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Holonomy Structure of Landau Singularities
and Feynman Integrals

By

Mikio SATO*, Tetsuji MlWA*, Michio JlMBO* and Toshio OSHIMA**

Introduction

Since the pioneering work of Landau and Nakanishi on general Feyn-

man integrals, it has been known that the singularities of the S-matrix,

causal Green's functions and related functions are described by the

so called Landau equations. These Landau singularities were physically

interpreted as the macroscopic causality by the theoretical physicists work-

ing in 5-matrix theory, and the notion of essential support was obtained

(Chandler-Stapp [3], lagolnitzer-Stapp [5]).

In the branch of mathematics, on the other side, the theory of micro-

function has evolved and has been applied powerfully to the general

theory of partial differential equations (Sato-Kawai-Kashiwara [11]). It

contained the essential support theory as the singularity spectrum of a

function (i.e. its support viewed as a microfunction), and was far-reaching

because of its close connection with the theory of differential equations.

Namely the method of microlocal analysis, based on the theory of holonomic

systems, has provided a systematic way of handling functions with "natural

background" and found most effective applications to various problems of

mathematics, such as the theory of ^-functions and Fourier transformations

(Sato [10], Kashiwara [6]). It was then recognized that the Landau

equations give holonomic varieties, which led one to the holonomicity

postulate of ^-matrix and related quantities (Sato [10]). In the present

paper we shall study the holonomy structure of Landau singularities and

Feynman integrals from this standpoint.

First we review the notion of Landau varieties. In contrast with
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the usual presentation, they are defined as subvarieties of the phase space

T*Cvn. The importance of this point of view will be clarified in later

paragraphs. In § 2 we study the holonomy structure assuming that the

Feynman graph in question has only external vertices. An explicit for-

mula is obtained for calculating the dimension of a Landau variety consi-

dered in the momentum space. From the general consideration on this

formula we are led to the notion of pseudo-graphs (§ 3). For the most

general Feynman graphs, the situation is more involved. The Landau

variety is no longer irreducible nor manifestly holonomic in general. Re-

garding the mass parameters as variables, we show the existence and the

holonomicity of a unique irreducible component characterized by the con-

dition U(a) E£ 0. In § 5 we try to classify all the irreducible components

of a vacuum graph (a graph without external vertices) which have 2-

dimensional realizations. § 6 and § 7 constitute the analytical part of this

paper and are devoted to the study of Feynman integrals. A rigorous

definition, shown to be an equivalent of Speer's ([13]), is given through

a compactification of the momentum space. As a result the following well

known property is established for a most general Feynman integral: its

singularity spectrum is confined to the positive-^ Landau varieties (cf.

Chandler [2])0 In the case of an external graph, the singularity struc-

ture is determined at a 1-codimensional intersection of two Landau varie-

ties, where a microlocal version of the local decomposition theorem of

Speer-Westwater [15] is obtained by the aid of the quantized contact

transformation. An application to the generalized unitarity relations is

given in § 7.

§ 1. Landau Equations

In this section we recall briefly the definitions of Landau equations

and Landau holonomic varieties.

Imagine a classical collision process of elementary particles in 4-

dimensional space-time.

In Figure (1. 1), two particles with 4-momenta —pl and —pz collide at

xl and produce ki and k2, then — pz collides with k2 at xz and so forth.

n An orientation a) is a collection of numbers a)i=±l assigned to each internal line
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Fig. (1.1)

Physical conservation law requires the following set of equations called

the Landau equations for the diagram of Figure (1. 1):

(I) (energy-momentum conservation)

-Pi-pz = k1-\- fa, -A -A = - k2 + &3, A + A = ki + ki,

(II) (circuit condition) there exist positive numbers Qti (Z = 1,2,3)

such that

(III) (mass shell constraint)

k? = m? for Z = 1,2,3.

Here kl
2 = kl0 — kl1 — kl2 — klz is the Lorentz metric, and the m^s are the

rest masses of the corresponding intermediate particles. (t>

In general, a Feynman graph is a triple (G, J0, (T) consisting of (i)

a linear graph G (either oriented(tt) or non oriented), (ii) a set of indices

J0={1, •••9nQ}9 called the set of external momenta, and (iii) a mapping

ff: «70-» {1, • • • , n(G)} to the set of vertices of G. A vertex j of G is

called external if (T"1^)^^- Otherwise it is called an internal vertex.

We shall use the following notations.

n(G) =the number of vertices of G

N(G) =the number of internal lines of G

&0(G) =the number of connected components of G

bl(G) =the number of independent loops of G

t We work in the " off-mass-shell" frame, that is we do not require the mass shell
constraint for external momenta p/s.
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p(G) =N(G) -b,(G) =»(G) -£0(G)

Consider the momentum space Rv equipped with the Lorentz metric

We identify the dual space (the configuration space)
A=I

( .R") * with Rv by this metric. For a Feynman graph (G, (7) f, Landau

holonomic variety is defined in the cotangent bundle T*Rvn° as follows:

(the case 0~ = id).

The positive-a Landau holonomic variety is defined by

4,+ = closure of {(/>; x) ^T*Rfn\3al>0, ^kl^Rv(l = l, • • - , N)

such that

(I) /V

(II) *i

(III) *,«

where \l'.f\ denotes the incidence number, and the mi's are given non

negative constants. (t> Equations (I), (II), (III) are called the Landau

equations for the graph G. In the complexification T*Cvn we define the

Landau holonomic veriety by

4*c = closure of {(P; x} ̂ T^C^a^ C- {0}, 3^eCv (/ = !,-, -ZV)

such that (I), (II), (III) hold}.

(general case)

For a general graph (G, 6) we set qj (p) — ^ Pi for each vertex
JGfT-Kj)

j of G, which reduces to 0 if 6 1(j) =<j). Then the positive-^ Landau

holonomic variety for (G, (f) is defined by

such that (q(p) ;v) ̂ AG
+ and xt = yffW (i = 1,

We call its projection to the base space Z/J ff = 7T (^J ff) (7r:T*Rvn°->Rvn°)

the positive-a Landau singularity. A% ff and Lg ff are defined in a similar

manner.

Note that these definitions do not depend on the choice of a particular

f In that follows we denote a Feynman graph simply by (G, cr) or G.
ft In § 2, § 3 and § 4 we assume that G is massive, that is, wz>0 for any I.
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orientation of G. For instance, AG
+ is represented as AG

+ = [_) A^, where
0)

^/-{(£;x)eT*in3^>0, ^eH" with klo>Q

such that (I), (II), (III) hold for the orientation a)},

and the union is taken over all the possible orientations of G.

Denote by G(l) (z = l, • • • , r) the connected components of G, and

define the space of overall conservation by

P0(G) = {/>eC'"°| ^ p} =0 (f = l,-,r)}.
<r(j)eE vertices of <?(*)

From the energy-momentum conservation (I), it follows that LG, ff C P0 (G)

and Aa,ff may be regarded as a subvariety of T*P0- In "this context we

sometimes call PQ(G) or its conormal bundle Tpo(G^Cvn° the zero-section.

Let (G, (7) be a Feynman graph, I be a subset of internal lines and

G/I the graph obtained by contracting lines in I of G. Then we have

a natural mapping of vertices r/:{l, ••• , rc(G)}->{!, • • - , n(G/I)}. The

(non-leading) Landau holonomic variety corresponding to the contraction

G/I is defined by A^/i^^.

§ 2. Holonomy Structure (External Case)

In this section we determine the holonomy structure of Landau singu-

larities of an external graph using a contact transformation and the codimen-

sion formula.

We consider external graphs—graphs with no internal vertices.(f) In

this case we can eliminate the ki s and a^s from the Landau equation

(I), (II), (III) to obtain a closed expression for A0
C:

AB
C = closure of I (#; x) eT*C'"|/>, = -^ 0=1, •",»),

I dx}

N

Here HG (x) = ]T] ml v
7^ (x)2, the potential function as we call it, is a

1=1
multi-valued analytic function, homogeneous of degree 1. If we denote

t So we may assume 0=id without loss of generality.
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n
the fundamental 1-form by a) — ̂ Xjdpj, we have

dH\-— -

= dH-dH=Q,

so AG
C is in fact a holonomic variety. By the aid of the potential function,

we can define the following contact transformation. Let J0={1, • • - , N}

be the set of internal lines of G and 7 be its subset. We denote by G/

the graph obtained by deleting lines in IQ — I from G. Divide the potential

function into two parts HG (x) = HGlQ_j. (x) + HGl (x) . Then the mapping

(/>;*) -»(?;£) with

(2-1) Pj=Pj

is well defined if TJi(x)2=fcQ for all lE:IQ — I, and the homogeneity of

HGlQ_z shows that this is in fact a contact transformation. In terms of

the coordinate (p;x), the defining equations for AG
C reads

6l(ft 0= !,-,»),

which are nothing but the defining equations for AGr Moreover, (2 • 1)

is also defined on AG/I'jTl, for any JXC J, and transforms it onto AGl/I,, r//.

These correspondences are illustrated as follows:

(2-2) AG
C <-» AS,

Fig. (2.1)
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The graph G//J consists of only isolated points, and AGl/IjTl is the "zero

section", i.e. the space of overall energy-momentum conservation:

^Sr/.r.r, = {(£;*) I .2>/ . =0 and Xj=Xj,
vertices of £?/(*')

for any vertices j, f of G/(l)}

where G/(t) (z = l, '~,r) denote the connected components of G/. Hence

AG
cnA%/I>ri is transformed onto A^ P, ^/j. r/ = {(/>; *) e T* Cm \p GE L«g, ^y

= .rr for any vertices j, f of Gr
a)}.

Theorem 28I0 AG
C and A%/I>ri intersects regularly, and codim

A^PiAa/i,^ in AG
C = codim L%x in Cvn — yb0(G^). By "regular inter sec-

tion" -we mean that

(i) AG
C and AG/I,^ are non singular at a generic point P0* of AG

C

and

(ii) TP.t (AG

Proof. As we have remarked in §1, Z/^cP0(G/), and codimP0(G/)

in C""7" is equal to vbQ(G^) , hence the theorem follows immediately.

The following formula tells us how to calculate the codimension of

LG
C. The proof is given in § 3.

Theorem 2e2e (codimension formula)

codim LG
C = M (G) + max J] (1 + V^ (G7 ) )

/o^U.-.U^ «=1

where /jLJ-'LJ/A; r^^^ oz;^r a/Z partitions of the set I0.

It is easy to rewrite the above formula to the dimension formula,

Theorem 2,3* (Dimension formula)

dimLG
c= min
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A partition will be called good if it attains the maximum (or the

minimum) in the formulas. When the trivial partition J0 is good, we

say that G is a primary graph. Note that this depends on the dimension

V of space-time. Since the union of two primary graphs with an internal

line in common is itself primary (see § 3), there exists a unique partition

of J0 composed of all the maximal primary subgraphs of G.

Proposition 2.4. A maximal primary partition is good.

Proof. Any good partition consists of primary subgraphs, hence it

is a refinement of a maximal primary partition. Then it is easy to see

that the latter is also a good partition.

Example 2.5. (1-loop graph)

codim LG
C = max (y +1, N), and G is primary if and only if v + H>JV.

Example 2.6. (2-loop graph)

codim LG° = max (y +1, Nj. +1, N2 +1, Nz +1, A/i + N2 + Nz — v)

where Nt is the number of internal lines composing each arm (Fig. 2.2).

Fig. (2.2)

Proposition 2.7. codim LG
c = vbQ(G) +1 if and only if G is pri-

mary.

Theorem 2.8. AG
C and A%/ItVl have 1-codimensional intersection

if and only if G/ is primary.

By this theorem the holonomy diagram for a Feynman integral is

completely determined in the case of external graphs, except for the



HOLONOMY STRUCTURE OF LANDAU SINGULARITIES 395

second type singularities which we do not discuss here.

Holonomy diagram for a 2-loop graph (y = 2)

codim LG
Cr = v

v + 1

Fig. (2.3)

When AG
C and AG/IiTl have 1-codimensional intersection, the relation be-

tween codim LG
C and codim LG/Iiri = codim LG/I is given by the following

theorem. The proof is given in § 3.

Theorem 2.9* Let G0 be the maximal primary subgraph contain-

ing Gj. Then

codim LG
C — codim LG/I = codim LGQ — codim LGo/I

= -1,0,1,2,-.

In particular,

codim LG
C — codim LG/I = — 1 if and only if Gx is maximal primary,

codim LG
C — codim LG/I = 0 if and only if GQ/I is primary.

§ 3B The proof of codimension formula

In this section we prove the codimension formula (Theorem 2.2)

and give its several applications.

In proving the codimension formula, we also consider a real locus

AQ for a fixed orientation a). On AG°, the kt's are uniquely determined

by p. For if A = S[ '̂]*i = I][*:./]*i for

i i

j

where £fy>0, and kl} kt are positive timelike v-vectors with the same

length mi. Applying Schwarz' inequality, we get ki = ki. Moreover the

following holds:
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Proposition 3.1. (cf. Chandler-Stapp [3]) ki=kl(p') can be ex-

tended as a continuous function on the closure LG
a.

Lemma 3.2. L/C (J LS/j>rj •

This lemma is proved by the same argument as in the page 853 of

Chandler-Stapp [2] where the case when G is primary is treated. So we

omit its proof.

Proof of Proposition 3.1. By the above argument ki(p) is con-

tinuous on LIQ. Let ^°e//G
a, then by Lemma 3.2. we can find /^/0 such

that pQ^L%/I>ri. Hence if lt=IQ — I9 kt(p) is also well-defined and con-

tinuous. For ZEE/, by an induction we may assume that there is a con-

tinuous extension kt
G*(p) on LG/. If we put

then P^LQ implies p^L^, hence pi(j>°) eLgr Thus we can define

^i(P°) =kl
Gl(pI(p°)) (1^1) and obtain a continuous extension.

Denote by 7T the projection T*Rvn-^Rvn, and its restriction to AQ by

Tin- The above argument shows

(3-1) ^(p) ={(p;x) eT*JRw|2[Z:/l^ = aA(p) for some
3=1

Since AQ is holonomic, dim AQ — vn and

co dim L,Q =yn — rank n0 — min dim n^1 (p) .

From (3-1) we see that dim TT^ *(/>) is the dimension of. mobility of the

graph under fixed ki's. Furthermore this coincides with the corank of

drCa on 7t0~
l(p), which indicates the

Proposition 3.3. Let L0 be the set of points in LQ where

dim Tta~l (p) takes its minimum. Then

LG
(a — LQ = the set of singular points of Z/G

a.

Thus both the problems of determining

(i) co dim LG ,
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and (ii) singularities of LG
a

are reduced to calculating this mobility of the graph in a given configuration.

For example, take a triangle graph G with y>2.

( b )

general configuration singular configuration

Fig. (3.1)

In its general configuration, the graph has no mobility, apart from trans-

lation and similar enlargement, without changing the direction of lines,

so codimLG = v + l (that is, G is a primary graph). But when all the

ki s are parallel (Fig. 3.1 (b)), the mobility becomes y + 2 and the cor-

responding p is a singular point of LG*.

In order to calculate the mobility of a graph, we prove a theorem

of linear algebra. Before explaining it, it is useful to generalize the

notion of a graph and introduce a pseudo graph.

Definition 3.4. We call G= (U^>Vl\ Ze70) a pseudo graph if U

and Vi's are vector spaces over a field K and fjis are non trivial linear

mappings. For a subset IcJ0, we can construct two pseudo graphs;

restriction G,= (U^

and contraction G/I= (

where UG/I = {xe U\ft (x) = 0 for

We only consider such a contraction that 7jt\Ua/I^Q for any

We have the following exact sequence

U%V= 0 VAW-+Q
ze/0

where (JCr) l = 7/L (x). If G is a graph and C= (\j\l~\) is its incidence
n

matrix, taking U=Kvn(G\ Vl = Kv and ^(x) =^U-j]xj> we obtain a pseu-
j=i

do graph. In this context we use the following notations.

p (G) = rank C, bQ (G) - dim Ker £C, b, (G) = rank D .

To express the mobility of a pseudo graph we consider
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^,.(G)={*eC7]7, (*) /%(*,) for any l^I0},

dimff, Xa 1= rank ( Ut. (G) -^ V,) ,

where V"/ — © Vt and dimGI= min dimff x I.
zei XQ^U

We also introduce Landau singularity for a pseudo graph:

J?G
c = ZaTiski closure of

for any
IIE/O

where P(VZ) = (V,- {0})/C'<and [?i (x) ] = 7, (x) mod C*.

Lemma 3.5. for a graph G, there exists an isomorphism:

.) \x e C/*, 77, (^) 2>0, ^ (% (a:) ) 0>0}

Proof. As a representative of an element of *S(VZ) we take ^ such

that ki—mi. Then the mapping

is well-defined and maps JT/ into Z/G
ffl, hence J?/ into L/. The inverse

mapping is given by Proposition 3.1.

In the above terminologies we have

(3 • 2) dim XG
C = p(G)- dimG/0 .

The key to calculate the mobility is the following theorem.

Theorem 3B6e Let V be a finite dimensional vector space over

a field K, and Vi, • • - , VN its subspaces. We have

max dim (Kxl H
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= min (N— k + dim V/0_7l fl • • • Pi V7o_7fc)

'where VT denotes the sum ^ T7

Taking V#+i — V we have the

Corollary 3.7.

max (Kx1 + • • • + KrF) = min (AT- # 1+ dim
Jc/0

A proof of Theorem 3.6 is given in Sato, Miwa and Jimbo [12] and we

omit it.

Theorem 3.8. (Dimension formula for a pseudo graph)

Proof. For a generic x0 we have dimGia.0Z0 = JV— dim (XZ)^ (.TO)

• • • + KDf]N (XQ) ), hence

dim GJ0 = JV— max dim (Xyi H h KyN)
2/l-h-"4-2/^ = 0

where Wt=DVi. Applying Theorem 3.6 and (3-2), we have

dim XG
C = p (G) + _min ( - k + dim W/ffl_7l H • • • 0 WJo_J&).

fc
Since we have dim WIg-Ii f| • • • fl Wi0-/^ — 2 dimWJA. + dim W,

dim J!G
€:>p (G) + *! (G) + min ( - XI (1 + dim WA) )

= dimy + min (X3 ( -1 + P (G7.) - dim V~/c) )

Since there exists an injective mapping J^G
C—>H -^G/ an(l dim J? .̂ ^

p(G/s) —1 holds, the converse inequality is easy to see.

Note that the above theorem with Lemma 3.5 implies Theorem 2.3.
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Proposition 3.9. Let G(Z7VPi|Ze=70) andG(U^Vl\l^I<)') be two

pseudo graphs, and assume that there exists a commutative diagram:

yu — >v
c \ \ i d\ fl I

U - > V

We assume that the induced mapping Jl^-^Jl^ is generically surjec-

tive. Then for any generic element x0^U and for any element

there exist t^Kz° and y^U such that

- tfo (.TO) ( * e I0) .

Proof. From the assumption for any generic x0^U we can take

Ze/o) such that
z

In other words for any

max dimCS Ky^x)

On the other hand the conclusion is that for any x^U there exist

tiB such that T! (x) = XI ^i^z C^o) m°d y(U). In other words
ze/o

max dim (^ (a

If we put W0 = ?7(tO/?(C7) and TP,= (Vi+W)) /?(*/) and define

— , Wl) - max dim(Xwl +

we have

o> Wl9 • • • , WN) =max dim(2 Kf]l(<x)

-Wi W, ••• W, 1 W, j., ••• Wi ^KK Z0j * K l 5 j yv Z 0 - l> KK Z0 + l> > KK Zfc/

'¥•'0
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Then Proposition 3.9 is reduced to the following

Lemma 3.10. If p(W0, Wi, -, WN~) = p(W,+ Wla, Wi, -, Wi.-,,

W,.+1, -, W» /or awy Z0eI0, we /zawe p(W0, W0, Wi, • • - , W» =p(W0, Wi,

Proof. Taking IQ= {0, 1, ---yN} from Theorem 3.6 we have

p(Wi + Wi0, Wi, -, Wl9.l9 Wlo+1, -, WN)

= min (N- k + dim W^-j, H • • • fl W>0.Jjt) .
J0 = 71U...U7|.

/i30,Z0

Theorem 3.6 implies also that there exists a partition J0 — /iLJ-"LI/fc0

such that

/VIl n - n w~lQ.ho .
From the assumption these two coincide, hence we have Jx = {0} . If we

put W^+i = Woand IQ = {0, 1, • • • , JV-fl} and again make use of Theorem

3.6 we have

, Wi, -, Wy)

"/0,_{0} n w/0,_{^+1} n Wv-/2 n - n

Since p(W0, Wi, • • • , W^)^p(W0, W0, Wi, • • • , W^) is trivial, we have com-

pleted the proof.

Making use of Proposition 3.9, we investigate the properties of maxi-

mal primary subgraphs.

Definition 3.11. If IcI0 is a maximal subset in those which have

the same dim^.^/, then we say that I is (G, x^) -closed. If JcJ0 is

(G, .TO) -closed for a generic element XQ GE L7", we say that 7 is G-closed

or simply closed.

Proposition 3.12. / is closed if and only if the natural inclusion
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re c_v re
-La/i*-* ^GIo.z

is an isomorphism.

Proof. Easy.

Proposition 3.13. For 7'c7c70, i) is equivalent to ii) plus iii).

i) J is G-closed

ii) I' is GIo-(I-x^-closed

iii) 7-7' is G/T -closed

Proof. Straightforward from Proposition 3.12.

Proposition 3.14. Let I be closed and xl be any element in U,

For a generic element x in UXl(GI)) we have

(3 • 3) dimGiXIQ = dimGj> XI+ dimG/7 (70 — 7) .

Proof. Let x be a generic point of Ux(GIo-I) r\UG/I, then we have

(3 • 4) dimG^70 = dimG>a;7+ dimG/Ji ̂  (70 — 7) .

Since 7 is closed, J?G/i-*J?Gl _r is an isomorphism and we can apply Proposi-

tion 3.9. Thus for a generic XQ^ U, there exist y^ UG/I and ^=^=0 such that

30 = Wi (^o) (/e 70 - 7) .

This implies that [^(^)]zei0-/ have not been restricted by the condition

x^UXl(Gz). Therefore ft(#) (l^IQ — I) have not been restricted by the

condition x^Ux(GlQ-^). Thus we have

(3 • 5) dimG//>5? (70 — 7) = dimG/I(70 — I) .

Again using Proposition 3.9, we can show that for any xr E:Ux(Gx) there

exist y'^U0/z and ^/^O (l(=IQ — 7) such that

Since [^(^)]je/o-^ have not been restricted, this implies that we can

choose yf ^UG/I such that x' —y' ̂ UX(G) and hence

(3 • 6)
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(3-4), (3-5) and (3-6) imply (3-3).

Corollary 3.15.

i) If I is closed, dimG7— dimG/ 1 .

ii) 7 is closed if and only if

(3 - 7) dimG 70 = dimG/7+ dimc// (70 - 1) .

iii) If I is closed and I'D!' ', £/i£?z

dimGJ0 — dimG/I, ( J0 — I') = dirndl— dimff///, (7— 7') .

Proof. Taking xl to be generic in (3-3), we have

dimG70 = dimGl7+ dimG/r (70 — 7) .

In general the following holds

dimG70<;dirnG7+ dimG/J(70 — 7) <JdimG/74- dimG//(70 — 7) .

Hence i) and the necessity of (3 • 7) are proved. To prove the sufficiency

of (3-7), take a closed subset 7 such that

dimG7=dimG7 and 7 1)7.

Then we have

dimG70 = dimG7+ dimG/J (70 — 7) ,

hence

(3-8) dimG//(70- 1) -dimG//(70-7).

By Proposition 3.13 7—7 is closed in G/7, hence

(3 • 9) dimG// (70 - 7) = dimG/I (I- 7) + dimG/J (70 - 7) .

From (3-8) and (3-9) we have dimG//(7-7) =0. This implies that 7=7.

It is easy to see that Proposition (3-13) and (3-7) imply iii).

Definition 3.16 7 is called maximal r-ary if the following two

conditions are satisfied:

ii) If there exist T such that 7c7' and dim^'^dim^', then I=F.

Note that when G is a graph and r = l, the above definition coincides

with the definition of a maximal primary subgraph.

Proposition 3.17. 7 is closed if and only if I is maximal r-ary
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for some r.

Proof. Easy.

Especially a maximal primary subgraph is closed. Then it is easy

to see that iii) of Corollary 3.15 implies Theorem 2.9.

Theorem 3.18. Let G be a graph and I be a closed subset. Take

an orientation a) of G -which is compatible with a contraction of I. Then

-we have an isomorphism

L ea ~ . T a) ^, T ca
G - >J-^GI X J^G/I .

Proof. Let p be a generic element of LG*. We take a generic

configuration x of p. Since I is closed, we can take x and ti=^=0 (I

<=IQ — I) such that ft(:r) = ttf^x) (Ze70 — I) and ft (ir) = 0 (7<E/). This

implies p defined by

(3-10) Pj= 2 pt
ler/-i(J)

is in LG/I. It is obvious that pr defined by

(3-11) Pu=Pj- I] U-.ftkf (p)
ze/o-J

is in Lar Thus (3-10) and (3-11) give a mapping

a _ v 7 o> v fw
G ^ -L^G X ^GJ •

Now take generic elements (£>/, ^j) ^At
Gl and (^, x) eyig/j. From Proposi-

tion 3.12, there is a generic configuration xlo-z of GJo_/ such that ftCr/0_/)

/ftCr) (l^IQ — I). Applying Proposition 3.9 to the case where G = G/I,

G = GIo-l9 XQ = XIQ-! and ^r = :̂/, we can easily see that there exist a con-

figuration x of G such that ft (x) =^ft (x/) (1^1) and ft (x) = £zft (x)

0 — J) for some ti^=0. Thus if we define ^> by

(3-12) A=A,+ 2 C
ZE/O-^

^> is in L/ and (3-12) gives an inverse of (3-10) and (3-11)'

By the same argument we can prove the following
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Theorem 3.19. For a closed subset I there exists an isomorphism

For a maximal primary partion IQ = JiLJ•••[_!/A, teere exists an iso-

morphism

L a>
G

§ 4. Oridinary Components of Non External Graphs

In this section we consider non external graphs and obtain several

topological formulas for an ordinary component of AQ} ff.

If we consider general Feynman graphs with internal vertices, the

Landau variety AG, ff is no longer irreducible, nor is it manifestly holonomic

as in the external case. Henceforth we regard the masses of internal

lines as variables and introduce JUi= —-^-wii2, and its dual variable at.£
Thus a Landau holonomic variety AO,<, is a subvariety of (p, ft; x, a) -space

T*C"n+N and similarly for A%.t, A«0,a etc.

In what follows as for notations of graph theory we follow Nakanishi

[8]. Especially function UG of Nakanishi play an important role.

Let G be a connected external graph, and J be a non empty subset

of its vertices JQ. We use the following notations.

J = J 0 J y

•£j — (Xjjj^j, PJ= \Pj)jE.J-> -^j*— \xj*j j*&* >

Pj* = (Pj*)j*&*, OC = (aO ze/0, fJL = (A) IEI0 -

We also denote by G[J] the graph obtained by identifying all the vertices

in J. In G[J] the vertex thus obtained is denoted by j0. We fix a

reference tree T in G[J]. Then j"*eE J* determines a path on T from

Jo to j*. We denote this path by Pj* and the incidence number of Py*

by [Pj* : Z] . Let T* be the cotree of T, that is, T* = JT0 - T. Then Z* e T*

determines a circuit CL* in G[J] which is characterized by Q*nT* = {^*}.

We define zCl*(xj*) = X] [Q*: ^] [^: J]-^, which is zero if Cz* is also
ze/o,je^o

a circuit in G and x^ — x^ if Cz* is a path from j*2 to jj in G.

Now consider the Landau equations for G. The energy-momentum
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conservation gives for l^T

(4-1) *, = 2 [C,. : Z] *,, + 2 [ *V. = Z] p}, .
Z*e/* j*^J*

The circuit condition gives for Z*eT*

(4-2) S[Q,:qa,*i =*«,,(*.,).
ze/o

Following Nakanishi we define

Xw (a) = I] UvwW [C: Z] [C: /']

where the sum is over all the circuits in G[J], and

= 2 [

where the sum is over all the paths from j0 to j* in G[J].

(4-1) and (4-2) gives

(4-3) £

=^,fe) -2 (2 [Q.:
</*e/* zei0

From (4-1) and (4-3) we can express k^s (Ze/0) as rational func-

tions of pj*, Xj and a. Then we have the

Proposition 4.1. For ZeTuT* we have

(4-4) *,(/*, ** «) = S y>}y ^,,+ S
re./* C7OCJ:(a) ^"e^ I'

(4.5) ^*L (^, ^, a) = - Xu, (a) kv (PJ*, xj9 a).

Proof. First suppose that I is not a cut line. Then we can choose

T so that /eT* and differentiating (4-3) by pj* we have

We have used Z* instead of I, and

Note that —- is a v X V matrix and Iv is the unit matrix. Then from
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p. 78 of Nakanishi [8] we have

dpj* UGm(a)

Differentiating (4-3) by x3 and using (7-29) of Nakanishi [8] we

have

Thus when I is not a cut line, we have proved (4-4).

To prove (4-5) first assume that we can take T so that 1 = 1*,

r=l*'t=T*. Differentiating (4-3) by a^ we have

Again using (7-29) of Nakanishi [8] we have (4-5).

The case when {I, I'} is a cut set or / is a cut line is easy.

Note that when #(J")=1, (4-4) is nothing but Theorem 9-4 of

Nakanishi [8].

Theorem 4.2B AG
C is represented by a rational potential function

H(pj*, xj, a) = X] xjpj (pj*, xj, a)

as

dH
AG

C = closure of <(p, jj.; x, a) \Xj* =

dxj da

Proof. AG
C is given by

Xj* (pj*, Xj, a) =Xjo + ]
i

Pj (pj*, xj, a) = S U' f\ h (pj*, xj9 a),i

Vi (Pj*, xj, a)=- —kt (pj,, xj9 a) 2 .
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The above theorem follows from the following

Lemma 4.3. Let us devide coordinates in Cn into (x,y}. Let

(f, ^) be their dual variables. Assume that the image of a subvariety

A in T*Cn into (x,7j) coordinates is generically surjective. Then A

is holonomic if and only if it can be expressed as

by a suitable analytic function H(x, if) which is homogeneous of de-

gree 1 -with respect to f]. H(x, y) is given by

Proof. Easy.

Let us consider a graph (G, JQ, (7) whose set of internal (external)

vertices is Jint (Jext). Take a non empty subset JdJext, and consider

H(pj*, Xj, a) with G as an external graph. Then the holonomic variety

given by a potential function H(Q, pj*-jint,
 xJ-> #) is an irreducible compo-

nent of A0iff. This component is a unique one whose projection to OC

space is generically surjective.

Definition 4.3. We call the above component an ordinary compo-

nent and denote by ^.ord-

Proposition 4.4. All the irreducible components other than AQIQT&

are contained in p| {UGm(ci) =0} when projected into a space, where J

runs over nonempty subsets of external vertices of (G, (7) .

We remark that yi£ ̂ C^ord holds, because U-f unctions are strictly

positive on the interior of Aa,ff- Another important property of ^Ord is

that, on AciOTd the ^'s are linearly dependent on the p/s, and so are

the y/s (the position vectors of internal vertices) on the x/s (external

ones) .

Example 4.5. (Fig. (3-1))

AG
C has 2 components (i) ^c.ord, where all the kt's are parallel,

and (ii) one that has a 2-dimensional realization.
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Fig. (3.1)

Example 4.6. (Fig. 3-2)

There are 6 components.

(i) ^eUrd 2-dimensional realization.

(ii)~(iv) >3 3-dimensional realization
y2 -^A jXi—yi, ^2 — yi and xz—y}

are collinear.

(v) y\ yz 4-dimensional realization.

collinear.

(vi) / y2 3-dimensional realization.

All these components have rational potential functions with respect to

suitably chosen subset of variables (p, fit; x, a). We conjecture that this

is true for any graph G.

From now on we restrict ourselves to A0i0r&. If we regard the mas-
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ses as fixed parameters, the leading Landau variety AaiQr& is not necessarily

present. For example, in the case of Fig. (3-3), ^F.ord is present if and

only if ml + m2 = mz + m^.(t>

Fig. (3.3)

Take a potential function H(x, a) where x is the position vector

of all the external vertices, and denote by nfl the projection T*Cvn+N-*CN

to the jU-space. Then

A- f AC N Ar i ( 92H d2H \codim TTXAord) =iV-rank , ,
\dadx dada/

8H
because jJ.i=~ — holds.

Theorem 4.79

r T' — rank / 92H"- ,
\dadx

i ( 92H \= corank -
\dada >

= the freedom of 0,1 s with generically fixed kt's and x/s.

This follows from the topological formula for Hessian of H:

t On the other hand, if we consider in the positive-o: region, A%tG may be absent for
special values of the masses as in the case of Fig. (3.4) with m1 + w2 = m3 + W4 (com-
municated by Professor Kawai)
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Theorem 4.8.

dadx dada

X -qc(x, a; x, a)flc(x, a; x1 ', a')

Cr, «; 2f, a) =2[C: J] (aAO, a)) — Z][^: j]^y, ^^ C
i y

circuits in G[_Jext~\.

Proof of Theorem 4.7. Let us consider in the region where

and ki^RX V — 1JT'1. From Theorem 4.8 we have

which implies

Ker f- —(x, a) } = {a| XI [C: I~\&iki(x9 a) =0

for any circuit in G[Jext]}.

This is just the latter equality of Theorem 4.7.

The former equality is equivalent to

f A r-\ -I I O JnL o H. \ I/O ti \(4 • 6) rank , = rank .
\dadx dada> ^ ~ '

From Theorem 4.8

(4-7) '(3)

where

and

/ Q2£[ \
If aeKer - then zc

 = Q and (4-7) vanishes. This implies
\dada /
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\dadx ' dad a'

and (4-6) is proved.

Proof of Theorem 4.8. Straightforward calculation from Proposi-

tion 4.1.

We will call a graph (G, 0") Lendauian if the at's are uniquely

determined by x/s and kt's on ^ord. Note that our definition slightly

differs from that of Speer and Westwater [17].

If we regard the mt's as fixed parameters, the Landau variety for

the graph of Fig. (3 • 3) coincides with the one for the following Landauian

graph if fl

In general, for a non Landauian graph (G, (T) , we may always find a

(not necessarily unique) Landauian graph (G1? 0"i) such that Agt ff,OTd = $jlt ffl,0rd

holds. Therefore it suffices to consider only Landauian graphs as far

as the location of Landau singularity is concerned. Theorem 4.8 implies

the

Proposition 4.9. The following conditions are equivalent'.

(i) (G, (7) is Landauian.

(ii) yitf.ord is present for generically fixed values of the masses.

(iii) rank (f^-) =N .

In particular if codim Lgord in Cvn+N is equal to vbQ(G) +1 (G, G)

is necessarily Landauian, for otherwise at least one constraint among the

masses is added. Finally Proposition 3.1 has an extention of the following

form:
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Proposition 4.10. (cf. Speer-Westwater [15] Lemma 4.1.4.) The

are rational functions on the irreducible algebric variety Lf.ord-

Proof. We assume that co dim L^ord — >* + •*• Fix an external vertex

J0. Then on yl£ord £z's are rational functions of (Zi's and P/S(J=^=JQ). At

a generic point on AG
C, corank d(k*, • • - , kN

2)/d(aly • • • , <XN) — 5. From

Proposition 4.1 d(k1
2, •", kN

2) /d(aly ••-, aN) is symmetric, hence without

loss of generality we may assume that

Thus on AG° <Xs+ly •~,ctN can be solved with respect to aly • • - , as, jUs+1,

''', &N,PjO'^Jo) • Hence jUi,--,jUs also depend upon these variables. If

we fix ju and p, we can vary aly •••9as independently. This means that

A, •••,#, depend only upon jtts+1, •-, JUN,Pj(J^=Jo) on L%>ord. Thus #s+1, • • - ,

A^J PjU^Jo) form a local coordinate system on La,ord-

Following Speer-Westwater define

U= closure of

= 0 ,
9a,

where

It is well-known that the projection to (p, fJi) -space of U is

From the homogeneity V]tf = 0, hence

vanishes on U.

At a generic point L£ord can be expressed as

where fi(p,ju)9s are polynomials of ^ and ^ such that det9(/1? ••',fg')/

. Then

= (%,-• - , a.)
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N s

= 2] Vjdpj + S fadHi + S dedfJLff
l=s+l

also vanishes on U. So does Q — -~dptfJLV. Since dpj(j=^j^) and

<^1<^N) are independent on U, coefficients of dfa's must vanish. Hence

az(s + l<[Z<J-AO are rational functions of aly ~-,(Xs, JJ. and p on £7. So

are ki's. But if we consider in a positive a region at generic (jU,p) ki's

does not depend on oc, so ki's are rational functions of fj. and j£>.

Corollary 4.11. Let G be an external graph and G/ be its max-

imal primary subgraph. Then we have the following birational map

About the codimension formula for a non external graph we have a

Conjecture 4.12. Z/e.ord contains a non singular point of LQC and

(4-8) co dim LQ, ord — codim Lgc

where G is an external graph corresponding to G. If G is Landauian,

(4-8) is valid with generic masses fixed.

§ 5. Vacuum Graphs

As an extreme case of non ordinary components, we consider graphs

without external vertices (vacuum graphs) in this section.

The leading Landau variety for a vacuum graph G is defined by

^gvac = closure of {(/*; a) eT*C^| 3o^0 (/ = !, —,N)

(5-1) and a^eC* s-t

(I)

(II)

(III) A + « = 0 (/ = !,-, AT)}.

^o.vac is homogeneous both in the /^'s and the Cfy's, so we may also

regard the a^'s as base space variables, and the /^'s as their dual ones.
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Hereafter the dimensionality v in the definition of ^G,Vac is taken to be

sufficiently large.

In terms of the loop momenta ^(z = l, •••^(G)), the equations (I)

and (II) are written in the form

&i(G)

(5-2) *,= I] [C, :

Here D denotes the circuit matrix, and we have set

I Oil

For a fixed value of a = a°, let corank DaotD = r and take a set

of linearly independent solutions K(1\ • • • , K(r} of the equation DatD-K = 0.

Then a general solution of (5-2) is given by setting

£, = £< ">.«<" + •••+£< <'>•*"•> (z = l, • • - , i,(G)),

where the <2(i?)'s are arbitrary y-vectors. This means that the vacuum

graph G has an r-dimentional realization corresponding to a = (X°. Now

for any irreducible component A of ^^jVac> its projection to c^-space, L9

defines an irreducible component of the variety corank DatD = r for some

r. Suppose we have on L a rational parametrization of the form a,^ —

A1(as+ly "•,(%N), •", ^s = As(as+1, ••-,<%$). In this case by Lemma 5.1 be-

low we can show that A is in fact holonomic, and the corresponding

potential function is given rationally by

so that

A= \(a; ft)
I QO.I-
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Now we explain the reason why A^ac is holonomic. Let G be an

external graph corresponding to G. A^vac is obtained by a restriction

procedure pj = 0 from Landau holonomic variety AGC, hence the defining

ideal J of AoiVac satisfies the condition {J,J}cJ, where { , } means

the Poisson bracket. Moreover (I), (II), (III) of (5-1) imply

where o) is the fundamental 1-form on T*CN. Thus the following lemma

is sufficient for us.

Lemma 5.1. Let X be a complex manifold and TC:T*X-^>X be

a canonical projection. Let JdO^x be a coherent Ideal defined by

holomorphic functions homogeneous of degree 1 'with respect to the

fiber of n and let A — suppO/J.

Assume that

i) fi>U = 0

ii) {J,J}cJ

iii) 7r*(t7n 7t~lOz) i-s reduced at a generic point of its support.

Then A is holonomic. Instead of i) if we assume a stronger condition

i)' tfeJ-^kr + CW-rfJ

then J is reduced at a generic point of A.

Proof. Easy.

Before proceeding further, let us explain the motivation of considering

such an exceptional case. Firstly, it provides a good example of classifi-

cation of irreducible components of a given Landau variety. Secondly,

the vacuum graphs are considered to play a role in classifying non ordi-

nary components. We give an example of the latter.

Example 5.2. Take a self energy graph Gs as in Fig. (4-1).

Gs'- a self energy graph Gv'- corresponding vacuum graph

Fig. (4.1)
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We consider the associated vacuum graph. Namely joining

the two external vertices by a new internal line N+l, we get a vacuum

graph Gv. By setting kN+1=p, any configuration of Gs can be realized

as that of Gv. It is shown that, on the corresponding component A of

Aev,vac &N+I is a rational function of the remaining Cfy's, so we may take

a local coordinate of the form (a',#",/^+i) on A. Let HGY(o! , ju" , A^+i)

be a potential function for A. Then HGs(xl9 xz, a', #") = HGv(a! , #",
_ .r ) 2 \

? - iZ_ gives a potential function for Gs. In this way, classification
2

of irreducible components of a self energy graph is completely reduced

to that of a vacuum graph.

For a general graph, some of the components are obtained by

considering a vacuum graph where the external vertices are replaced by

lines joining each two of them.

In what follows we will decompose the variety defined by corank

DalD = r into irreducible components in the case r<2, and find their

rational parametrization.

The case r = 0 is trivial. In this case A = {/£ = 0, a, arbitrary} . This

component is the ordinary component in § 4.

Before proceeding further we prepare some properties of UG. Let

G be a connected graph and D be its circuit matrix and Z>* be its cut

set matrix. Then we define

, a= -. ,
\ as)

and

/A \
Z7e*(/3)=detJD*/3(D*) 0= '..

\ /?W

The followings are well-known. (Nakanishi [8].)

UG(a)= 2 a^—atl,
{Zi*,.",l6l*}:cotree 1



418 MIKIO SATO, TETSUJI MIWA, MICHIO JIMBO AND TOSHIO OSHIMA

UG(a) and £/<?*G?) are separately linear in each variable and are sums

of monomials of degree £i(G) and p(G), respectively.

If we define UG=UG* = Q for a non connected graph G, we have

(*) UG(a} = alUG-{l} (a) + UG/{1} (a) ,

G is called non seperable if it is connected and cannot be seperated

into two parts by decomposing it at one vertex.

Proposition 5.2. If G is non seperable, UG(a) is irreducible,

Proof. We prove by an iduction on N.

For any line I in G, either G — {Z} or G/ {1} is non seperable. If

G' I {1} is non seperable, by an induction hypothesis UG/{i\ is irreducible

and so is C7G(oO from (*). Therefore assume that for any / G— {Z} is

non seperable and UG-{i} is irreducible. If UG is reducible, UG/{1} is divi-

sible by UG-{1}, hence

after re-ordering lines if necessary. By the same argument Uf contains

a linear factor, but U' is irreducible. So we have

UG(a) = (a, + ••• +<z*) (ak+l + •

This implies that G is a union of two simple loops which is a contradiction

with the assumption that G is non seperable.

Now we can give the results for the case r = l.

Theorem 5.3. When r — 1 L is defined by UG(a) =0. If G is

non seperable, UG(a) is irreducible and there is only one component

of AG>vacy that is, the conormal bundle of L= {a\UG(a) =0}. Its ra-

tional parametrization is given by

for any I.
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Now we consider the case r = 2. Since we are dealing with a leading

singularity, we may use @l = l/(Xi and D*$tD* instead of at and DcfD.

We assume that G is connected and p(G)2>2. We fix a reference tree

T, then we have a unique cut set matrix D* (Nakanishi [8], Theorem

2-29). We denote by ^(j1"//.^) a signed minor of D*0'D*. Note

that this is dependent on the choice of T. If a, b,c^T, we have Z)*/9'jD*

in the following form:

a b c

a i & + • • •

(**) */ & + •••

where /?a, /?&, /?c appear only in the places explicitly written here.

Lemma 5.4. *

where the sum is taken over {^, •••,41-r} £A<2£ makes a cotree in both

—{al,-",ar} and G— {bl9 •• -,br}.

'where the sum is taken over {lly • • • , lp~r} that makes a tree in both

G/{aly--,ar} and

Proof. We give a proof for U ( -, j. Other cases can be proved

similarly.

Expanding the determinant we have

X
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In general for a graph G and independent set of loops {Cl5 •••,C6l}

it is well known that

±1 if {Il9 •••,41} is a cotree,

0 otherwise.

Hence the proposition follows.

Proposition 5.5. C7G* f , J =£ 0 if and only if a and b belong to

the same non seperable component.

Proof. The necessity is trivial. To prove the sufficiency by Lemma

5.4 it is sufficient to show the existence of a set {Z1} • • • ,Z / ) _i} such that

{lly •••9lp^l9 a} and {Il9 • • • 9 l p - l 9 b} are both trees in G. If {a, b} is a cut

set, we may take a tree in each connected components of G— {a, b} and

make a union as {Il9 • • • , lp--^.

Otherwise there exists a cortree containing a and b. Then we have

the following

Lemma 5.6. If a, b belong to the same cotree and the same

non seperable component, there exist two loops C and Cf such that

C^a, C£b; C'&a, C'Elb; CC\C'=£</>.

We omit the proof of this lemma.

End of the proof of Proposition 5.5. Take a line 1Q in Cfl C'. If

we choose a tree {lly • • - ,£ / 3_ 1} in (G— {a, &})/{/0}, this satisfies the above

conditions.

Definition 5.7. A graph G is k-connected if and only if any two

distinct points can be connected by at least k paths each two of which

have no common point other than two end points.

Note that if G is k connected, for any line I G—{1} and G/{1} are

k — 1 connected and at least one of them is k connected.



HOLONOMY STRUCTURE OF LANDAU SINGULARITIES 421

Proposition 5.8. If G is 3-connected, UG* ( -, \ is a non zero ir-

reducible polynomial.

Proof. We may assume that G has no self loop. If p(G) =2 or 3,

we can prove the proposition directly. If for some l^T— {a, b} G—{1}

is 3 connected, by the induction hypothesis U*-yyl 7 J is irreducible. So

is also irreducible. Now we may assume that G — {1} is 2 connected

and G/{1} is 3-connected for any l<E:T—{a,b}. As p(G)^4 we can

take distinct Il9 lz(=T—{a,b}. By Proposition 5.5 U£/{li}(?)&0 and by

( \ / \
7 ) is irreducible, hence if UG* ft) is

reducible we have

Hence C7ff* = (0^ + -) (ft2 +-). This implies 0(G) =3 which is a

contradiction.

Theorem 5.9. Let G be a 3-connected graph -with no multiple

lines. Then the variety defined by corank D*/? *D*= 2 is an irre-

ducible variety of codimensions 3. If lly 12, lz belong to a tree,

0i, 02, & can be expressed as rational functions of other $i s.

Proof. In general for a symmetric matrix A the variety defined by

corank A^r is of ccdimensions less than — -. Thus in our case

the codimension is less than 3.

First we prove that for <2, b^T there exists a unique irreducible

component L such that t/<?/{tt,6}|z,^0. From

0— TT * ( \ — T7"* — # T7* 4-T7*U— UG ( 7 I ~ ^G/ib}—PauG/{a,b}~T ^ (G-{a}")/{b}
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we have fia= — U^_{a^/{b}/UG/{a,b} -

Note that from the form of the matrix (#*) the right hand side involves

neither fia nor fib. fib can be expressed likewise. If we choose

— {a, b} we have

&\ n rr* f & \ i rr* / &

From Proposition 5.5 and the assumption on G, UQ/{C} ( ? J ^0 and t/G*_{c} ( •»

^0. Thus fie can be expressed as a rational function of fit's other than

fia> fib9 fie-

Since

( \ — i f h\ / / 7 \

b / G/{a} \c i °/m\c)

we can substitute fic in the expression of fia and fib. Thus we have an

( \

h i
is irreducible, hence the above component does not depend on the choice

of c. The expression for fia(fib) thus obtained coincides with that obtained

from UG* 1 =0 ^G* = 0), hence it is not identically zero.

Thus we have a unique component L such that C/G*{aj&}|L^0. More-

over from (**#) we see that C7^{6fC}^0, hence the component obtained

by the above method is unique. Since r = 2, on any component C7G*{a>&}^0

for some a, b. Thus we have proved the component is unique.

For a general graph G, consider a mapping cp of internal lines to

another graph Gl9 such that for each line 1Q in G1? (p~l(lo) is a self energy

part (that is, Gi9 = <p~l (l^) is connected and adjacent to the rest of G by

two vertices a, b). This map induces in a-space the following rational

map ^ :(<*!, —, <Zn) h* (tfi°, —, o&0), where

Fig. (4.2)
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o

°
Corresponding to each r-dimensional irreducible component of vle.vao its

proper transform by <p defines an r-dimensional component of AaiVac on

which each Gio has a 1-dimensional realization. In particular, if r = 2

and Gj is 3-connected with no multiple lines, the corresponding component

of G has a rational parametrization of codimensions 3. But this is not

quite sufficient as illustrated by the following example.

Example. 5.9.

Fig. (4.3) (a)

For the graph of Figure (4-3), its configuration (a) is obtained by

taking the triple line graph (A) as G10 Similarly the configuration (b)

of Fig. (4-4) is obtained by considering the noil 3-connected graph (B).

Fig. (4.4) (b) (B)

We conjecture that the above procedure gives all the components with

r = 2, if we admit as GI the two exceptional graphs (A) and (B) in

addition.

§ 6. Feynman Integrals

The Feynman integral FGiff(p) corresponding to a Feynman graph

(G, JQ, 0") is defined by the formula
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(6-1) Fe,t(p-)= f... f n(2jr)^( S A- H [/:/]*,)
J JR»X j=i ieff-w) ze/o

x TT _

although mathematically it is not a meaningful expression in two respects;

(i) the fibre of integration is not compact (ultraviolet divergence), and

(ii) the product in the integrand @Gtff is not well defmd in general if

some of the mt's vanish (infrared divergence) . So we begin by giving the

rigorous definition of (6 • 1) through a compactification of integration space

R"*(cf. Boy ling [1], Fotiadi [4]). Following Speer [13] we introduce

generalized Feynman integrals with complex parameters Aj's:

(6-2) Fa,t(p;X)=\-\ n
J JRvN j=i

£

Throughout this section we may assume that G is connected with no

loss of generality.

Let X= (PV}N be a product of N copies of a y-dimensional real pro-

jective space. We denote by (kiy 5z)ze/0 its homogeneous coordinate, and

setX /=(Pv)y-U{5 l = 0}- U {^=0}, where IM= {l^I^m^Q} is the set
ze/o IS=IO-IM_

of massive internal lines. Let X be the monoidal transform of X along

the ideal II CO IE/ ' II (^w, "', *IV-I)IE/'» where (Ji)iE/(resP- (*io ...Av-i)
IC/o /'C/0-/JT

zelx) denotes the homogeneous ideal generated by {^j/e/} (resp. {ktj!l\l

', jU — 0, • • • , v — l}). X is a compact algebraic manifold. We also in-

troduce

=the closure in JTB 'XX of {(A k, s) ^Rvn° XX'\

I] Pi-HU'.rtk/s^O 0'= !,-,»)},

and denote by Z(resp. S/p/0 the set TT^C^O (fivn°XX7)) (resp.

Tr-'CS/./.n (JR^X-X))), where TT:!?1'710 X^->JRVB° XX is the projection.

Proposition 6.1» V Z5 ?20?z singular.
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Proof. Take a point P0 ̂  V, and set I1 = {/ GE 70 - IM\ kf = 0} , P = {I e

/o|si° = 0}, where O°, &°, 5°) = 7T (jP0) denotes the projection of JP0. Clearly

I* fl P4 — 0. Let G°° be a graph obtained by adding a new vertex oo to G

and joining all the external lines to oo. We take an ordering of internal

lines of G°° so that

/, = /' = {!,

J3= {external lines of G} = {N2 + I, • • - , Nz},

I0
00 = /1UI2U/3UI4.

By reordering lines if necessary, we take a homogeneous local coordinate

(k, f) of X such that

at Po (/e/o-Jjf or

Finally take a tree T1 in G°° by choosing lines successively from N to

1 in the inverse order, and set T* = I0°°-T, Ty = Tn/y, Ty*=T*n/y

0" — 1, • • • , 4). Then, in a neighbourhood of P0> V is defined by the

following equations:

S [C,.. :
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Here Cz* denotes the circuit in G°° corresponding to Z*eT*. Note that

[Q*: rj^O implies l*<^l by the choice of T. From (6-3) the proposition

is obvious.

Remark. Because k^Q for Ze (70 — /af)LJ/4 in (6-3), some of the

ti's cannot vanish at PQ. Therefore we may take an inhomogeneous coor-

dinate system (kf ', £*, tu) in the following way:

fe,= H *X, *, = !
lie/*

*..=#„ *4= n *;-

Here J* = I^I^-^I^I^t and F = I1
u^I2

u^-^Ir
u,^Ir

u,+l = <t> are

chains consisting of subsets of internal lines, and if Z = max Z7 or min Z7, then
z'e/J z'e/J

one of the non zero components of ki is normalized to 1.

Theorem 6.2. J/* 2^i^Z for any Id J0, ^Ae integrand of (6-2)

A#s <2^ extension as a hyp erf unction density on Rvn°xX, Integral

(6-2) is then well defined, and

(6-4)

Proof. In the coordinate of the above remark, the integrand density

of (6-2) is written in the following form:

(6-5) ^a. = iy(27r)"'-S)^n(*.t-*«(<)W + iO)-"f[|*lp|
ze/o P=I

where

d?= n * (*•-/») n
ze/onr z8era

/•,= s [c^iycvWA..^))*.,' (is TO,
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/•,= 2 [ C l l . : l t - ] s t l . ( f ) k l l . + -£ [C,..:/J*,..

2]

[C,..:/4](*«,(OAXO)*v ft e TO,

4

*,(0 = H O (ie/»).
lie/;.

We have omitted primes for ^'s under the convention that the normalized

components are to be dropped from dkt. The exponents of |£p|, \t*'\ are

given by the formulae

(6-6) A'p=-22

= 2 S

where Q/* denotes the graph obtained by identifying all the external

vertices of G/. In particular |^p|Ap and j^p/ | A " ' are well defind if

for any Jc/0. We now show that the product is well defined at PQ.

To see this, it is sufficient to show that ^2vl.d(kl—fl') +(1/2) ^ ald(kl
2 —

r T, l^T l(=IQ

si(ffmi) +H 4^4+ I] rX*?' = 0 at F0 and ̂ W-^CO W) =0 with a,
P=I p'=i

;>0 (Ze/o) implies t;z = 0, a^ = rp* = r"/ = 0. Consider first the subgraph

G/»7. From the condition above, we have XI [C: Z]cUz)fei = 0 and 2 [
ze^ ze/JI,

= 0 for any circuit C and any vertex j of G/^. Since ki=^=Q and

this is possible only when at = 0 (Zel") and ̂  = 0 (ZeI"nT). Repeat-

ing the same argument we see inductively that c%i = Q (/eJ0), vt = 0

(ZeT), hence rp* = rp, = 0. Thus <5ft, admits an extension to Rm°xX.

Since X is compact, integration (6-2) now makes sense and we can

estimate the singularity spectrum of FGiff by applying the theory of integra-

tion of hyperfunctions [11]. From (6-5) we see that the contribution

from SS0Gtff fl Sjitlu to SSFGiff is confined to the following set:
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(6-7) U/»;^)eT*fl-|3*i1elP,3a,1>0(/IeZO such that

a«, (*?,-<) =0

*«= S [C:

It is easy to show that (6-7) Is contained in U A^G_I^/I rrff. This
Jo-IO/Dl"

completes the proof of the theorem.

Remark. It is known that a function of the form (6 -5) is a solution

of a holonomic system. See Kashiwara-Kawai [7], Theorem 1.

The /^-dependence of FGiff on each Landau singularity is also easily

seen from the proof, and we have

Corollary 603» FGtG(p\X} is continued as a meromorphic func-

tion of h^CN, and on ^J?_/<)//«,ri«^ it is holomorphic except for

(possible) simple poles at

-Ij^CGO =0, -i, -2, - (Zero,
2

Remark. This is not the best possible estimate for the poles in L

Precise results are obtained by Speer [14].

In order to define FGiff(p; A) at /lj = l (/€E J0), we follow Speer's analy-

tic renormalization procedure. Since application of an evaluator does not

increase the singularity spectrum, (6-4) remains valid for renormalized

Feynman integrals. We shall show below the equivalence of our FGiff

to Speer's generalized Feynman amplitude [13], which assures that this
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renormalization is also equivalent to that of BPH. Let (G, (7) be a mas-

sive graph. Define

(6-8) /„.,(#; A) =r«U)£ f- f n<%-f l (!
perm J 0 Jo 1 = 1pe:

N

1 = 1

Here we have set

To U) = £* (2jr) •<»-»>*-""<« (- i) (-^.OT^iOTr (A (G) ) II r UO -1,

and the summation extends over all the possible orderings of the internal

lines. The functions [/(/?) and V(p, /?) are defined from the U-i unction

and V-f unction (Nakanishi [8]) by the following formula:

V(p, ft = (-Ue(a)-1 E U0iJ(a)q{q, + g

where q$ = 2j Pi and Gy denotes the graph obtained from G by identifying
<e *-»(/) _

the two vertices {ij}. Note that U(ji) = l + O(fi) when A->0 forZe 70,

Theorem 6.4. For a massive graph (G, 0") we

FG.a(p;K)=d( 2 A) •/<*,(£; A).

Proof. Since both hand sides are meromorphic with respect to

, we may assume Re ^^>0 without loss of generality. For £>0, set

0&.,(A*; X) =iN(2nrn-N> n ?(«,- E [/:/]*•) n (V-
y=i iei0 iei0

v-l

where |^|2=rXI^/. In the same way as $G, (DG
e may be extended to to

~ /J=0

J?vn° X X as a (holonomic) hyperfunction density. The proof goes in three
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steps.

Lemma 6.5. As a distribution on Rvn we have

FG,ff(p;V=lim f0J,, (/>,*; A)-
e40 JX

Proof. The integration being a continuous operation, it suffices to

prove <DG.ff(p,k;X) =lim(PJ ff(p, k', X) on Rvn°xX. In terms of local coor-
£ 4 0

dinates $|>fl. has an expression similar to (6-5):

(6-9) 0&., = ty(2;rr
P=I Je/o

From (6 • 9) one may show that 0G ff = lim $S
6 ff. We leave the details to

e 4 0
the reader.

Lemma 6.6.

f ®e
G,ff(p,k- A)= f «J . f f (A*;A) .

J2T Juvar

Proof. Note that after eliminating the delta functions the right hand

side reduces to an absolutely convergent integral for Re Aj^>0 apart from

the overall delta function. Since Re /ip>0 in (6-9) we may regard 0£
Gi ff

as a continuous function on V, so it is easy to see that there is no

contribution from X — X'=SlQ.

Lemma 6.7.

(6-10) f ^,^^;A) =
JjR'-S'

PI ^1 2Vn<
O JO 1 = 1

2V!

•s
perm JO

denotes the Euclidean inner product.

Proof. After applying the Feynman's parametric formula to the left



HOLONOMY STRUCTURE OF LANDAU SINGULARITIES 431

hand side, we divide the domain {a^RN\ai^Q, ^<%i = 1} to Nl sectors of
ZfE/o

the form O^a^c^SS'''^^^!, change the coordinate by ai=/?r"&

and integrate over k. All the calculations can be carried out within the

category of absolutely convergent integrals, and finally we obtain (6-10).

In (6-10) Va(p,@)E is a positive definite quadratic form of q, hence

lim(y(A /?) -izVa(p, 0) *) -A(G) - (V(p, /?) -zO) ~A(G). From Lemma 6.5,
e-»0

Lemma 6.6 and Lemma 6.7 follows the theorem.

Corollary 6*8. By a suitable choice of an evaluator, the follow-

ing condition is satisfied simultaneously for any massive graph (G, d"):

(6-11) fc.ff(P) = ( — )7l(G) b°{G}fG,ff(P^) i-n a neighbourhood of p = 0.

In fact, from (6-8) one easily checks that the standard choice will do.

I f* x-7") •£ f 1\
V TT I JW

N!*G©yze/ojWa> 27Tz Ui-l)---(/U-l) *

Next we "quantize" the contact transformation of § 2. In what fol-

lows G will denote an external graph. The holonlmic system satisfied by

the generalized Feynman integral FGiff(p;fc) on its leading Landau variety

AG
+ is given as follows (Sato [10]):

where 0,* (*) =

(the branch of square root is taken so that ^/^z = 1 at ^^

Its order and principal symbol are
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principal symbol = JJ (mi ^/7]i(x)2 — z'O)
*e/o

With the aid of this system, we define

(6-12) P,=Pi- H \

This is actually a "quantized" contact transformation (QCT) correspond-

ing to (2-1) of §2, and realized by an integral transformation with the

kernel function

The transform of FG by (6-12) is FGr in other words

(6-13) Fe(p- A) = >„,,.,(£-/.; X)Fai&,

holds on U AQ/I r, . To see this, note that on AQ/I ri (/id) there are
JiC/ * _ 1

no contributions from 5/0_/, so that in the definition of FG(p;£) we

may restrict the region of integration to XG — SIo-i= (Rvy°~IXXGl. It is

now easy to see that on XG — 5Jo_/

(6-14) 0e(P,k;X)

holds. Integration with respect to k in XG — SIo-z gives (6-13).

So we have the correspondences just as in (2-2):

(6-15) FG <-> FGl,

FG/I,ri ** FGl/I,ri = fld( S A),
i=l jeu(Gji)

where G/(l<S£<^r) denotes the connected components of G/, and v(Gz
l)

the set of vertices of G/. On the "zero section" AGl/IiVl, FGl is of the
r

form /e/(?;A)H( XI A') with an analytic function fGl(p; A) (the gener-
al ye«(6f/*)

alized Feynman amplitude). By (6-12) this multiplication operator

foi(P\ %) is transformed into a general 0-th order micro differential operator.

Theorem 6.9. On AG/I>TI the following holds:

(6-16) Fo(p;X)=f0l(pj
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This is a microlocal version of the local decomposition theorem disscussed

in Speer-Westwater [16]. Note that the right hand side is well defined

since the 0-th order operators pj=pj— Z] \l'-f\®i*( — iD^) (j = l,~-,n)
IE.IO-I

commute each other. Extension of above results to the variable mass case

is straightforward. We merely list up the results:

(holonomic system)

(.Pi- H \

* -1 D'l} FG (p, y. • A) = 0,
£i '

.7 = 1

(QCT)

\ D-^ (Dp) ' + (j, — L - 1) D-\ (if I el,- 1),
^

. f i t ( i f

(kerneljfunction)

K(P,P, V,&) =FGlQ_I(p-pyjUIo-I-

(correspondence)

AG
+ *+ AGX X {conormal bundle of

Theorem 6.97. On

(6 - 160 FG(P, fi\ A) =fc

If LQ/I>TI is a hypersurface (i.e. codim LJ/j^^^y + 1) , we can replace
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the operator fe^P, &', A) by a multiplication of an analytic function (cf.

Kashiwara [6] ) .

Theorem 6.10. (Speer-Westwater [^5]) If G/ 1 is primary, we

have near a generic point of Z/G/i.r, the decomposition

-where A(p, / / ;A) , B(p,/jt;X) are analytic functions such that

AfaMVlz* =f0Ifa- H U:J]ki(P,u),to',Z)
l^Ig — JT

holds. Here kt (p, ju) is the rational function defined in Proposition 4.10=

§ 7, The Generalized Unltarity Relations

As an application of QCT in the previous section, we shall prove

a theorem which provides a consistency check of the generalized unitarity

relations for time ordered Green's functions (Nishijima [9] ) and perturba-

tion theory.

Let G be a massive connected external graph. Given a division JQ

=:J+\L\J~ of the set of vertices, we define

(7-1) FJtJ.(p-)= f... f
J JJRV (#S)

with pj~ = ± (pj — Z][^: J~]ki)- Here G" denotes the full subgraph cor-
ZeS

responding to J~, FG± the renormalized Feynman integral and S the set

of lines which do not belong to G*.^ The orientation of S is chosen

arbitrarily (Figure 7.1).

Fig. (7.1)

t) #S denotes the number of elements in the set S.
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Since for any p the fibre of integration is contained in the compact set

{&ejRv#s|2][S: r\kt = 31pj9 IS: I]klo>09 kl
2 = ml

2 (ZeS)}, (7-1) is always,

well defined.

Theorem 7.1. If the analytic renormalization is performed so

that (6-11) is satisfied for any G, -we have

-where the summation extends over all the divisions of JQ.

Remark. (7 • 2) is also valid for non external (G, (T) provided the

substitution FJ+J- (#) | _^ is well defined.

Proof. If we denote the left hand side of (7-2) by 3^, SSEFo is

contained in the union of various mixed-a Landau singularities. We show

inductively from the leading singularities that £FG = 0 on each of them.

Consider first a connected component A of a leading singularity. We

represent it by a graph as in Figure 7.2:

Fig. (7.2)

For example, the graph of Figure 7.2 represents the component {(p\x)

GT*R^k^R9
9 la^R (1 = 1,2,3) such that (I) pl + kl + k = 09 p2-k,

— k2 = 0, Pz-i-kz — k& = 0, (II) a&=Xi — x^

a& = xz-xl9 as>0, (III) k1
z = ml\l = l929

There is at least one vertex jQ to which only the dotted lines are incident.

For, if not, we could find a circuit of Figure 7.3. Then the circuit

condition ^\C\T\(Xiki = Q would be incompatible with the sign of Otiki^
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Fig. (7.3)

Take a term FJ+J- in 2^ and suppose, for instance, jQ^J+. If we rewrite

it as a sum of 2N terms using

we observe that only one term survives on A, and that this term cancels

out with the corresponding one in ^j+-{/0},j-u{/0> (Figure 7.4).

0 at

Fig. (7.4)

Next we assume £FG = 0 on any of the connected components of A%/i?%x,

(!'£/), and prove that it also vanishes on A$f*. Applying QCT (6-12),
r

<3G is transformed to the form g(p) XH$( Xj P j ) , where by the in-
^ . i=1 *&&rt

duction assumption Q(Jp) is an analytic function with no singularities.

Note that if *SnG/=£0 for some z", then the transform of FJ+J- does not

have its support in an neighbourhood of p = Q. If SnGI
l = ^> (l<z'^r),

we may apply the local decomposition (Theorem 6.9) to FJ+J-. Then

condition (6-11) assures the pairwise cancellation in a neighbourhood

of p = Q just as in Figure 7.4, where the signed vertices are replaced

by the signed bubbles representing the contracted subgraphs G/. Hence

by the unique continuation property of analytic functions we conclude

g (p) = 0 on any of the connected components of A%/i^r This completes
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the proof of the theorem.

The generalized unitarity relations, regarded as an identity of formal

power series (the perturbation expansion of r-functions), are equivalent

to a set of equations which are linear combinations of (7 • 2). Hence

Theorem 7.1 provides a perturbation theoretical "proof" of unitarity. Our

discussion is only formal, though, since we have not taken into account

the delicate problem concerning renormalization.
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Errata

A Correction to: "Holonomy Structure of Landau Singu-

larities and Feynman integrals" (Vol. 12, suppl 1977, 387-438)

by

Michio JlMBO

The following lemma should be inserted between Lemma 6.5 and

Lemma 6.6.

Lemma. lim ®s
Gi ff = @G]ff .

5 ^ 0

Proof. Denote by Vc a complexification of the manifold V, and

set

fe= n
where e^O and tu

p, kL stand for polynomial functions on Vc (see Pro-

position 6.1 and the Remark following it). For a point PQ^V we set

I={l^IQ\kl
2-sl(tyml

2 = 0 at P0}. Since the product (6.5) is well

defined, we may find a complex neighborhood Q of PQ and an open con-

vex cone r so that for any cD^U=Qn V and F'CF there exists C>0

such that

hold. Here z denotes a local coordinate of Vc. For any £e/, noting

ki^=Q at P0 we see |Re^| is bounded from below, hence replacing Q by

J2H {^| |Re^i2>lIm^|2(/e/)} we may assume Im(z ^ ^)>0 on J2.
/i = 0

Hence /£(s^0) is holomorphic in J2fl (f/H-zF), and we have

-/.wi=n li^r0=1 Jo dQi&ia 11=0

<sc' s n
* Research Institude for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
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<eC"\Imz\-L

for some C", Z/>0 independent of e. Similarly we have \ f e ( z ) \

<C" \Imz\~L. By the same argument as in Nishiwada [1], it then follows

that f£(x + iOr) exists in 3)(U) and lim/£O + zOr) =/0(^ + zOr).
E-»0

Writing $gl(; and (^Gj(r as linear combinations of Svfe(x-{-iQr)9 we have

the lemma.
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