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Holonomy Structure of Landau Singularities
and Feynman Integrals

By

Mikio SATO*, Tetsuji MIWA*, Michio JIMBO* and Toshio OSHIMA**

Introduction

Since the pioneering work of Landau and Nakanishi on general Feyn-
man integrals, it has been known that the singularities of the S-matrix,
causal Green’s functions and related functions are described by the
so called Landau equations. These Landau singularities were physically
interpreted as the macroscopic causality by the theoretical physicists work-
ing in S-matrix theory, and the notion of essential support was obtained
(Chandler-Stapp [3], Iagolnitzer-Stapp [5]).

In the branch of mathematics, on the other side, the theory of micro-
function has evolved and has been applied powerfully to the general
theory of partial differential equations (Sato-Kawai-Kashiwara [11]). It
contained the essential support theory as the singularity spectrum of a
function (i.e. its support viewed as a microfunction), and was far-reaching
because of its close connection with the theory of differential equations.
Namely the method of microlocal analysis, based on the theory of holonomic
systems, has provided a systematic way of handling functions with “natural
background” and found most effective applications to various problems of
mathematics, such as the theory of &-functions and Fourier transformations
(Sato [10], Kashiwara [6]). It was then recognized that the Landau
equations give holonomic varieties, which led one to the holonomicity
postulate of S-matrix and related quantities (Sato [10]). In the present
paper we shall study the holonomy structure of Landau singularities and
Feynman integrals from this standpoint.

First we review the notion of Landau varieties. In contrast with
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the usual presentation, they are defined as subvarieties of the phase space
T*C™. The importance of this point of view will be clarified in later
paragraphs. In § 2 we study the holonomy structure assuming that the
Feynman graph in question has only external vertices. An explicit for-
mula is obtained for calculating the dimension of a Landau variety consi-
dered in the momentum space. From the general consideration on this
formula we are led to the notion of pseudo-graphs (§ 3). For the most
general Feynman graphs, the situation is more involved. The Landau
variety is no longer irreducible nor manifestly holonomic in general. Re-
garding the mass parameters as variables, we show the existence and the
holonomicity of a unique irreducible component characterized by the con-
dition U(a) #0. In §5 we try to classify all the irreducible components
of a vacuum graph (a graph without external vertices) which have 2-
dimensional realizations. § 6 and § 7 constitute the analytical part of this
paper and are devoted to the study of Feynman integrals. A rigorous
definition, shown to be an equivalent of Speer’s ([13]), is given through
a compactification of the momentum space. As a result the following well
known property is established for a most general Feynman integral: its
singularity spectrum is confined to the positive-¢ Landau varieties (cf.
Chandler [2]). In the case of an external graph, the singularity struc-
ture is determined at a l-codimensional intersection of two Landau varie-
ties, where a microlocal version of the local decomposition theorem of
Speer-Westwater [15] is obtained by the aid of the quantized contact
transformation. An application to the generalized unitarity relations is

given in § 7.

§ 1. Landau Equations

In this section we recall briefly the definitions of Landau equations
and Landau holonomic varieties.

Imagine a classical collision process of elementary particles in 4-
dimensional space-time.

In Figure (1.1), two particles with 4-momenta —#; and — p, collide at

z; and produce %, and £k, then —p, collides with %, at x, and so forth.

1t An orientation o is a collection of numbers ;=1 assigned to each internal line /e l.
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Fig. (1.1)

Physical conservation law requires the following set of equations called
the Landau equations for the diagram of Figure (1.1):
(I) (energy-momentum conservation)

— 1= =k + ks, —Ds—ps= — kot ks, P4+P5:k1+k3,

(II)  (circuit condition) there exist positive numbers «; (=1, 2, 3)
such that

Ty— Xy =k, Ty— 1=k, Ty — L=k,
(III)  (mass shell constraint)
ki=m? for [=1,2,3.

Here k*=Fk—ki—kl,—ki; is the Lorentz metric, and the m,’s are the
rest masses of the corresponding intermediate particles.®

In general, a Feynman graph is a triple (G, Jy, 0) consisting of (i)
a linear graph G(either oriented? or non oriented), (ii) a set of indices
Jo=4{1, ---, n;}, called the set of external momenta, and (iii) a mapping
0: Jy—{1, -, n(G)} to the set of vertices of G. A vertex j of G is
called external if ¢7'(j)~¢. Otherwise it is called an internal vertex.

We shall use the following notations.
1n(G) =the number of vertices of G
N(G) =the number of internal lines of G
b,(G) =the number of connected components of G
b,(G) =the number of independent loops of G

x(G) =by(G) —b:(G) =n(G) —N(G)

t We work in the “off-mass-shell” frame, that is we do not require the mass shell
constraint for external momenta p;’s.
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0(G) =N(G) —b,(G) =n(G) —b,(G)

Consider the momentum space R’ equipped with the Lorentz metric
pz—‘:puz—’il p... We identify the dual space (the configuration space)
(R)* v:;cil R’ by this metric. For a Feynman graph (G, ¢)', Landau
holonomic variety is defined in the cotangent bundle T*R’™ as follows:
(the case 0=1id).

The positive-aw Landau holonomic wvariety is defined by

A;* =closure of {(p;z) ET*R™3a,>0, 3k,eR*(I=1, .-, N)

such that
™ m=sB=2(kik G=1, )
A ak=7(z) Eél[l:j]xj (1=1, -, N)
D k=m? (1=1, -, N},

where [l:j] denotes the incidence number, and the m;’s are given non
negative constants.” Equations (I), (II), (III) are called the Landau
equations for the graph G. In the complexification 7*C"™ we define the

Landau holonomic veriety by
AL =closure of {(p;x) €eT*C"|3a, € C— {0}, Ik’ (I=1,---,N)
such that (I), (II), (III) hold}.

(general case)

For a general graph (G, 0) we set ¢;(p) = Y, p; for each vertex
1€

j of G, which reduces to 0 if ¢7'(j) =¢. Then the positive-w Landau
holonomic variety for (G, ¢) is defined by

43 ,={(@;x) eT*R™3y;e R’ (j=1, ---,n(G)),
such that (¢(®);¥) €4;" and z:;=y,p (=1, -, m)}.

We call its projection to the base space L§,=n(4s,) (@:T*R™—>R™)
the positive-ac Landau singularity. A§ , and L§ , are defined in a similar

manner.

Note that these definitions do not depend on the choice of a particular

t In that follows we denote a Feynman graph simply by (G,0) or G.
" In §2, §3 and §4 we assume that G is massive, that is, 7,>0 for any L.
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orientation of G. For instance, 4z* is represented as A;" = |4, where
o

AP ={(p;x) €eT*R™3,>0, Ik, = R* with k>0

such that (I), (II), (III) hold for the orientation w},

and the union is taken over all the possible orientations of G.
Denote by G® (i=1,---,7) the connected components of G, and

define the space of overall conservation by

PO(G):{pECMOI Z P :O (izl,"', 7’)}.

7
o (j)Evertices of G()

From the energy-momentum conservation (I), it follows that LE ,C P,(G)
and 4§, may be regarded as a subvariety of T*P,. In this context we
sometimes call P;(G) or its conormal bundle T'# 4 C™ the zero-section.

Let (G,0) be a Feynman graph, I be a subset of internal lines and
G/I the graph obtained by contracting lines in I of G. Then we have
a natural mapping of vertices 7;:{1, -, 2(G)}—{1, -, n(G/I)}. The
(non-leading) Landau holonomic variety corresponding to the contraction
G/I is defined by A1 0

§ 2. Holonomy Structure (External Case)

In this section we determine the holonomy structure of Landau singu-
larities of an external graph using a contact transformation and the codimen-
sion formula.

We consider external graphs—graphs with no internal vertices.® In
this case we can eliminate the %k’s and «;’s from the Landau equation
(D, A1), (III) to obtain a closed expression for AC:

aHG (le, Ty n)’
@x,

¢¢ =closure of {(p; x) eT*C"|p;=

n(x)*#0 (I=1, -, N)}.

N
Here Hy(x)=))mV7,(x)’ the potential function as we call it, is a
1=1

multi-valued analytic function, homogeneous of degree 1. If we denote

' So we may assume o=id without loss of generality.
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the fundamental 1-form by w=> z;dp;, we have
=
0lse=d ( jleij) - Z-lpjdle,:aﬂ
= e

=d(n 2, ) - 10 gy,

j=1 j@xj j=10.7cj
— dH—dH=0,

so A, is in fact a holonomic variety. By the aid of the potential function,
we can define the following contact transformation. Let I,={1, ---, N}
be the set of internal lines of G and I be its subset. We denote by G,
the graph obtained by deleting lines in I;— I from G. Divide the potential
function into two parts Hg(x) =Hg, ,(x) +Hg,(x). Then the mapping
;)= (3; %) with
@-1 ﬁjzpj_aix, He oy Zj=2;
is well defined if 7,(x)?’s~0 for all l[&I,—1I, and the homogeneity of
H;, , shows that this is in fact a contact transformation. In terms of
the coordinate (%;Z), the defining equations for 4;° reads

%iZTHG,(f) (=1, -, m),

0Z;

which are nothing but the defining equations for 4§, Moreover, (2-1)
is also defined on 4§ ., for any I’C I, and transforms it onto Ag,r, s

These correspondences are illustrated as follows:
(2'2) AGC <> Agl

Ag/I’,rp <> A(C;',/[f,rl, (I’C[)

-~
~ X! Gr
/ \
v \
\
):l _“
Y
I‘ \\\\
\ Y Gr,
~ X T
-~ [ W\
\ ’ W
v,/ ‘_{\

Fig. (2.1)
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The graph G;/I consists of only isolated points, and AS,r, ., is the “zero

section”, i.e. the space of overall energy-momentum conservation:

Ayr={@;2)| 234 =0 and z;=2;

vertices of Gy(%)
for any vertices 7, 5/ of G/®}
where G,/ (i=1, ---,7) denote the connected compouents of G.. Hence

AL N A1, is transformed onto AE,NAS,r.,={(p;x) eT*C"peLf, x;

=x;, for any vertices j, i/ of G,}.

Theorem 2.1. A and A;:. intersects regularly, and codim
AL NAE);., in A€ =codim LE, in C"—vby(G,). By “regular intersec-
tion” we mean that
(1) A4 and AS);,., are non singular at a generic point Py* of AL N A 1.,

and

(11) TP.,+ (AGC N Ag/z,n) = TPD’AGC n TPO"Ag/I,rI-

Proof. As we have remarked in §1, LE,C Py(G;), and codimP,(Gy)
in €™ is equal to vb,(G,), hence the theorem follows immediately.
The following formula tells us how to calculate the codimension of

L. The proof is given in § 3.

Theorem 2.2. (codimension formula)
k
codim L€ =v%(G) + max A +v0,(GL))
1

Iy=I,Y. U1y, 5=

where L 1---I, runs over all partitions of the set I,
It is easy to rewrite the above formula to the dimension formula.

Theorem 2.3. (Dimension formula)

k
dim L, = min 1( —1+4+v0(Gr))

Iy=1H..Ur, &=
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A partition will be called good if it attains the maximum (or the
minimum) in the formulas. When the trivial partition I, is good, we
say that G is a primary graph. Note that this depends on the dimension
v of space-time. Since the union of two primary graphs with an internal
line in common is itself primary (see § 3), there exists a unique partition

of I, composed of all the maximal primary subgraphs of G.

Proposition 2.4. A maximal primary partition is good.

Proof. Any good partition consists of primary subgraphs, hence it
is a refinement of a maximal primary partition. Then it is easy to see

that the latter is also a good partition.

Example 2.5. (1-loop graph)

codim L =max(v+1, N), and G is primary if and only if y+1>>N.
Example 2.6. (2-loop graph)

codim L8 =max(y+1, N;+1, N,+1, N;+1, N, + N, + N, —p)

where N is the number of internal lines composing each arm (Fig. 2.2).

N2

N3

Fig. (2.2)

Proposition 2.7. codim L =vb,(G) +1 if and only if G is pri-

mary.

Theorem 2.8. 4 and AS);., have l-codimensional intersection

if and only if G; is primary.

By this theorem the holonomy diagram for a Feynman integral is

completely determined in the case of external graphs, except for the
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second type singularities which we do not discuss here.

Holonomy diagram for a 2-loop graph (v=2)

q %@% (D codim I;G: v

OQ——OO/\G\(D/ y+2

N

Fig. (2.3)

When 4,6 and A§);., have l-codimensional intersection, the relation be-
tween codim L€ and codim L§;,.,=codim LE,; is given by the following

theorem. The proof is given in § 3.

Theorem 2.9. Let G, be the maximal primary subgraph contain-
ing Gr. Then

codim L€ —codim L§); =codim L§,— codim L§, /;
=-1,0,1,2, ---.
In particular,

codim Ly —codim LE ;= —1 if and only if G;is maximal primary,

codim Ls8 —codim LE,;=0 if and only if G,/I is primarsy.

§ 3. The proof of codimension formula

In this section we prove the codimension formula (Theorem 2.2)
and give its several applications.

In proving the codimension formula, we also consider a real locus
A for a fixed orientation w. On 4°, the %&’s are uniquely determined

by p. For if ;=Y [1: i1k =3[1: 7]k for any j,

EIETONIA LS NIAIRS NN S

where @, >0, and %, k, are positive timelike y-vectors with the same
length m,. Applying Schwarz inequality, we get ., =F,. Moreover the
following holds:
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Proposition 3.1. (c¢f. Chandler-Stapp [3]) ki=Fk (p) can be ex-

tended as a continuous function on the closure Lg".

Lemma 3.2. LS C é) L&z -
1S1,

This lemma is proved by the same argument as in the page 853 of
Chandler-Stapp [2] where the case when G is primary is treated. So we
omit its proof.

Proof of Proposition 3.1. By the above argument %, (p) is con-
tinuous on L. Let p°€ Ls’, then by Lemma 3.2. we can find IC I, such
that po& Lgs,.,. Hence if lely—1, k (p) is also well-defined and con-
tinuous. For /€1, by an induction we may assume that there is a con-

tinuous extension &% (p) on IE If we put
b)) =p;— X [L:j1k (D) (=1, -, n)
T

then pE Ly implies p;=Lg,, hence pl(p(’)EL—ZI. Thus we can define
k(") =k (p;(»°)) (I€I) and obtain a continuous extension.
Denote by 7 the projection T*R™—R’", and its restriction to 4;° by

T.. The above argument shows
3-1) 7w, ={@;x) ET*R””]Zl[l:j]xj:‘czlkl (p) for some a;>0}.
1=

Since Ag” is holonomic, dim A, =yn and

codim Lg° =yn—rank 7, =min dim 7,7 (p).
PELg®

From (3-1) we see that dimx,”'(p) is the dimension of mobility of the
graph under fixed %’s. Furthermore this coincides with the corank of

dr, on 7w, ($), which indicates the

Proposition 3.3. Let L, be the set of points in Ly where
dim 7,”'(p) takes its minimum. Then
L —L,=the set of singular points of Lg".

Thus both the problems of determining
(i) codim Lg,
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and (ii) singularities of L4’
are reduced to calculating this mobility of the graph in a given configuration.

For example, take a triangle graph G with y=>2.

(a) j i (b)

general configuration singular configuration
Fig. (3.1)

In its general configuration, the graph has no mobility, apart from trans-
lation and similar enlargement, without changing the direction of lines,
so codim Ls=y-+1 (that is, G is a primary graph). But when all the
k’s are parallel (Fig. 3.1 (b)), the mobility becomes y-+2 and the cor-
responding p is a singular point of L4’

In order to calculate the mobility of a graph, we prove a theorem
of linear algebra. Before explaining it, it is useful to generalize the

notion of a graph and introduce a pseudo graph.

Definition 3.4. We call G=(USV,|I€L) a pseudo graph if U
and V;’s are vector spaces over a field K and %,’s are non trivial linear

mappings. For a subset IC I, we can construct two pseudo graphs;

restriction G;= (USV,/le])

and contraction G/I= (Us—Vilel,—I)
where Usr={x€U|n,(x) =0 for = 1}.

We only consider such a contraction that 7,|y,,#0 for any lel,—L

We have the following exact sequence

USV= @ V,5W-0

lel,
where (‘Cx),=m7,(x). If G is a graph and C=([j:1]) is its incidence
matrix, taking U=K"?®, V,=K’ and 7,(x) =>}[I: j]x;, we obtain a pseu-
j=1
do graph. In this context we use the folloviring notations.

0(G) =rank C, b,(G) =dimKer’C, b5,(G)=rank D.

To express the mobility of a pseudo graph we consider
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U.,(G) ={x€Uln.(x) |1 (x,) for any IE L},
dimg, 5, I=rank (U,,(G) > V),

where V;=@V,; and dimgI=min dimg,,, L.
ler

z, U
We also introduce Landau singularity for a pseudo graph:

o =Zariski closure of

([0 (®) i, € I P(V)|2€U, 7,(2)#0 for any L€ L}

where P(V,) =(V,—{0})/C*and [y, (x)]=n(x) mod C*.

Lemma 3.5. For a graph G, there exists an isomorphism:
L= T15
where L= {[7,(x)] 1€, Ez:]é_r[ S(V)|zxe UR, 7,(2)*>0, w, (7 (x)),>0}.

S(V,) is defind to be (V;®—{0})/R..

Proof. As a representative of an element of S(V,) we take %, such

that k£*=m,;>. Then the mapping

IIsvy - R™

1ET,
U]

U]
[kz] el = (lg [Z:7] k) F=lyenn

is well-defined and maps ¢ into L¢°, hence L4 into Lg". The inverse
mapping is given by Proposition 3.1.

In the above terminologies we have

The key to calculate the mobility is the following theorem.

Theorem 3.6. Let V be a finite dimensional vector space over
a field K, and V., -+, Vy its subspaces. We have
max  dim(Kz;+ -+ Kzy)

Z1EVy, - ZNEV W
Zytet .z:N=0
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= min (N—k+dim VNN Viop)

Iy=IU..UI}y

where V; denotes the sum Y V,.
lel

Taking Vy,; =V we have the

Corollary 3.7.
max (Kx;+--+Kzxy) =min(N—#I+dim V).
IcI,

€Yy, ZNEV N

A proof of Theorem 3.6 is given in Sato, Miwa and Jimbo [12] and we

omit it.

Theorem 3.8. (Dimension formula for a pseudo graph)
k

dim L= min 1(—1+0(G15))

Iy=I,U.Ul} £=

Proof. For a generic x, we have dimg , [,=N—dim (KD, (x,) +
<o+ KD9y(xy)), hence

dim ¢[,=N— max  dim(Ky, + -+ Kyy)
RN s

where W,=DV,. Applying Theorem 3.6 and (3-2), we have

dim IGC-—_O(G) +I I;niunul (—k+dimW10_Il ﬂ e m WID_IIc)‘

o=I;U..

k
Since we have dim Wy, N+ N Wy_p=—2 dimW, +dim W,
£=1
k
dim L€=>0(G) +8,(G) +min(—Y (1 +dimW3))
£=1
k
=dimV+4+min (3 (—1+0(G;) —dimV7,))
r=1

=min 31(~1+0(Gy)).

k
Since there exists an injective mapping .fao—él_[l Ig,s and dim Ig,ﬂ_<__
Pt
0(Gr,) —1 holds, the converse inequality is easy to see.
Note that the above theorem with Lemma 3.5 implies Theorem 2.3.
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Proposition 3.9. Let G(USV,|I€ L) and G(USV,|iel) be two
pseudo graphs, and assume that there exists a commutative diagram:

7

___>V

AR

[4

We assume that the induced mapping L5°—_LC is generically surjec-
tive. Then for any generic element x,€ U and for any element x€U

there exist te K* and yeU such that

n(x—eW)) =t (x) (€L).

Proof. From the assumption for any generic x,&€U we can take
t,=0 (I€1,) such that Z t (z) €7(0).
In other words for any ZOEIO

r;leag( dim(lg K () +7(0)) /7(0)
=max dll’Il(Z Ky, (x) +7(0U)) /7(0).
z+z,,

On the other hand the conclusion is that for any £& U there exist
t’s such that 7(x) =Y t;7,(x,) mod 7(U). In other words
i1,

max dlm(K’)?(.Z‘) +Z K, (z0) +7(0)) /7(0)

z,z,E0
=max dim (33 K7, (20) +7(U)) /7(0).
If we put Wo=7(U)/7(U) and W,=(V,+7(U))/7(U) and define
oWy, oo, W) = max dim (K, + -+ + Kw,)

Wy, EW e Wi, EW
Wy et Wy =0

we have

o(Wo, Wi, -+, W) =max dim (3% Koy, (z) +7(0))/7(0),

p(W0+mo, m: ) mo—l, mo+1’ "t Wl;,)
= max dlm(Z K (z) +7(0)) /7(0),

zcU,ZeU0 lq&lo

&O(WOy WO: Ma ) WN)
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=max dim (K7(2) +33 Kn,(z0) +7(0)) /7(0).

Then Proposition 3.9 is reduced to the following

Lemma 3010' If KO(WO: m: "t WN) :p(W0+ IIflu: le Tt Mo-b
Wi, o Wy) for any L€ I, we have o(W,, Wy, Wi, -+, Wy) =0(W,, W,
ooy WN)

Proof. Taking 1I,={0,1, ---, N} from Theorem 3.6 we have
o(Wo+W,,, Wy, -+, Wlo—l, Wit ot W)
= min (N—k+dimWi;_;, 00N Wi -1).

Iy=I,U...ul,
I,20,1,

Theorem 3.6 implies also that there exists a partition TOIELI"'LIT,%
(I,>0) such that
AO(W)’ m, R WN) :N_!_l_ko_]'diman-fl n b n Wio_iko .

From the assumption these two coincide, hence we have I, ={0}. If we
put Wy =Wyand I/={0, 1, ---, N+1} and again make use of Theorem

3.6 we have
O(Wo, Wy, -oo, Wx) =N+2— (k+1)
+dim Wy, N Wie ey N Wieer, 1 es N Wi g,
=0(Wo, Wy, =+, W),
Since o (W,, Wy, -+, Wy) o (W, W, W, -+, Wy) is trivial, we have com-
pleted the proof.

Making use of Proposition 3.9, we investigate the properties of maxi-

mal primary subgraphs.

Definition 3.11. If IC I, is a maximal subset in those which have
the same dimg,,J, then we say that I is (G, x,)-closed. If ICI, is
(G, xy)closed for a generic element x,&U, we say that I is G-closed

or simply closed.

Proposition 3.12. I is closed if and only if the natural inclusion
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-[g/l b Igln-l

is an isomorphism.

Proof. Easy.

Proposition 3.13. For I'CIC1,i) is equivalent to ii) plus iii).
i) I is G-closed
ii) I is Gp-q-m-closed

i) I—TI is G/I'-closed
Proof. Straightforward from Proposition 3.12.

Proposition 3.14. Let I be closed and x, be any element in U.

For a generic element x in U, (Gy), we have

(3-3) dimg, . Iy =dimg,, , I+ dimg,; (L, — I).

Proof. Let T be a generic point of U,(Gy,-r) N Uy, then we have
@3- 4) dimg I, = dimg, , I+ dimg,1,z (L) - I) .

Since I is closed, L&;—_L g,o_, is an isomorphism and we can apply Proposi-

tion 3.9. Thus for a generic x,& U, there exist y& Ug,; and £,5-0 such that

n(x—y) =t (x) (Iel—1D).

This implies that [7,(x)]icr,-r have not been restricted by the condition
z€ U, (Gy). Therefore 7,(Z) (!&Il,—I) have not been restricted by the
condition T€U,(G;,-r). Thus we have

(3-5) dimg,z,z(L—I) = dimg, (L —I).

Again using Proposition 3.9, we can show that for any '’ € U,(G;) there
exist ¥ €Uy, and 2’50 (I€I,—I) such that

7.2 =) =t'1.(x) (leL—1I).

Since [7,(x)]ies,-r have not been restricted, this implies that we can

choose y' €Uy, such that ' —3y' €U, (G) and hence

(3 . 6) dimGI_II= dj.mg‘z.I .
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(3-4), (3-5) and (3-6) imply (3-3).

Corollary 3.15.
i)  If Iis closed, dimpgl=dimg,I.
i) I is closed if and only if

(3 . 7) dimglo = dlmGII+ dimG/I(I;) - I) .
i) If I is closed and IDI, then
dimgly — dimg,; (L, — I') =dimg, ] — dimg,,. (I—I’).

Proof. Taking x; to be generic in (3:3), we have
dimgl, = dimg, I+ dimg,, (L, — I).
In general the following holds
dimg L, =<dimgI + dimg,; (L — I) <dimg, [+ dimg, (L — I).

Hence i) and the necessity of (3:7) are proved. To prove the sufficiency
of (3-7), take a closed subset I such that

dimgfz dlmgI and TDI
Then we have

dimg I, =dimgI + dimg,, (L,—I),

hence

(3-8) dimg,;(I,— I) =dimg,, (L,—I).

By Proposition 3.13 I—1 is closed in G/I, hence

3-9) dimg,; (I, —I) = dimg,; (I~ I) +dimg,z (L —1I).

From (3-8) and (3-9) we have dimg,;(I—1I) =0. This implies that I=1.
It is easy to see that Proposition (3-13) and (3:7) imply iii).

Definition 3.16 I is called maximal r-ary if the following two
conditions are satisfied:

1) dimgI<r,

ii)  If there exist I’ such that ICI” and dimg, I’ <dimg, I, then I=1".

Note that when G is a graph and =1, the above definition coincides

with the definition of a maximal primary subgraph.

Proposition 3.17. I is closed if and only if Iis maximal r-ary
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Sfor some 7.

Proof. Easy.

Especially a maximal primary subgraph is closed. Then it is easy

to see that iii) of Corollary 3.15 implies Theorem 2.9.

Theorem 3.18. Let G be a graph and I be a closed subset. Take
an orientation o of G which is compatible with a contraction of 1. Then

we have an isomorphism

Le"—>Li xLs;.

Proof. Let p be a generic element of L. We take a generic
configuration x of p. Since I is closed, we can take T and #=~0 (/
€I,—1I) such that 7,(Z) =t (x) (€L,—1) and 7,(Z) =0 (I€I). This
implies $ defined by

(3-10) b=

ey
is in Lg,;. It is obvious that p; defined by
(3-11) Py =pi— 23 [L:71&E(P)
IET,—1

is in Lg,. Thus (3-10) and (3-11) give a mapping

Ls® —> Lgx L.
Now take generic elements (pr, x;) E4g, and (P, T) EA4g;;. From Proposi-
tion 3.12, there is a generic configuration z;,—; of Gy,—; such that 7, (x;,_1)
J1.(Z) (I€I,—I). Applying Proposition 3.9 to the case where G=G/I,
G=Gy,_;, xy=x5,-r and x=x;, we can easily see that there exist a con-

figuration x of G such that 7,(x) =#7,(x) ((€I) and 7,(x) =7,(T)
(lel,—I) for some £,5#0. Thus if we define p by

(3-12) bi=p;+ 2 [R5 (D),
icl,—I

pisin L and (3-12) gives an inverse of (3-10) and (3-11)°

By the same argument we can prove the following
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Theorem 3.19. For a closed subset I there exists an isomorphism

LG”Ji)L“G’I X Lg:u-t .
For a maximal primary partion Iy=1IL1---| |1, teere exists an iso-

morphism

I?imz,1 XX L, .

§ 4. Oridinary Components of Non External Graphs

In this section we consider non external graphs and obtain several
topological formulas for an ordinary component of Ag ,.

If we consider general Feynman graphs with internal vertices, the
Landau variety 4§, is no longer irreducible, nor is it manifestly holonomic
as in the external case. Henceforth we regard the masses of internal

lines as variables and introduce ,ul=——%m;2, and its dual variable «;.

Thus a Landau holonomic variety A§ , is a subvariety of (p, #;x, &)-space
T*C™7" and similarly for A ,, A2, etc.

In what follows as for notations of graph theory we follow Nakanishi
[8]. Especially function U; of Nakanishi play an important role.

Let G be a connected external graph, and J be a non empty subset

of its vertices J;. We use the following notations.
J*=Jd,—J,
1= (x)jen Lr= @ien Tr= (T rer,
b= (Ps)per, = () icr, 4= ()icr, -

We also denote by G[J] the graph obtained by identifying all the vertices
in J. In G[J] the vertex thus obtained is denoted by j. We fix a
reference tree T in G[J]. Then j*€J* determines a path on T from
Jo to j*. We denote this path by Pj. and the incidence number of P
by [Pjs:1]. Let T* be the cotree of T, thatis, T*=IL—7T. Thenl*cT*
determines a circuit Ci« in G[J] which is characterized by C.. NT™* = {I*}.

We define 2¢,-(z)) = 27 [Ci:I][I:j]x;, which is zero if G is also
a circuit in G and .r,;—xielwezn

if Ci« is a path from j, to j, in G.

Now consider the Landau equations for G. The energy-momentum
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conservation gives for [T
(4'1) kz = Z I:Cl*: l]kl\s—l‘ Z [Pj*: l]P]# .

*cI* JreJs*

The circuit condition gives for I*&T*

(4-2) 2 [C: ok, = Ze,s (X))

1€,

Following Nakanishi we define

= Usrye (@) . .
Xw(af) = ;MECZJ [CZ]

where the sum is over all the circuits in G[J], and
W99 (@) :P:j%j* [P: QUgyyp(c)
where the sum is over all the paths from j, to 7* in G[J].
(4-1) and (4-2) gives
(4-3) (XD [C: Q[Cw: L) By

M ET* 1ET,

=2g,.(x7) “jéﬁ( l; [Cre: LT[ Ppe: L) By

From (4-1) and (4-3) we can express &’s (!& 1) as rational func-

tions of pm, xy and & Then we have the

Proposition 4.1. For I€TUT* we have

48  R(pmzna)= 3 V@

. X U:j]x;
ser Ugn(a) Dot fg VEZIO w (@271,

45 O (p 2 @) = — X (@ ke (B, 21, ).

00:;

Proof. First suppose that [ is not a cut line. Then we can choose

T so that [ET* and differentiating (4-3) by p; we have

Ok o S (U@ D [Cor: 1] [P il
apj* ¥ ET*

We have used [* instead of I, and U (a) = [Coe: I1[Ciar: L] 1o 1ere -
0k,

j*

Note that is a YyXp matrix and I, is the unit matrix. Then from
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p. 78 of Nakanishi [8] we have

akz* . l(*f*lfn) (Of)

0ps  Ugn(@

Differentiating (4-3) by x; and using (7-29) of Nakanishi [8] we
have

ok
@xj

= LZ [Z: 7] X ().

Thus when [ is not a cut line, we have proved (4-4).

To prove (4-5) first assume that we can take T so that I=I[%,

I'=1*T*. Differentiating (4-3) by ;. we have
a—k”—: —_ (Q_L (a) _I)Z*L*Ikpl .
00t~

Again using (7-29) of Nakanishi [8] we have (4-5).
The case when {/,l'} is a cut set or [/ is a cut line is easy.

Note that when #(J)=1, (4-4) is nothing but Theorem 9-4 of
Nakanishi [8].

Theorem 4.2. A is represented by a rational potential function

H(ps, x5, ) =j§ z;0; (e, Xy, L)

+ Z dith (PJ*3 Xy, a)
lel,
as

¢ =closure of {(p,,u;x, Q) |zp= — 0H ,
0P+

sza_H‘7 :u=Q'H's 6(179—0, UGD’](“):I&O}-
01‘,} o

Proof. AL is given by
Zs (B, Xy, @) =25, + Zz [P Lok, (P, 5, @),
Pj (pJ*’ Xy, a) = ; [l: j] kl (PJ*: Xy, a) >

1
U (B, x5, @) = — E‘kz (B, 25, )2
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The above theorem follows from the following

Lemma 4.3. Let us devide coordinates in C" into (x,v). Let
(&,7) be their dual variables. Assume that the image of a subvariety
A in T*C" into (x,7) coordinates is generically surjective. Then A
is holonomic if and only if it can be expressed as

0H

A= {(x,y; £, 77)“’:6_77’ = _%I;{}

by a suitable analytic function H(x,7) which is homogeneous of de-
gree 1 with respect to 7. H(x,7) is given by
H(z,7) =9-y(z, 7).

Proof. Easy.

Let us consider a graph (G, J;, 0) whose set of internal (external)
vertices is Ji; (Jez). Take a non empty subset JCJ,,;, and consider
H(pp, x5, ) with G as an external graph. Then the holonomic variety
given by a potential function H(O, pre—sint, Xz, &) is an irreducible compo-
nent of A§, This component is a unique one whose projection to «

space is generically surjective.

Definition 4.3. We call the above component an ordinary compo-

nent and denote by A .

Proposition 4.4. All the irreducible components other than A .4
are contained in () {Ugn(c) =0} when projected into o space, where J
runs over nonempgy subsets of external vertices of (G, 0).

We remark that A ,C A a holds, because U-functions are strictly
positive on the interior of 4§, Another important property of A is
that, on A .q the %’s are linearly dependent on the p;’s, and so are
the y;’s (the position vectors of internal vertices) on the z;’s (external
ones).

Example 4.5. (Fig. (3-1))

AL has 2 components (i) Afoq, where all the &’s are parallel,

and (ii) one that has a 2-dimensional realization.
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Fig. (3.1)

Example 4.6. (Fig. 3-2)
There are 6 components. (y=4)

(i) A€ a 2-dimensional realization.

(i) ~ (iv) 73
Y2
x

X N 3
(V) M Ye

X\ 3

s3
(vi) 5 Y2
X =12=X3

J3

X)
Y2

x2

M
Fig. (3.2)

3-dimensional realization
=Y, L—y and Z3—y,

are collinear.

4-dimensional realization.
x;—x; and x;—x; are

collinear.

3-dimensional realization.

All these components have rational potential functions with respect to

suitably chosen subset of variables (p, y;x, ).

is true for any graph G.

We conjecture that this

From now on we restrict ourselves to A§.qa- 1f we regard the mas-
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ses as fixed parameters, the leading Landau variety A§ o4 is not necessarily

present. For example, in the case of Fig. (3-3), A§ . is present if and

only if m,+m,=my+m,.?

n__nm

mz m4

Fig. (3.3)

Take a potential function H(x, «) where x is the position vector

of all the external vertices, and denote by 7, the projection T*{™*¥—C"

to the u-space. Then

0°'H 0°H >’

codim 7, (4§ ora) =N —rank (80{6’.2:  Dada

because u,= 0H holds.
0

Theorem 4.7.

0*H 0'H >
dadzx’ Bada
0*H >
0l

N —rank <

=corank <

=the freedom of a,’s with generically fixed k’s and x;’s.

This follows from the topological formula for Hessian of H:

' On the other hand, if we consider in the positive-c region, 4§,s may be absent for
special values of the masses as in the case of Fig. (3.4) with mi+m:=ms+ms (com-

municated by Professor Kawai)

ms

m2
Mma

Fig. (3.4)
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Theorem 4.8.

0’H 0’H

0x0x 0x0c z UG[J 1/C
t ! 7 = ———gﬁ‘—x
@, a’) H o*'H <c~¥> ; Ug[.]ex',]

dadx Oado

X 9oz, a3 &, &) e (x, a3 &', &)

Here n¢(x, a; T, &) =;[C: 0 (ak (x, ) —23[1: 71%;, and C runs over
7
all the circuits in G[J..].

Proof of Theorem 4.7. Let us consider in the region where a; >0
and ,e RX v —1R*"'. From Theorem 4.8 we have

2
OH 4o, = 37 Yoo (ST [C: Nk (z, @)
L aalaal’ ¢ UG[Jext] L

which implies

Ker (22 (2, ) = 4@l 33 [C: Dk (3, @) =0

for any circuit in G[J,;]}.

This is just the latter equality of Theorem 4.7.

The former equality is equivalent to

4-6) rank <%% , %%> =rank <aa;gi>.

From Theorem 4.8

. rr\ )
4.7 ‘(@) <§&%, aaa?;) <§>: Zg}%ﬁ%‘yc’
where

2= S[C: Nk (z, @)
and

yd =;[Ci I1(@ ki (x, a)—;[lij]x/)-
If aeKer< a;; then 2,=0 and (4-7) vanishes. This implies
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o (OH o
@ <aaax’ aaaa>

and (4-6) is proved.

Proof of Theorem 4.8. Straightforward calculation from Proposi-
tion 4.1.

We will call a graph (G, 0) Lendauian if the «,’s are uniquely
determined by z,’s and %’s on A§ .4 Note that our definition slightly
differs from that of Speer and Westwater [17].

If we regard the m,’s as fixed parameters, the Landau variety for
the graph of Fig. (3-3) coincides with the one for the following Landauian

graph if m;+m,=m,+m,.

m,

— >

m,

Fig. (3.5)

In general, for a non Landauian graph (G, ), we may always find a
(not necessarily unique) Landauian graph (G, 0;) such that A§ , cra=A4§,, 5, 0ra
holds. Therefore it suffices to consider only Landauian graphs as far
as the location of Landau singularity is concerned. Theorem 4.8 implies
the

Proposition 4.9. The following conditions are equivalent:
@) (G, 0) is Landauian.

(i)  ASoa is present for generically fixed values of the masses.

(i) rank( 02: g‘; )

In particular if codim L4 in €™ is equal to v5,(G) +1 (G, )
is necessarily Landauian, for otherwise at least one constraint among the
masses is added. Finally Proposition 3.1 has an extention of the following

form:
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Proposition 4.10. (cf. Speer-Westwater [15] Lemma 4.1.4.) The

k’s are rational functions on the irreducible algebric wvariety L o

Proof. We assume that codim L§ ;q=y+s. Fix an external vertex
Jo. Then on A§.a k’s are rational functions of @;’s and p,’s(j7,). At
a generic point on A, corank 0(&? -, ky)) /0(a, -+, ay) =s. From
Proposition 4.1 0(k? -+, ky") /0(t, -++, &y) is symmetric, hence without

loss of generality we may assume that
det 0 (kgs1, =+ k') /0 (s, ++, ) 70 .

Thus on A;° &y, =+, Xy can be solved with respect to , -+, s, s+t
-eo, Uy, P;(G5~7,). Hence uy, -++, 4 also depend upon these variables. If
we fix # and p, we can vary @, ‘-, & independently. This means that
Ui, =+, tts depend only upon fii, -+, Uy, £;(GF7) on LEora.  Thus feiq, *+

Uy, P;(j5=j,) form a local coordinate system on L o

H

Following Speer-Westwater define

U=closure of {(p, u, @) € C"™*|

V0, a0, Ue(o@#O}
aC(L

where

Ve, ma)= 33 Dmsip b2 o,

+Jjo G

It is well-known that the projection to (p, #)-space of U is L ya.
From the homogeneity V|;=0, hence

a,,V=av—3 g4,
i aCZL
vanishes on U.

At a generic point L§.q can be expressed as
N
Lgord: {(P’ fu) e Cm+N}ZlPJ':Oa .flz :f:?:()}
=
where f;(p, #)’s are polynomials of p and g such that detd(f, -+, f5)/

a(ﬂl, ) :us) #O' Then

2= (o, -+, as) <

0(firf) > s
0 (2 1ts)

df,
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N s
=;§ p;dp;+ LZ Gdp+ agla”dﬂ”

=s+1

also vanishes on U. So does .Q—%d,,,,,v. Since dp; (G7) and du, (s+1

<I<N) are independent on U, coefficients of dy,’s must vanish. Hence
o, (s+1<I<N) are rational functions of a;, .-, &, # and » on U. So
are k’s. But if we consider in a positive & region at generic (4, p) &’s

does not depend on «, so &’s are rational functions of 4 and 2.

Corollary 4.11. Let G be an external graph and G; be its maz-
imal primary subgraph. Then we have the following birational map

—~

LS —SLEXLE;.
About the codimension formula for a non external graph we have a
Conjecture 4.12. L§ .4 contains a non singular point of Lz® and
(4-8) codim L§ orq=codim Lg®

where G is an external graph corresponding to G. If G is Landauian,

(4-8) is valid with generic masses fixed.

§ 5. Vacuum Graphs

As an extreme case of non ordinary components, we consider graphs
without external vertices (vacuwum graphs) in this section.

The leading Landau variety for a vacuum graph G is defined by

A vac=closure of {(u; a) eT*C"| 3a;,5=0 (I=1,---,N)

(5-1) and 3k, e s.t.
N
D L-Zl[l:j]kl=0 G=1,--,n),

[Ci: Nak,=0 (=1,-,5(3),

M=

(ID

=1

(I1T) ﬂz+%kzz=0 (=1, -, N)}.

AE v is homogeneous both in the g’s and the a;’s, so we may also

regard the «,’s as base space variables, and the y’s as their dual ones.
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Hereafter the dimensionality v in the definition of A§... is taken to be
sufficiently large.
In terms of the loop momenta £;(i=1, -+, 5,(G)), the equations (I)

and (II) are written in the form

b:1(&)

(5-2) k= izﬂ[ci;zy%i,

k,
(Da'D) Q1,- ( ! ) =0.

by

Here D denotes the circuit matrix, and we have set

(e} =)

For a fixed value of a=a’, let corank Da”D=r and take a set
of linearly independent solutions K®, -+, K™ of the equation Da!D-K=0.
Then a general solution of (5-2) is given by setting

zizﬁim_am_*_m+I’<‘i(r)_a<r) (i=l, ---,b;(G)),

where the a¥’s are arbitrary y-vectors. This means that the vacuum
graph G has an 7-dimentional realization corresponding to a=a’'. Now
for any irreducible component A of Af .., its projection to a-space, L,
defines an irreducible component of the variety corank Da‘D =7 for some
7. Suppose we have on L a rational parametrization of the form «,=
A (Csiqy o0 Oy) s oy A= Ag(Assq, *++, Ay). In this case by Lemma 5.1 be-
low we can show that A4 is in fact holonomic, and the corresponding

potential function is given rationally by

s
H(ﬂl; Tty :u-h as+1’ °tt aN) :gﬂl'Al(as+b R aN)y

so that

0H
6’6&»

A={(CK;/J)ET*CN[az=%£(l=1,"',S),/JL'=— <l'=s+1,---,N>}.
Ui
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Now we explain the reason why A .. is holonomic. Let G be an
external graph corresponding to G. A§... is obtained by a restriction
procedure ;=0 from Landau holonomic variety Az®, hence the defining
ideal J of A§ .. satisfies the condition {J,J} CJ, where { , } means
the Poisson bracket. Moreover (I), (II), (III) of (5-1) imply

we J LQ;*CN-l_ @T*CN' dJ

where o is the fundamental 1-form on T*C”. Thus the following lemma

is sufficient for us.

Lemma 5.1. Let X be a complex manifold and mw:T*X—>X be
a canonical projection. Let JC Opy be a coherent Ideal defined by
holomorphic functions homogeneous of degree 1 with respect to the
fiber of w and let A=suppO/J.

Assume that

1) ol.=0

i) {JJrcd

i) m(JN7'0) is reduced at a generic point of its support.
Then Ais holonomic. Instead of i) if we assume a stronger condition

1) 0 Qrx+Opx-dJ
then J is reduced at a generic point of A.

Proof. Easy.

Before proceeding further, let us explain the motivation of considering
such an exceptional case. Firstly, it provides a good example of classifi-
cation of irreducible components of a given Landau variety. Secondly,
the vacuum graphs are considered to play a role in classifying non ordi-

nary components. We give an example of the latter.

Example 5.2. Take a self energy graph Gy as in Fig. (4-1).

X X2

P -pP

Gs: a self energy graph Gy: corresponding vacuum graph
Fig. (4.1)
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We consider the associated vacuum graph. Namely joining
the two external vertices by a new internal line N+1, we get a vacuum
graph Gy. By setting ky.;=p, any configuration of Gg can be realized
as that of Gy. It is shown that, on the corresponding component A of
AE, vac Cly+i is a rational function of the remaining a;’s, so we may take
a local coordinate of the form (&', #”, Uy+1) on A. Let Hg, (&', 4", tiy+1)

be a potential function for 4. Then ﬁss (zy, T, &, ") = Hg, (&', 1",

1 (xz"“xl)z . . . . . .
T T ann gives a potential function for Gs. In this way, classification
N+1

of irreducible components of a self energy graph is completely reduced
to that of a vacuum graph.

For a general graph, some of the components are obtained by
considering a vacuum graph where the external vertices are replaced by
lines joining each two of them.

In what follows we will decompose the variety defined by corank
Da'D=r into irreducible components in the case <2, and find their
rational parametrization.

The case =0 is trivial. In this case 4={y¢=0, a:arbitrary}. This
component is the ordinary component in § 4.

Before proceeding further we prepare some properties of U, Let
G be a connected graph and D be its circuit matrix and D* be its cut

set matrix. Then we define

Us(a) =det Da'D, a=<a1'-. )
(24
and
")
Us* (B) =det D*B'D*, B=| -, |.
By

The followings are well-known. (Nakanishi [8].)

Us(a) = Z aLl*"'az:x s

{11%, -, lbl *}:cotree

Ur@®=_ % Bubi,

Us* (B) =B1++BvUs <l> >

Us; (@) :al---aNUG< ) .
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Us(a) and Uy*(B) are seperately linear in each variable and are sums
of monomials of degree 6,(G) and p(G), respectively.

If we define Uz;=U;*=0 for a non connected graph G, we have
€)) Us(@) =a,Us- gy (@) + Ug (@),
Us* B =8 z’;/(t} ® + UZ;"_(;} ®.

G is called non seperable if it is connected and cannot be seperated

into two parts by decomposing it at one vertex.

Proposition 5.2. If G is non seperable, Us(a) is irreducible.

Proof. We prove by an iduction on N.

For any line [ in G, either G— {I} or G/{l} is non seperable. If
G’/{l} is non seperable, by an induction hypothesis Uy is irreducible
and so is Ug(a) from (*). Therefore assume that for any I G—{l} is
non seperable and Us-y is irreducible. If U is reducible, Ug,y, is divi-

sible by Ugs-y;, hence

Us(a) = (o + -+ ) U (g, -5 aw)
after re-ordering lines if necessary. By the same argument U’ contains
a linear factor, but U’ is irreducible. So we have

Us(@) = (aa+ -+ + i) (Qees + - +am).

This implies that G is a union of two simple loops which is a contradiction
with the assumption that G is non seperable.

Now we can give the results for the case r=1.

Theorem 5.3. When r=1 L is defined by Uz(a)=0. If G is
non seperable, Uy(a) is irreducible and there is only one component
of A§ ey that is, the conormal bundle of L={a|Us(a)=0}. Its ra-

tional parametrization is given by

= ——"

Sfor any L.
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Now we consider the case 7=2. Since we are dealing with a leading
singularity, we may use 8, =1/c; and D*B'D* instead of o and Da’D.
We assume that G is connected and 0(G)=2. We fix a reference tree
T, then we have a unique cut set matrix D* (Nakanishi [8], Theorem
2-29). We denote by U*(Zig:) a signed minor of D*B*D*. Note
that this is dependent on the choice of T. If a, b,c =T, we have D*R'D*

in the following form:

a b c
a .80,+"'
(+) b Bt

c Bc—,—...

where (8., B B. appear only in the places explicitly written here.

a-a,

Lemma 5.4. U ( b,

where the sum is taken over {l,---, l,_.} that makes a cotree in both
G— {ah B a’T} and G— {bb Tt br}'

" a,--a,
0+ ()= g5
12Oy

where the sum is taken over {l,:--,l,_,} that makes a tree in both
G/{al’ “':ar} and G/{bh T br}

Proof. We give a proof for U(g). Other cases can be proved
similarly.

Expanding the determinant we have

a [Cb:ll]"'[cb:lbl—l:‘ }
U<b>=2ml---azbl_l [Ce:l] - [Coily, ] l

[Ca. H Zl:l e [Ca : lb1—1]
x| [Co:li]-+[Co:ls,1]
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In general for a graph G and independent set of loops {Ci, -+, Cy}

it is well known that

Ci:l]---[Ci:L
[ 1' g [ 1' 0. ,_{ +1 if {11,"',lbl} is a cotree,

0 otherwise.

[Cb:: 4] [C;l:lbl]

Hence the proposition follows.

Proposition 5.5. UG*<Z>$O if and only if a and b belong to

the same non seperable component.

Proof. The necessity is trivial. To prove the sufficiency by Lemma
5.4 it is sufficient to show the existence of a set {[, -+, /,-;} such that
{l, ==y l—1,a} and {l, -+, 1l,;, b} are both trees in G. If {q, b} isa cut
set, we may take a tree in each connected components of G— {a, &} and

make a union as {4, -+, 7,_;}.

Otherwise there exists a cortree containing @ and 5. Then we have

the following

Lemma 5.6. If a, b belong to the same cotree and the same

non seperable component, there exist two loops C and C' such that

Coa,C8b; CPa, C2b; CNC£H.

We omit the proof of this lemma.
End of the proof of Proposition 5.5. Take aline [, in CNC’. If
we choose a tree {, -+, [,—;} in (G—{a, &})/{l;}, this satisfies the above

conditions.

Definition 5.7. A graph G is k-connected if and only if any two
distinct points can be connected by at least £ paths each two of which

have no common point other than two end points.

Note that if G is £ connected, for any line ! G—{{} and G/{l} are

£—1 connected and at least one of them is %2 connected.
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Proposition 5.8. If G is 3-connected, UG*<Z> is a non zero ir-

reducible polynomial.

Proof. We may assume that G has no self loop. If p(G) =2 or 3,
we can prove the proposition directly. If for some I€T — {a, b} G—{l}
is 3 connected, by the induction hypothesis UG*“”(Z) is irreducible. So

UG* <Z> =BZU2:/{L}<Z> + Uék_m(;)

is also irreducible. Now we may assume that G—{l} is 2 connected
and G/{l} is 3-connected for any €T —{a,b}. As 0(G)=4 we can
take distinct [, ,&T —{a, b;. By Proposition 5.5 UG"}{M<Z>_,=EO and by
the induction hypothesis UG"?(M(Z) is irreducible, hence if UG*(Z) is
reducible we have

Ut (&) = Bt Usia ( §)

=B, + ") UE"/{Z»(Z)-

Hence UG*<Z> =B, +) (B, ++-). This implies o(G) =3 which is a

contradiction.

Theorem 5.9. Let G be a 3-connected graph with no multiple
lines. Then the wvariety defined by corank D*R'D*=2 is an irre-
ducible variety of codimensions 8. If I, l,, I, belong to a tree,

Bi, By Bs can be expressed as rational functions of other (B;’s.

Proof. In general for a symmetric matrix A the variety defined by
r(r+1)
— 5

corank A<r is of ccdimensions less than Thus in our case

the codimension is less than 3.
First we prove that for a, 67T there exists a unique irreducible

component L such that U, 5|0, From

b

O=UG*<b

— * — %k %
) =Udwy=8.Udltan + U-tap/r
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we have §,= — U(g—(a})/{b}/UGﬂ;{a,b} .

Note that from the form of the matrix (*%) the right hand side involves
neither B, nor B, [» can be expressed likewise. If we choose ceT
—{a, b} we have
0wt (5) 80505 40 ()
G b ‘8 G/{c} 6 G—{c} b
From Proposition 5.5 and the assumption on G, Ug) (Z) #0 and Ug <Z>
#0. Thus B, can be expressed as a rational function of §;’s other than

Ba’ Bb; Bc-

Since
-1
(k) Udan=Ud/g < Z) Udiay < b ) Uéin < a>
c c

we can substitute §, in the expression of 3, and 8,. Thus we have an
irreducible component L of codimensions 3. By Proposition 5.8, UG*<Z>
is irreducible, hence the above component does not depend on the choice
of ¢. The expression for 3,(8,) thus obtained coincides with that obtained
from U;“(i) =0 (U{"(i) =O>, hence it is not identically zero.

Thus we have a unique component L such that Ugq,,|.#£0. More-
over from (#%x) we see that Ugjy 40, hence the component obtained
by the above method is unique. Since =2, on any component Ugj,5#0
for some a, 8. Thus we have proved the component is unique.

For a general graph G, consider a mapping ¢ of internal lines to
another graph G, such that for each line [, in G, ¢7*({,) is a self energy
part (that is, G;,=¢7'(};) is connected and adjacent to the rest of G by
two vertices a, b). This map induces in a-space the following rational

map §:(a, -+, &) > (s, «++, Ak,), where

A\
A &

Gr,=9"'(4o)

Fig. (4.2)
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o= Us, tie.m1()

Us,, (o)
Corresponding to each 7-dimensional irreducible component of Ag ., its
proper transform by @ defines an r-dimensional component of A, on
which each G;, has a l-dimensional realization. In particular, if =2
and G, is 3-connected with no multiple lines, the corresponding component
of G has a rational parametrization of codimensions 3. But this is not

quite sufficient as illustrated by the following example.

Example. 5.9.
% {=aj=a%=0
Fig. (4.3) (a) (A)

For the graph of Figure (4-3), its configuration (a) is obtained by
taking the triple line graph (A) as G;. Similarly the configuration (b)
of Fig. (4-4) is obtained by considering the non 3-connected graph (B).

¥ Y 4.

Fig. (4.4) ®

We conjecture that the above procedure gives all the components with
r=2, if we admit as G, the two exceptional graphs (A) and (B) in
addition.

§ 6. Feynman Integrals

The Feynman integral Fy ,(p) corresponding to a Feynman graph
(G, Jy, 0) is defined by the formula
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©1 For0)= - [ 1L @00( 3 p= 3T Uk
i dk

X )
leloklz—mlz'i‘io (27[,')”

although mathematically it is not a meaningful expression in two respects;
(i) the fibre of integration is not compact (ultraviolet divergence), and
(i) the product in the integrand @;, is not well defind in general if
some of the m,’s vanish (infrared divergence). So we begin by giving the
rigorous definition of (6-1) through a compactification of integration space
R (cf. Boyling [1], Fotiadi [4]). Following Speer [13] we introduce

generalized Feynman integrals with complex parameters A,’s:

62 Foulps D= [ [ T T #-T:ik)

dk,

Xz (k% —m?+10) ~% .
(k" —m,"+10) n)”

Throughout this section we may assume that G is connected with no
loss of generality.

Let X=(P")” be a product of N copies of a y-dimensional real pro-
jective space. We denote by (&, 5;):cs, its homogeneous coordinate, and
set X’ =(P")N——léJI {s,=0} TEIUI {k, =0}, where I;= {{E I,|m,;2c0} is the set

o

of massive internal lines. LaetM)N( be the monoidal transform of X along
the idealrg_r[a(sl)lel z"ciT;,I_zM(kw’ -, kyy_1)ier, where (s,),er(resp. (ki ... Bry_1)
ierr) denotes the homogeneous ideal generated by {s;|I&I} (resp. {ki.|l
erl, y=0, --,y—1}). X is a compact algebraic manifold. We also in-

troduce

V=the closure in R™X X of {(p,%,s) € R™XX'|
2, po=2lLlk/s=0 (=1, m},

ic€a1(f) le

Sir=1{(p, k s) eER™xX|s,=0(lc]), h,=0'€I)},

and denote by X(resp. S;7) the set 7 (VN (R™XX)) (resp.
7 (SN (R™XX))), where m: R™Xx X—>R™ X X is the projection.

Proposition 6.1. V is non singular.
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Proof. Take a point By, V, and set I'={{e I,— I/|k°=0}, I"={ls
I 5,°=0}, where (2 &, s°) =n(P,) denotes the projection of P,. Clearly
I'NI*=¢. Let G™ be a graph obtained by adding a new vertex oo to G
and joining all the external lines to co. We take an ordering of internal

lines of G* so that
L=I'={1,-, N},
L=1—I'UI"={N,+1, -, N},
I,= {external lines of G} ={N,+1, ---, Ny},
L=I"={N;+1, -, N},
L>=LUL L I,

By reordering lines if necessary, we take a homogeneous local coordinate

(%, 1) of X such that
k=t tyk, s,=1 (LEL),
ky,=k,, s,=t, (LEL),
k,=k,,, s,=tys1t, (LEL),
k=0 at P, (le,—Iy or LEL).

Finally take a tree 7" in G™ by choosing lines successively from N to
1 in the inverse order, and set T*=I1~—T, T;=TNIL, T;*=T*N1]
(j=1,---,4). Then, in a neighbourhood of P, V is defined by the

following equations:

Ell = 2 [Clx*: ll] tll*. : .tlx—lk‘h* (ll S Tl) 1)
IS

b= 3 [Cip: L]ty -tufupt 3 [Crpt LlEuy LTy,
Li*eT * l*eTy*

Pla = Z [Cll*: l3] tl,*' : 'the-h* + Z [012*3 ls] Ezz*
L*eT* l*€T,*
+ 2 [Cls*; l3]Pla* (lg S Tﬁ) R

ly*eTy*

k;h:( Z [Ch*:l“]tlx*"'tﬂ1kh*+l ;1' Lclz*:l4]Elz*+ Z [Cla*: l‘i]Pla*)'tN;-i-l"'th

L*el* 13*ETy*

+ Z [Cl;":l4]tlA*+1"'tlik_l4* (lLET‘i).

Lrer”
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Here C,+ denotes the circuit in G® corresponding to [*&7T*. Note that
[Cis: I]1£0 implies [*<I by the choice of 7. From (6-3) the proposition

is obvious.

Remark. Because k-0 for le (L,—I) I in (6-3), some of the
#’s cannot vanish at B, Therefore we may take an inhomogeneous coor-

dinate system (%, #,t") in the following way:

H tik, s, =1 (LeI’),

1EI

b=k, s,= 1 & @LeIv,

LEely,
klz=k{2’ Slgzl (ZZEIZ).
Here I'=1'2I ,2---2L'2L'=¢ and *=L"2L*'2-- 2T L%, ,=¢ are

chains consisting of subsets of internal lines, and if /=max I’ or min /', then
vert rery
one of the non zero components of %’ is normalized to 1.

Theorem 6.2. If ZZLGEZ for any IC 1, the integrand of (6-2)
has an extension as a hyperfunctzon density on R™xX. Integral
(6-2) is then well defined, and

(6 -4) SSFG,:: (P; Nc U AEE-I/)/I,:,::
ICI,-I’
I'Cly—Iy

holds.

Proof. In the coordinate of the above remark, the integrand density

of (6-2) is written in the following form:
(6:5) D5 =" @n) "0y TT (ks (&)t +i0) ™ TT 4414 TT |
€I, p=1 p’=1
Tl dk|T11 a2, TT | de 5],
eI, p=1 p’=1
where

0y = le:[‘[nz'a (ki — 1) tal;l';’a 0 (b, — 1)

fum | B [Ciai 1] (5un (O /5, @) LTy,
ﬁ2 = Z [Clx*: Zz] kll* + 2 [szt: lz] kl,* (lz S5 TZ) 5
1 *ET* L eT*
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flaz 2 [Clx*: ls] Sll* (t) k11*+ Z [Clz*: 23] klz*
L*ely* l*eTy*

+ 20 [Cip: L] D1y (LeTy),
ly*eTy*

_fz‘ = ( Z [Ch* . l4] Sl,*(t)kll* + Z [Clz* N l4:| klz* + 2 [Cla*: l“]pls*) . Sl‘(t)
L*eT* L*eTp* lg*eTg*

+ . *;’* [Ch*: l4] (Sh (t)/slﬁ(t))k;‘* (Z4ET4),
s, =11 ¢, Lel),
Lelf
s,@) =1 (Lely,
Sll(t)z H t’;/ (l‘,EI").
IR o

We have omitted primes for %,’s under the convention that the normalized
components are to be dropped from dk,. The exponents of |£], |£%] are
given by the formulae

(6-6) l‘-—ZZlL Vbx(ng)—l

ZEI

=2 33 h—vb(Gp) —
leI
where Qp: denotes the graph obtained by identifying all the external
vertices of Gyt In particular |7 | and [£%|% are well defind if ZZ',IIL%Z
for any ICI,, We now show that the product is well deﬁned at B,
To see this, it is suﬁic1ent to show that Z'Uz d(k—f) +1/2) Z] o, d(k?—

s (&Ym”) —LZ tdt, + Z th.dth, =0 at Po and o (B> — s, (%) mlz) 0 with

=0 (Ilel) 1mphes 'v, 0 a,=1,,=1%=0. Consider first the subgraph
Gy, From the condition above, we have ) [C:[]ak,=0 and Y] [I:j]4,

lely, eIy,
=0 for any circuit C and any vertex j of Gp. Since k70 and a;=>0,

this is possible only when a;,=0 (I€I¥) and v;=0 ((eI*NT). Repeat—
ing the same argument we see inductively that o, =0 (I€L), v, =
(I€T), hence 7,,=1%=0. Thus @, admits an extension to R™XxX.
Since X is compact, integration (6-2) now makes sense and we can
estimate the singularity spectrum of Fy , by applying the theory of integra-
tion of hyperfunctions [11]. From (6-5) we see that the contribution
from SSO;,N Sy 7w to SSFg,, is confined to the following set:
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6-7) {(p;x) eT*R™|3k, e R, 30,20 (;=I;) such that
Z [Cls* : ls] xla = O N

1T,

léa [Cip: bl = LEI; [Cip: L]asku,

au, (ki,—mi,) =0 (Lel),
k= 3 [Cis:l]bis LeTy,

IT=

Pls = Z [Clg*: lg] klz*‘l‘l *é . [Cla*: Zsjpza-k (Z;; ETg)}'.

Lo*eTp*
It is easy to show that (6-7) is containedin U A 1iy/1,e10-  This

I,—IiDIDIu
completes the proof of the theorem.

Remark. It is known that a function of the form (6-5) is a solution

of a holonomic system. See Kashiwara-Kawai [7], Theorem 1.

The A;-dependence of Fg, on each Landau singularity is also easily

seen from the proof, and we have

Corollary 6.3. F;,(p;2) is continued as a meromorphic func-
tion of A€C”, and on AG_riyjrueue it is holomorphic except for

(possible) simple poles at

S =18, (G) =0, =1, =2, - (IC T,
ez 2

S A — 08, (Q1) =0,1, 2, --- (I'cI).
=34 2

Remark. This is not the best possible estimate for the poles in A.
Precise results are obtained by Speer [14].

In order to define Fy, ,(p; 4) at 4,=1 (I 1), we follow Speer’s analy-
tic renormalization procedure. Since application of an evaluator does not
increase the singularity spectrum, (6-4) remains valid for renormalized
Feynman integrals. We shall show below the equivalence of our Fg,

to Speer’s generalized Feynman amplitude [13], which assures that this
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renormalization is also equivalent to that of BPH. Let (G, d) be a mas-

sive graph. Define

68 forrsD=reW 3 [ [ [T ds0a- 5800

perm

N ~ ~
T8I T (@)~ (V(p, ) —i0) 1,
fess
Here we have set

TG (l) — iN (2,/.[) v(N—n)e—nil(G) (__ Z') (v—l)b;(G)n.%vbl(G)r (A (G) ) lg 1" (Al) -1’

1
2(G)= 2] lr‘?l’@ &,
1E€T,
GL =G{1,2,...,1} s

and the summation extends over all the possible orderings of the internal
lines. The functions U(8) and V(p,8) are defined from the U-function
and V-function (Nakanishi [8]) by the following formula:

N ~
UG (05) lal’—->l91"'ﬁt = ;E_]; Blbl(al) U(B) >

- N
V(P, B) = (_ UG (CZ) - ﬁFZJ UGU ((1) q:9 ; + g alml'z) Idu—-)ﬁx"'ﬂt.

where g;= Y p; and G;; denotes the graph obtained from G by identifying
1€ 1(4)

the two vertices {7,7}. Note that U(8)=1+0(8) when 8,0 forle I,
[1.

Theorem 6.4. For a massive graph (G,0) we have

FG.U(P; ]\) :6( 1,;/ Pi) 'fG.o'(p; l)

Proof. Since both hand sides are meromorphic with respect to

2€ ", we may assume Re 4, >0 without loss of generality. For >0, set
0% ,(p, k; ) =¥ 2r)y ™M 1—[1 0(g; —LZI [Z:j]kl)z]‘l (k2 —m?+ic|k|®) MdE,
j= (S el

y—1
where |k*=3%/ In the same way as @ Oy may be extended to to
0

-~ u=
R™X X as a (holonomic) hyperfunction density. The proof goes in three
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steps.

Lemma 6.5. As a distribution on R’™ we have

Fo.o(p; ) =lim jﬂz, (b, B3 0).
elo X

Proof. The integration being a continuous operation, it suffices to
prove B ,(p, k; 2) =1im @ ,(p, k;A) on R™xX. In terms of local coor-
€lo

dinates @% , has an expression similar to (6-5):
(6-9) 0% ,=i" 2y ™0y T | 31" T (k*— 5. (2)*m* +ie| ko|*) 74| dRdr®|.
o=1 lEI,
From (6-9) one may show that @y ,=1im 0% ,, We leave the details to
elo

the reader.

Lemma 6.6.

L 05, (p, b 1) = j 0. (5, %5 2).
X RN

Proof. Note that after eliminating the delta functions the right hand
side reduces to an absolutely convergent integral for Re 4, >0 apart from
the overall delta function. Since Re1%>0 in (6-9) we may regard @, ,
as a continuous function on V, so it is easy to see that there is no

contribution from X —X'=3.

Lemma 6.7.

©10) [ 05,0 ks 0 = ((+ie) Qi) ) 9P O7,D) -3( 5] £

. % f f i[ldﬁz'ﬁ(l— :‘i BB ji;[l 31‘("‘)‘1(7(3) —v/2

perm

~(V (2,8 ~ie Vo (5, D) ',

—~ y-—-1
where V., (b, 8)z=Us(x) _li;j UG-;](CK) (QiQJ‘)E[a;l—’ﬁp"ﬁp and (qq")g= ﬂZﬂq/JQuI
denotes the Euclidean inner product.

Proof. After applying the Feynman’s parametric formula to the left



HOLONOMY STRUCTURE OF LANDAU SINGULARITIES 431

hand side, we divide the domain {& € R"|®,=>0, Z“z—l} to N! sectors of
the form 0o <a,<---<ay<1, change the coordmate by a,=p:8
and integrate over 4. All the calculations can be carried out within the

category of absolutely convergent integrals, and finally we obtain (6-10).

In (6-10) V,.(»,B)5 is a positive definite quadratic form of g, hence
Lm(V(p, B) —ie V. (8, B)5) @ = (V(p,8) —i0) *®. From Lemma 6.5,
-0

Lemma 6.6 and Lemma 6.7 follows the theorem.

Corollary 6.8. By a suitable choice of an evaluator, the follow-

ing condition is satisfied simultaneously for any massive graph (G, 0):

(6-11)  fo,(p) =(—)"P%Cf, (p) in a neighbourhood of p=0.

In fact, from (6-8) one easily checks that the standard choice will do.

_ 1 dl, £
W (f) = NI ,?"@ zgr., §Oa<u 2ni (=1 Qw=1)

Next we “quantize” the contact transformation of § 2. In what fol-
lows G will denote an external graph. The holonlmic system satisfied by
the generalized Feynman integral Fy ,(#; A) on its leading Landau variety
Ag* is given as follows (Sato [10]):

— D A0 (D)) Fo(p; D=0 (j=1, ),

where @,* (z) = :7”7‘(("?2 L”_A, (m Vg (X)),

(the branch of square root is taken so that 4/z =1 at 2=1),

.d
L—.;——lt (t) =1 22 log F-é—lz (t)’

F"—lt (t)——e—”t‘u “2F0<v;1 /11, 5 +Zz, 2“;1;>

Its order and principal symbol are

order=2 (X 4,+v1(G)),
2 ieg,
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principal Symbol: H (ml \/m) __u—zlz '\/E.i )
iEl,

With the aid of this system, we define
(6-12) Pi=p;— 20 [L:7]10*(—iD,),
1€To-1

D'ﬁ :D

At TR
This is actually a “quantized” contact transformation (QCT) correspond-
ing to (2-1) of § 2, and realized by an integral transformation with the

kernel function
K(,P9 25) =Fﬁ‘1‘,-t(p—§)'
The transform of Fy by (6-12) is Fg, in other words

(6-13) Fo(p; ) = jFa,o-,@—p; D Fo(3; N dP

holds on U AG/[1 To see this, note that on Agyr,q, (LycI) there are
no contnbutmns from SI., -1, so that in the definition of Fg(p;A) we
may restrict the region of integration to Xy;—Sy,_;= (R)" 7 x X, It is

now easy to see that on Xe—gz,,—z
(6-14) Bo(p, b3 1) = jwa,n-,@—z, ks 1) 00, (3, ks D) dp

holds. Integration with respect to £ in Xg_gja_[ gives (6-13).

So we have the correspondences just as in (2-2):

(6.15) FG > FG[;

FG/I.rI <> FGI/IU H ( Z .7'),

iS1 jeurh)
where G/(1<i<r) denotes the connected components of Gy, and v(G;’)
the set of vertices of G/. On the “zero section” Ad,r., Fg is of the
form f5,(%; /1)]_—_[( Z pj) with an analytic function f;(#;4) (the gener-
i=1 jcv(G

alized Feynman amphtude) By (6-12) this multiplication operator

So,(p; A) is transformed into a general O-th order microdifferential operator.

Theorem 6.9. On Af;,., the following holds:
(6-16) Fo( ) =fou(py— 3 [1:710%(=iDy); ) - Founey (03 D-
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This is a microlocal version of the local decomposition theorem disscussed
in Speer-Westwater [16]. Note that the right hand side is well defined
since the 0-th order operators 'ﬁj:pj—l IZ I[l:j]@;*(—iDp) G=1, -, n)
commute each other. Extension of abovi ;;sults to the variable mass case

is straightforward. We merely list up the results:

(holonomic system)

(b;— 20 [:71Duin(Dp)) Fe(p, 15 2) =0,

lel,—1I
(et Dam @+ (=% = 1) D32 ) Fa(p, 15 0 =0,

n

m(Dp) = ;L‘ [l:j]Dpj-

=1

(QCT)
bi=0;— ze;-z [Z: 71Dz (Dy),
i+ = D (D) + <zl—1 —1)1);; Gf lel,—I),
fy= 2 2
yn Gf 1),
Dfu=Dp; ’ Dﬂ; =Dm .
(kernelffunction)
K (p,5, 4, ) =Fe;,_;(p— 3, teay-1—Ur,-0) 0 (r— ),
Ur= () er -
(correspondence)

As" < 4§, X {conormal bundle of Ji;,-,=0},

FG(P: U ) < Fal(ﬁ, T A) 6([‘1.,*1) .

Theorem 6.9’. On Ai;.,
(6:16)  Fulp, D =fo (=, 2 (D7D, 15 )

. FG/I,.-I (», HUr,-15 A.

If L. is a hypersurface (ie. codim L§; ., =v-+1), we can replace
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the operator fg (P, #;2) by a multiplication of an analytic function (cf.
Kashiwara [6]).

Theorem 6.10. (Speer-Westwater [15]) If G/Iis primary, we

have near a generic point of Ly, ., the decomposition
Fg(P, ﬂ; Z-) :A(P: ﬂ; l) FG/I,rI(Py :ulg—I; l) +B(p’ /«t; ]')’

where A(p, 1;2), B(p, 1; ) are analytic functions such that
A, 13 0) ]LZ/I," =fo,(b; —ZEZ [2: 1k (B, w), 113 )

I,-1

holds. Here k,(p, 1) is the rational function defined in Proposition 4.10.

§ 7. The Generalized Unitarity Relations

As an application of QCT in the previous section, we shall prove
a thecrem which provides a consistency check of the generalized unitarity
relations for time ordered Green’s functions (Nishijima[9]) and perturba-
tion theory.

Let G be a massive connected external graph. Given a division J;

=J1J" of the set of vertices, we define
@D Fre@ = [ [ Fe(o?) ILOCS: 110 200 (b =)
RY(#8) =]

T dk
FG' - ¢ ’
X Fo(p7) [1 @)

with p;"= + (p;— 2 [l:j]k). Here G~ denotes the full subgraph cor-
es

responding to J=, Fg the renormalized Feynman integral and S the set

of lines which do not belong to G*.” The orientation of S is chosen

arbitrarily (Figure 7.1).

Fig. (7.1)

1) #S denotes the number of elements in the set S.



HOLONOMY STRUCTURE OF LANDAU SINGULARITIES 435

Since for any p the fibre of integration is contained in the compact set

{kER”#SIZs:[S: Z]kl=2’pj, [S: Nkw>0, Bi=m? (I€S)}, (7-1) is always
1= jer

well defined.

Theorem 7.1. If the analytic renormalization is performed so
that (6-11) is satisfied for any G, we have

(7-2) 2 ()#¥Fe(p) =0,

Jo=d_IJ-

where the summation extends over all the divisions of J,.

Remark. (7-2) is also valid for non external (G, ¢) provided the
substitution F;-(q) | o is well defined.

D3]
=

qj 1=
ica1(j)

Proof. If we denote the left hand side of (7-2) by Y%, SSHg is
contained in the union of various mixed-& Landau singularities. We show
inductively from the leading singularities that ¥;=0 on each of them.

Consider first a connected component 4 of a leading singularity. We

represent it by a graph as in Figure 7.2:

) —_—e a,; >0, k;>0
X k3 .
\t - a,>0, k<0
-1 :}———x— Py _
Wi S @, <0, >0
1+
p .
X2 e a; <0, k£, <0
P2
Fig. (7.2)

For example, the graph of Figure 7.2 represents the component {(p;x)
eT*RY3BL R, 3,eR (I=1,2,3) such that (I) p,+k+k=0, p.—k
—k=0, pv+k—k=0, () akl=x,—x, a;<0, k=x—x; >0,
ks =x3—x;, >0, (1) Eki=m>(1=1,2,3), k>0, kyn>0, kyw<0}.
There is at least one vertex j, to which only the dotted lines are incident.
For, if not, we could find a circuit of Figure 7.3. Then the circuit

condition Y \[C:l]ayk, =0 would be incompatible with the sign of k.
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/““\\

Fig. (7.3)

Take a term Fr, in & and suppose, for instance, j,&J*. If we rewrite

it as a sum of 2" terms using

i z z
- =0k ——+O(—ky) —— |
B —m*+i0 (ko) Kk —m?+10 (—&) B —m?41:0
[ 2 .2 — Z _ i
0 (ko) 2m0 (K =) =0 (o) <k2—m2+i0 kz—m2~z'0>’

we observe that only one term survives on 4, and that this term cancels

out with the corresponding one in Fy_;,.1 59 (Figure 7.4).

Fig. (7.4)

Next we assume F3=0 on any of the connected components of A s,

(I'&1I), and prove that it also vanishes on Agirs. Applying QCT (6-12),
S is transformed to the form ¢ (%) XITI 0( Zt %), where by the in-
duction assumption ¢(%) is an analy‘c;(::1 fujneggf);l with no singularities.
Note that if SNG/=¢ for some i, then the transform of Fy, does not
have its support in an neighbourhood of 3=0. If SNGf=¢ (1<i<r),
we may apply the local decomposition (Theorem 6.9) to Fj;. Then
condition (6-11) assures the pairwise cancellation in a neighbourhood
of =0 just as in Figure 7.4, where the signed vertices are replaced
by the signed bubbles representing the contracted subgraphs G/. Hence
by the unique continuation property of analytic functions we conclude

g($) =0 on any of the connected components of Agr. This completes
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the proof of the theorem.

The generalized unitarity relations, regarded as an identity of formal
power series (the perturbation expansion of t-functions), are equivalent
to a set of equations which are linear combinations of (7-2). Hence
Theorem 7.1 provides a perturbation theoretical “proof” of unitarity. Our
discussion is only formal, though, since we have not taken into account

the delicate problem concerning renormalization.
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Errata

A Correction to: “Holonomy Structure of Landau Singu-
larities and Feynman integrals” (Vol. 12, suppl. 1977, 387-438)

by

Michio JIMBO

The following lemma should be inserted between Lemma 6.5 and

Lemma 6.6.

Lemma. lim 0% , =04, .
elo

Proof. Denote by V¢ a complexification of the manifold V, and

set
r u . y—1
=TI (£tD% 11 RP—s@)'ml+ie 20 ki),
p=1i IEL, #=0

where ¢2>0 and %, k, stand for polynomial functions on V¢ (see Pro-
position 6.1 and the Remark following it). For a point P,e V we set
I={{cL|k}—s5(@)m?=0 at B}. Since the product (6.5) is well
defined, we may find a complex neighborhood £ of P, and an open con-
vex cone I so that for any o €U=80N V and I'’E€I there exists C>0
such that

Im(££5)>C|Im 2/>0,
Im (B —5.(2) 'm?) >C|Im 2|>0 (z€ 2N (o+il"), Ie])

hold. Here 2z denotes a local coordinate of V€. For any /&I, noting
k=0 at P, we see |Rek| is bounded from below, hence replacing @ by
2N {z| |IRe k|*>|Im £, |*((cI)} we may assume Im(szﬂ)>0 on 2.
Hence f:(¢=0) is holomorphic in 2N (U+iI"), and We have

|fe(2) fo(Z)l—H | £25]%] j dﬁ— H (& — 5. (&) *m, +i0§k?ﬂ)‘“l

<eC’ 3 TT 1Im (R — s (8) ') |~ o0

I€1, I’EI,

* Research Institude for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
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=eC”|Im 2|~*
for some C”, L>0 independent of e. Similarly we have |f:(2)]|
=C”|Imz|7%. By the same argument as in Nishiwada [1], it then follows
that f,(z+i0I") exists in D(U) and limf(x+i0I) =f(x+i0T).
&0
Writing 0%, and @, as linear combinations of 0%:f¢(x+70I"), we have

the lemma,

Reference

[1] Nishiwada, K., On local characterization of wave front sets in terms of boundary
values of holomorphic functions, to appear in Publ. RIMS.






