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The Structure of Local Solutions of Partial
Differential Equations of the Fuchsian Type

by

Hidetoshi TAHARA*

Linear partial differential equations with regular singularity along
a hypersurface were studied by several authors, say, Hasegawa [10][11],
Baouendi-Goulaouic [3][4], Alinhac [1][2], Froim [7][8][9], Delache-
Leray [6], Kashiwara-Oshima [13], Tsuno [15], etc::- in various prob-
lems. In this note, we consider the hyperfunction solutions of certain
type equations with regular singularity. The details of this note will be
published in [14] anywhere else.

Let (¢,2)€CXC" and let
P(¢,2,D, D,)=¢*D,"+Py(t, 2, D,)**D," '+ ---
+Pk(ts z, Dz)Dtm—k+ t +P7n(t9 Z, -Dz)

be a linear differential operator whose coefficients are holomorphic func-

tions defined in a neighbourhood of the origin such that
(A4) 0=k<m
(A-i) order of P;(¢, 2, D,)<j for 1=j<m
(A-ii) order of P;(0,z2,D,)<<0 for 1<j<k.

Then P is said of the Fuchsian type with weight m-k with respect to t
(by [3]). By the condition (A-ii), P;(0,2,D,) is a function. We set
P;(0, 2, D,) =a;(2) for 1<j<k. Then the indicial equation associated
with P is defined by

Z 4 z)=2A-1) - QA—m+1) +a,(2)A(A—-1)---(A—m+2)
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+oFa(2) (A1) - (A—m+k+1).
The roots, that we call the characteristic exponents of P, are denoted

by 2=0,1, .-, m—k—1, 0,(2), -+, 0:(2). They are functions of =z.
We set

O=the set of all the germs of multivalued holomorphic functions
on CXC\{t=0} at the origin.

Then we have the next theorem.

Theorem 1. Assume that 0;(0), 0:(0) —0;(0) & Z holds for 1=i
+#j<k. Then the equation Pu=f is always solvable in O. Moreover
there exist holomorphic functions K;(¢, 2z, w) (0<i<m—k—1), L;(¢,
z,w) (1<Ek) on

Ue={(t, 2, w) eCXC" X C| 4, 2], | w| <e,
[t <M|z;—wil’, i=1, ---, n}
s=min(m,k+1), M=constant
which satisfy the following conditions:
(1) For any holomorphic functions ¢;(w), ¢;(w) at the origin, we

set

m—k—1
u(t,z) = Y, ¢ Ki(¢ 2 w) e, (w)dw
=

&
+ Z \{Lf(h Z, ‘ZU) tpj(w)(/}f (w) dw
=1

Then u(t,z) is a solution of the equation Pu=0 in O.

2 If u(t, =) cO and Pu=0 holds, then u (¢, 2) is uniquely expressed
in the form (1).

Next, we consider the equation in the real domain and investigate
the structure of hyperfunction solutions. Let (¢,2) ERXR" and let
P(¢t,xz, D,, D,) be of the Fuchsian type with weight m-% with respect to
t. Moreover we assume the following conditions on P:

(A4dv)  0,(P) has the form: 6,(P) (¢, z, 7, &) =t"p.(¢t, x, 7, &)

(A-v) All the roots 7(t,x, &) of the equation p,(¢ x, 1, &) =0 are

real, when £, x, § are real (near the origin).
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Then we say that P is a Funchsian hyperbolic operator with respect
to t. Note that if £=0, then P is nothing but a weakly hyperbolic
operator in the direction dtz ([5]).

Under these assumptions, we can give the meaning as hyperfunctions
to the above K;(%, 2z, w), L;(¢,2, w) in Theorem 1. We also denote
these hyperfunctions by K;(¢, x,¥), L;(¢, x,y) respectively. then K;, L;

satisfy the following conditions:
Supp Ki, Ly {(¢, z,9); |z —y| =< M|}
S-S(Ky), (Ly) C{(t, z,y, V—1(z, §, 1) 00); |z —3| <Mt [,
|7 Mg, |§+9 < Mg e[},

Using these hyperfunctions, we have the next theorem.

Theorem 2. Assume that 0;(0), 0,(0) —0;(0) &Z holds for 1=<i
#j<k. Then the equation Pu=f is always solvable in B (where
B is the stalk of the sheaf of hyperfunctions at the origin). More-
over the above K;(¢,x,y) (0=i<m—£k—1), L;(¢,z,v) A<j<k) sat-
isfy the following conditions:

(1) For any hyperfunctions ¢;(y), O;"(y) at the origin, we set

m—k—1

u(t? x) = igo Ki(t: x, y) ti(ﬂi(y)dy

#2212 G200 ) dy

or

m—k—1

w(t2) =" [Kit2,9)f0 ) dy

k
303 PACERTX O S

Then u(t,z) is a solution of the equation Pu=0 in P.
(2) If u(t,x) €B and Pu=0 holds, then u(t,x) is uniquely expres-
sed in the form (1).
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