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Isomorphism of a Piecewise Linear Transformation
to a Markov Automorphism

By

Shunji ITO* and Makoto MORI**

D. Ornstein and others proved important isomorphism theorems for
a large class of automorphisms, i.e. measure preserving transformations.
However, it is also interesting to explicitely determine an isomorphic map-
ping in each concrete case. R. Adler and B. Weiss [1] explicitely con-
structed an isomorphism between an ergodic group automorphism of a
2-dimensional torus and a Markov automorphism. Y. Takahashi [8] gave
an isomorphism between a (-automorphism and a Markov automorphism.
The crucial point of their argument lies in the fact that the metrical
entropy coincides with the topological entropy for these automorphisms.
Using this fact and Parry’s result [3], they showed that the represen-
tation mapping of the automorphism in consideration to a Markov subshift
(of a symbolic dynamics) is actually an isomorphism in each case.

In this paper, we will explicitely construct an isomorphism of a piece-
wise linear transformation (a generalization of B-automorphism) to a
Markov automorphism. Since the metrical entropy of such a transforma-
tion does not always attain its topological entropy, we cannot use the
method mentioned above, so instead of topological entropy we use free
energy as our main tool.

In §1 we define the free energy of a Markov subshift and show
under certain conditions that a shift invariant measure with the minimal
free energy is unique. This is a generalization of Parry’s result about
topological entropy [3]. In §2 we define a piecewise linear transfor-
mation and investigate its properties. In §3 we construct an isomorphic

mapping from a piecewise linear transformation to a Markov automor-
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phism.
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Totoki, Yuji Ito and Yoichiro Takahashi for their valuable advices.

§ 1. Markov Potential Function and Its Free Energy

Let I% be an infinite product of state space I, where I=1{0, 1, ---, s}
or {0,1,2, --:} and s={---, —1,0,1, ---}. Let w(n) be the nth coordi-

nate of @ in I? and let ¢ be a shift operator on I? such that

(00) (n) =0 (n+1).

Definition 1-1. A function U:I®*—[0, 0] is called a (simple)
Markov potential function, if U(w) =U(w(0),w (1)) for all o I~

Definition 1-2. A Markov potential function U is called irredu-
cible, if, for any 7,j& I, there exists a finite sequence (%, 7y, ***,,) such
that Z'o—-—'i, inzj’ and U(Zk: ik+1)<00 fOI‘ aH nggn'—]"

Definition 1-3. A Markov potential function U is called of Perron-
Frobenius type if

(1) U is irreducible

(2) QC(,j) defined by Q,J) =e 7%?
has positive right and left eigenvectors, = (7;) and [= (/;) respectively,

with a common positive eigenvalue 4, such that

2.Q@G, j)ry=4r; for all iel,
jel

220G NL=2; for all jel,
ier

2 liri<loo.

el

Definition 1-4. Let 4, r=(7r;) and [=(/;) be the ones defined by

Perron-Frobenius type potential U as above. The Gibbs measure y=y(U)

is an ergodic ¢-invariant Markov measure with initial distribution

mi=lry) Q  Liry;) for iel,
jer
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and transition probabilities
Py _ Q@) for i, jeI.
1.7"1:
When I={0,1, -+, s} (s<{o0), free energy fy(#) is defined by (cf.
Spitzer [7]), fu(w) = JUdﬂ—hﬂ (0), where # is a 0-invariant probability

measure on (I%,0). Now we extend this definition.

Definition 1-5. Let I=1{0,1, 2, ---} and let # be a ¢-invariant prob-
ability measure on (%, 0) with finite metrical entropy %,(d). Then free
energy fy(u#) is defined by,

fU(ﬂ) ‘—:Ezn; Eré Ie;nﬂ([x])Unm(x) _hﬂ(d)a

where I,={0,1, .-, m, m*}, m*={m+1,m+2,---}, [x] is the cylinder
set generated by x&I,"” and U,™, a function on I,", is defined in the

following way. For x, yeI,”’={0,1, ---, m}, k=1, we put
U2m (.Z', y) = U(l‘, y) ’
UI:':-J (.ZC, ?’}’L*, Tty m*)
_

k

k-1
=—Liog 3 rpexp[—Uz, i) =X Uiy, isen)]
k iizm+l i=1

E—1
= log 23 exp[—U(x,4) =2 U@y, 2540) —U G, v) ]
k+ 1 i =m+1 j=1

Ui, (m*, .-, m*)
-

iry.,
gl B, el 2 UG i),

ipazmtl I

and

k+1(m K] *, y)

k

=~ Llog ¥ JJ—exp[ ZU@,, i) —U (i )]
k ijzm+1 Z ir;

zmi1 7
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(we define log 0= —o0). Moreover we define U,™ inductively by
(=D U™ (1, -+, Zn)
=0E=DU"(xy, - 2:) + (=D Usiya (2, o, Xa)

if zyel, 1<j<n) and x,&1,’.

Remark 1. For =1, (1=<i<n),
(=D U™ (zy, -, 22) = ;:;1‘ Uz, %) -

We get, for x= L,",

log

U,"(x) = —log 1— 1 1 log P,™ (x) — log 7" +

n— n—1 n—
(including oo =o0)

where r;"=ry, i€ 1,’, rm=1, and P,"(x), a function on I,", is defined

by the following; for x,ve1L,’, k=1
P (x,y) =P,,

* *) —
Pgy (x, m*, -, m*) = 22 PooPiiy Py

Y i =m+1
Gom+1
m % * _
Pk+2 (.’C, m=, -, m, y) =. Z Pz,iLPfuiz Pik—nl'rcPiiuy
\——7—’ i =m+1
fg=m+1
*k *) — .
Pla(m*, -, m*) = 31 wPis P,
S— iy =m+1
K+l eeeesseeee
T =m—+1
ES * — ..
PIZH (777’ y T, T, y) = Z ﬁilpiniz' Pik-x:ikPik:!l
—_— t=m+1
Tg=m+1

and
an(xl’ ”'!xn) :Pim<xl, T 'ri)P‘I’ln—i—i—l(xi, ) xn)
where ;€ 1, (1<j<n), x,€1, .

Remark. If e, (1<i<n),

n—1
an(-rl; Ty xn) =%I_:,[1Pz'i,l'i'x .
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Theorem 1. Let U be a Markov potential of Perron-Frobenius
type on (I%,0), and let 2 be an eigenvalue of Q=exp(—U) as in
Definition 1-3. Then, for any O-invariant probability measure } with

finite entropy, we have
Sfo() = —log 4 (1.1)

In particular, (1.1) holds with equality if and only if y=y and
N, (0) <oco, where y=y(U) is the Gibbs measure defined by U.

Proof. 1st stage: We will show (1.1) holds with equality if #=v
and h,(0) <oo. We denote by ¢, the o-algebra generated by the cylin-
der sets of I,°, and by h,(0|#,) we mean the entropy of the factor

of ¢ on ¢,. Evidently,
h/ﬁ @) 23‘1_1:11 hn (o'l?m)

=lim hm Sl Z‘, u([x])log 2([=D.

m—oo Moo P TE

Therefore,

fr(») =lim hm[— log

m—00 M—0

+

> 7 logn] + lim hm Sl Z v([x])logv([x])

n—1isty m-sco nswo 7] TEL

= —log 1.

2nd stage: Let # be a (-invariant probability measure with finite

entropy which does not equal to y. Let {#;} be a distribution such that

(1) Zﬁizl

el
(2) —;I#([i])log fEy<loo
(3) #>0 if and only if 7;>0.
We define ¥ the Markov measure with initial distribution #; and transition
probability P;;. (Notice that ¥ is not always ¢-invariant.) Then it is
easy to see that V~y. From the ¢-invariance of x4, we get

L 2 a@E g PP @S T #([z5])log Pay

_‘11‘ Elnn
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Therefore,

~— 1
lim
noow 3 — 1 zET

If im % u([x, y])log P, ,= — oo, then

mooo I,ycl’py

fo () =lim lim 22 #([2DUa"™(2) —hyu (0) = 00> —log 1.

o n—oo z&1,

If lim Z u#([z,y])log P,,,> — oo, then

m-c T, YyE
lim lim
Mm—c0 N0 P —

= > u([z,y])log P, ,
z,yel

Z u([z])log P (2)

1

n—1 z=(z, 7 zp)EIR

U ([.Z‘]) 10g le,zszz,z,' - 'Pzn_‘,.t,.

Thus,

So(1) —hm Lim Z (DU () — lim £, (01ga)

—00 N—>co

> —log A—1lim

Mmoo 7 — 1

2 A (=] logv ([2])

5 #([2Dlog B ()= 3 4Lz y])lo P,y

Z #([z])log ¥ ([£]) ——Z 4 ([2]) log 7; .

z—L|im 2 aaDlog(A0E) + 5 (D) 0g 7

m—oo zEILn

([=D)
—log 2.

On the other hand, since v is ergodic and s is ¢-invariant,

u~+y. We cite the followings.

Lemma 1 ([5]).

lim 3 a([=]log £LED = 51 4 (1a1) 10g 27D

m-veo 2ET v([=]) v ([=])

it follows
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Lemma 2. (Dobrushin, Gelfand, Yaglom and Perez [5] (p.20)).
If u, and ), are probability measures on I? and p; <X/, then

Tm(aDlog(4C 5 voo as novco

By the above lemmas, we can take #2=>1 such that

(I los 7t 33 a((=Dlog(40E21)>0,

and thus we can conclude that

Su(u)>—log .

Remark 1-6. If a Markov potential U satisfies the condition in
Theorem 1 and takes values only 0 and oo, then Q=e Y becomes a
structure matrix of a Markov subshift [2]. Hence inf —fy (%) = —fz ()
and we see that v is the maximal Markov measure [3].

Let U be a Markov potential on (I#%, ¢) which satisfies the conditions
in Theorem 1 and let y be the Gibbs measure defined by U.

Main Lemma. Let (X, T, u) be an automorphism with finite en-
tropy. Then (X.T,u) is isomorphic to (I?,0,v), if there exist a 1-1
(p-a.e.) bi-Borel mapping ¢:X—I?, u-integrable functions V(»’) and
h(o") (o' €X) such that

1) oc-9=¢-T, pae

2) Ulp))=V(") +h(w), upae.
[r@)dnwn o,
@ foo) = [dn() V@) =h (D),

@ limlin 3 p (DU @) = [dpeg™

m—oo n—oo &l n®

Proof. Let p-¢~'=y’, then from the condition (1) #’ is a ¢-invar-
iant measure with finite entropy %,(7"). Therefore to show that they are

isomorphic it is sufficient to prove that fy(u') =fy(v).
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Fo'y =lim Tim 32 o ([2]) U™ (2) — by (0)
— jdu ) U (0") — k(T

= [ar@)vw) —h.

=fov().

§ 2. A Definition and Properties of a Piecewise Linear

Transformation

We define a piecewise linear transformation according to [6].

Let 8= (5. 0:, -+, By) is an N-+1-tuple vector such that 5, >1 for
0<k<N and %Bk”lzl>1§1‘8k”. A partition {A;};..» of interval
[0,1) is deﬁnel:;oby .

AO = [O’ 130—1)

i—1 i
A= (D87 26T i=1,, N-1.

N-1
Ay= (587D,
We define mappings 7:[0,1) —[0,1) and 7;[0,1) =S¥ by

i—1
Tx=B8(x—>8"" if ze€A,i=0,1,--- N,
k=0

and
77(‘7:) = (ao(‘r)ral(x)a "',an(x)$ “')3

a,(x) =i if T"x < A,, respectively, where S={0,1, ---, N} and S¥ is its
one-sided product. Then the mapping 7T can be realized as the shift ¢
on S¥ by the mapping 7, namely

n-T=0-7.
For convenience we define a sequence corresponding to 1 by
77.'(1) = (do(l), al(l)’ T an(l) ’ “')

:zselé&(a"(x)’ a;(x), -+, an(x), =)
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where supremum is taken over with respect to the lexicographical order.
Then it is easy to see that for x=[0,1)
@ (z) -1

1 @
r= ,;, Bx ™+ Bayi kz__‘_{] B+

1 . Apey(T)—1 1
+Bay@  Pana ( B A+

k=0

We put
3 aj()—1 . . aj (1)1 »
T’1= IE‘@,‘ +Batay ( k;‘; Beh) 4o

We already know the results that the endomorphism 7' has an in-
variant probability measure v,* equivalent to Lebesgue measure, and its

unnormalized density f(x) is given by

f@) =3, S

20 BoBay Bany

($) b

where X, is the characteristic function of A[6].

Let #[0,1) =X,*CSY and let x#;,° be an induced measure of v,* by
7. Then [X,", 0, #;*] becomes an endomorphism which is homeomorphic
to ([0,1),7,v,7). We call this endomorphism a piecewise linear endo-

morphism.

Proposition 2. 1.
1) For any we X,

"w<(ay(1),a; (1), -+, a, (1), -+), for n=0.
(2) Let X '={[a,(x), . a.(x)]:x=[0,1)}, then

max{[b, -+, b.] € X"} =[ac (1), -+, au (1) ].

The proofs of this proposition are very easy and we omitt it (c.f.
[61).
The piecewise linear transformation (X, 0, #;) which is the natural

extension of (X;*, 0, #;") is defined by
Xs={weS%(wn),w(n+1), ) € X,*, for all n},
lltﬁ([b(b R bn]) :/lg+<[bo, T bn])-
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where [by, -, b,] €X,". Note that u; is well-defined because of ¢-invar-

iance of u,*.

§ 3. Isomorphism of a Piecewise Linear Transformation to a

Markov Automorphism

In this section we will prove the following Theorem 2 by appealing
to Main Lemma in Section 1 and a mapping ¢ which is similar to the

mapping introduced by Y. Takahashi for f-transformation ([8]).

Theorem 2. A piecewise linear transformation (X, 0, fg) is iso-

morphic to a Markov automorphism.

To prove this Theorem we begin with the construction of a mapping
¢:X;—I* where I={—N+1, -, —1,0,1, ---}.
For we X, t(w) is defined by
sup{f:7=1, we By},

(w) =
0, if weX,\UB;,
i=1

where B;={weX;:(w(—17), -, 0(—1)) =(a(), -+, a;-;(1))}.
Let C;={weX,t(w) =1}, for i=1,2, -,
={weX;t(w) =0,0(—1) = —17}, for —N+1<:<0,
C.=we X;:t(w) =o0}.

It is easy to see that u,(C,) =0 and 0C,=C,. Define a mapping
¢: X, \C.,—I? by

(p(w)) (n) =i if weo"C;, nckZ ic].

Then, it is easy to see that the mapping ¢ is a Borel injection and

satisfies

p-0=0""0p.

Lemma 3-1. (1) If weC, 1<i<oo, then

G_ICOE Ci—l .
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(2) If weC, <0, and 07'w=C;, j=1, then

a; (1) >—1i=|i|.

Proof. (1) Suppose ¢~ 'weC; j=1, then

(U)(“‘j—‘l), “‘,60(“"1))<(610(1), ”'aaj(l))

and
(@(=j=D. - 0(=2)=(a@), -, a-(1)).
Hence
o(—1) <a;(1)
and so
(@(=2), = 0(=1))<((=2), -, 0(=2),21)).
This contradicts to the maximality of (0w(—1%), =, w(—1)).

(2) By the assumption, the j-tuple
(0(=7i=1D, - 0(—2)) =(a(), -+, a;:(1))
is maximum. From we€C;, (:=0), it follows that w(—1) = —7=|Z| and
(@(=7—1, - 0(—=1))<(a(), -+, a;(1)).
Therefore

a;(1)>—i=|il.

We define a Markov potential U on I? by

logpB_;, —N+1=i<0, —N+1=<;=0,
log By, i=1, —N+1=<;=0,

U@, j)=¢logfe,ary 122, j=i-1,

logf;, —N+1<i<0, ;>0 and ;1)>—1,

oo, otherwise.

2

It is easy to see that this potential U is irreducible. We show that

U is of the Perron-Frobenius type by finding an eigenvalue 2 of Q=¢e7Y

and corresponding eigenvectors to A.
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Put 4, I=(l)i-n+1 and 7= (7;) i=-y+1 as follows,
=1,
=1, —N+1Z:<0,
=T, i=1,
7= BawBaiwy Barw, =1,
=pZ@ +]§ M8z 0 Bajawy), —N+1=i=0,
where
M;=1, if Q(,j)>0,
=0, if Q(,j5) =0.
Then it is easy to see that

200G, ) =l;=2;, for all j,
iel
220G Nri=r;, for all 7,
jer

2 rili<loo.

el

Therefore U is of the Perron-Frobenius type. Let v be the Gibbs

measure corresponding to U. From the fact —>_ 7; log m;<oo,
h,(0) <oo.

Hence Theorem 1 in Section 1 implies
Sv(y) =—log1=0.

Now we will define V(0') on (X, 0,45 to apply the Main Lemma.
Let

V(o) =2 Xi(0")log 8;,
fes
where X;(w’) is the characteristic function of {w’:w’(—1)=z}. Then
[ans@) V@) = [ans@) Vo)
— | 35 K- log Bidy ).

On the other hand by [4],
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by (0) = jduﬁ log ¢’ ("),

13

where ¢’ (0’) is the derivative of the graph of ¢-expansion. Hence

fdﬂﬁ (©) V(') — by (6) =0=F4(v).

We have already proved ¢ satisfies the conditions (1) and (3) in

Main Lemma, and hence it suffices to show only the conditions (2) and

4.

1) In case v’ eC;, 2<i<oo, it holds ' (—1) =a;-,(1) and hence

V(") =log Ba.w -
On the other hand by Lemma 3-1, it follows
()0 =i, (p"))@)=i—-1.
Thus
Up")) =U(p")) (0), (p(@)) (1)).

=log Ba;-l(l) .

2) In case o' €C;, —N+1<:{<0, it holds v’ (—1) =—17, and hence

V(v") =log B-:.
From Lemma 3-1,
(@) () =7, (¢))@A)=y, for somej,
Ulp(w')) =log B-:.
3) In case w' €C, it holds w' (—1) =N, and hence
V(w') =log By .
and
(N O)=i. () D)=/, —N+1=;=0,
U(g(w")) =log Bv.
This implies that

Ulp)) =V (), psrae.

Therefore (2) of the Main Lemma is satisfied for A (w’) =0,

To prove (4) of the Main Lemma, put u," =z ¢, then

{0, = Xﬁ'
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) 2w ([zD U™ ()
z&lpn

=M§_I 4 ([z, 9D U (=, 9)

NG+ (n—1—7) ’ gt
+§TI,§_M’#/9 ([x’m ’ s m ’y])

i

xU 1:7’:)'.2(-2, ”l*’ Ty 7“’*’ y)
~—————— ——
i

n—1 i ,
+ Z Z [luﬁ (x5
=1 1 zely,’

” Y m*])Uiﬁl(xs m*’ Ty m*)
— _

m*

, i i
+ug ([m*, -, m*, 2 UL (¥, -, m*, 2) ]
+ug' ([m*, -, m* DU (m*, -, m*).

~— —

~——
n n

On the support of u,

Uz, y) Zlog Buas

where B, =max{B,, Bi. -*-, Bx}. For i=1 we get

i-1
U, (x, m*, -, m¥, m)]:—i—[U(x, m~+2) +X, Ulm~+j+1, m+j)]
—_— i+1 j=0

=<log Bmaz

|Ui"1l-1 (.Z', m*s ) m*) i
~—~—

i

L tog Y s exp[— Uz, m+i+J)
7 j=1

i—1 .
D Umtkti+tl,mtk+)] <log fnes— L logl_ﬁmgz_,
) z “Pmaz

lUi"il (m,*, Ty m*’ )71) l
\__.ﬂi,__/

i-1
=‘—_1__10g s exp[—-ZU(m—}-k—i—l,m—}—/a)]’
1 Zlﬂ‘j K=o \

J

(1 l
gIOg ma,.z-+ _10 —nat ’
o ‘8 !l gzljrj!

7

UL (m*, -, m*) |
~————

i+1
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:ﬁ__l__ log 3] InssriniTmas exp[ = U (m+k+j+1, m+k+j)]i
Z iz Ly k=1
k

<1 | j;lmwﬂﬂrmwl
OgBmuz \'—‘ Og Zlkrk

Moreover for j=1

[J' :Tj].
ORI . a1
= 11:2—;) Blc +Ba,(l)( =, Bk )+

@jr(1)—1

az(1)~-1
= {Bay* Bay kZo B+ Baswy Baya ’CZO Bt}

X Bagty**Bagy
=C-ug ([j])3a0<1>"‘3a,_,<1> ’
for some constant C, and
1" ([k]) <KBnin

for some constants K, 2=1 and [, =min{f, '+, 8y}. Therefore the

right-hand terms of (*) become

lim lim (the first term) = 3 44 ([z, y]) U (z, %) = jdﬂﬁ,-U,
r,yel

Mm—>00 N—>c0

lim lim |the second term|

m—oo0 N —->00

Slim 2 G+1) ' ([m*, -, m*, m])10g Bnas

m—oo i=1
i

<lim 2(l+1) K307  1og fnar=0,

m—oo 1=

lim lim [the third term)|

m-,co M—>00

<Iim max g’ ([m*, -+, m*]) (i 10g fmes—log 1‘"};—>
<limmax >} KBzt (i 10gB e —log P28 ) =0,
omee @ kSmn 1 Bmaz

lim lim |the fourth term!

Mm—o0 N-—>00
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log4e \LTE]) Us "([m+:]) 1)

<Ilim max 15/ ([m*, -, m*, m])(ilogem,+
— Sy |

m—

i

=Zi§°lm?x g’ (Im+i]) log pg" ([m+i1) =0

lim lim |the fifth term]|

m—oc0 N—>00

Zlm+s+nrm+s
<lim lim ( > ﬂﬁ'([k])(logemﬁi — log™= !)

T Mmoo N kZmon

<Iim lim

m—0 -0 Fl —

12, He (LR [log (3 " (Lm +5+2])) [ =0

Thus (4) of the Main Lemma is proved. Therefore, applying the Main

Lemma, we complete the proof of Theorem 2.
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