Complex-dimensional Integral and Light-cone Singularities

by

Noboru NAKANISHI*

Abstract

The notion of a complex-dimensional integral is introduced in the complex n-dimensional Minkowski space. Its basic properties, such as Lorentz invariance, are investigated. Complex-dimensional invariant delta functions $A_n(x; m^2)$, $A^{(1)}_n(x; m^2)$, etc. are explicitly calculated in position space. It is proposed to define products of singular functions in the ordinary Minkowski space by analytically continuing the corresponding n-dimensional ones to n=4. The light-cone singularities of $[A(x; m^2)]^2$, $A(x; m^2) \times A^{(1)}(x; m^2)$ and $[A^{(1)}(x; m^2)]^2$ are shown to be unambiguously determined in this way.

Recently, in quantum field theory, much attention has been paid to complex-dimensional regularization [1]. The momentum-space Feynman integral is regularized by considering it in the complex n-dimensional space formally. The extension of the dimension 4 to the complex dimension n is easily done in the Feynman-parametric representation of the Feynman integral. The purpose of my talk is to formulate the theory of complex-dimensional integrals in the general framework and apply it to regularizing singular products in position space. Detailed accounts are presented in my papers [2, 3].

The complex n-dimensional Minkowski space M^n is a product of a one-dimensional Euclidean space R and a complex (n-1)-dimensional space E^{n-1} such that the scalar product in M^n is defined by the difference between the product in R and the scalar product in E^{n-1} . Here E^{n-1} is an abstract vector space equipped with a real-valued, symmetric scalar product. Except for the case in which n is a positive integer, however, E^{n-1} is not a topological space and therefore the number of linearly independent vectors in it is *indefinite* because it has no complete basis. It is assumed that any finite-dimensional subspace of E^{n-1} is a Euclidean

Received July 14, 1976.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606.

space. The notion of components p_1, p_2, \cdots of a vector $p \in E^{n-1}$ is meaningful only with reference to such a subspace. The index μ of a vector $p_{\mu} \in M^n$ takes discrete values only when one works in a finite-dimensional subspace of M^n .

Let $F(p_{\mu})$ be a tempered distribution (or a Fourier hyperfunction) of scalar products p^2 , $px^{(1)}$, \cdots , $px^{(k)}$, where p_{μ} is an integration vector and $x_{\mu}^{(1)}$, \cdots , $x_{\mu}^{(k)}$ are constant vectors of M^n . Then I define the complex-dimensional integral of $F(p_{\mu})$ by

(1)
$$\int d^{n}pF(p_{\mu}) = \frac{2\pi^{(n-k-1)/2}}{\Gamma((n-k-1)/2)} \int_{-\infty}^{+\infty} dp_{0} \int_{-\infty}^{+\infty} dp_{1} \cdots \int_{-\infty}^{+\infty} dp_{k}$$
$$\int_{0}^{\infty} dp_{\perp} p_{\perp}^{n-k-2} F(p_{0}; p_{1}, \dots, p_{k}; p_{\perp}).$$

Here p_1, \dots, p_k are orthogonal coordinates in a generically k-dimensional subspace spanned by the spatial parts $x^{(1)}, \dots, x^{(k)}$ of $x_{\mu}^{(1)}, \dots, x_{\mu}^{(k)}$, and

(2)
$$p_{\perp}^{2} = p^{2} - \sum_{j=1}^{k} p_{j}^{2}.$$

If $x^{(1)}, \dots, x^{(k)}$ happen to be linearly dependent, that is, for example, F is independent of p_k , then setting $p'_{\perp}^2 = p_{\perp}^2 + p_k^2$, one can easily see that (1) reduces to the expression which is the same as (1) except that k is replaced by k-1. Thus the definition (1) does not intrinsically depend on k. From this fact it follows that (1) is invariant under a translation of the integration vector p_{μ} , as it should be. Of course, (1) reduces to the ordinary n-dimensional multiple integral when n is a positive integer.

The complex-dimensional integral defined by (1) is not manifestly Lorentz invariant, but its Lorentz invariance can be proved. More precisely, (1) can be shown to be a quantity depending only on scalar products formed from $x_{\mu}^{(1)}, \dots, x_{\mu}^{(k)}$. The proof is carried out by reducing the problem to that for the complex-dimensional Fourier transform¹⁾

(3)
$$\int d^{n}p e^{-ipx} \varphi(p^{2}) = (2\pi)^{(n-1)/2} \int_{-\infty}^{+\infty} dp_{0} \int_{0}^{\infty} d|\mathbf{p}| |\mathbf{p}|^{(n-1)/2} |\mathbf{x}|^{-(n-3)/2}$$
$$J_{(n-3)/2}(|\mathbf{p}||\mathbf{x}|) e^{-ip_{0}x_{0}} \varphi(p_{0}^{2} - |\mathbf{p}|^{2}),$$

where J_{ν} denotes a Bessel function.

¹ The right-hand side follows from the polar-coordinate form of (1) with k=1.

The complex-dimensional invariant delta functions are defined by

(4)
$$\Delta_{n}(x; m^{2}) \equiv -i(2\pi)^{-n+1} \int d^{n}p \, \epsilon \, (p_{0}) \, \delta(p^{2} - m^{2}) \, e^{-ipx} \,,$$

(5)
$$\Delta^{(1)}_{n}(x; m^{2}) \equiv (2\pi)^{-n+1} \int d^{n}p \delta(p^{2} - m^{2}) e^{-ipx},$$

etc. Their explicit expressions can be calculated by using (3). For example,

(6)
$$\Delta_n(x; m^2) = -\epsilon(x_0) \frac{(\sqrt{x^2}/m)^{(2-n)/2}}{2^{n/2}\pi^{(n-2)/2}} J_{(2-n)/2}(m\sqrt{x^2}) \theta(x^2).$$

It is easy to extend the definition of the complex-dimensional integral to the case in which the integrand is a Lorentz-covariant quantity $G_{\mu...\nu}$, which is defined by

$$(7) H \equiv y^{\mu} \cdots z^{\nu} G_{\mu \cdots \nu},$$

where H is a Lorentz-invariant quantity and y_{μ}, \dots, z_{ν} are artificially introduced constant vectors in M^n . For example, consider $G_{\mu\nu} = p_{\mu}p_{\nu}F(p^2, px)$. The complex-dimensional integral of $y^{\mu}z^{\nu}G_{\mu\nu}$ is given by (1). Because of the Lorentz invariance of (1) and the proportionality in y_{μ} and z_{ν} , I can write

(8)
$$\int \! d^{n} p \left(y^{\mu} p_{\mu} \right) \left(z^{\nu} p_{\nu} \right) F \left(p^{2}, p x \right) = \left(y^{\mu} x_{\mu} \right) \left(z^{\nu} x_{\nu} \right) \varPhi_{1} (x^{2}) + \left(y^{\mu} z_{\mu} \right) \varPhi_{2} (x^{2}),$$

where Φ_1 and Φ_2 depend only on x^2 . On introducing an abstract metric tensor $g_{\mu\nu}$ of M^n , I rewrite (8) as

(9)
$$\int d^{n}p \, p_{\mu}p_{\nu}F(p^{2},px) = x_{\mu}x_{\nu}\theta_{1}(x^{2}) + g_{\mu\nu}\theta_{2}(x^{2}).$$

Then it can be proved that the formula

$$(10) \hspace{1cm} g^{\mu\nu} \int \! d^n \! p \; p_\mu \! p_\nu F(p_\sigma) = \int \! d^n \! p \; p^z F(p_\sigma)$$

always holds if and only if one sets2)

$$q_{n}^{\mu}=n.$$

The proof is carried out by showing that to prove (10) is equivalent

² Necessity of (11) is well known and is shown easily.

to proving

(12)
$$\left(g^{\mu\nu}\frac{\partial}{\partial x^{\mu}}\frac{\partial}{\partial x^{\nu}}+m^{2}\right)\Delta^{(1)}_{n}(x;m^{2})=0.$$

Finally, I mention the complex-dimensional regularization of singular products in position space. As is well known, the invariant delta functions in the ordinary Minkowski space exhibit light-cone singularities:

(13)
$$\Delta(x; m^2) = -\frac{\epsilon(x_0)}{2\pi} \left[\delta(x^2) - \frac{m^2}{4} \theta(x^2) + \cdots \right],$$

where P and γ denote Cauchy's principal value and Euler's constant, respectively. Therefore their products are not well defined. The complex-dimensional extensions Δ_n and $\Delta^{(1)}_n$ are, however, continuous on the light cone $x^2=0$ if Re n<2. In that region, therefore, any product of Δ_n and $\Delta^{(1)}_n$ is always well defined. What I propose is to define singular products in the ordinary Minkowski space by analytically continuing in n the corresponding complex n-dimensional products to n=4. After lengthy calculations, I have found that the products $(\Delta_n)^2$, $\Delta_n\Delta^{(1)}_n$, and $(\Delta^{(1)}_n)^2$ have no pole at n=4. Accordingly, I obtain the regularized expressions for Δ^2 , $\Delta\Delta^{(1)}$, and $(\Delta^{(1)}_n)^2$ unambiguously [2]. They are consistent with another way of definitions

(15)
$$\Delta(x; m^2) \Delta^{(1)}(x; m^2) = 2\epsilon(x_0) \operatorname{Im} \lceil \Delta_F(x; m^2) \rceil^2,$$

(16)
$$\left[\Delta^{(1)}(x; m^2) \right]^2 - \left[\Delta(x; m^2) \right]^2 = 4 \operatorname{Re} \left[\Delta_F(x; m^2) \right]^2$$

where $2\Delta_F \equiv i\epsilon(x_0)\Delta + \Delta^{(1)}$ is a boundary value of an analytic function.

References

- [1] Leibbrandt, G., Introduction to the technique of dimensional regularization, Rev. Mod. Phys. 47 (1975), 849-876. Further references are contained therein.
- [2] Nakanishi, N., Complex-dimensional invariant delta functions and lightcone singularities, Comm. Math. Phys. 48 (1976), 97-118.
- [3] ——, Lorentz invariance of the complex-dimensional integral, RIMS preprint.