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Propagation at the Boundary and Reflection
of Analytic Singularities of Solutions

of Linear Partial Differential Equations I.

By

Pierre SCHAPIRA*

Abstract

We study, microlocally, the non elliptic boundary value problems, with the help
of the sheaf WNIX of Kashiwara and Kawa'i. A hypothesis of " N-regularity" verified by
several classes of preudo-differential operators allows us to obtain a theorem of reflec-
tion of analytic singularities analogous to that of Lax and Nirenberg.

Introduction

Our purpose is to extend to the analytic case, and to generalize, the

theorem of Lax and Nirenberg [9] on the reflection of singularities.

We will prove here a theorem similar to their's, but under a hypothesis

of "N-regularity" satisfied in particular by micro-hyperbolic operators, as

well as by the operators which are microlocally equivalent to the Cauchy-

Riemann operator. This allows us to treat problems of reflection where,

for the first case, many bicharacteristic strip are starting from the same

point, and for the second, the bicharacteristic leaves are of dimension two.

The proof of the main theorem will be an adaptation of the proof

of the general theorem of Kashiwara and Kawai on elliptic boundary

value problems for systems [4], the remaining problem being to characte-

rize N-regular operators. We only give here partial answers to this pro-

blem.

At the exception of § 5 ("regularity II"), the results of this paper

have been explained and published in "Seminaire Goulaouic-Schwartz, De-

cembre 1975."
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§ 1. Preliminaries

Our problem is of local type, near a boundary. Let then M be an

open set of Rn+1, with coordinates (t,x), where x = (xly • • - , xn*), N be

the hyperplane {£ — 0}, X an open set of Cn+1 which intersects Rn+1 along

M, Y the complexification of N in X.

Let SN*X9 SY*X, SX*X be the conormal sphere bundles of N, Y, M

in X, and SN*Y that of JV in Y. Let us recall that there are canonical

isomorphisms Sx*X^iS*M, SN*Y~i S*N. We will identify, when this

will be without danger, a point in TN*X\N and its image in SN*X

(and similary for the other bundles) and we will spot a point z* e SN*X

by its coordinates (0, x, r, z"£) that we prefer to write (0, x, i£ , r) .

Let us denote, as in [4] by p the projection of SN*X\SY*X on

#: (0,*, if, r) ->(*,*£)

and by p its restriction to iS*MxN (recall that iS*MxN=iS*Mn
M M

{£ = ()}). Let M+ be the open set Mfl {C>0}, Q+ the open set SN*X

0 {Re r>0} and similarly for M_ and Q_. We denote by 0 the sheaf

of holomorphic functions on X, Q the sheaf of hyperf unctions on M, W

the sheaf of microfunctions on iS*M9 and £BN and %?N the corresponding

sheaves on N and iS*N. The singular support of a hyperfunction f

(we abbreviate it by s.s. (/)) is the support of the corresponding micro-

function, and we say that f is zero at some point y*^iS*M if y* does

not belong to this singular support. We will also make use of the sheaf

3? of analytic pseudo-differential operators or rather of its restriction to

SN*X, and we refer to [10] for all those questions.

The sheaf &N\x on SN*X is defined in [10] and used in an essential

way by Kashiwara and Kawai in [4]. Let us recall its construction:

where o)N is the orientation sheaf on N, a the antipodal map, and TtN\x

denotes the projection X—N(jSN*X-*X, the first space being endowed

with the topology of the comonoidal transform (cf. [10] chapter 1).

We then have canonical homomorphisms:
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(i • i) rN(M, <2) -*r (SN*x, «v)
(i-2) r,. (M, £) ->r 02+ ,
(1 • 3) «

(1 • 4) r| z5*Mx tf-*c#«Wx
Jf ^

and Kashiwara [3] (cf. also [6]) has proved that homomorphisms (1-1)

and (1 • 2) are injective, and homomorphisms (1 • 3) and (1 • 4) are, at

least outside SY*X injective. For (1 • 3) and (1 • 4) , the only ones we

need, this can be proved with the help of a (complex) quantized canonical

transformation, but we do not give the proof here0

§ 2. Division Theorems in &N\x

A pseudo-differential operator P of order ra is of Weierstrass type

(in Dt) if it is written

m-l

P = Dt
m+HA,(t,x,D,-)Dt'

j=0

the A; being pseudo-differential operators of orders <^m—j, with [£, Aj~\

= 0.

Let x* = (x, if) belong to iS*N, P be a pseudo-differential operator

of Weierstrass type of order my defined near p~l (x*) in SN*X, and assume

that the equation Pm (0, x, zf , r) = 0 has a root of order jU at t = TQ.

In this case there exists pseudo-differential operators of Weierstrass type,

defined near P~l(x*), E and Q, of respective order m — p. and /£, with

P — EQ, E being invertible near (0, x, if, r0) and the principal symbol

of Q having a root of order fj, at this point (cf. [10] chapter 2) . There

exists also a similar decomposition of P with P = Q'Ef. We will say

that they are Weierstrass decomposition of P.

The following lemma has been announced (in a more general formu-

lation) by Kashiwara and Kawai [4] (cf. also [6]). It is the analogous

in &N\X of the Spath division theorem.

Lemma 1. Let (x, if ) =x* belong to iS*N, r0 be a root of order

jj. of the equation Pm (0, x, i? , r) = 0. Let z* be the point (0, x, if , r0)
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of SN*X. Then for any u<= (WN\x}z* there exists unique v<= (&N{X}Z*, iv3

€=(&N)X* Q" = 0, •", /^~1) solution of

(2-1) »

Lemma 3.5.2 of [10] chapter 2, permits to give a more global version

of lemma 1, but its formulation is quite general, and for sake of clearness

we prefer to give the detailed proof in this context.

Lemma 2. Let (x, zf) = x* belong to iS*N, P be a pseudo- differ-

ential operator of Weierstrass type of order m! defined near p~l (x*} .

Let U be an open set of SN*X which contains exactly m roots (counted

'with their multiplicities) of the equation Pm,(0, x, i£, r) =0. Then

for any u^ & 'N\Z(U "fl P'1 O*)) there exists unique v^ &N\x(U{\p~l(x*}}

Wj e ( %?$) x* (j = 0, • • • , m — 1 ) solution of:

(2-2) u = Pv+ I]>y(8)<y/
j=Q

Proof. First we may assume, using a Weierstrass decomposition of

P, that m! =m. Let r1? -°,rr be the distinct roots of the equation Pm

• (0, x, i$, r) =0, with (0, x, i$, r) GE t/, and m^ • • • , mr their multiplicities.

Let us write z* for (0, x, i$ , r/) , and let, for any j, P = EjPj be a

Weierstrass decomposition of P, P, being of order m^-, its principal symbol

having a root of order m^ at ry.

The germ u^ & N\x(U (} p~l (x*}} being given, there exists by lemma 1

v/e(^iz)«* ^/^(^)^, solution of

my— 1

The operators Ej being of Weierstrass type of order m — m^ we can

write

m-l

with zeV ^ ( ̂ ^) **- Let us define cwk e ( ̂ V) x* by the equation

S
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We have, at the point zt* for l=^=j:

So that at any point 2^* of U, u can be written

This last equation defines v/ on U\ U {2**} near p l(x*} and v/
k^j

= Vi on C7\ U {zk*} near^"1^*). This proves the existence of v&^N\x
k

(Ur\p~l(x*}} and WjeC^V)** satisfying equation (2-2).

Let us prove now the unicity of such a decomposition, and assume
m-l

for that purpose that Pv = ̂ Wj®dt
J. We proceed by induction on r.

j=Q

Let Z1={z1^}, Z2= {z2*, •••, zr*}, P = P1P2 a corresponding Weierstrass

decomposition.
ml — 1 _ m2"-l

We can find t>i = $] e^jl®8t
3 and z;2 = JJ "WjZ®ftt (where m^' = m — m^)

j=Q j=Q

such that

(to see that, it is enough to write Wj®df as D/ (w/(X)c^) and to divide

D/ by Pj).

Then v1 = Pv — P1v2 = P1v1', and lemma 1 applied at the point z^

implies ^1 = 0, so that Pv = P1v2. As Pl is invertible near Z2 we deduce

^2 —P2^> and by the induction hypothesis, v2 = Q, and then Wj = 0 (j^O,

• • • , m — 1), and v = 0.

§ 3. Definition and Properties of the Traces

Let now P be a differential operator with analytic coefficients on

M, of order m, for which N is non-characteristic. Let f be a hyper-

function on M+ solution of Pf=Q. Let us recall [11], [7] how to define

the traces of f on N.

Let f ^FM+(M, Sf) be an extension of/supported by M+: Pf is sup-

ported by N and can be written in a unique way:
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l}h}®8t
i

1=0

with gers(M, 5), hj^r(N, $„),

The (A/)/, hyperfunctions on N, do not depend of the chosen exten-

sion: they are the traces of f (the first one being Am_i). This definition

is not intrinsic but to say for example that the p first traces of f, hm-l9

"', hm-p are zero at some point x*€=iS*Nis invariant by analytic changes

of coordinates.

If we look now at Pf^TN(My <B) as an element of r(SN*X, «Viz),

we can, at any x*£EiS*N', apply lemma 2 and write in a unique way:

with WjE: (^V)^*. We will have hj — 'wj at .r*.

If the m traces of f are analytic on N, f will be analytic on M+

near N (by Holmgren's theorem). A theorem of Kashiwara permits to

microlocalize this fact.

Lemma 3. Let P be a differential operator of order m, the

hyper surf ace N being non-char act eristic. Let f be a hyperfunction on

M+ solution of Pf=Q, and assume that the m traces of f are zero

at x*^iS*N.

Then p~*(x*) does not intersect the closure in iS*M of the sin-

gular support of f.

_ _ ro-l

Proof. We can choose the extension f of/such that P/=X1 hj§§d*.
_ j = Q

We then have Pf=0 in p~\x*); if we pick 0e fi with Pm(0, x, zf, z"0) ^0

(where (x, z"?) =x*), the point (0, x, ig, i6) will not belong to the singu-

lar support of / ([10 theorem 2.1.1 chapter 3J). It remains to apply

a theorem of Kashiwara [3] (cf. also [6]): if u belongs to F,

and if (0, x, i£, z"0<j) belongs to the singular support of u with

then V0 GE U, (0, x, z"?, z"0) belongs to the singular support of u.

Let us give an idea of the proof of Kashiwara's theorem. The main

point is the injectivity of the homomorphism (1 • 4),

Let u^r%(M, .S), u its image in F(Q+, &N\x). If u is zero at y*
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= (0,x,i£,iOQ')s=tS*MxN, the "boundary value" of u in H{s*MxN(SN*X,
M M

&N\X) will be zero at y*, and then u is zero near y* in Q+. But the

sheaf ^V|.z is, outside of SY*X, isomorphic to a sheaf of partially holo-

morphic microfunctions (the isomorphism being given by a Legendre quan-

tized contact transformation [4]) and this implies that u is zero in Q+ f]p~1

• (x*) (where x* = (x, £f ) ) . The boundary value of u will be zero on

p"1^*), and by the injectivity of (1-4) this implies u = 0 on p~*(x*).

§4a Regularity I

We will prove the main theorem under a hypothesis of "JV-regularity"

that we discuss now.

Definition. Let N be an analytic hypersurface of M, L = iS*MxN,
M

y*^L\iSN*M and P be a pseudo-differential operator defined near y*.

We say that P is a jV-regular at y* if u<= (TL ( ̂  ) y*, P^e (^V[x)t/* implies

Let us assume for simplicity that JV is the hyperplane {^^O} and

recall [5] that a pseudo-differential operator P of order m defined near

a point (0, XQ, z"f0, iO^) of iS*M is micro-hyperbolic in the direction dt if

Af is non-characteristic and if all the roots in r of the equation Pm(t, xf

if , r) close to z"00 are purely imaginary for (t, x, f) near (0, :r0, £o)-

Theorem 1. JjT P z°5 micro-hyperbolic in the direction dt at the

point y*^iS*MxN, P is N-regular at y*.
M

Proof. We will use several properties of micro-hyperbolic operators

proved by Kashiwara and Kawai [5].

Let u be a section of the sheaf ^ in a neighborhood of y* = (0, xQ9

i?o, z#o) u being supported by L, such that Pu belongs to &N\x- We can

assume that P is of Weierstrass type of order m, the equation Pm (0, XQ,

ZM>, ?") — 0 having a root of order TTZ at t = idQ. Lemma 1 allows us to

write :
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where v EE ( &N{X) ,*, wj e ( &N) x* (x* = (x, zf ) ) .

The operator P being micro-hyperbolic in the direction dt, we can

[5 theorem 6.9] solve the equation

(4-1) P/=o,r(/) = W

for any data ( K) €= ( ̂ ^) f*, f being a microfunction near y*, and 7" GO

denoting the restriction of f and of its m — 1 first derivatives in t on

N9 which is meaningful because N is non-characteristic for P and soforth

the projection p is proper on the support of the microfunction f.

For the same reason we can make the product Y(£)f of f by the

Heaviside function of t: it is sufficient to take a hyperfunction f whose

singular support is the closure in iS*M of the support of f, the image

of f in ^ being f, and to restrict Y(f)f to the open set where f was

defined. To calculate P(Y(t)f), where P = Dt
m+ £ Aj(t, x, DJD/,

0<j<m

we remark that

(4-2)

and that

(4 • 3) A^t, x,

The first formula is trivial but the second is not. To prove it we

can use the kernel Kj(t,x,?v) associated to Aj(t9x,D^) and an integral

formula

(4-4) ^K(t9 x, w) Y(fif(t, w}dw=Y(t) ^K(t, x, w)f(t, <w)dw

(we do not give the detailed proof).

It is then easy to see that we can choose the data (Ji) so that

we have now:

P(u-v} =P(Y(f)f)

and it is known [5 theorem 6.3] that the equation Pg = 0 has no non
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trivial solution supported by a half-space {£>0} or {£<]()}. This implies

u — v=Y(t)f.> and f being supported by the half-space {t<LG} is zero.

§ 5* Regularity II

We will prove here the ^V-regularity of the operators micro-locally

equivalent to the Cauchy-Riemann operator.

We denote by o) the canonical 1-form on iS*M, and by { , } the

Poisson bracket.

Theorem 2. Let P be a pseudo- differential operator of order

m defined near y*^iS*MxN, of constant complex multiplicity, that
M

is such that Pm(t, x9 ig, iO) — (q(t, x, i$, i6)}r 'with dq^=0. We assume

that dReq/\dImq/\ot)^Q, that {Req,Imq}=0 on the set{(t, x,i$,id)

q(t,x,ig,iO)=Q} and that {t,q}^Q. Then P is N-regular at y*.

Proof. We can perform a quantized real homogeneous canonical

transformation to reduce the problem to the situation where N={t = Q}

and Pm(t, x, f, 6) = (<?i-f z$)r. This is more or less classical, or as pointed

out by Oshima, the same procedure as in [10 chapter 3, theorem 2.2.1]

gives the result.

Then theorem 5.2.1 of [lOchapter 2] reduces again the situation to

the case where P = DXl + iDt. In fact, using the notation D1 = DXl
J
riDt,

we can write, by the Weierstrass preparation theorem for pseudo-differen-

tial operators

A-AO

where the A.$ are pseudo-differential operators of order <^r — j — 1, which

commute with t + ix^ and E is elliptic so that we can forget it.

Using a matrix notation, as in [10 p. 436] we write

where Jr is the rXr unit matrix and U is the r-column matrix with

components u, D^u, •-,D1
r~1u. Then there exists an invertible matrix of

pseudo-differential operators A(t, x, Dt, D^ such that
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A(S1Ir-E)A-1=B1Ir

[cf. 10, chapter 2, demonstration of theorem 5.2.1]

We assume that P = DXl-\-iDt and look at M as a partial comple-

xification of N. Let us denote by Z the complexification of N with

coordinates {xl-\-it, xz-\-iyz, • • • , xn-\-iy^. We have the embeddings

N^M^Z. We denote by .2^ the sheaf on Af of hyperf unction solutions

of Pf=0, that is of hyperfunctions holomorphic in Xi~\-it, and by <^h the

sheaf on iS*M of microf unctions which are solutions of the same equa-

tion. If A C iS*M is the characteristic set of P, we can identify A with

SM*Z. We denote by yi the set A XN and identify if with its projection

in iS*N.

, #, id) e f5*M[ f 2 = 0 = 0}

Recall now that we have a canonical isomorphism [10 chapter 3, the-

orem 2.2.5]

(5-i) ^-^ZM^M
and a canonical homomorphism [10 chapter 3 proposition 1.2.1]

(5 • 2) Rrs^z(K*\zO} \ SM*Z x N
Jtf

which induces the homomorphism

(5-3) Jf

that is

(5-4)

Homomorphism (5-4) is, by a quantized Legendre contact transform, the

same as homomorphism (1-4) of § 1 (with other notations) , and soforth

is injective. To explicit it, let us remark that the sheaf %?N being flabby

it is determined by

(5-5)

that is

(5-6)

we can describe homomorphism (5-6) using the flabby resolution of
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by 3$ in the following way: to g^23N we associate the class modulo

P&j?(&} of z(g(X)^). (To prove it, use the example 3.2.1 of [10, chap-

ter 1]).

Let now v belong to &N. To say that the class of v(£)8t modulo

is unique in MA
0((^'\A), means exactly that there exists no

with Pu — v^)8ty and by lemma 1 it is equivalent to say

there exists no u e M* ( W\ A ) (other than zero) such that Pu belongs to

^N\X ancl this proves the theorem.

§ 6. Propagation at the Boundary and Reflection

We use again the notations of § 3.

Theorem 3. Let P be a differential operator of order m on

M for 'which N is non-characteristic. Let f be a hyperf unction on M+

solution of Pf=0. Let (x,i£) = x* be a point of iS*N, and Z~, Z°9

Z+ the set of points (0, x, z?, r) of SN*X solution of Pm(0, x, if, r) =0,

with Rer<0, Rer = Q, Rer>Q. Let Z° = Z°'1\J ZQ'2 be a partition of Z°.

Assume:

a) at any point of Z0'1, P is N-regular.

b) the closure in iS*M of the singular support of f does not intersect

Z0'1.

c) there are m-p points (counted with their multiplicities) in Z+

UZ0'1.

d) the p first traces of f (that is hm-ly ~',hm-^) are zero near x*.

Then

- the m traces of f are zero near x*

- the closure in iS*M of the singular support of f does not intersect

Proof. The second part of the conclusion is a consequence of the

first one and lemma 3.

Let Z'^Z+UZ0 '1 , Z2 = Z-UZ°'2 .

There are m-p points in Z1 and p points in Z2.

Let f^Fff+(M, .2?) be an extension of f and u the image of Pf in
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^ 7N\x(P~' l(^*))- Hypothesis d) implies

m — p— 1

u = Pv + X3w,(g)<y/
y=o

where t/e ^,z(^~1(x*)) and ̂ e(^)^.

At any point z* of Q+, and in particular of Z^, there exists v

^(&N\X)Z* with u = Pv: this is because FM+(M, <$) is naturally sent in

At every point y* GE Z0> a, hypothesis Z?) implies that / belongs to

(A, (^0)2,*, where L = iS*MxN, and hypothesis a) implies then that /
M

belongs to («V)y., because Pf€=rN(M,$)c:r(SN*X9&N}J.

Let £7 be an open set of SN*X which contains Z1 and does not

intersect Z2. We can by the same argument as in the proof of lemma 2,

find a common ?7<E & N\x(U f\ p~l (x*}} with u = Pv in C/D^O*).

We have in Uftp~l(x*}:

Pf= u = Pv = "£" W® ff/
J=0

and Pm(0, ^:, zf, r) has axactly m-p roots in U. By lemma 2 we then have

Wy = 0, (j = 0, • • • , m—p — V).

§ 7e Some Remarks

1) If the equation Pm(0, x, zf, r) =0 has no purely imaginary roots, we

get a micro-local version of the Morrey-Nirenberg theorem [8], [11].

2) If the operator P has real simple characteristics, the bicharacteristic

curves being transversal to N (that is if the purely imaginary roots of

Pm (0, x, z? , r) = 0 are simple) we get in the analytic case, the theorem

of reflexion of Lax and Nirenberg [9] (cf. also Chazarain's talk at this

symposium). Of course we use the well known theorem of propagation

along bicharacteristic curves [cf. 10 chapter 3 theorem 2.1.7].

3) Theorem 1 allows us to extend the Lax-Nirenberg theorem to situa-

tions where many bicharacteristic curves are starting from the same point

(in iS*M) (if P is micro-hyperbolic at some point of Z0'1, but not of

constant real multiplicity) . But we do not give any theorem of reflection

between many bi characteristics starting from the same point.
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Let us mention that the propagation of singularities at the boundary

has also been studied by Kaneko for hyperbolic (not micro-hyperbolic)

operators [2].

Theorem 2 allows us to extend the Lax-Nirenberg theorem to situa-

tions where the bicharacteristic leaves are of dimension two. We hope

to treat the case of bicharacteristic leaves of any dimension (but transver-

sal to N), that is to prove the ^-regularity of the operators studied in

[i].
4) Finally let us give an example of an operator which is not J\T-regular.

Let M=R2 with coordinates (t,xj, N the hyperplane {* = 0}, P

the operator Dt
J
rix1DXi ("Lewy-Mizohata" operator). If P were N-regu-

lar at the points (0,0; ± dx^) it would imply by theorem 3 that any

solution in M+ of the equation Pf=Q would extend analytically across

the boundary, which is not true.
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