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Isomorphism of a Piecewise Linear Transformation
to a Markov Automorphism

By

Shunji ITO* and Makoto MORI**

D. Ornstein and others proved important isomorphism theorems for

a large class of automorphisms, i.e. measure preserving transformations.

However, it is also interesting to explicitely determine an isomorphic map-

ping in each concrete case. R. Adler and B. Weiss [1] explicitely con-

structed an isomorphism between an ergodic group automorphism of a

2-dimensional torus and a Markov automorphism. Y. Takahashi [8] gave

an isomorphism between a /9-automorphism and a Markov automorphism.

The crucial point of their argument lies in the fact that the metrical

entropy coincides with the topological entropy for these automorphisms.

Using this fact and Parry's result [3], they showed that the represen-

tation mapping of the automorphism in consideration to a Markov subshift

(of a symbolic dynamics) is actually an isomorphism in each case.

In this paper, we will explicitely construct an isomorphism of a piece-

wise linear transformation (a generalization of /^-automorphism) to a

Markov automorphism. Since the metrical entropy of such a transforma-

tion does not always attain its topological entropy, we cannot use the

method mentioned above, so instead of topological entropy we use free

energy as our main tool.

In § 1 we define the free energy of a Markov subshift and show

under certain conditions that a shift invariant measure with the minimal

free energy is unique. This is a generalization of Parry's result about

topological entropy [3]. In § 2 we define a piecewise linear transfor-

mation and investigate its properties. In § 3 we construct an isomorphic

mapping from a piecewise linear transformation to a Markov automor-
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§ 1. Markov Potential Function and Its Free Energy

Let Iz be an infinite product of state space 7, where I~ {0, 1, • • • , s}

or {0,1,2, •••} and £={•• - , —1,0,1, • • •} . Let o)(n) be the ?z-th coordi-

nate of o) in Iz and let ff be a shift operator on Iz such that

((To)) O) =o)(> + l).

Definition 1-1. A function U'.I*—>[0, oo] is called a (simple)

Markov potential function, if C7(a)) = C7(o)(0), o)(l)) for all toe 7*.

Definition 1-2. A Markov potential function U is called irredu-

cible, if, for any z',j£=7, there exists a finite sequence (z"0, z\, •••,z"w) such

that z0 = z", zn = J, and £7(4, 4+i)<°° for all Of^fc^TZ —1.

Definition 1-3. A Markov potential function Uis called of Perron-

Frobenius type if

(1) U is irreducible

(2) Q(i,j) defined by Q(i,j)=e~™-»

has positive right and left eigenvectors, r= (rt) and 1= (^) respectively,

with a common positive eigenvalue A, such that

HQ(*,J)rj = lrt for all ze7,
ye/

j}li = Mi for all

Definition 1-4. Let A, r=(r f) and 1= (li) be the ones defined by

Perron-Frobenius type potential £7 as above. The Gibbs measure v =

is an ergodic (T-invariant Markov measure with initial distribution

Tit = ltrt/ (X3 Ijrj) for z e 7,
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and transition probabilities

Pt=r,Q(iJ) for

When 7= {0, 1, • • • , s} (s<oo)5 free energy fu(jtt) is defined by (cf.

Spitzer [7]), fu(jt) — I Udjj. — hft((f)9 where /JL is a tf-in variant probability

measure on (/*, (7) . Now we extend this definition.

Definition 1-5, Let 1= {0, 1, 2, • • • } and let # be a (T-invariant prob-

ability measure on (/*, (7) with finite metrical entropy /^((f). Then free

energy /o-(/0 is defined by,

= lim lim E fl( \x\ ) C7n» (x) -

where 7m= {0, 1, • • • , m, m*}, m* = {m + ~L9m + 2, ••-}, [x~\ is the cylinder

set generated by x^Im
n and C7n

m, a function on Im
n, is defined in the

following way. For x, ye/TO
/ = {0, 1, • • • , TTZ}, ^^1, we put

llog

*, -,m*,y)

k + l

and

= — log
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(we define log 0 = — oo). Moreover we define Un
m inductively by

if Xj^Im (1:<75S») and

Remark 1. For

We get, for

Un
m(x) = -log A -- log P^Gr) -- log r£ + --- log

7Z — 1 72 — 1 72 — 1

(including 00 = 00)

where ri
m = ri, i^Im

r, r™* = l, and Pn
m(x), a function on Jm

n, is defined

by the following; for x,

= 2

, y) = S

and

Pn*^, -, J7n)

where x^Im (1</<X),

Remark. If ^e/7/ (1<;<X),
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Theorem 1. Let U be a Markov potential of Perron-Frobenius

type on (/*, 0"), and let A be an eigenvalue of Q = exp( — C7) as in

Definition 1-3. Then, for any <5-invariant probability measure JJL -with

finite entropy, we have

AC«)^-logA (1.1)

In particular, (1. 1) holds -with equality if and only if jj. = v and

/Zv(^)<°°, where v = v(U} is the Gibbs measure defined by U.

Proof. 1st stage: We will show (1. 1) holds with equality if ju = v

and 7iv((T)<^co. We denote by <^m the (T-algebra generated by the cylin-

der sets of Im
z, and by /z,«(tf"i^m) we mean the entropy of the factor

of ff on <^TO. Evidently,

= l iml im—
m->oo 7l-»oo 72

Therefore,

r -JL
fn(v) =lim lira —log!

--log A .

2nd stage: Let jj. be a (T-invariant probability measure with finite

entropy which does not equal to v. Let {7?^} be a distribution such that

(i) E f f « = i
<eJ

(2) -ZXH)logffi<oo
*ei

(3) 7f,>0 if and only if 7T^>0 .

We define v the Markov measure with initial distribution Tti and transition

probability Pu. (Notice that v is not always (T-invariant.) Then it is

easy to see that y^y. From the (T-invariance of fl, we get
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Therefore,

fim_J_

If lim
m->oo x,

If lim ] # ( : y l o g P a .> — oo, then

S

TO-^OO ^ — 1 *<=im

Thus,

— 1

-i- S /«([£]) log S, + lim 1 I]
^ — 1 «S/ m-»oo -ft x^Im

-log A.

On the other hand, since V is ergodic and /J. is (T-invariant, it follows

V. We cite the folio wings.

Lemma 1 ([5])

lim
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Lemma 2. (Dobrushin, Gelfand, Yaglom and Perez [5] (p. 20)).

If fa and /Jiz are probability measures on Iz and A<t/4, then

as

By the above lemmas, we can take n>~L such that

and thus we can conclude that

Remark 1-6. If a Markov potential U satisfies the condition in

Theorem 1 and takes values only 0 and oo, then Q = e~u becomes a

structure matrix of a Markov subshift [2]. Hence inf — fu(/i) = —fu(v)

and we see that v is the maximal Markov measure [3].

Let U be a Markov potential on (/*, (T) which satisfies the conditions

in Theorem 1 and let v be the Gibbs measure defined by U.

Main Lemma. Let (X, T, /JL) be an automorphism -with finite en-

tropy. Then (X, T, ja) is isomorphic to (/*, ff, v) , if there exist a 1-1

(//-a.e.) bi-Borel mapping (p:X^>Iz, ju.-integrable functions V(fl/) and

A (ft)') (ft/eX) such that

(1) 6 ' ( p = (p'T, />a.e.

(2)

(3) A(v)

(4) lim lim 1] /j - (p-1 ( \_x] ) U™ (x) = [dfi
m-»oo n->cx> x^Im

n J

Proof. Let j j . ' ( p ~ l = j j ! , then from the condition (1) #' is a (T-invar-

iant measure with finite entropy /^(T). Therefore to show that they are

isomorphic it is sufficient to prove that /0-(/O =fu(y}>



SHUNJI ITO AND MAKOTO MORI

fu (,«') = Hm Hm 2 ft' ( O] ) Un
m (x) - V (ff)

§ 2. A Definition and Properties of a Piecewise Linear

Transformation

We define a piecewise linear transformation according to [6].

Let 0=(0o.0i,"-90^) is an AT+1-tuple vector such that /?*>! for

0<,k<^N and E A"1>l>|j1A"]. A partition {A,},=0,..,iV of interval
fc = 0 7c=0

[0, 1) is defined by

i-l i

fc=0 fc=0

N-l

We define mappings T:[0, 1) ->[0, 1) and 7T;[0, 1) -^ by

and

<27l(x)=z if T^eAi, respectively, where 5= {0, 1, ~',N} and 5^ is its

one-sided product. Then the mapping T can be realized as the shift ff

on 5^ by the mapping TT, namely

7r -T=t f .7 r .

For convenience we define a sequence corresponding to 1 by

= sup



MARKOV AUTOMORPHISM 9

where supremum is taken over with respect to the lexicographical order.

Then it is easy to see that for xe[0, 1)

?*.'w •••&>( g flr1)

We put

We already know the results that the endomorphism T has an in-

variant probability measure V0
+ equivalent to Lebesgue measure, and its

unnormalized density f(x) is given by

w^here -X^ is the characteristic function of A [6].

Let 7T[0, 1) =X0
+dSN and let /^ be an induced measure of V0

+ by

7T. Then [Xp+, (J, ̂ +] becomes an endomorphism which is homeomorphic

to ([0, 1), T, V0+) . We call this endomorphism a piecewise linear endo-

morphism.

Proposition 2. 1,

(1) For any (j)^Xp~

(2) Let Xf = { [a<> (x) , • • - , <zn (x) ] ^ e [0, 1) } ,

The proofs of this proposition are very easy and we omitt it (c.f.

[6]).

The piecewise linear transformation (Xff9ff9/ji0) which is the natural

extension of (X^969fJL^ is defined by

, for all n},
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where [&0> ' " > ̂ n] £= -X]/1. Note that jj.$ is well-defined because of (T-invar-

iance of /^+.

§ 3. Isomorphism of a Piecewise Linear Transformation to a

Markov Automorphism

In this section we will prove the following Theorem 2 by appealing

to Main Lemma in Section 1 and a mapping <p which is similar to the

mapping introduced by Y. Takahashi for /?-trans formation ([8]).

Theorem 2. A pieceivise linear transformation (X8, (7, /JL0) is iso-

morphic to a Markov automorphism.

To prove this Theorem we begin with the construction of a mapping

<p\Kf-*F where J= {-AT+1, • • - , -1, 0, 1, • • •} .

For (D^Xp, r(o)) is defined by

sup {£:£>!,

0, if

where Bt= {o)^X,: (o)(-z), -,0(-l)) - (flo(l), -, «i-i (D)}-

Let Ci = {fl)eX /9:r(ft))=z}, for z = l, 2, • • - ,

( f t ) )=0 , f t ) (~ l )=-z} , for

It is easy to see that /^(CL) =0 and tTCoo^C^. Define a mapping

by

)=f if

Then, it is easy to see that the mapping <p is a Borel injection and

satisfies

Lemma 3-1. (1) If a)(=Ciy l<^'fSoo, then
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(2) If ft>eCi, z<;0, and (T'^eQ, j>l, then

Proof. (1) Suppose (T'VoeQ .;>*, then

and

Hence

and

This contradicts to the maximality of (rO ( — i ) , • • • , a) ( — 1) ) .

(2) By the assumption, the j-tuple

is maximum. From o)eCi5 (z^O), it follows that o)( — 1) = — z = \i\ and

Therefore

We define a Markov potential U on 7* by

f log 0., , -N+ l<z<0 , -AT+ 1< j<0 ,

log/9*, i=I, -N+l<j<0,

and ay (!)>-/,

oo, otherwise.

It is easy to see that this potential U is irreducible. We show that

U is of the Perron-Frobeiiius type by finding an eigenvalue /I of Q = e~tr

and corresponding eigenvectors to A.
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Put A, l=(li)i^-N+i and r=(ri)i^-N+1 as follows,

where

My=l, if Q(i,/)>0,

= 0, if Q(f , j )=0 .

Then it is easy to see that

j )=^ = ̂ , for a l l j ,

for al l f ,

Therefore C7 is of the Perron-Frobenius type. Let v be the Gibbs

measure corresponding to U. From the fact — XI ^t log nt<^oo9

Av((T)<oo .

Hence Theorem 1 in Section 1 implies

/ff(v) = -logl=0.

Now we will define V(o)f) on (Xff, ff, //#) to apply the Main Lemma.

Let

) =1^(00 log &,
ies

where X{(o)') is the characteristic function of {a/:a)'( — 1) =£}. Then

- f U *C.':.'OD=IDGJies

On the other hand by [4],
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Uff log 0' (ft)') ,

where 0'(o)') is the derivative of the graph of ^-expansion. Hence

/^(<r)=o=/r/0).

We have already proved cp satisfies the conditions (1) and (3) in

Main Lemma, and hence it suffices to show only the conditions (2) and

(4).
1) In case ft/eC*, 2<Sz<oo, it holds ft)'( —1) =<z f_1(l) and hence

F(X) =log/9a<_ l (1, .

On the other hand by Lemma 3-1, it follows

Thus

>')) (0), (?(o>')) (D).

2) In case o)'eC4, —N+l<,i<,0, it holds o)'( — 1) = — f, and hence

From Lemma 3-1,

(p(o) ' ) ) (0)=f , (^(o)') ) ( D = > , for some

I7(^(o)'))= log /9-,.

3) In case a)' ̂ C^ it holds o/( — 1)=JV, and hence

and

This implies that

Therefore (2) of the Main Lemma is satisfied for h(u)') =0, to'

To prove (4) of the Main Lemma, put jU/ =jj.$'(p~\ then
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= X!

i=i n

, x

On the support of /*/

where @max = ma-K{pQ, /?2, • • • , /J^}. For z>l we get

— log X] ^m+y exp[ — U(x9
z y^i

2Vv '

t+1
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-1 2-j

Moreover for J

for some constant C, and

for some constants K, k>l and /?mf7I ~min{/30> • • • , /5iV}. Therefore the

right-hand terms of (*) become

lirnlim (the first term)- £ ^ (\x, y]) C7(^ y) =
m-*oo ji-»oo a-.yel

lim lim |the second term]

([m*,...,»*,«]) log /8»«

<lim XI (i + 1) Kfi-?-* log 0maj! = 0 ,

lim lim |the third term|

i log/5maa; —log
Pma^

<limmax I] ^/Sif, nog/9wa,-log--^^_ =o
m-,oo i fc^m + 1 \ 1-&

lim lim |the fourth term I
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<limmax///([m*, • • - , w*, w]) (£log/9m a j p +
m-»oo i

= lim | max /*/

lim lim |the fifth term|
771—>oo 7J—»oo

<li^lim( £ /*/([*]) (logft...

= -« X .&BMJ < /

771—»oo 71—>oo "ft, JL ^6^771 +W + l

Thus (4) of the Main Lemma is proved. Therefore, applying the Main

Lemma, we complete the proof of Theorem 2.
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