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^-matrix and Renormalization

by

O. I. ZAVIALOV*

When dealing with any object in quantum field theory one inevitably

encounters the problem of renormalization. The aim of the present paper

is to exhibit explicitly the combinatorial structure of renormalization.

This will be done on the "whole" of the perturbation expansion rather

than on individual graphs [7]. We'll show further how the correspond-

ing structure formula lead directly to such relations as Wilson expansion

[1], Zimmermann identities [2], renorm-group equation, Callan-Symanzik

equation [3] etc.

As far as individual Feynman graph is concerned the convenient way

to renormalize it is to use Speer analytic regularization [4] or dimensional

regularization [5] . Being a powerful tool in calculations these procedures

still permit rather little control over the subtraction point. Since the

latter imposes strong restrictions on the theory, we begin with the original

version of renormalization given by Bogolubov and Parasiuk [6].

§ !„ Notations and Bogolubov-Parasiuk Renormalization

Let (V, Ly be the Feynman graph, V being a set of vertices, L a

set of inner lines. Then the -R-operation is defined on the graph <( V, Ly

by

(1)

where the sum is over all possible decompositions of V into the nonempty

and nonoverlapping subsets Vi, • • • , Vn. Operators A are defined by recur-

rent relations

(2)
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(3) A(Vt-) =

where

(4) 'R=

The sum is over all decompositions of Vi into nonempty nonoverlap-

ping subsets V#CVi. The operators M(V^) , P(Vt) are nonzero only

if (Vi, Lty is proper and posesses a nonnegative superficial divergence

o)i. An operator M(Vi) changes the coefficient function (which is sup-

posed to be regularized via some intermediate regularization) of the graph

(Vi9 Lty into a polynomial of degree (jdt equal to the sum of the first

terms of its MacLaurin series in the external momenta. -P(Vi) is an

operator of finite renormalization changing the coefficient function of (Vi,

Lty into a fixed polynomial of degree cOt.

We define now R, 'R, A and M operations on arbitrary T-ordered

function 0 of local quantities assuming that 0 can be expanded into a

sum of Feynman graphs and on each of these graphs R, ' R, A and M

operate according to the rules given above (e.g. renormalized /^-matrix is

RT exp i I _£ (x) dx, with JH (x) interaction Lagrangian) . Next we remind

the notion of a composite field B^} (x) introduced by Zimmermann [2] .

Let {p} be a multi-indix

{ju} = { (A) • ' ' CO } = { (AoAi A2A3) ' ' • (/WWW*m«) > •

Let \ft\ = fto +&!+## + ft* and C"/)!=A/o! "•#/«' Denote by b{fl} (x) the
normal monomial of the free field tp(x)

Let d=m + ̂ \jUi\ be a dimension of this monomial, and a an integer

a^d. Define a formal T-product Tb^ (x) exp z" \jC(x')dx' and prescribe

to any Feynman graph (Vi, L^ in the perturbation expansion of this

formal expression an index o&i according to the following rules

(5) (di — a — li if

ft)4 = 4 — Z4 if

where lt is the number of external lines of (Vi9 Lty (we have restricted

ourselves to the case of renormalizable scalar theory). Let Ra, Aa, Ma
9
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etc. be the operators (l)-(4) constructed according to (5) and corresponding

to the zero finite renormalization Pa=0. Then up to nonessential oper-

ator factor the composite field is defined by

(6) Bh (*) = RaTb{M} (x) exp i (x'} dxr .

Relations between composite fields corresponding to different <z are given

by Zimmermann identities (see sec. 3) . Note that there are many other

equally natural ways to define a composite field. For example, there is

no reason why we should use the special case of finite renormalization

Pa==Q-Pa may be considered as an operator which controls a subtraction

point of the J^-operation. It means that with some non-zero P the R-

operation can be regarded as having the structure given by (l)-(4)

with jP = 0, but M redefined in the sense that the center of expansion

in the powers of invariant combinations of external momenta (PtPj) is

shifted from zero to some point (P4Py). Relations between composite

fields corresponding to different subtraction points can be derived along

the same lines as in sec. 3.

At last we introduce the following short notations

=EZ ("_£•(*)<&:; £0GS)^Texpz (

In the following all the products of the local operators are supposed

to be T"-ordered, so we'll systematically omit the symbol "T"', e.g.,

RT exp i (jl (x) dx^RE, (5)

§ 2. Structure Formula

Let a "field-like" object @(x) be expanded into a certain sum of

Feynman diagrams

(7) 0 O) = S 1

with translation-invariant /t. Note that JR
a£0(5')&w(^), El(S}b{ll}(x},
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El(S}MaEl(S}b{fi}(x) etc. are the objects of the type (7). According

to the definition of sec. 1 the operator Ma transforms @(x) into

(8)
Z + Si^|^a

where in the case of zero subtraction point

(9) Kw = — T-* - <$ (0) (p^ (0) • • -^ (0) >prop .
^ / lUOI-GU)! ^ ^ "

In (9) we have used the notations of [2]. One can easily write

the similar relations for the case of an arbitrary subtraction point and

for the objects like ME2(S), ME2(S)ME2(S) etc. (see sec. 5).

Our task now is to express the renormalized ^-matrix REQ(S) and

the composite field B(x) =REQ(S}b(x) directly in terms of operation M

avoiding thus the complicated combinatorics of (l)-(4).

Lemma I. In the case of zero finite renormalization (P^O)

(10)

We omit the proof of (10) which is nothing else than a simple algebraic

manipulation with (l)-(4) (see [8]). What has happened can be ex-

plained by a trivial remark that (on the level of some intermediate reg-

ularization) we may describe the jR-operation as a result of insertion of

additional "counterterms" vertices into the initial Lagrangian, the "naive"

Wick rules being unchanged. Then the renormalized Lagrangian JHr(x)

is defined by

(11)

where S=i \Jl(x)dx coincides with "bare" interaction, —ME2(S—ME2

(S ---- )) representing "counterterms". Though (10) defines REQ(S) =

EQ(Sr) through an infinite process, in any real calculation we can cut

this process on some finite step. So (10) cut on the JV-th step reproduces

all the renormalized graphs up to (JV+l)-th order. On the other hand

for the calculation of the one-loop graphs (in any order) it is enough

to expand EQ(S—ME2(S)), for two-loops graphs —EQ(S—ME2(S—

etc. Equation (10) provides a simple proof of causality and uni-
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tarity of the renormalized iS-matrix. One has to demonstrate only the

locality of the renormalized Lagrangian (which is trivially seen in (11) )

and the anti-he rmiti city of the "counterterm" part of the action Sr — S

(which is established by passing to Euclidean region of integration over

internal momenta in the corresponding Feynman diagrams).

Now we deduce similar result for the composite field B(fJL} (x) . We

have

Lemma 2. [8]

(12) B{M}(x)=EQ(SryB{,}W

where

(13) 'B{p} (x) = - - - b{p} (x) .M ^

Equations (10), (12) and (13) leads to several useful consequences.

§ 3. Zlznmermann Identities

Let M1, Mn be two different subtraction operators and Bl
{J!l}(x},

B^}(x) and rB\p}(x), 'B^}(x) corresponding composite fields constructed

according to (6) and (12) . Suppose that M l and M n are different only

on the subgraphs containing a vertex x, so that "inner" ^-operations R1

and Rn coincide, which means that renormalized Lagrangians JIr
l(x)

and J?r
n(.r) are equal: Sr

l=ST* = Sr. Suppose [that JM1, Mn transform

the coefficient function of the graph containing x-vertex into polynomials

of degree a1—/, a11— I resp. (Z is the number of external lines). Let

the following condition take place

(14) M!Mn = Mn

which holds for example if al^>an.

Now let us find a relation between the fields Bl and Bn. Using

(13) we obtain

(15) 'BL, - 'Bl
ifl} = - - - (M1 - Mn) E1

^ {> ^ ^ J

Due to (14) and to equations Mb^^M^^^b^ the £i(5r) in the
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numerator of (15) can be replaced by jE0(Sr). Thus

1 + M 'j

If both Af1 and Afn correspond to zero subtraction point in the subgraphs

containing .r-vertex we can use (8) and (9) to calculate (Ml —

r). We have

'Bfc> (x) - 'B'w Or) =

Multiplying this equation by E0(Sr) from the left and using (13), (12)

and (9) we come to the Zimmermann identities:

X <SJ.} (0) ^^Al) (0) - - -^«> (0) >prop .

The similar relations can be obtained for M1, Mu corresponding to any

subtraction point if condition (14) holds [8].

§ 48 Wilson Expansion [9]

According to Wilson [1] the singularities (at x1~ >x, • • - , xn-^x) of

the product of local Heisenberg fields (pl (x^ , • • • , (pn (x^) are given by

the relation

(16) ^OO "'<pn(xn) =E QL(xl3 ....jrJB^) +5(^, -, J:B).
z

Here B(XI, •••, x^) is a regular (oprator- valued) function which vanishes

at x1 = •••=xn = X', Bl(x) are local operators, and Qi(xly • • • , j;n) is a c-

number distributions, depending only on relative coordinates Xi — Xj and

singular at xl = •- =xn = x. In perturbation theory Wilson expansion has

been checked by Zimmermann [1]. Here we give the proof of this ex-

pansion based on the structure formula (12) (13).

Let (p{v}{x^ -",x^) be the truncated T-product of fields

Since up to a constant operator factor which vanishes in vacuum ex-

pectation value the product (pi(x^) -"(pn(_x^) can be represented as some
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linear combination of objects of the type (17) (when xl9 -~,xn do not

coincide) it is enough to verify Wilson expansion only for (p{v}(x1"-xn).
n

Let the positive numbers al9
 m",czn be given (X]tft=:l) and x = ^Jaixi,

^i — Xi — x. The relative coordinates ft satisfy ^<Xi£i = Q. Suppose also

that ft2=^=0 and (ft — ft)2^0. Let ft^O remaining in the hyperplane

2 a£i = 0. Evidently : (p^ (x + ft) • • •</?(»„) (x + ?n) : tends to b{v} (x). On

the contrary the polylocal operator (p{V}(x-\-£i, • • • , -^ + ftO does not tend

to the corresponding composite field B{v}(x} since it is singular at ft = ---

= fn. The nature of this singularity is clear: when the vertices xl=x

-f-ft, '",xn = x + £n collide at x in the expansion of (p{V}(xl9 •••9xn) there

arise new divergent subgraphs which are not suppressed by the initial

jR-operation. Still one car easily extract the regular part f^Cr-fft,

• • •, .r + ?n) from (p{y} (x + fi, • • •, x + fn) just putting in analogy with (12)

and (13)

/-I Q\ / / , ja _J_ £ "\ T? ( ^i\

"' ^ P ( v i ) \^ ' = I/ " " '^P(.vn} \^ ' i ny • •

The polylocal operator <p'{v} will be regular at ft==---=«fn = 0 if M "before-

hand" makes the necessary substractions in the graphs of the right-hand

side of (18) which become proper in the limit when the vertices .r + ft,

•••9x + £n go to one point x. Moreover if in this limit the quantities

like MEl (5r) : 0?(Vl) (.£ + £)• • '(p^n) (x + £n) : tend to quantities like

X b{V} (x) one can assert that

(19) lim ^;} (x + ft, • • •, x + ft) = B{v} (x}.

Let us now construct such M. For an}r polylocal quantity (p(a

with dim (p^a put

(20)

where

(21) ~ S ' '

Just comparing (20) and (21) with (8) and (9) one sees that M

possesses the necessary properties. Now we represent ^C^ + ft, • • • , x



488 O. I. ZAVIALOV

+ ft,) in the form

(22) p'w(:c + ft, "s* + ftO

But EQ(Sr) '-(p(Vi)--'(p(V^'- is nothing else than the initial operator #?{,,} (-£ + £1,

•~,x + £n) and MEj(5r) :<^(Vl)(x + fi) •••^(J;n)(^: + f7i): can be expanded (ac-

cording to (20)) into the sum of b{i}(x), which under the action of

JEo/1 + A/Ei will be transformed into the sum of B{^(x). Finally we have

(23)

where

and

QS (ft, • • ', ft,) = SWW +

X <£„ (« r^o,,, (ft) • ..?<,., (ft,) : :?<« (0) • • -^ »«> (0) :>'-»"' .

Due to (19) -B(.r + ?i, •••,,r + £n) is regular when f^— >0 and tends to

zero in this limit. Relation (23) is just the Wilson expansion for (p^.

§ 5. Equations for Renormallzed Green functions

At last we give a hint of how the structure formula can be used

to derive the equations for renormalized Green functions. Let the "bare"

interaction Lagrangian be Jl(x) = —~-r:(p\x)\. First we redefine the sub-
^4

traction operator M in order to achieve a closer fit with the physical

subtraction point on the mass shell. Let F be a translation-invariant

functional of the free field

H —
i L.

Then

(24)
21
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2! fi—nr

+ 1| /4 (symm ,«2) pr

Here the symmetry point (symm ]f) is defined as in [3]. The

extra parameter jU2 permits one to vary the field-strength renormalization

constant; at juz = m2 one comes to the usual subtraction on the mass shell.

For ^-dependent functionals ¥ (x) the subtraction M is defined in such

a way [10] that

M 8F = d MF.
8<p(x)

Now let S— >S-\-SS, M-^>M-i-SM due to some variation of parameters of

the theory. Then

Lemma 3

(25) SE(Sr} = E0

So any derivative of the renormalized jS-matrix is equal to some linear

combination of composite fields which thus serves as Lowenstein general-

ized differentiation [3]. Relation (25) leads to the following equation

of motion for composite fields <p (x) , <f (pc) (Heisenberg counterpart of

In terms of Green functions G this means (via Wilson expansion) that

(26)

The procedure now goes close to that of Lowenstein [3]. One ap-

plies the differential operator D = a——r + b^-^ + c— to JE0(5r), a, b and c
Q17I u fJL Cry

chosen in such a way that DEQ(Sr) gives the same combination of com-
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posite fields as in the left-hand side of (26). Then using (26) one

obtains the renormalization-group equations. On the other hand choosing

a, b and c in such a way that DEQ(Sr) reproduces the righthand side

of Zimmermann identities and going to vacuum expectation values one

gets the Callan-Symanzik equations.

Another way to use structure formula is to give the explicit expres-

sion of the renormalization constants (and their derivatives) in terms of

renormalized Green functions. This leads to Fradkin equations [11] and

to several similar but a bit more sophisticated relations [10].
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