T- (TB-0B) e (O(fi-fin))'. Therefore T|fin

-nrt
= ̂ n-

2) If fi is an open subset of Dn and T'£E.R(fi) there exists a

Te(0(Dn)) /=5l(Dn) such that T|fi = T, which shows that the sheaf

5i is flabby.

3) Let K be a compact subset of i^n. Since 0(Dn) is dense in

0(K} (see the Appendix), we have an injection (0(^)) /->(0(Bn)) /.

The image of (0(K)Y is the set of those T^(0(Dn)Y which vanish

on Dn-K, that is, FK(Dn, R) = (Q(K)Y.

Remark. ^51 (fi) can be represented by the cohomology group
f*4

HQ
n (V, H0), where V is an open set in Qn which contains fi as a relatively

closed set. By the excision theorem this representation is independent

of the choice of V.

Before closing this section we make mention of the Fourier trans-

formation of Fourier hyperfunctions, to which the name of the Fourier

hyperfunction owes.

Definition 4.18. For fi^.L(^^^,H) we define its Fourier trans-

form 9# by the formula (9/0 (ff/) =/*(/), where
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for /<=3W

Since, by Proposition 3.2, the Fourier transformation yields a topolo-

gical isomorphism of £P##, the definition above is well set up. The sheaf
H<B of H-valued hyperfunctions over Rn coincides with the restriction

of the sheaf H3l to Rn. Hence, because of the fiabbiness of the sheaf
H3l, any H-valued Fourier hyperfunction on Rn can be extended to an

.fiT-valued Fourier hyperfunction on Dn and one can consider its Fourier

transformation.

§ 5. Axioms for Fourier Hyperfunction Fields

In extending the usual Wightman framework of the axiomatic quan-

tum field theory our greatest concern will be how to formulate the locality

axiom for extended theory. The strictly localizability of fields A(f) con-

nects intimately with the fact that f belongs to a function space which

contains C°° functions with compact support. Such classes of test functions

have been kept more or less in the concrete attempts to extend the

Wightman axioms for quantum field theory made so far by several authors

[1,2,8]. An abstract argument on the class of fields incorporated with

the locality in extended sense has been given by Lomsadze and his co-

workers [15].

Here we wish to formulate axioms for Fourier hyperfunction fields.

Since the test function space 3?** of Fourier hyperfunctions no longer

contains any function of compact support, we are obliged to modify the

statement of the locality axiom. It will turn out that the celebrated

notion of the "support of Fourier hyperfunctions" we have just exhibited

in the preceding section plays a crucial role in settling this difficulty and

also in the formulation of the spectral condition. Except these the axioms

for Fourier hyperfunction fields can be stated in parallel with Wightman's

axioms for tempered fields, but for completeness we shall write all of

them down mutatis mutandis.

Zeroth Axiom. The space of states is a Hilbert space H over the

complex number C. For 0, W EE H the inner product in H will be denoted

by (0,80.
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First Axiom. £P4 is mapped into linear operators A(/) over H.

A(f) is defined on a dense subset D of H, independent of /e£P4. (0,

A(/)?F) for 0, ¥<=D is a Fourier hyperfunction and (0, A(/)F) =

(A(/)0,F). We require that A(/)DcD.

Second Axiom. A unitary representation £7(<z, yf) of the restricted

Poincare group exists and satisfies

(5-1) U(a,A}A(f)U-1(a,A}=A(f{a,A}^

and U(a,A)D = D, where f{a,A}(x) =f(A~l(x-a}} .

Third Axiom. The spectrum of the energy-momentum operator P

is contained in V+ and there is an invariant state $, corresponding to

the vacuum, such that U(a,A)ti=-Q. Here V+ = {p = (p\p) ;£°>0,

U {p~ 0}. In addition the vacuum J2 is nondegenerate.

By the first axiom (0, A(/0 ••• A(/n)5T) for (5, FeEDisa separately

continuous multilinear form on [£P4]
n. Proposition 4.5 asserts that (0,

A(/i) •"A(/n)?
7') uniquely determines a Fourier hyperfunction belonging

to (£P4n)' which we denote by (0, A (x^ - • • A (x^ W) in the sense that

formally

(5-2) (

= J (0, A to) -. A (xn

Next for g(xn) =fi(xi) "-/n(^n), fj^S*^ and (^eD we define an

/J-valued functional 0(g) = A(/i) •••A(/n)(^ and extend this definition to

(X)£P4 by linearity. By Proposition 3.3, for any /e£P4n there exists a net

{g»',g»^®&4} such that g,->/ as y->oo. Therefore ||^n(gv) -^n(gA)||2
71

— >0 as v, ju-^oo. Thus 0n(gv) converges and tends to a vector ®n(f)

and evidently $„(/) is a continuous linear mapping from S*^ to H", i.e.,

0n(f)tE:L(g?4n,H). By Definition 4.4 0n(f) is an J* valued Fourier

hyperfunction. We denote it symbolically by A(x^ •-•A(xn)0. On the

other hand, @n(f) defines a linear operator on D which maps 0 to 0)n(f) .

That operator will be denoted by <An,/) and written formally as

(5-3) <A",/>
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The axiom of local commutativity then is formulated as follows:

Fourth Axiom. If xl and xz are spacelike separated, then

}0 for every

Remark. We can restate this axiom in the language of H^-valued

Fourier hyperfunctions by saying that A(x^ A(x^ ® - A(xz} A(x^ ® <^

L(0(K),H) for every 0<^D, where K is the closure of {(xl7 xz) e R8;

in D\

Fifth Axiom. Let P(A) be an algebra of polynomials in the opera-

tors A(/), f^&4, then P(A)Q is dense in H.

Remark. As is evident from Proposition 2.1 of NM I, Proposition

2.3 of NM II and Lemma 3.1, the Fourier hyperfunction fields contain

tempered and other existing fields.

§ 6. Modified Wighiman Axioms

6.1. Wightman Fourier hyperfunctions

Let Q be the vacuum vector. The vacuum expectations ($, A(x^ ••-

A.(-rn)J2) are Fourier hyperfunctions which we call Wightman Fourier

hyperfunctions ("Wightman functions" for short) and denote by $$n(xn) .

From the axioms for Fourier hyperfunction fields stated in the last section,

we can deduce various properties of the Wightman functions, which we

shall describe in order in the form utilizable also for the modified Wight-

man axioms.

Fourier hyperfunction property.

(RO) Sffi, = 1, 2B»(*») e (5>to)' and

Relativistic invariance. For each n, 2Bn is Poincare invariant:
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where A is a proper Lorentz transformation and Axn + a — (Ax1 + a, • • • ,

These two properties are direct consequences of the first and the

second axioms, respectively.

Positivity. For any finite sequence of /0,/i, "',/N of test functions

such that/0eC, /ne£P47l, l<^n<^N, there holds the inequality

(R2) SSBn+»Cf»*X/

where (fn* X/m) (XB, yj =/B*(^J/ro(ym) and fn*(xn~) =/»(»*)•

Let flnC/"0 = <AB,A>0. (R2) is equivalent to

which follows from the zeroth axiom. The fourth axiom implies

Local commutativity

(R3) SBnOl, ~',Xj,Xj + i, •••,^n)=SBn(^l, "-, J:/ + i, ̂ , "S^i)

if

Cluster property. For any space-like vector a and /e£P4n,

(R4) limaB

where gAa (xm) = g (xm — Aa) . This property comes from the statement in

the third axiom that {p = Q} is an isolated eigenvalue of the energy-

momentum operator P and the corresponding eigenspace is one-dimen-

sional, as in the case of tempered fields [9] .

Spectral condition. By the translational invariance there exist

Fourier hyperfunctions W^e (£P4(n-i>) ' such that SBB(^B) =WB_1(fn_1)

holds. Then

(R5)

where F+71"1 is the closure of Y+71"1 in D4(n-1} and t^n_! is the Fourier

transform of W^-j.
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Proof of (R5) . The proof proceeds as in NM I. When the trans-

lation U(a, 1) is applied to J2n(/) =<An,/>J2 we have by the second

axiom (see § 2.3 for notations)

U(a,

where f is the Fourier transform of f. Consider the spectral resolution

U(a,l}=$el*'adE(p} and the integral

(6-1)

for any x^SV Then mapping %-»«0n(x(0o) /) defined by the integral

(6-1) is an element of L(S>^H), but since supp <£EcV+ by the third

axiom it really belongs to L(0(V+*),H). Let S0 be the closure of

{pn; g0e y+} in D4w, then what we have just ascertained shows that J2n(A)

eL(j?(S0),jH). ^ is readily seen that <A\ gySn.k(f) =Sn(g(g)f) and

for 1^/^z-l .

Let us define likewise 5* as the closure of {pn; qk^V+}. Then Gn(pn)

, JH). To put this in another way we write Qn(p^)

»-i), then we obtain ¥n(q0, qn^ eL(0(V7), H). Since

Wn_i(gn_i) is a Fourier hyperfunction whose support is contained in V+n~l.

This completes the proof of (R5).

6.2. Reconstruction of relativistic fields

Theorem 6.1. To a given set of Wightman Fourier hyperf unc-

tions satisfying (RO)-(R5) there corresponds uniquely a neutral scalar

field A(f) 'which obeys all the axioms of Fourier hyperfunction fields

and has the Wightman Fourier hyp erf unctions as vacuum expectations.

Proof. Suppose £P be a vector space of sequence jF= (fo,fi, -•),

where /0eC, fn^3?4n for l<,n<,N and /n = 0 if ri>N for some finite N.

Let (/,g)-I]nIm2Bn+m(/n*Xgm) With /, g^Q. Owing to (R2) this

serves as a semi-definite inner product and the completion of |P/32, where

52 = {/e<P; (/,/) =0}, defines a Hilbert space c5T. Let (9 be the natural
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map of £P into M. We set £ = ®(1, 0, 0, • • • ) • We now define a linear

transformation C7(<2, A) of £P by

We have clearly U(a,A)& = Q. A linear operator A ( f ) , /e£P4, is in-

troduced by the equation

A (0 C/o,/.,/., -) =

Then it is easily verified that £/(#, -^) is a unitary representation of the

restricted Poincare group and A(f) represents the field operator having

the required transformation property.

If f has only one component f=fn^^^n-> we write formally

(6-2)

$n is a continuous linear operator from f?4n to J^f. Upon setting

= 2r
BOci, fn-i) we have

(6-3) (¥n(x, f B _0, Fm(x', f;_0) = Wn+m-i(-n-if, -x + o:', f

Let Wn(qQ,qn-^) be the Fourier transform of 2Fn. Then, since 11

is written in terms of the Fourier hyperfunction W2n-l9 it follows from

(R5) that Wn is a continuous linear operator from 0(V+
n) to M. Thus

the support of Wn is contained in V+n. For any ^eO(y+) fl*^ we have

Sx(p)dE&)fn(ft=fn(x(qJ$)9 where £(p) is the resolution of unity

associated with the energy-momentum operator P and if supp%f l l^+=0

the right hand side of this equality vanishes. This fact shows that the

spectrum of the energy-momentum operator P is contained in V+. The

statement that the cluster property (R4) implies the uniqueness of the

vacuum is verified in the same way as in the tempered fields [17].

Finally the locality axiom is proved as follows:

A(vJ-A (tv) £ - A (y2) A(yJA (*0 -A (v J

(nu, X,,, xlt y1} y2, vn~) — W2B+4(nM, xlt x2, ylt y2, vn~)

i(nu, xz, Xi, y2, yly vn~) — Win+i(nu, xlt x2, y2, y1; vn~) =0

if (Xl-x2y<0 or (yi-y2)
2<0, i.e., if (xlt x2, ylt y2) e (Kc X B4) U
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, where K is the closure of {(xl9x^\ (xl — .r2)
2>0} in D8 and Kc

is its complement. Thus the support of the Fourier hyperfunction above

is contained in (Kc XD* U B4 XKcy = KxK. Therefore, if 0 is a linear

combination of vectors of the form A(02) •••A(0n) J2, then A (j^) A (x2) $

-A(xz^A(xl)0^L(0(K),H), that is A(^) A (^2)^ = ^.(^2)^(^1)^ if

xl and x2 are spacelike separated.

§ 7. Euclidean Green's Functions for

Fourier Hyperfunction Fields

The analytic continuation of Wightman functions into Euclidean

points is carried out rather straightforwards and we can derive its prop-

erties, which we shall again state in the form of the axioms for Euclidean

Green's functions. In § 7 and 8, we denote by V+ the forward light cone.

Proposition 7.1. //>GE 0(Y+»), then F(Cn) =^(exp{z{ -, CU) «

holomorphic in the tube Z+
n^R*nXiV+

n= {Cn^<C4n; Im Cn^ V+
n}, and

in the Euclidean points {Cn e C4n ; Re Cn° = 05 Im ? n = 0} ^ satisfies the

condition that

(7-1)

z's -valid for every e>0 and %n<=Qt, -where Q4E = {£ el?4; f°>4e(l + |f |)}

Proof. It is readily seen that exp{z(( • , C))n} for Cn^2+n belongs to

0(V+n). Hence #(exp{z(( -, C))n}) is defined well and holomorphic there.

Let z = x-riy and consider

then AB
n is a neighbourhood of V+n. If Cn ̂  Q£ we have (see § 2 for

notations)

) i <;c/ sup |^cc«.«»-+«i«»i i

sup
ze^en

We now put x' = (x° + e, x) , then we have ^/0>(l-e) (*' •^/)1/2-
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Further it is possible to put y' —y — a such that l/Ke]^] and \c?\<$.

Let V£ = {s=(^jO;(j'y)<(£/l-0^°} and W£= {?'; f/0>4e|f'|},

the ((5,r))n^0 for sn(EV£
n, fn 'GEW e

n and 0<£<l/8. Coming back to

the estimate we obtain

^C/' sup exp { - (( (x« -e,y'+a), (£'° + 4e, £') ).
sneFeTi,|a01<e

+ £|xj +e|yn' + aB|}

^C/ sup exp { - ((s, £')). + e| |n| - 4e| :r/°| + 3e (1 + e) | x/°

which completes the proof.

By the relativistic covariance and the Bargmann-Hall-Wightman

theorem we obtain a single-valued analytic extension of the Wightman

function Wn-iCCn-i) into the extended tube £:;it= {Cn-i^ C**""; ^Cn-i

eS""1 for some JeZ/+(C)}, where L+(C) is the set of all complex

proper Lorentz transformations and £j = Zj+1 — Zj, ~L<^j<^n — ~L. The func-

tion 2Bn(*n), denned by 2Bn(*n) = Wn-i(Cn-i), is analytic in (Te
n

xt= {2:ne C*B;

Cn-i^S+7ext} and has the Fourier hyperfunction 3Bn(.rn) as its boundary

value. Using the locality (R3) we obtain a single-valued analytic ex-

tension of 2Bn(zn)into the set ffext,perm— {%n^ C471; ^Tr(n) ^ &ext for some per-

mutation TT}, where ^(n) = (^(1), • • - , ̂ (7l)) and (7T(1), • • • , TT(W)) is a per-

mutation of (1, • • • ,# ) . We denote this extension again by SBnC^n)- It

is invariant under the complex Poincare group and also under permuta-

tions of the arguments zly--,zn. The set (T^xtperm contains the Set of

Euclidean points (of noncoinciding arguments) En = {zn e C4n ; Re zn° = 0,

Im zn = 0 and zt=£zj if z=

Definition 7.2. The restriction of the Wightman function SS^C^n)

to En is called the ^-point Euclidean Green's function or the Schuuinger

function.

We set @o = ̂ o = l and

(7'2) @n(^n)=a»nte),
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(7-3) -SL-.CS.-,) = W,-,̂ .-,) = ©•(*.),

where xn^R4n, x^Xj if i^=j. Then we can derive the following pro-

perties of Schwinger functions.

Distribution property.

(EO) ©0 = l,@,.(*Je(r, («*"))' and

(£n) = ©. (#»*) ) for each

Proof. Since by Proposition 7.1

sup IS^C^-OI^-^oo for all £>0 ,
In-ie^s*-1

it is evident that Sn_ie (^(jR"""1)7. With the aid of a geometrical

argument of Osterwalder and Schrader [13] we have the distribution

property. The last statement of (EO) follows immediately from

Euclidean convariance.

(El) @n(£n)=@nOfc

for each nl>l and all (a, R) ^zSO4, the inhomogeneous Euclidean group.

Positivity.

n,m

for all finite sequences f 0 } f l f •••,/# of test functions f0(E C and fnGE ST<(JR4n),

n>\ Here $f (x}=f (Or ")/*•— -*-• J.J.CJLC viyy ^ ^^Cy^y ^/71 \ _ w / •

^mw^^ry.

(E3) @nfe)=@nfe(n))

for all permutations 7T:(1, • • - , ̂ ) —»(7T(1), • • - , Tr(ft)) .

Cluster porperty.

(E4) lim @n+m (/X ffte) - @w (/) @m (g),
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where /e ^< (R4n) , g e ^< (ITra) and a - (0, a) .

For the proof of these four properties of Schwinger functions we

only refer to NM II.

Proposition 7.3. The correspondence from Wightman functions

{Fourier hyp erf unctions) to Sch'winger functions (distributions) is one

to one,

Proof. Suppose that

-^O for all Oregon4'-1'),

then Wn-iCffn-i) =0 for |L-i>0. Since Wn-iftfn-i) is a real analytic func-

tion, Wn_i(Cn-i) — 0 if Im Cn-ie VV*"1. By the uniqueness of Fourier

transformation of Fourier hyperfunctions we have Wn-i
==-0.

§ 8. Equivalence of Relativisiic and Euclidean Theories

In the preceding section, from a given set of Wightman Fourier

hyperfunctions satisfying the axioms (RO) - (R5) , we have constructed a set

of Schwinger functions possessing the properties (EO)-(E4). Conversely

we can prove the following theorem.

Theorem 8.1. (R.econstruction of the relativistic theory). To

a given sequence of Euclidean Gree?^ys functions satisfying (EO)-(E4)

there corresponds uniquely a sequence of Wightman Fourier hyperfunc-

tions having the properties (jR0)-(.R5) and -whose Sch'winger functions

coincide -with the Euclidean Green 's functions given initially.

Remark. In NM II we have proved the same theorem for the

case of a smaller class in which Wightman Fourier hyperfunctions are

of the first type for spatial variables, while they are of the second type

for temporal variables.

As in § 6.2 we begin with constructing a Hilbert space. Let g?
< be
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a vector space of sequences f= (fQ,fl9 • • • ) > where fQ^ C, fn€=. ^<(jR4n) for

I<JTZ<:N and /n = 0 if ^>A^ for some finite AT. Let </, 0> = Snim@n+m

(0/7i* X gm) with f, g e iL<. Owing to (E2) this serves as a semi-definite

inner product and the completion of if</57, where Jl — {/e 2T< ;<(/,/)>

= 0}, defines a Hilbert space o/f. Let 0£ be the natural map of 2f<

into X We obtain (0*QO, 0*(flO) =</,?>' We set fl = 0* (1,0,0, -).

For /eg?< and ^=(0,a)el?4 we define Us(a) f by ( C7S (a) /) n fe)
==/n(^rn — ̂ )- We can extend it to a unitary operator Us(a) in cX by

(El) (see Osterwalder-Schrader [13] ) . If f has only one nonvanishing

component f=fn^. ^?
<(H4n), we write formally

(8-1)

Let us define ¥n
E(xly fn-0 =@n

E(xn), then it is a vector-valued distribution

over &+(R4n) and we have by (E2)

(8-2) (Fn*(xl9 ^,Vm
E(x^ f;_i))

Lemma 8.2. For £>0 we define T,: ^<->r< by (T, /)n(^n) =

fn(xn — t)9 where t= (t,®^). Then Tt induces a continuous one-parameter

semigroup of self-adjoint contraction operators {T^} on cX.

Proo/. See NM II.

Let — H be the infinitesimal generator of Tt, then

(8-3) e-tHVn
E(x,^=Wn

E(x + t,tn-3 for

Furthermore for T:EiC+=R++iR

(8-4) <¥»'(x, t_n-J,e-<H¥m
E(x', f^O)

defines an analytic continuation of 5n+m_! in the n'th time-variable.

Before entering into the analytic continuation of Euclidean Green's

functions -we provide some definitions of domains. For N=Q, 1, 2, ••• we

define
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(8 • 5) ri?> = {& + *)fc ; f fc e «4fc, «>* e C

|^1<7re^0/29.2^-^ for

Next two sets of domains Ck
(m and Dn

(F), JV=0, 1, 2, ••• are defined suc-

cessively by commencing with

(8-6) Cjt
an = {ft0eK*;argft° = 0};

then follows

(8 - 7) A,™ = { (*", ̂ _0 ; :r"> 0, („ V, 2x°, $.0 e C^} .

Therefore we have Dn
m = {(x\ _^_0; ̂ °>0, arg _^_i = 0}. C*"0 is the

envelope of holomorphy of Ck
m ':

(s-8) c,W) = u*-i{GV.

Lemma 8.3. The distribution Sk(^^) is the restriction to (R+

XH3) f c of a function 5*(C*) analytic in G = f fc + ̂ fc e r$\

Proof. This follows from the inequality (5-14) in the proof of

Lemma 5.1 of Osterwalder and Schrader [14].

Lemma 8.4. The following statements (AN) and (P#) are true

for N=Q,I,2, •".

(AN) There is an analytic continuation 5* (GO °f Sk(^k) , analytic

in Cfcerif.HCfc00. Here ^r^+Ck
m means that on writing £* = £»

+ & + P*, ™e have f.+^eT^ anrf 0b=Qfc°,Q*), ^eC*"0.

(P^) There are H-valued functions ¥n
E(z, Cn-i) defined for (z,

Cn-i) ^r£^ + Dnm such that the scalar product is given by

(8-9) <yB*(*,Cn-i),y»*^^

(2:, Cn-i) erg;+1) + Dn
(jy) m^7Z5 ^Afl^ o;z writing z = fn + cDn+ (x\ 0),

Proof. (P#) follows from (A^) in the same way as Osterwalder-

Schrader [14]. Hence it suffices to establish (A#). We prove (A#)

by induction. (A0) is nothing but the statement of Lemma 8.3. Now
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assuming that (A#) and (P^) have been verified for Q<zN<^M— 1, we

will prove (A^). By (P^-i) we can define

(8-10) S.+,-i(-0(»-,P,

for (z, C-0 eT-SS + ZV*-11 and (z', C-i) er^+ZV*-". This equation

makes it possible to extend Sk, k = n + m + 1.9 analytically to F^ + Ck
(m.

In fact, let C* = C/ + C*" such that C/e=rg? and C/eC*"0, then 5fc(C/

+ C/0 for fixed C/ is analytic in C/eCn
(Jf) and hence, because Cfc

(^ is

the envelope of holomorphy of Ck
(M\ there is an analytic extension of

Sb(Cfc' + Cfc*) into C/'^Cfc^, and this extension depends analytically on

C/e/T^. Thus 5fc(G) has been proved to be analytic in C*erg? + Cfc
(lf)

which establishes (A^) as required.

Lemma 8.5 (Real estimate). The function *Sfc(?fc) satisfies the

inequality

(8-11) \Sk(&\^AMe*W for |fceQ£
fc a^ any £>0 ,

where Qs is the cone given in Proposition 7.1, replacing 4e by e,

The proof of this lemma is carried out in a way similar to that for

Theorem 4.1 of Osterwalder and Schrader [14].

Lemma 8.6 (Infra- exponential estimate'). For a fixed Cfc — £

^(S»°-e,Wen?2 t^e define

(8 • 12) Sk, . Qfc"| G) = TT e-"'̂ , (5*° + _ °̂, f .) ,

there is a constant A^ independent of C& ̂ ^^ Pfc° ^^^/i ^A<2^ the

following inequality holds for

(8-13) |5fci8(^°|C*)I

Proof. We shall prove the lemma by induction. In the case N=0

case we let |fc be fixed so that each & is in the cone Qe and let ^,

/* = 0, 1, 2, 3, be four linearly independent vectors in the dual cone F°= {XQ

, then by (8-11) and the Euclidean invariance of Sk the inequality
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(8-14) \Sk(

holds for Wk^\Ji,flTk;itft, where wk°e is the set of vectors with com-

ponents (wioe)ft = S=o w/(^)A and

, argw/ = 0 for y^/* or j=£i}.

By the maximum principle the inequality (8-14) holds also for z

— fak", X!i,Jarg w/| <7T/2}. Therefore we have

(8-15) IS.CCOI^W'S'1 for £ t-eerg>.,

since r^ed.Tk (see Lemma 5.1 of Osterwalder and Schrader [14]).

Thus the lemma has been proved for N—Q.

Assuming that the inequality (8-13) has been verified for OfS-ZV

<;M-1, we will prove it for M. For (z-e/2, Cn-i-e) e/T2, (s'-e/2,

?;:_!- e)ergP. we have

yj.C*0, pLxk, C.-0 =e-t"Qe-w<VS(zt + a*,x, CS-x + pLi, C»-i)

and similarly ^,6(x'°, p^z', Ci-i). Since (-fl(»_^-e), -dz + z-e,

$,,-, - e) e rffrft and ( - 0 (ro_1C/ - e) , - 6z' + z' - s, C-x - e) e rg=g,, we

have

', c;_i)i

^-^.u-y, 2x'°, p^ -ec.-

" • AS:J>E) 1/2
 exp {| C-il -r I z\

for (x»,pLi)eJDB
ur-1> and (^'°, p^) eD»cjr-u. If we define Ag7 by

ffi = max^^* { ( Affrft • A£l£.) 1/2>

we have the desired estimate, because Ck
(m is the envelope of holomorphy

of Ck
{M\ Thus we have completed the proof of the lemma.

Now, define Wk (Q = Sk (6 (£0 ) , then Wk(^ is analytic in

for any AT. We shall show that Wfc(Cfc) determines a Fourier

hyperfunction.
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Lemma 8.7. For any positive e, there exists a linear transfor-

mation L&
(m -which maps the domain {Im z£/>e] Re wft\, jU = Q, • • • , 3}

into

Proof. From Lemma 5.2 of Osterwalder and Schrader [14] it fol-

lows that for any £>0 there exists C/^ which contains

> (e/2) | Im z\ } . Let us define a linear transformation by

= J (C°C 1 C 2 C 3 )=C , where £ = 2.29-2*y7r

If Im?x>A>£|Re ze/| for /* = 0, • - - , 3, it is easy to see that

(8-16) Im C° = /?! Im w\ >/?| Im C1 for every // ,

(8-17) Im C = @\ Im w| >/9e| Re ie;| >s] Re C| ,

(8 - 18) Im C° = /3| Im w > j8e| Re w| ^e| Re C°| .

Decompose C into c(? + o)+ (p°, 0)) by taking f° = (Im C°) A a)° = 0, p°

= (ImC°)/2-zReC°, ffe = ReCfc, o) f e-zImC f c (* = 1,2,3). Then it is not
difficult to verify, using (8- 16) -(8 -18), that

Corollary 808. For any positive e, there exists a linear transforma-

tion L.(^ = (g)Le
(jy) which maps {wGEC4; Im ̂ >e|Re w*|, /^ = 0, --,3}* in-

to

Proof. If one takes /? = 2-29- 2N-k/7tB and constructs L£
W) as above,

the corollary immediately follows.

Proposition 8.9* Define for

(8 • 19) Wk (f) =

•where f is a path of integration lying in {tweC; Im w>e|Re w|} (see

NM II), then Wk^(S>4ky.
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Proof. Since Wfc(Cfc) is an infra-exponential holomorphic function,

the right hand side of Eq. (8-19) is meaningful. It is sufficient to prove

that the right hand side of (8-19) is independent of Le
(f? and 74fc as far

as it is defined. We rewrite it as follows:

(8-20) r.h.s. of (8-19)- f
Jr'«

where r"* = L^fk is a surface contained in t(T%l + C*™). By the Cau-

chy-Poincare theorem (see p.198 of Vladirnirov [19]), the integral (8-20)

is independent of the surface as far as it is defined. This proves the

proposition.

Proposition 8.10. The support of the Fourier transform Wk of

Wk is contained in (R+ xR3)k.

Proof. We only prove the proposition for the case k — 1. Since

£P4 is dense in 0(1?+X.R3) (see the Appendix), it is sufficient to show

that

(*) |£ £> 2 i for all /EE5>4?
E

where 2S= {ze C4; Re z°> -e, |Im z*\ >e(l + |Re ̂ 1)} is a neighbour-

hood of R+ X J?3 in Q4. Here and in what follows in the proof of the

proposition the suffix 1 indicating k = \ is suppressed and L is a short

= (27r)-4 f \W(Lw) [e-i(Lv»'*f(p)dl\\L dw
Jr4 I J J

= (27T)-4 f \W(L-w) {e-iw-(t

Jr4 I J

= (27T)~4 f \W(Lw) (e-^-tfCL-

We now introduce quadrants centered at . r=— 5, 0<^d<^e, as follows:

(****) = { (x\ x\ x\ x^ e R* ; * = + if x»> - d ,

#=— if ^< — d for each ju}.
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Since

l//5 1/0 1/0 1/0,

* * -1 -1

1-1 1 -1

1-1-1 1

is contained in ( — 8/0, oo) XJR8. Define

-'-I.
then it is easily seen that g+ + + +(zv} is a rapidly decreasing holomorphic

function and satisfies the estimate

sup \g+ + + +(w)e^/m\^Cssup\f^es^\ for

As for other quadrants, for example ( -- h + +), Qr- + + +(^) belongs to

^4; moreover it is analytic in {Im w°^>0} and satisfies there the estimate

Therefore, by introducing the path -f = {w ; zv — to) e 7} , we obtain

(27T)-4 f TF(Lw)g_ + + +(w)Jw=lim f T
Jr* a->oo Jr3xrw

Thus we have

\W(f)\ =\ f
Jr«

= | f
Jr4 ze-2-e

which completes the proof.

Remark. From the Euclidean convariance (El) follows the re-

lativistic invariance of Wk. Therefore the support of Wk is contained

in V?.

Proposition 8.11. 5t(|fc) - W*(^*) = Wk(e^'^ for ffc

Proof. By Proposition 3.13 of NM II, from the equality
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ivk = Wk

= f
Jr*Jr**

valid for /e£P4fc, £>0 and positive JV, there follows

= ^*(exp{f((-,LSw))t}) for Im W|*>e|Re «V| , f = l, •-, k, jU} -, 3, and

all £>0 and 2V. This implies Wk(t$J =Wk(exp{i((-,c$))k}) for ffc°eJR+*.

Proof o/ Thoerem 8.1. Define 3Bn(*n) =WB-1 (?„_!). The hyper-

function property (RO) is obvious from Lemma 8.6. The positivity con-

dition (R2) follows from Lemma 8.4 and the fact that the Wightman

function Wn-i(fn-i) can be obtained as a boundary value of the analytic

continuation of the Schwinger function *Sn-.i. (E4) shows that for any

vector 0, ?F<E J{ we have lim <0, Us(Xd)¥y = (®, £><£, F>, which implies
A-^oo

the cluster property (R4). The relativistic covariance (Rl) and the local

commutativity (R3) are proved by the same arguments as used by Oster-

walder and Schrader [13]. (R5) has already mentioned after the proof

of Proposition 8.10. Proposition 8.11 implies that the corresponding Sch-

winger functions coincide with the Euclidean Green's functions given initi-

ally. Uniqueness follows from Proposition 7.3. The proof of Theorem

8.1 is thus completed.

Appendix 3?** is dense in 0(K)

Here we wish to prove the statement: Let K be a compact subset

of Dn, then 3?** = 0(Dn) is dense in 0(K).

The proof goes on in a fashion similar to that in Theorem 2.2.1

of Kawai [10], if we can construct a sequence of subsets {J2P} possessing

the following properties:

(a) Up
nH&p:3K and J2/s tend decreasingly to K, where Up is given

by (3-1).

(b) For any p and any T(C«2P) there exist an open set V and

a function 6(z) strictly plurisubharmonic in Up
n such that

( i )
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(ii) 0(«)<0 on Tc€n.

(iii) 0(*)>0 near 9YcCn.

(iv) supinc»0(z)<JAfL<oo for an}^ L(£lQp.

Construction of {@p}: We shall say that Q is of type (E) if

= ni°°=iV*, where

Here ft(z) =d exp{-I]y(^-fl/l))2>, Q^H and aa)GE«n. Since X is a

compact set in Dn, it is clear that K can be approximated 03^ a decreasing

sequence of J2P of type (-E).

We are going to construct V and 8 (2) having the required properties

for any TC!J2P. From now on we suppress index p of J2P. By the defi-

nition of T one can find {Gk} such that Te U ?=i Gfc, where Gfc is a

relatively compact set in Cn or an open convex cone in Cn and Gfc^J2.

Then by taking a suitable set 5 of type (2£), we have T^S and S

H {IRe* >M}C[.Gn {|Rea;|>Af}]. On the other hand, recalling that

Q=^ty
l by the definition of Q we have Tft {\Re z\<M+I}CVe

l±"m±

fl{|Re^|<M+l} for sufficiently small e, where Ve^'"* is a translation

of V^ parallel to the coordinate axis by ± e. Thus, taking £ sufficiently

small, we have T^V^"^. We define V=Sn ( R TV*"'*).

By The above construction T^ can be represented as f) i V*. As is

clear from the method of construction of Q and V, we may assume di = d

without loss of generality.

On setting $(z) =max/{^|Im Zj\2 — \ Re Zj\2 — 1}, ff (z) = sup jlog[/i (z) \

and (x} =ma-K{(t)(z) , ff(z}}, we define

where pe is a molifier in R2n. Then 0(z) thus defined is strictly pluri-

subharmonic and d(z)<^0 on T, and ^(2;)>0 near dV for sufficiently

small £^0, thus all the required properties having been satisfied.
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