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Abstract

The notion of a complex-dimensional integral is introduced in the complex w-dimen-
sional Minkowski space. Its basic properties, such as Lorentz invariance, are investigat-
ed. Complex-dimensional invariant delta functions dn(x',mz), A^n(x\ w2), etc. are
explicitly calculated in position space. It is proposed to define products of singular
functions in the ordinary Minkowski space by analytically continuing the corresponding
^-dimensional ones to w=4. The light-cone singularities of [^Oc;w2)]2, A(x;mz)

r;w2) and [4(1) (x; ra2)]2 are shown to be unambiguously determined in this way.

Recently, in quantum field theory, much attention has been paid to

complex-dimensional regularization [1]. The momentum-space Feynman

integral is regularized by considering it in the complex ^-dimensional

space formally. The extension of the dimension 4 to the complex dimen-

sion n is easily done in the Feynman-parametric representation of the

Feynman integral. The purpose of my talk is to formulate the theory

of complex-dimensional integrals in the general framework and apply it

to regularizing singular products in position space. Detailed accounts are

presented in my papers [2,3].

The complex ^-dimensional Minkowski space Mn is a product of a

one-dimensional Euclidean space R and a complex (n — Y) -dimensional

space En~l such that the scalar product in M.n is defined by the difference

between the product in R and the scalar product in En~l. Here En~l is an

abstract vector space equipped with a real-valued, symmetric scalar pro-

duct. Except for the case in which n is a positive integer, however,

En~l is not a topological space and therefore the number of linearly

independent vectors in it is indefinite because it has no complete basis.

It is assumed that any finite-dimensional subspace of En~l is a Euclidean
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space. The notion of components pljp29 -• of a vector p^En~1is mean-

ingful only with reference to such a subspace. The index p. of a vector

pfJ[^Mn takes discrete values only when one works in a finite-dimensional

subspace of Mn.

Let F(p^) be a tempered distribution (or a Fourier hyperfunction)

of scalar products pz,px(l\ •••,pxik\ where p^ is an integration vector

and x™y "-.x^ are constant vectors of Mn. Then I define the complex-

dimensional integral of F(p^) by

r Q^O*-*-!)^ p+°° r+°° r+°°(i) \<rPF(pj= ** dPA dPl...\ dP-J r((n — k — l)/2) J-°° J-°° J-°°

r<ip±Pl-*
Jo

Here />l5 • •• , />* are orthogonal coordinates in a generically ^-dimensional

subspace spanned by the spatial parts x(1\ • • • , #(fc) of ^(1), • • • , ̂ (W, and

(2) P 1=1* -

If #(1), "•, as;(fc) happen to be linearly dependent, that is, for example, F

is independent of />fc, then setting p'±=P±-}-pk2, one can easily see that

(1) reduces to the expression which is the same as (1) except that k

is replaced by k — I. Thus the definition (1) does not intrinsically depend

on k. From this fact it follows that (1) is invariant under a translation

of the integration vector pft9 as it should be. Of course, (1) reduces to

the ordinary ^-dimensional multiple integral when n is a positive integer.

The complex-dimensional integral defined by (1) is not manifestly

Lorentz invariant, but its Lorentz invariance can be proved. More pre-

cisely, (1) can be shown to be a quantity depending only on scalar

products formed from xft™, -',x^k\ The proof is carried out by reducing

the problem to that for the complex-dimensional Fourier transform1*

where Jv denotes a Bessel function.

1 The right-hand side follows from the polar-coodinate form of (1) with k = ~L.
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The complex-dimensional invariant delta functions are defined by

(4)

(5)

etc. Their explicit expressions can be calculated by using (3) . For ex-

ample,

x-v 2 2~nz

(6) ( n 2 ) / 2 -n

It is easy to extend the definition of the complex-dimensional integral

to the case in which the integrand is a Lorentz-covariant quantity G^...V9

which is defined by

(7) H^y-s-G,...,,

where H is a Lorentz-in variant quantity and yft, • • • , £ „ are artificially in-

troduced constant vectors in Mn. For example, consider G{JLV=pfipyF(pz^

px). The complex-dimensional integral of y**zvGflv is given by (1). Be-

cause of the Lorentz invariance of (1) and the proportionality in y^ and

zV9 I can write

(8) j>/> (y^J (z°P,}F(p\ px) = (y>xj (z»x>) ̂  (x*) + (y"Zf) 0, (x>) ,

where $1 and @2 depend only on xz. On introducing an abstract metric

tensor g^ of Mn, I rewrite (8) as

(9) dnp p,pvF (p\ px) =

Then it can be proved that the formula

(10) g

always holds if and only if one sets2)

(ii) cf /=».
The proof is carried out by showing that to prove (10) is equivalent

2 Necessity of (11) is well known and is shown easily.



346 NOBORU NAKANISHI

to proving

Finally, I mention the complex-dimensional regularization of singular

products in position space. As is well known, the invariant delta func-

tions in the ordinary Minkowski space exhibit light-cone singularities:

(13) A(x;

(14) „<»(-; -2)
2nzl x2 4 \ 4

where P and 7" denote Cauchy's principal value and Euler's constant,

respectively. Therefore their products are not well defined. The com-

plex-dimensional extensions An and J(1)
n are, however, continuous on the

light cone x2 = Q if Re n<^2. In that region, therefore, any product of

An and J(1)
n is always well defined. What I propose is to define singular

products in the ordinary Minkowski space by analytically continuing in n

the corresponding complex 72-dimensional products to n = 4. After lengthy

calculations, I have found that the products 04) 2, AnA™ \, and (J(1)»)2 have

no pole at n = 4. Accordingly, I obtain the regularized expressions for

J2, AA(l\ and (J(1))2 unambiguously [2]. They are consistent with another

way of definitions

(15) A(x; m^Aw(x; m^ =2e(a:0)

(16) [J(I)(^; OP- V(x; m2)]2

where 2AF^=U(x^) A-{- J(1) is a boundary value of an analytic function.
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