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Complex-dimensional Integral and
Light-cone Singularities

by

Noboru NAKANISHI*

Abstract

The notion of a complex-dimensional integral is introduced in the complex 7-dimen-
sional Minkowski space. Its basic properties, such as Lorentz invariance, are investigat-
ed. Complex-dimensional invariant delta functions 4.(z;m?), 4, (x;m?), etc. are
explicitly calculated in position space. It is proposed to define products of singular
functions in the ordinary Minkowski space by analytically continuing the corresponding
n-dimensional ones to #=4. The light-cone singularities of [4(x;m%)]% 4(z;m?)
X AN (z;m®) and [4P (z;m*)]* are shown to be unambiguously determined in this way.

Recently, in quantum field theory, much attention has been paid to
complex-dimensional regularization [1]. The momentum-space Feynman
integral is regularized by comsidering it in the complex 7-dimensional
space formally. The extension of the dimension 4 to the complex dimen-
sion 7 is easily done in the Feynman-parametric representation of the
Feynman integral. The purpose of my talk is to formulate the theory
of complex-dimensional integrals in the general framework and apply it
to regularizing singular products in position space. Detailed accounts are
presented in my papers [2, 3].

The complex zn-dimensional Minkowski space M" is a product of a
one-dimensional Euclidean space R and a complex (7—1)-dimensional
space E"' such that the scalar product in M" is defined by the difference
between the product in R and the scalar product in E*!. Here E"'is an
abstract vector space equipped with a real-valued, symmetric scalar pro-
duct. Except for the case in which 7 is a positive integer, however,
E"'is not a topological space and therefore the number of linearly
independent vectors in it is indefinite because it has no complete basis.

It is assumed that any finite-dimensional subspace of E™! is a Euclidean
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space. The notion of components pi, p,, -- of a vector p& E" ™' is mean-
ingful only with reference to such a subspace. The index y of a vector
p,EM" takes discrete values only when one works in a finite-dimensional
subspace of M"

Let F(p,) be a tempered distribution (or a Fourier hyperfunction)
of scalar products p% px®, -, px®, where p, is an integration vector
and z,%, ---, z, are constant vectors of M". Then I define the complex-

dimensional integral of F'(p,) by

(1) J’dn F( )__ Qp(n—k=1)/2 +ood j‘+wd j*+eod
LDy ST ((—k—1)/2) J-= o » g2 . Dr

L dp, P (o 1y s Py D) -

Here p,, ---, p. are orthogonal coordinates in a generically A-dimensional

(k) [}

subspace spanned by the spatial parts =@, ---,x® of z,°, -, x,%, and

®
(2) PEEPZ - 12=1Pj2 .

If %, .-, 2% happen to be linearly dependent, that is, for example, F
is independent of p,, then setting p*=p2+p,’, one can easily see that
(1) reduces to the expression which is the same as (1) except that &
is replaced by 2—1. Thus the definition (1) does not intrinsically depend
on k. From this fact it follows that (1) is invariant under a translation
of the integration vector p,, as it should be. Of course, (1) reduces to
the ordinary z-dimensional multiple integral when # is a positive integer.

The complex-dimensional integral defined by (1) is not manifestly
Lorentz invariant, but its Lorentz invariance can be proved. More pre-
cisely, (1) can be shown to be a quantity depending only on scalar

&)

products formed from x,?, -+, z, The proof is carried out by reducing

the problem to that for the complex-dimensional Fourier transform®
+ oo co

(3) j‘d‘”pe"“”gp (pz) = (271-) (n-1/2 j dp, j‘ dIPI ’PI <n—1>/2lxl —(n—-3)/2
e b

Ja-n.(pl| x| ) e” P (p* — Ipl®),

where J, denotes a Bessel function.

! The right-hand side follows from the polar-coodinate form of (1) with 2=1.
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The complex-dimensional invariant delta functions are defined by

(4) 4, (x; mz) = —i(27r) —n+1 Jdnpe (Po) 5(pz_ 7712) o= Pz ,

(5) A(l)n (.:C; mZ) — (272.) —n+1 j‘dnpa (pz_mz) e—-ipx ,

etc. Their explicit expressions can be calculated by using (3). For ex-

ample,

®  duwm) = =@ T g V0@,

It is easy to extend the definition of the complex-dimensional integral
to the case in which the integrand is a Lorentz-covariant quantity G,..,,

which is defined by
(7) IiEy“¢ .. .z”Gﬂwv "

where H is a Lorentz-invariant quantity and v,, -**, 2, are artificially in-
troduced constant vectors in M". For example, consider G, =p,p,F (®°,
px). The complex-dimensional integral of y“2’G,, is given by (1). Be-
cause of the Lorentz invariance of (1) and the proportionality in v, and

2, 1 can write
) jd"p "0 (@B) F(#, 7) = (v'x,) (22,) 0, (@) + (v2,) By (2,

where @; and @, depend only on z®. On introducing an abstract metric

tensor ¢, of M", 1 rewrite (8) as

©) (@ 0.7 @02, 22) = 2,00, + 0,02
Then it can be proved that the formula

(10) 0" (s 20, F 00 = (&0 2P (20)
always holds if and only if one sets®

11) 9/ =n.

The proof is carried out by showing that to prove (10) is equivalent

? Necessity of (11) is well known and is shown easily.
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to proving

12) (Q,., 00 m2> 49, (z; m?) =O0.
ox* o0x’

Finally, I mention the complex-dimensional regularization of singular

products in position space. As is well known, the invariant delta func-

tions in the ordinary Minkowski space exhibit light-cone singularities:

D) — f(xo) 2 _ﬁ 2
(13) Az mt) = <5 [«xx) 70 + )

2 2] .2
(14) AU)(x;mﬂ)=—E?;[P%—_’Z_@og-”if—uzr—l)nt---],
where P and 7 denote Cauchy’s principal value and Euler’s constant,
respectively. Therefore their products are not well defined. The com-
plex-dimensional extensions 4, and 4“, are, however, continuous on the
light cone x’=0 if Re #<{2. In that region, therefore, any product of
4, and 4%, is always well defined. What I propose is to define singular
products in the ordinary Minkowski space by analytically continuing in 7
the corresponding complex n-dimensional products to z=4. After lengthy
calculations, I have found that the products (4,)% 4,4®,, and (4°,)? have
no pole at #=4. Accordingly, I obtain the regularized expressions for
A, 44®, and (4*)* unambiguously [2]. They are consistent with another

way of definitions
(15) A(x; m®) 4® (x; m*) =2¢(x,) Im[dp(x; m®) ]
(16) [4? (z; m*)*—[4(x; m*) ]*=4 Re[dr(x; m*)]*

where 24r=1ie(x,) 4+4® is a boundary value of an analytic function.
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