Publ. RIMS, Kyoto Univ. 12 Suppl. (1977), 351-355.

Existence and Continuation of Holomorphic Solutions of Partial Differential Equations

by

Ph. PALLU DE LA BARRIERE*

Abstract

Necessary conditions and sufficient conditions are given for the existence and the continuation of holomorphic solutions of partial differential equations near the characteristic boundary of an open subset of $C^{n.**}$

§1. Definitions and Results

Let \mathcal{Q} be an open subset of $M = C^{n+1}$ defined by the equation:

$$\boldsymbol{\varOmega} = \{ \boldsymbol{z} \in \boldsymbol{C}^{n+1} | \varphi(\boldsymbol{z}) > 0 \}$$

where φ is a real analytic function with real values and $d\varphi(z) \neq 0$ when $\varphi(z) = 0$.

If \mathcal{O} designates the sheaf of holomorphic functions on M, we denote by \mathcal{O}^+ the sheaf on $N=\partial \mathcal{Q}$ defined by this stalk at $z \in N$:

$$\mathcal{O}_{z}^{+} = \lim_{z \in \omega} \mathcal{O}(\omega^{+}), \ \omega^{+} = \omega \cap \mathcal{Q}$$

where ω runs over a fundamental system of neighbourhoods of z in M.

Let P be a differential operator with holomorphic coefficients defined in a neighbourhood of N:

$$P(z, D_z) = \sum_{|\alpha| \leq m} a_{\alpha} D_z^{\alpha}.$$

We give necessary conditions and sufficient conditions to have one of the following properties:

 $(PR)_{z}$ Continuation: $f \in \mathcal{O}_{z}^{+}$ and $Pf \in \mathcal{O}_{z} \Rightarrow f \in \mathcal{O}_{z}$ $(EX)_{z}$ Existence: $\forall g \in \mathcal{O}_{z}^{+}$, $\exists f \in \mathcal{O}_{z}^{+}$ so that Pf = g

Received September 7, 1976.

^{*} Collège de France, Paris. 24 av. de l'Observatoire, 75014, Paris, France.

^{**} An integral version of this paper has appeared in [3].

If N is non-characteristic with respect to P at z, it is known that we have the properties $(PR)_z$ and $(EX)_z$ ([5], [1]).

If N is simply characteristic with respect to P at z, Y. Tsuno ([4]) has given a geometric sufficient condition and a necessary condition to have the property $(PR)_z$.

We will compare later his conditions with ours.

Later, we shall need the $\overline{\partial}_b$ -system of tangential Cauchy-Riemann equations on N. We recall its definition briefly.

The problem being local, we can suppose that $\frac{\partial \varphi}{\partial \bar{z}_0} \neq 0$ near $z = (z_0, \dots, z_n)$. We can define $\bar{\partial}_b$ on N by:

$$\overline{\partial}_{b}u = 0 \Leftrightarrow X_{j}u = 0, \quad j = 1, \dots, n$$

where $X_j = \frac{\partial}{\partial \overline{z}_j} - \frac{\partial \varphi}{\partial \overline{z}_j} \left(\frac{\partial \varphi}{\partial \overline{z}_0} \right)^{-1} \frac{\partial}{\partial \overline{z}_0}$.

If we denote by Σ the real characteristic variety of the system $\overline{\partial}_b$ in S^*N , Σ is a reunion of two cotangent vector fields Σ^+ and Σ^- where

$$\Sigma^{+}(z) (z, \xi(z)) \in S^*N, \ \xi_j(z) = -i \frac{\partial \varphi}{\partial \overline{z}_j}(z), \quad j = 0, \cdots, n$$

 \varSigma^- is the antipodal of \varSigma^+ in S^*N .

Now we define an operator on N associated with P. Let (Y_j) , $j=0, \dots, n$, be a family of n+1 complex vector fields on N defined by

$$Y_{j} = \frac{\partial}{\partial z_{j}} - \frac{\partial \varphi}{\partial z_{j}} \left(\frac{\partial \varphi}{\partial \overline{z}_{0}} \right)^{-1} \frac{\partial}{\partial \overline{z}_{0}} \,.$$

We have $[Y_j, Y_k] = 0, \forall j, k = 0, \dots, n$ and the family $Y_j, j = 0, \dots, n$ is linearly independent, so we can define the operator P_b on N by:

$$P_b = \sum_{|\alpha| \le m} \widetilde{a}_{\alpha} Y^{\alpha}$$
 where $\widetilde{a}_{\alpha} = a_{\alpha}|_N$.

Note that:

N is characteristic with respect to P at $z \Leftrightarrow \sigma(P_b)(\Sigma^+(z)) = 0$ (where $\sigma(Q)$ designates the principal symbol of a differential operator Q).

Let $p_b=0$ be a reduced equation of the complex characteristic variety of the operator P_b .

Definition. The generalized Levi-form of (\mathcal{Q}, P) at z, denoted by

 L_z , is the hermitian form on C^{n+1} defined by

$$\tau \in \boldsymbol{C}^{n+1}, \ L_{z}(\tau) = \sum_{1 \leq j, k \leq n} \left\{ \sigma(X_{k}), \overline{\sigma(X_{j})} \right\} (\Sigma^{+}(z)) \tau_{k} \overline{\tau}_{j}$$
$$+ 2 \operatorname{Re} \sum_{1 \leq j \leq n} \left\{ \sigma(X_{j}), \overline{p}_{b} \right\} (\Sigma^{+}(z)) \tau_{j} \tau_{n+1}$$
$$+ \left\{ p_{b}, \overline{p}_{b} \right\} (\Sigma^{+}(z)) |\tau_{n+1}|^{2},$$

where $\{f, g\}$ designates the Poisson bracket of two homogeneous functions on S^*M .

Suppose that N is characteristic for P at z, that is:

$$\sigma(P)(z,d\varphi(z))=0$$

then we have the following:

Theorem I. If there is $\tau \in \mathbb{C}^{n+1}$ so that $L_z(\tau) < 0$, we have the property $(PR)_z$.

Theorem II. If Ω is strictly pseudo-convex at z we have

det $L_z > 0 \Rightarrow (EX)_z$ and no $(PR)_z$, det $L_z < 0 \Rightarrow (PR)_z$ and no $(EX)_z$.

Remark I. After a change of coordinate near $z^0 \in N$ which transforms the function φ in Ψ defined by

$$\Psi(z) = \operatorname{Im} z_0 + \sum_{1 \leq j, k \leq n} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k}(z^0) z_j \overline{z}_k$$

the generalized Levi-form has the same signature as that of the hermitian form

$$\begin{split} -L_{z^0}(\tau) &= \sum_{1 \leq j,k \leq n} \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} (z^0) \, \tau_j \bar{\tau}_k \\ &- 2 \operatorname{Im}_{1 \leq j \leq n} p_{(j)}(z^0, d\varphi(z^0)) \, \tau_j \bar{\tau}_{n+1} \\ &+ \sum_{1 \leq j,k \leq n} p^{(j)}(z^0, d\varphi(z^0)) \cdot \overline{p^{(k)}(z^0, d\varphi(z^0))} \, \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} (z^0) \, |\tau_{n+1}|^2 \, . \end{split}$$

Here we have used the usual notations

Ph. Pallu de la Barrière

$$p_{(j)} = \frac{\partial p}{\partial z_j}, \quad p^{(j)} = \frac{\partial p}{\partial \xi_j}.$$

Remark II. (Y. Tsuno's result) Suppose that the normal of N at z is simply characteristic and denote by $(z(\tau), \xi(\tau))$ the complex bicharacteristic curve of P issued from $(z, d\varphi(z))$. The result of [4] which is comparable with ours is:

If there is $\tau_0 \in C$ so that $\frac{d^2}{dt^2} \varphi(z(t\tau_0))|_{t=0} < 0$ ($t \in \mathbb{R}$) then we have the property $(PR)_z$.

In fact that is exactly:

If there is $\tau = (\tau_0, \dots, \tau_{n+1}) \in \mathbb{C}^{n+1}$ so that:

$$\forall j = 1, \dots, n, \tau_j = \tau_{n+1} \cdot p^{(j)}(z^0, d\varphi(z^0)) \text{ and } L_z(\tau) < 0$$

we have $(PR)_{z}$.

Remark III. By geometrical arguments, we can show that the condition to have the property $(PR)_z$ can be applied if only φ is in the class of C^3 .

§2. Sketch of the Proof

We prove these results in two steps. To begin with we show that $(PR)_z$ and $(EX)_z$ are equivalent to properties of the sheaf of microfunction solutions of an induced system of differential equations on N. It is a consequence of a more general result of Kashiwara-Kawai [2], but we give a direct elementary proof and we calculate explicitly the induced system. More precisely the first result is the following:

If $\widetilde{\mathcal{D}}$ designates the sheaf on N of the differential operators and $\widetilde{\mathscr{C}}$ the sheaf on S^*N of microfunctions, if $\mathcal{M}_{(\overline{\partial}_b, P_b)}$ designates the $\widetilde{\mathcal{D}}$ -module associated to the system of differential equations $(\overline{\partial}_b, P_b)$, we have

Lemma I. (i)
$$(PR)_{z} \Leftrightarrow \mathcal{H}om_{\widetilde{D}}(\mathcal{M}_{(\overline{\partial}_{b}, p_{b})}, \widetilde{\mathscr{C}})_{S^{*}(z)} = 0$$
.
(ii) If \mathcal{Q} is strictly pseudo-convex at z, we have $(EX)_{z} \Leftrightarrow \mathcal{E}at_{\widetilde{D}}^{-1}(\mathcal{M}_{(\overline{\partial}_{b}, p_{b})}, \widetilde{\mathscr{C}})_{S^{*}(z)} = 0$.

The second step is to study the vanishing of the group $\operatorname{Ext}_{\widetilde{D}^{k}}(\mathcal{M}_{(\overline{\partial}_{b}, P_{b})},$

354

 $\widetilde{\mathscr{C}}$)_{*x*·(*z*)}. For this we make use of the structure theorem of [S.K.K] for a system of microdifferential equations which has a non involutive real characteristic variety.

We show that the generalized Levi-form of the system $(\overline{\partial}_b, P_b)$ in the sense of [S.K.K] is L_z . The only difficulty is to prove the following:

Lemma II. The compex characteristic variety $SS(\mathcal{M}_{(\bar{\partial}_b, P_b)})$ of the system $(\bar{\partial}_b, P_b)$ is defined by the equation (1) $SS(\mathcal{M}_{(\bar{\partial}_b, P_b)}) = \{z^* \in P^*Y | \sigma(X_1)(z^*) = \dots = \sigma(X_n)(z^*) = p_b(z^*) = 0\}$ where P^*Y is the projective bundle of a complexification Y of N.

In fact we have in general:

$$SS(\mathcal{M}_{(\overline{\partial}_b, P_b)}) \subset V$$

where V denotes the right hand side of (1).

To prove $V \subset SS(\mathcal{M}_{(\bar{\sigma}_b, P_b)})$, we must prove that: if $z^* \in V$, $\forall Q_0, \dots, Q_n \in \widetilde{\mathcal{C}}_{z^*}$, we have

$$\sum Q_i \widehat{X}_i + Q_0 \widehat{P}_b = 1_{\widetilde{\varepsilon}}$$

where \widehat{R} denotes the complexification of $R \in \widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{E}}$ the sheaf on P^*Y of the microdifferential operators ([S.K.K]).

To prove this, using the Frobenius theorem, we find a local coordinate of Y, Z_1, \dots, Z_{2n+1} so that \widehat{X}_i is transformed to $\frac{\partial}{\partial Z_i} \forall i=1,\dots,n$, and in this situation we prove the lemma 2 using the symbolic calculus on micro-differential operators of [S.K.K].

References

- Bony, J. M. and Schapira, P., Existence et prolongement des solutions holomorphes des equations aux derivées partielles, *Inv. Math.* 17 (1972), 95-105.
- [2] Kashiwara, M. and Kawai, T., On the boundary values of elliptic system of partial differential equations 1, Proc. Japan Acad., 48 (1970), 712-715.
- [3] Pallu de la Barriere, P., Existence et prolongement des solutions holomorphes des equations aux derivées partielles, J. Math. Pures et Appl. 55 (1976), 21-46.
- [S.K.K] Sato, M., Kawai, T. and Kashiwara, M., Microfunctions and pseudo-differential equations, *Lecture notes in Math.*, 287 (1971), 265-524.
- [4] Tsuno, Y., On the continuation of holomorphic solutions of characteristic differential equations, J. Math. Soc. Japan, 26, 3 (1974), 523-548.
- [5] Zerner, M., Domaine d'holomorphie des fonctions verifiant une equation aux derivées partielles, C. R. Acad. Sc. Paris, Serie A, 272 (1971), 1646-1648.