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Caustics and Microfunctions

by

Frederic PHAM*

It has been known from the 19th Century that the intensity of light

on a caustic cannot be understood by mere geometrical optics, but only

by the geometrical limit of zvave optics. After recalling (in § 1) what

the physical problem is, I shall relate it to a problem in microfunction

theory.

§ I. The Geometrical Limit of Wave Optics

A stationary -wave of frequency a) can be written

u(x, t)=u(x)ei<at (x,

The following are two special cases:

I0/ The plane zvave with -wave vector k:

(k2 = o)2c2, with c the speed of light, c = 1 if the units are suitably

chosen) ;

2°/ the spherical -wave emitted by a point source y:

(with (p (.r, y) = distance from x to the point y) .

Consider now the general case. Given a wave surface Y C I?3 (surface

where u(x) has constant phase) we may consider that u{x) is a super-

position of spherical waves emitted by every point of the wave surface:

this is the Huyghens-Fresnel principle, the basis of diffraction theory (see

for instance [5] , § 59) ; this principle was introduced heuristically by

Fresnel in 1816, and although it gave the first strong evidence for the
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wave theory of light, it is not at all easily deduced from the wave equa-

tion (nor is it easily formulated in precise fashion: see [3], Chap. VIII).

Here we shall admit the following vague formulationiin the high fre-

quency limit the wave function is "approximately" given by a surface

integral

a) C ,,-i«>9(x,y)
(1) *(*)-£ —, -a(y)dy

2n JY cp(x,y)

where a(y) is interpreted as the amplitude of the "secundary wavelet"

emitted by the point y of Y (the normalization factor —- will be ac-
^7T

counted for below).

When o) is large the phase &(p(x9 y) of the integrand oscillates rapidly

along Y, except at points where dy(p(x,y) = 0; such "critical" points give

the main contribution to the integral (1) ^principle of stationary

phase"}.

We shall denote by ^dXxY the set of all critical points

i.e. the set of couples (.r0, 3>0) such that the straight line xQyQ is perpen-

dicular to the wave surface Y at y0 (Fig- !)•

Fig. 1. A wave surface and wave vector"

At a "general" critical point (x0y y0) we may suppose that the Hessian

=det (^ — ̂  — j) does not vanish (i.e. Cr0> :Vo) is a non degenerate

quadratic critical point) . It then follows from the usual formula of sta-

tionary phase in classical analysis that in the high o) limit the contribution

of the point (.r0, y0) to the integral (1) is given by

(2) n(x^—a(x<s,y^e-ls"f^'^
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where a(*0,y0) =a(y0)e

((T is the signature of the quadratic form dy
2(p(xQ, VQ)} . One may notice

that #(x0, y0) is a slowly varying function of XQ, which goes to a(y^)

as xQ approaches yQ (the normalizing factor -— in (1) has been introduced
Z7T

precisely for that purpose). Therefore, the wave function U(XQ) behaves

locally like a plane wave with wave vector kXQ = o) gradXQ(p(xQ, 3'o) (see

Fig. 1).

The integral curves of the vector field kXo are straight lines and we

thus recover geometrical optics, where the light rays are the straight

lines orthogonal to the wave surface.

But the above analysis rested on the hypothesis that Hess^^O, not

valid above the caustic (envelope of the family of light rays) . Before

pushing it further, let us make a

Parenthesis : Geometrical Optics 66A la Thorn"

A caustic point is the intersection of two "infinitely near" light rays,

i.e. a point XQ such that (p(x^ •) is stationary for two "infinitely near"

points yQ. In other words the caustic K is the "bifurcation locus "of the

family of functions (p (as functions of yEEY, with parameter x£i.X). Giv-

en such a family of functions, a topologist will like to consider its "dis-

criminant locus" J, defined as the image of the critical set of the mapping

0: XxY - > XxR

x, y — > x, 9 (x, y)

here the critical set is the already introduced set 2? whereas A =

Fig. 2. A caustic K, its discriminant locus A and the Maxwell set M.
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= {(XQ, £Q) ̂ XxR\xQ is at distance tQ from Y along some light ray}

Fig. 2 shows a typical caustic and its discriminant locus (the cele-

brated "swallow's tail" of Thorn's classification).

From Thorn's theory of deformations of functions, one knows that

in the "generic" situation, the critical set ]T] is smooth and 7z-dimensional

(where n = dimX), and finite over its image A (a point of A comes from

a finite number of points of 2) > whereas A itself is finite over X. Fur-

thermore the "apparent contour" of A on X is the union of the caustic

K and of the "Maxwell set" M (here M is the set of points XQ which

lie on two different light rays at the same distance from l^rsee Fig. 2)

What I want to stress here is that the discriminant locus A is a nice

geometrical object which carries all the information on geometrical optics

in any generic situation. I shall now show that it also "carries" (in the

precise mathematical sense of being the support of a sheaf) a nice analytic

object which describes the asymptotic (a)— > + oo) limit of wave optics.

§ 2. Asymptotic Integrals and Microfunctlons

Considering (1) as a function of o), (and writing u(x,a)), instead

of u(x)), let us perform a Fourier transformation. Calling t the variable

conjugate to a), we get

(3) u(x,a)) = {e~i<atu(x,

where

(4) u(x9£)=±2- \8(t-q>(x,y» a(y\ dy .
2m dtJ <p(x,y)

From formula (3) we see that if we add to u(x, f) a function analytic

on the Im t<^Q side we only change u(x,o)) by exponentially decreasing

terms (as a)— > + oo) . This means that if we are interested in the asymp-

totic behaviour of u (x, a)) up to exponentially decreasing terms, we must

consider u(x, t) in equations (3) (4) as a microf unction in the variable

t. I now proceed to explain how an integral such as (4) defines a

microfunction.
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2.1 Let us consider the following general geometric situation.

- > R

is a real analytic function on XX Y where ,X[resp. Y] is an 7z-dimensional

[resp. a ^-dimensional] real analytic manifold. All the considerations be-

low are local and can be put in sheaf language but for simplicity let us

fix one point (.r0, y0) and consider the corresponding germs (pointwise

situation). Let us assume

Assumption 1. cp is of "finite singular type", i.e. the critical set ^2

is finite over X in the algebraic sense-, this means that the complexified

critical set ]Tj is finite over the complexified manifold -X", a condition which

can be expressed in algebraic fashion by asking the quotient module.

to be a (free) finitely generated cJfc-module, where Jl denotes the ring

of complex valued analytic functions on the subscript manifold.

We shall sometimes need also

Assumption 2. (p is "non degenerate" , i.e. the analytic set ^ is

reduced and smooth (algebraic translation: <Jl^ is a regular ring).

Both assumptions are satisfied for generic choice of (p. Furthermore, giv-

en any function ^o(y) satisfying assumption 1, we can get a function

9(.x->y) satisfying assumptions 1 and 2 by taking a versal deformation

of (pQ.

Proposition. Under assumption 1, the integral

(5) «(*,*)

-where a^Jlx*.Y, defines a family., analytic 'with respect to the para-

meter x, of micro functions in one variable t (on the Im £>0 side)

'with support on the discriminant locus A.

Sketch of the proof. We replace the S- (micro) function by its defining
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analytic function — — — - - - — , and integrate over a small ball B

in Y space, surrounding y0. For Im £>0 (x real) there is no trouble,

the denominator does not vanish and the integral is analytic in x and t.

For t real, (x >£)$=. A there is no trouble either because dycp vanishes

nowhere along the zero locus of the denominator, so that one can deform

the real ball of integration

Fig. 3. Singularities of the integrand of (5) for various choices of (x, f).

by pushing it in the imaginary direction i$t, where $t is a vector field

tangent to the sphere, and such that dy(p(^t)^>0 on the zero locus of

the denominator (see Fig. 3). For (x, f) EE A this procedure fails because

the zero locus of the denominator has singularities. But if (x, f) is close

enough to (.TO, A)) none of those singularities will escape the ball, so

that the integral on a bigger ball B' will yield the same microfunction

(by the above reasoning the integral on the spherical shell B' —B will

be analytic). Therefore, the resulting microfunction u(x, f) does not de-

pend on the choice of the ball B (provided B has been chosen small

enough to start with).

Remark. Seen as a microfunction in the n-\-\ variables (x, f) (ins-

tead of just one variable t, with parameter x), u(x, t) is supported by

the conormal bundle of J, i.e. the set of codirections

A = {(xQ
J
rioodx(p(x^y^), tQ-^iooT)\dy(p(x^y^ =0}.

2.2 Given cp, we now study the set of all integrals (5) when a varies

in c^jrxF- Let 9%° be that set of microfunctions, and
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We shall be especially interested in the case when AeJY": recall that deri-

vating a microf unction u by a negative power dt~
r corresponds through

Fourier transform to multiplying u by a)~r, an operation which increases

the regularity of the microfunction u [resp. of the asymptotic expansion

Let

< I ' \ X i
r=0 y I

be the ring of microdifferential operators of zero order in dt~
l
9 with coeffici-

ents depending only on x. Our main results are summarized in the fol-

lowing

Theorem 10 Under assumption 1, one has a filtration

(0) <g* D gV D gy = ) • • • ; furthermore,

(1) g%° zs a finitely generated Jlx{{dt~1}}-module;

(ii) every u^W? is a microfunction -with regular singularity (i.e.

a solution of a differential equation -with regular singularity).

Theorem 2, Under assumptions 1 and 2, £/2£ module ^fc/2 =

9*/2^>° depends on (p only through A (one must understand that different

functions cp with different values of k = dimY may give rise to the

same discriminant locus A). This module rwill be written %?QA\XXR and

zuill be called the module of micro functions holomorphic on the dis-

criminant A.

Remark. The operation dt
k/z may be understood as a "normalization

factor": for instance in the k = 2 case (i.e. when Y is a surface) the

formula &°J\ZXR = 9^^° accounts for the dt factor in equation (4), cor-

responding to the -- factor in equation (1).
Zrc

Let me give a rough idea of the proof of theorem 1. Integrating

by parts, it is easy to see that the integral \d(t — (p(x,y))ti) (where
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o) = a(x, y}dyl/\"- f\dyk) depends only on the class of a) modulo dy(p/\

Z^^JJrei), where (J2rei, dy) is the complex of germs of relative differen-

tial forms of the space XX Y over X9 and Z means "cocycles" (according

to the Poincare Lemma Z*'1^^) = dS^ for
Q + r r e l y y ™ l n - , ^ , , , ^Set G= < 7 yY y One verifies at once that the

\$lei/dy(p-0x{(p} if k = l.
operation dt~

l on the integral corresponds to the following operation on G:

i.e. the inverse of the Gauss-Manin connection on G (see [6]). Part (i)

of theorem 1 then follows from the following

Theorem 3.*} G is a free Jlx{{D~1}} -module of rank ju, where

/j. is the Milnor number of the germ (p at (xQjyo) (ju, = ra7ik of the

free <Jlx-module <Jl^.

The well known regularity property of the Gauss-Manin connection

then yields part (ii) of Theorem 1.

Remark. Under assumptions 1 and 2 one proves that the integration

epimorphism G->^0 is an isomorphism, so that in that case ^0 is free

of rank jU over Jlx{{dt~1}}'

2.3 Exponents measuring the singular behaviour

It follows from part ii) of theorem 1 that every microfunction u

in 9%° (or in S^ixxjg) can be given in the neighbourhood of any point

(xQ, to) 6E A by a convergent expansion

(6) «(*0,0=[ S c,ta(xQ}.(t-tQy\og*(t-t^
a^A+NCLC

P&BC2V

where p^B, a finite set of natural integers, whilst a^A + N, with A

a finite set of complex numbers (in the formula the parameter x is

* The " formal" analogue of this theorem was proved by Malgrange in [ 6 ]. The dif-
ficult part in theorem 3 is the proof that one can make series converge in <Jlx{{D~1}}.
This proof also relies on an idea of Malgrange (see [7] for further details).
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fixed: X = XQ, so that u is a microfunction in one variable).

The smallest real part Re a of all a's appearing in expansion (6)

measures, in some sense, the singular behaviour of the microfunction u

(with regular singularity) at point (.r0, £0): smaller that exponent is, the

more singular u will be. Now it is obvious that multiplication by dt~
l,

or by a micro differential operator in ^Jlx{{dt~1}}, can but increase that

exponent. Part (i) of Theorem 1 thus warrants the existence of a highest

lower bound $(.r0, £0) for the exponents of all microf unctions in ^|*xjg,

at a given point (.r0, £0). Going back to the physical problem of § 1,

easy considerations on Fourier transforms show that the wave amplitude

u(x) behaves, as the frequency o) goes to infinity, not worse than o)r(x\

where Y(X) = — inf {fi(x, f) + 1] (x, f) e A} (not unexpectedly, r(0) =0

outside the caustic).

Notice that this is just a pointwise estimate (for fixed x), and that

the problem of finding uniform estimates is up to now unsolved, except in

simpler cases.

Historical Comments and Open Problems

Exponents measuring the asymptotic behaviour of oscillatory integrals

have been defined and computed for the first time by V. I. Arnold in

[1] (for simple singularities) and in [2] (for more general singularities,

including all generic singularities if dirnXfClO). Then J. J. Duistermaat

[4] proved that all quasihomogeneous singularities satisfy the uniform

estimates conjectured by Arnold. Weaker than the conjecture on uniform

estimates is the conjecture on the semi-continuity of Arnold's exponent'.

this conjecture was recently disproved by a counterexample of Varchenko

(about which I first heard from J. M. Kantor in this conference).

One of my aims when starting this work (a full exposition of which

will be published in [7]) was to prove Arnold's conjecture: I hoped

that the microfunction techniques were best suited (through "coherent

sheaf arguments) for proving such semi-continuity properties. In the

meanwhile, I realized that my results gave much better control on the

sheaf G (see Theorem 3) than on the sheaf ^°, so that I had better

hope to prove semicontinuity properties of "generalized" $ exponents defin-
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ed directly from G. A module defined in purely algebraic fashion, G

may be considered as kind of a "complexification" of 9%°, describing the

singular behaviour of integrals like (5) over arbitrary complex integration

cycles: one is thus led to define a "generalized" /? exponent, whose semi-

continuity is not disproved by Varchenko's counterexample (V.I. Arnold:

private communication).
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