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Some Remarks on Isolated Singularity and
Their Application to Algebraic Manifolds
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0. Introduction

In 1954 F. Hirzebruch [8] obtained an interesting formula which

makes it possible to determine the alternating sum X]5( —z)9dim Hq(V,

J2p(Lfc)) for any complete intersection V of hypersurfaces in a complex

projective space and for any k^Z where L is the analytic line bundle

over V induced by hyperplanesection. He further determined dimH^y,

J2P) by using some vanishing theorem. In the author's knowledge, how-

ever, the genera] dim Hq(V, J2P(Z/)) seem not to have been determined

yet. In this note we shall give a formula which determines directly

dim Hq (V, Qp (Lfc) ) in case 0<^q<^dim V, by using the theory of isolated

singularity. (See Theorem 2.3.1, Corollary 2.3.1.)

Part I is concerned with the general theory of isolated singularity

and is of preparatory nature. The readers who have known the standard

of the theory (e.g. Greuel [4]) may bypass it after they become familiar

with the terminology and notations. Part II begins with the study of

C*-actions over isolated singularities. The main theme there is to com-

pute the characters of the representations of C* over various cohomology

groups attached to the singularities, we apply it to the cones associated

with algebraic manifolds and prove the required formula finally.

The almost all results obtained in this paper have already been an-

nounced in [11], [12].

Part I: General Theory

1. I. Preliminaries

We shall often denote by (X, x) the pair of an analytic space X
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with a point x^X such that X\x is smooth and pure dimensional.

We call such a pair an isolated singularity (even in case X is smooth) .

For an analytic space X, Q£ denotes the sheaf of analytic ^?-forms on X;

but we write often Ox for QX- Suppose (X, x) is given and let c be

the inclusion X\xc-^X. Then, for a sheaf G over -X", the sheaves

R^C^G (<2>0), Mx
q(G) are concentrated into the point x, so we shall

often identify them with their stalks over x. Whether these notations

mean sheaves or stalks should be understood from the context. Now

let us begin with the Serre type duality for (X, x) .

Lemma 1.1.1. Let (X, x) , c be as above and set 7z = dim X. Then

Rqc*c*&xp, Rn~q~1C*C*@x
n~p are finite dimensional (over C) and are nat-

urally dual each other provided O<<Z<TZ— -1.

We can prove this easily by using Serre [14] and Andreotti-Grauert

[1]. For the explicit pairing which gives the duality, see Section 2.1.

Note that it can also be proved that there is a natural pairing between

(c*C*GzP)x and Rn~1C^^xn~P which is compatible with the structures of

the complexes C^C*SX\ B?~lC*C*Qxm and induces the duality between

Hp(f*e*Qz) and Hn-*(Rn-\t*®x'}.

The next lemma is concerning the coherency of local cohomology.

Lemma 1.1.2. Let G be a coherent Ox-Module such that G\x\x

is locally free. Then Jttx
q(G) is coherent for #<<dim X.

Proof. Siu [15].

We shall now introduce a condition for an isolated singularity which

will turn out to be convenient later.

Definition. We say (X,x) satisfies condition (L) if

for p, q such that

Lemma 1.1.3. (Partial Poinc are Lemma) If (X,x) satisfies the

condition (L), then 3ts
p(C) =0, Hp($x'iX) =0 for 0<p<dimX, where
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Qx denotes the Poincare complex of X, and Sx
m.x its stalk over x.

This can be proved as follows : Consider the £2-term of the spectral

sequence ' E2
p'q=M/ (Mq(Qx'» . These are zero except ' Ef •* = &*(& ,

'E2
0'q = H0(&z'iX') 0?>0). But, since there is a complete neighborhood

system at x consisting of contractible ones only, it can be shown by

Bloom-Herrera [2] that Hr~l(^x'tX) = 'Er°'r-1^'Er
r'° = J{ai

r(O is zero-map

for every ?~>>0 (see the proof of Lemma 1.2.2 appearing later). Compar-

ing this with EI -terms " 'J£1
P'9 = J^9(J2/) of the other spectral sequence

having the same limit, we obtain the conclusion of the lemma.

Definition. Let f be an analytic function on X such that f(x) = 0,

and that dfz, which is not the germ but the value at x of the differential

form df, is not zero for any z£zX\x. Then (/^(O), x) is a new isolated

singularity, and is called the hyper surf ace section of (X, x) defined by /.

The hypersurfacesectioii is a useful device for the study of complete

intersections since they are obtained from non-singular ones by iterated

hypersurfacesections. See Hamm [5].

Now the method to prove Lemma 1.1.3 shows also

Lemma 1.1.4. Lei (X,x) satisfy the condition (L) and

Ox) be such that dfs^Q for every z^X\x. Then the sequence 0

->@i1~>--'—>fix
dimX is exact, where £Y

P-»J2/+1 denotes the exterior mul-

tiplication by df.

Another useful way to formulate this lemma is the exactness of

the sequences

(1.1.1) 0->fi/-1-

where we have put as in Brieskorn [3]

Lemma 1.1.5. Let (X,x),f be as in Lemma 1.1.4. Then,

(X,x) satisfies the condition (L) if and only if M^(^f
p) =0 for any



20 ISAO NARUKI

p, q such that />-f<?<dim X.

Proof. Suppose (X, x) satisfies (Z/) . Using the long exact se-

quence of the local cohomology associated with (1. 1. 1) we obtain mono-

morphisms ^9"1(iG/+1)c->^5(^/) for p, q such that p + q<dimX.

Combining these, we have monomorphisms ^Q(J2/) c-^^/"ra+1(^/"1) =0

when p + q^dimX. This proves the "only if" part. Next, we note that

c^>
3r°(fi/)=0 O<dimX) implies the exactness of (1.1.1). Thus the

long exact sequence used above, again proves the "if" part.

We end this section by indicating briefly the topological meaning of

the cohomology groups H^{f^f\x}. (Note the exterior differentiation d

naturally induces the maps Qf— >J2/p'rl by which the complex Q/ is de-

fined.) Let (X,x\f be as in Lemma 1.1.4 and let /"(.r) =0. Let

further (Y,y) be the hypersurfacesection by f, that is, Y=f~1(Q'), y=x.

Then we can always assume by Milnor [10]

a) (X, x) is a closed analytic set in some open ball with center

x = Q in CN:(zl9 z2y • • • , ZN) .

b) The restricted functions r\x\X9 r\Y\y have no critical point,

where r(z) =2?=l\zi\
2.

Theorem A, Under the above assumptions, there is a neighbor-

hood S of 0 in C such that (i) /: f~* (S)\Y-+S\Q is a C°° fibre bundle

(ii) RFf* (*G/) | S are coherent Os-Modules (iii) there is a natural iso-

morphism

To Milnor [10], Hamm [5], the (i) is due. The assertion (ii) can

be proved as follows: Take a smaller open ball B' and set X'=Xr\B'.

Then the argument of Brieskorn [3] shows the restriction map F(f~1(T),

@/)—>r(f~1(T)nX',@f°) is quasi-isomorphic for any open subset of T

provided S is sufficiently small. But this map is also quasi-nudear

F (T, Os) -homomorphism in the sense of Kiehl-Verdier [9] . From the
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fundamental theorem of [9] it follows immediately (ii). The quasi-iso-

morphicity above proves (iii) also.

Note that this method can prove the finite-dimensionality of Hp(@x'.x)

of Bloom-Herrera [2]. (To prove this, one may only replace / by the

map (.X, x) — > (point, point) in the above argument.)

1. 2. Conservation of (JL) under Hypersurfacesectlon

and Some Consequences of (L)

Throughout this section we fix (X, x) and f^ F (X, Ox) such that

(Y, y) = (/^(O) , x) is a hypersurfacesection of (X, x) .

Lemma 1.2.1. If (X, x) satisfies the condition (L), then (Y, y)

also satisfies the condition

Proof. By Lemma 1.1.5, JCx
q(Qf

p) =0 when p + q<dimX. But

<$Cx°(Gf
p)=Q (p<^dim X) implies the exactness of the sequence

(1. 2. 1) 0^£/4£/->J2/->0 p<dim X

where &Y
P should be regarded as sheaves over X. Thus we obtain the

long exact sequence

• • • -»JCX* (£/) -*M* (£/) ->^f/ (fl/)

from which it follows My*(Qr
p) =0 when j^ + ^<dim Y.

Remark. Using Lemma 1. 1. 1, Lemma 1. 1. 2 and Nakayama's lem-

ma, we can supply the argument above to prove the stronger statement:

(X, x) satisfies (L) if and only if (Y, y) satisfies (L) and dim £Cy°(QY
n)

Corollary 1. 2. 1. If (X, x) is a complete intersection, then it

satisfies the condition (L).

As indicated before, this follows from Lemma 1. 2. 1 and Hamm [5].

Consider the complex £CX°(@X'^ which is the torsion part of Qz" and

set
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We shall now prove the following sharper version of the Poincare lemma:

Lemma 1. 28 2. If (X, x) satisfies the condition (L) , then

Hp("Sz') =0 for OO<dimX

To prove this, [2] seems to be not adequate. We have therefore

to rely on the earlier works of Herrera [6], [7]. When a semi-analytic

set M is given in a real analytic manifold M, we define the sheaf £jf

as the quotient of the sheaf of C°° p-forms over M by the subsheaf of

^-forms inducing the null form on the non-singular part of M. There

is a natural onto homomorphism Hp (T (M, £„;) ) -+H p (M, €) .

Proof of Lemma 1. 2. 2. Take a contractible neighborhood U of

x and consider the commutative diagram

H'(F(U, s^)-^
I I

, €) .

This proves the composition Hp (F (U, e^)) ->Hp(F(U\x, e^))

(£7\.r, C1) is zero. Note that there is a natural map " Qv'— >£^'

induces the map Hp (T (U , "£*/)) -^HP(F(U, e^ '))- Composing this with

the map above, we obtain the natural map HP(F(U, trQu')
>)^>IP(U\x9 C),

or passing to the limit, the natural map Hp(ff@x',x) ~^RPC^C which is zero.

But this zero map can be factorized as follows: Hp(" 'Qz',x)-*Hp }(c*t*&z'}-*

RPC%C (C:X\x^>X), where £ is injective for p<^dim X as the edge homo-

morphism of spectral sequence RqC*C*@J?=$Rp+qC*C because of the condition

(L), and further f] is also injective for ^?<dim X since " Q^-^t^S/ is

isomorphism when p<^dim X— 1 and monomorphism when ^ = dimX— 1.

This proves Hp(f/Sx')=0 for 0<£<dimX

From now on we suppose that (X9 x) satisfies the condition (L) .

and we put n = dimX— 1, that is, ??=dim Y. By Lemma 1. 1. 5 ^/(.G/)

"O f°r P<^n- We thus have the isomorphisms

(1. 2. 2) Of— c*c*tif
p p<n .
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When p = n, MX\Q^ = 0, but 3t*(Q?)^\ so we have only the exact

sequence

(1. 2. 3) 0-+af
n-+c*c*Qf

n-+J{x
1 (£/) -*0 .

Now we denote by 'J2/ the complex

(In general J2/(/>>?z) are not zero, so '&/ does not coincide with

Then (1. 2. 2), (1. 2. 3) imply that

(1.2.4) H\(t*<*Qt)x)^H*('Qi^ P<n

and further that the sequence

(1. 2. 5) 0-*H»('fl/.,) -»H"( (<*<*£/),) -><#,'(£/") -»0

is exact. Since $/,* (p^>n) are finite-dimensional, the cokernel of
C-^HP ( f S / t X ) is always finite-dimensional which, in view of Theorem A,

shows that each Hp('&p
f>x) is finitely generated O^-module. Thus (1. 2. 3),

(1. 2. 4) and Lemma 1. 1. 2 imply

Lemma I. 28 3. For all p, HP ((l*l* 8 f') x) are finitely generated

Oc ̂ -modules.

Let G/f denote for short the quotient sheaf G/fG for an 0_Y-Module

G, and let us compute £*£*&*//. First note there are isomorphisms

n) by (1. 2. 2). Next consider the exact sequence

^R\C*@fn, where the last term is isomor-

phic to Rlt*t*Qx
n+l since c*Qf

n^c*Qz
n+1. But this last space is, according

to Lemma 1. 1. 1, the dual of Rn~lC*t*@x
Q — ̂ xn(.@x} which is zero because

(X. x) satisfies (Z/) . We have thus proved

(1. 2. 6)

This gives now rise to the exact sequence of complexes

where the last term should be considered to be a complex concentrated

in the degree n place. From this sequence and Lemma 1. 2. 2 it follows

that
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(1.2.7) H'((^fl///),)=0 0<p<n

and that the sequence

(1. 2. 8) 0->H"(".0r-.v) -^/f»((V*!?///) J -»<#

is exact.

Now consider the long exact sequence

By (1. 2. 7), Lemma 1. 2. 3 and Nakayama's lemma, we have that

=0 for /><;*, H*((t*C*Qf7f)3 s fl»((^«*fi/) ,)//, and that

is torsion free 0Ci0-module. Consider the exact sequence

,Cr'->Jfy
1(1flF

n~1)->0 where the last complex should be

considered to concentrate in the degree (72 — !) place. (Note that (Y, y)

also satisfies (Z/) according to Lemma 1. 2. 1.) By the long exact sequence

associated with this, we obtain the exact sequence

(1. 2. 9) O^H'-'C

From the exact sequence 0— »"$F'— >^*$r\y~^-^V(<0r*) — >0 it follows also

the exact sequence

(1. 2. 10) 0-»H

To sum up all proved so far, we obtain

Theorem 1. 2. 1. Let (X, x) , /, ( Y, y) , ̂ /', "^r" <^^ ^^

assume that (X, x) satisfies the condition (L). Then Hp('&/iX)=Q

= H*((l*t*a/)x) OO = dim Y), a^^ H" ((t*t* Q /) x) is torsion free Oc>0-

module\ moreover the exact sequences (1. 2. 5), (1. 2. 9), (1. 2. 10) are

valid.

Remark. The exact sequence (1.2.10) is always valid if (Y, y)

satisfies the condition (L) , even in case there is not an (X, x] of which

(Y, y) is a hypersurfacesection.
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Remark. By Theorem A and (1. 2. 5) , the Milnor number ILL of

(Y, y) is equal to the rank of Hn ((c*C* & /') .r) over 0C(0 provided w =

^2. Since this module is torsion free, it follows from (1. 2. 9)

^/~0+dim/fX^

Further, in case ;z^3, O-^CB/-1) -^'Cfi/-1) -»&v
t(Qf»-1) ->

^y'Cfir*-1)-^ is exact, so dim ̂ /V (J?/1"1) may be replaced dim

^C^SY1"1- Thus the formula (%) of [11] is valid for any isolated

singularity which is a complete intersection.

Remark. Let (X, .r), (Y, 3') De as in Theorem 2.2.1 and assume

X is smooth. In this case there are isomorphisms which are, in a way,

canonical:

Furthermore the following conditions are equivalent: (i) Hn(QY',y) —0

(ii) Hn("tiY'iy) =0 (iii) dim Hn-1((c^*SY")y) = dim Hn((c*c*Gy)y) ;

according to Saito [13J these are equivalent to the quasihomogeneity

of (Y,y).

Part II. C*- Actions over Isolated Singularity

2.1. G-ysin Sequence

Let C* = C\Q. A C*-action over an isolated singularity (X, x) is a

family T(c), ce€* of analytic homeomorphisms of X onto itself satisfying

that T(c}x = x, T(c}T(c'}=T(cc'} (c,c'eC*), and that T:XxC*

B (s, c) — ; >T(c}z^X is analytic. Throughout Part II we will require

the following to be satisfied:

Assumption. The constants are the only invariant elements of

Ox.x under the action T.

The meaning of this is the following: Let g be the generating
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vector field of this action and Lf its Lie derivative. Then the assumption

implies that L? induces automorphisms on $x>x for p^>0. (More precisely,

if Q=£cD&S$tf O>0) and if T(c')*a) = cmu) fceC*), then such an m is

either always positive, or always negative. Note that in the positive

case T can be extended to C-action.) If we denote the interior multipli-

cation of f by z"(?)> then Lf — i (g) d -\- di (£) . From this identity we obtain

Lemma 2.1.1. Under the above assumption, the complexes Qx\

Mx(Qx}> "&x are all acyclic, and the sequence

is exact, -where cx denotes the inclusion x^->X, and a the average map

r
Jo

Consider the two spectral sequences Er
p>q(X,x^) 'Er

p>q(X,x) whose

Erterms are R*cxt*W), JCx
q+1(Sz

p) respectively, where c: X\x^X.

The limit of Ep'q(X,x) is Rp+qC*C, while that of fEp'q(X,x} is

^p+« + i(C). It is evident that the natural maps El*'*(X,x)->'Ef''l(X,

x) are isomorphisms when q^>0. Since Hp("@x'} —0 (/>>0) by Lemma

2.1.1, it holds also E2
p'Q(X,x)^'Et

p'°(X,x) by the exact sequence

(1. 2. 10) and the remark following Theorem 1. 2. 1 provided (X, x}

satisfies the condition (L) .

Corollary 2. 1. 1. If (X,x) admits a C*-action and if it satisfies

the condition (L) , then the natural maps E2
p'q(X, x) -^'Ez

p'q(X, x} are

isomorphisms except for the case p = q = Q.

If we set J2/ = z(£)£/+1 (»0) and flf~
1=(O*C, then we have

the short exact sequences 0— >J?f
p— >J2^p->i2f

3l~1— >0 (A>0). From these, we

obtain the long exact sequences of Gysin type

(2. 1. 1) 0-*c#,°(0f°) -^W) -^(fl/-1)-^--

These play the key role in the study of this section. Before proceeding,
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we have to give a more explicit description to the connecting homomor-

phism S. Since z"(?) is an anti-derivation, @i = Y1 S€
p is the sheaf of graded

P
algebra (by exterior multiplication), so A = ̂ ptqA

p'q, where Ap'q =

RqC*C*$eP, is a bigraded algebra by the cup-multiplication. Thus leEA0 > 0 ,

die A1'1. We set ch(?)=<M and call it the Chern class of $ (or of

the action T) . Mote that B=-^p,qB
p'q, where £p'3=^,? + 1(£/), is a bi-

graded A-module such that the natural map A— >jB is a A -homomorphism.

Now it is easy to prove

Lemma 2S I. 2, The connecting homomorphism d:Bp'll-~>Bp+1'q'il is

nothing but the multiplication of ch(f) (lip to sign}.

Here we shall give a precise formulation of the Serre duality given

in Lemma 1. 1. 1. Regard the canonical generator J of R2n~1C^Z ( = <ZT)

as an element of Rzn~lt*C and define e' : R^l^GJ-^C by e'(aOr = e(aO

where n= dim Ĵ ", e is the edgehomomorphism of K1'1^*®^ onto R?"~lc*C.

Let aeJR%<r*5/ H^R^-^Sx"-* and set

where U denotes the cup-multiplication. This pairing gives the duality

stated in Lemma 1. 1. 2.

Now note **fle
n = 0, so that ^fl/z^fl/1"1. Thus we obtain the iso-

morphism ??: A^-"1 (n"D =Rn-1c*c*Sf
n-1~>Rn-1c*C*axn. We see then that the

value o /o?/'(ch(f) r i"1) is not zero. For, using a suitable embedding of

J£ into its Zariski tangent at x, wTe can construct a real valued function

(/; 011 X\x such that the conditions <(9025 O~0, <9902, ^A^)~0 imply

£ = 0 for every tangent vector t of type (1,0) at any z^X\x9 and that

Z/eO/0 —1. and that (l>~l(c) is compact for c^R. It can be shown then

=^-r f
J0-

where the right hand side is obviously not zero. In view of Lemma

2. 1. 2, this fact proves

Lemma 2. i. 3. The iterated connecting homomorphism ol:
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From now on we assume that (X, x) satisfies the condition (L) .

Then JCX*(GZ
P) =0 if p + q<n = dim X, and further, by Lemma 1.1.1,

^Cr9(£/) =0 if p + q>n + I, Q<q<n. In view of the sequence (2. 1. 1),

these imply

Lemma 2.1.4. The connecting homomorphism d: <4Cx
q(Gf

p~1')

-^Mx
q+1(G$p) is (i) isomorphism in case p + q<^n — l or in case p + q

>;z + l, q<^n — l, (ii) injective in case p-\-q = n — ~L, (iii) surjective in

case

Trivially JCx
q(^~^ -0 if g=£0. We know also Mx

q(^n~^ =

(£xn) —0 for 2<zq<^n — l. Lemma 2. 1. 4, combined with these, proves

Lemma 2.1.5. 3fx
q(G9

p)=Q if P + q<n, q~p^=l or if p±q>n,

Let /jL=[n/2~] — 1, v= — \_ — n/2]. Then there are isomor-

phisms

(2. i. 2) c^-ft/cflr1) =^w) = - ^^^ W)
(2. i. 3) Mx

v+i($i) =^x^
z(Qrl}^--'=3(xn~l(®rz}.

Observe that the iterated connecting homomorphism o""1": c_>^./+1(J2/)

->Mx
v+l(Qi) is injective since dim J^/+1(J?/) =1 by (2.1.2) and since

this cf"^ is not zero by Lemma 2. 1. 3. We shall discuss the consequence

from this fact and the vanishing of c^fr
9(J?/) in Lemma 2.1.5. For this

purpose, we separate the case n~2m and the case n = 2m-\-l. a) Case

n = 2m. By the first statement of Lemma 2. 1. 5 and the sequence (2. 1. 1)

we obtain isomorphisms ^tx
q(^z

p+1)2^Mx
q(^f

p) in casepJ^q = l^, 0<^q<^m

and ^f/(J?/)2;^f/(^/) in case£-fg = 7Z, 0<q<m. Since Mx
m(^f~l)

— >^^m+1(^m) is injective as observed above, we have also by (2. 1. 1)

the isomorphism Mx
m (^m) —M™ (@x

m) • Combining these, we obtain iso-

morphism ^/(£/+1)— 3Cx
q(Gxp) induced by z'(f): Gf

p+1^Gz
p for p, q such

that p-\-q = n, Q<^q<^m. But the restriction 0<^q<^m can be replaced

by 0<^<^ according to the Serre duality of Lemma 1. 1. 1. b) Case

The isomorphisms JCx
q(Gx

p+1)~ Jf/(J2/), for p, q such that

^q<^m-\-l, can immediately be obtained as in the previous

case. To prove ^x
m+1(^r

m+1)^Mx
m+1(Gx

m) , consider the following two
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exact sequences which are some parts of (2. 1. 1):

Since 82: Mx
m(^,m-l}-^Mx

m+z(3,m^} is injective as was observed above,

the composed map ^m+1(^Y
m+1) -^V^W*) ->^J?*

+1(JflT*) is also in-

jective. But by the duality of Lemma 1.1.1 Mx
m + l(Qx

m^, .^ar
m+1(^w)

have the same dimension. Thus this map Mx
m+l(tix

m+l} -*£tx
m^l(Qx

m) is

also isomorphism. Again by the Serre duality we have c_^r
9(J2Y

P+1)^»

To sum up,

Theorem 2. I. 1. Assume that (X, x) satisfies the condition

(L). Then the interior multiplication z(<f) : &x^l->Qx induces the iso-

morphism 3(x
q(Q/^-*Mx

q(Q/} for 0<p<dim X where q = dim X-p.

Further Mx
q(^p)=0 if p + q=£dim X, q-p=£I, 0<g<dim X, and dv~":

c^/+1 (£/) -> J^/+1 (J2/) 25 isomorphic, -where #, v ̂ r^ ^5 zw Lemma 2. 1. 5.

Finally we remark this theorem provides us a clear insight into the

structure of Ez
p'q(X,x). Because of the condition (L) we have E2

p'q(X,x)

= 0 if p + q=J=n — \, P + q=£n, p + q^Q, p-\-q=f=-2n-\ where n = dimX.

(For the vanishing of E2
p'q(X,x) when q = 0 or q = n — l, see Lemma

1.1.3 and the remark following Lemma 1.1.1.) Obviously E^'^^X^x)

= C Ef*-l(X, x} = C. If p + q = n - I , Corollary 2.1.1 implies

then, E2
p'q(X, x) = Ker(^/ + 1(^/)^>^/+1(^P+1)), Ef+l'*(X9 x*) =

Cok (&x*
 rl (fl/) -^Mx

q + 1 (3J> ")) . In view of the identity L, - z(£X

Theorem 2. 1. 1 now proves

(2. 1. 4) Ef-*(X,x-) s

(2. 1. 5) Ef ' '• 9 (X, x) = Cok ( Jf,'*1

where p-}-q = n — 1. Note also these two groups are isomorphic under

the map induced by z(?) : fi/+1->fl/.
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28 2. Characteristic Functions

In this section we also suppose that (X, x) , T are as in Section 2. 1,

that (X, x) satisfies the condition (L), and that the action T fulfills

the assumption mentioned at the beginning of Section 2. 1. If V is a

certain cohomology group attached to (X9x), we denote by T(c)*| V the

automorphism of V induced by the map T(c). (But, in case it is obvi-

ously understood from the context what this Vis, we simply write T(c)*

for T(c)* V.) According to this convention we set

XT' (t) = Trace (T(t) *\ Mx« (fir-«) )

where 0<^<^ = dim X. That is, ^(t), 0<^q<^n are the characters of

the representation of C* over M^ ($/~9) . When regarded as functions

in t, they are rational and have poles only at £ = 0, oo. In view of the

duality of Lemma 1. 1. 1, we have

so it will be reasonable to set

We set now

and call it the characteristic function of the action T. Note the isomor-

phism Mx
q(®iP+1)-^J{x

q(ti_Y
p) (p + q = n,0<q<n) of Theorem 2. 1. 1 is

C*-equi variant. Thus

This identity will be frequently used in the following discussion.

Now we shall study how the characteristic function changes when

one makes a hypersurfacesection which is compatible with <C*-action. Let

f be analytic function on X such that dfz=^=0 for z^X\x, T(c)*f

= cdf(c^C*) fwhere d is a positive integer. (The assumption d^>0

implies that, if 0=£ft>efi/ (/>>0) and if T(c) *a) = cmo), then m>0, as

was remarked at the beginning of Section 2. 1. Thus, in particular, %/(£)

is a polynomial in t without constant term. This kind of remarks will

often be applied below.) As in Part I, we denote by (Y, y) the hyper-
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surfacesectioii defined by /; that is, Y=f~1(Q), y=x. Since T induces

naturally a C*-actioii on (3T, y), we can define the characters %JT°(£),

XrXO* •"> Xrn(£)* and the characteristic function %F(S> f) of the induced

action, which we shall denote also by T. The sheaves Sf being defined

as in Part I, we set further

#'(*) = Trace (T(*) *!.#,•($,»-«)

There is also a natural Serre duality pairing ( , ) between Rqc^C*@fp

and R*-*-1^^?-*-1 (l<*q<^*-2) for which (T(c) *o>, T(s) *o)') = <Td

(a), a)') holds (see the Appendix for the proof); so we obtain

%/ (*) = *' V~'+1 (0 O^g^TZ + 1 .

Note that, just as we deduced JCx
q(Qf

p) =0 (p + q<n) from J^/(J2/) =0

(^> + ^r<C^) ni tne proof of Lemma 1. 1. 5, so we can deduce JKx
q(S2f

p} =0

(p + q>n, Q<q<n) from ^'(fi/) -0 (/> + g>;z + l, <?<». Thus, from

the short exact sequence 0->^/"9"1-^ij2/~9->J2/"9->0, it follows the

commutative diagram with exact rows:

where the bottom row is identical with the top row. From this and the

Serre duality we obtain for 0<^q<^n

Here we have used the isomorphism in Theorem 2. 1. 1 of course. Using

the exact sequence 0—>J2/~€—>J2/l~9—>J2F
n~9->0 and reasoning similarly, we

obtain also

(2.2.2) (*"•

for 0<^^72. In view of the identities ^f
n+l(t) = t~\f*(t~l), x*n+1(*)

= XA'°(O, Xr r i(0=Xr°(^1) , we can reformulate (2.2.1), (2.2.2) as fol-

lows

(2. 2. 1)' /*(£,(*, 0 -xr'W) -5(xr(*. 0 -^^rVC'O)
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(2. 2. 2)' (**-!) (^0, 0 -x/°(;) -s-'

where we have set %/(.?, t) = Hq=o%f
q(t) sq. From these, we can easily

obtain

Theorem 2. 2. 1, The notation and the assumption being as

above, it holds

(2. 2. 3) Yf \t) = Yx (^) H~ YF (0

(2. 2. 4) S(XT(S, t) — 5nxF°(^"1))

Proo/. Setting 5 = 1 in (2. 2. 1) ', (2. 2. 2) ' we have

But x/°(^), %F°(^) are polynomials without constant term just as %./(£)

is a polynomial without constant term. Thus (2. 2. 3) is proved. The

formula (2.2.4) follows easily from (2.2.1)', (2.2.2)' and (2.2.3).

Since %/(£) ==%,Y(O, *0, by (2.2.4) one can know XF(S, 0 when he

knows x/W* X^( 5 »^) ' further to know %/(£) it suffices to know %/(£)

in view of (2. 2. 3) . This will be of particular importance when one

wants to compute the characteristic functions for quasi-homogeneous com-

plete intersections.

Now we shall study some interesting consequences from Theorem

2. 2. 1. Let C be a d-th root of unity. Setting t = ̂  in (2. 2. 4), we obtain

Since the left hand side is a polynomial in 5, we have

(2.2.5) x/(o=Xr '(c) = --=Xi-' i(c)=x/(r1) (c*=
This means that the automorphisms of J{y

q(S2l™~q~1) , 0^q<^?z — I induced

by ^ = T'(exp(27rz'/^)) have all the same characteristic polynomial. On

the other hand, the exact sequence (1. 2. 9) (with n replaced by n — 1)
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shows that cp induces the automorphisms having the same characteristic

polynomial over ^C^/"2) and Hn((^«*fi/)x)//. Since H*((^*J2/)J

is a torsion free C^.o-module and since the cokernels of the inclusions

Hn(a/iX^Hn(af\x)^Hn((c^Sf'^x) are all finite-dimensional, this polyno-

mial coincides with the characteristic polynomial of the monodromy of

the Milnor fibering given in Theorem A of § 1. 1. Thus we have proved

Lemma 2. 2. I. The characteristic polynomials of the automor-

phisms of JCy
q(SY

n~q~1) (()<;#<> -1) induced by T(exp(27rf/J)) are

identical uuith that of the monodromy of the Milnor fiber ing defined

by f. In particular

(2. 2. 6) dim Hn^(X\Y9 Q ( = dim Hn(X\Y, €))

- d-^i-fyy0 (exp (2-rtim/d) ) .

The last formula can be proved by the Wang sequence applied to

the fibering. (See Milnor [10].)

We can now prove the degeneracy of E^(Y,y) E2
p'q(X,x). By

Lemma 1. 1. 1 together with the remark following that and by (2. 1. 4) ,

(2.1.5), the sums 2p+q=n-! dim E2
P'«(X, x) , ^p + g = n_2 dim E*'q(Y, y) are

equal to the constant terms ^(1, t) — XJ°(0 ~ X/+1(0, %r(l, 0 — XF°(*)

~~XFTI(^) in their Laurent expansions at ^ = 0 respectively. Set 5 = 1 in

(2. 2. 4) and observe the resulting identity:

Since %r°(^) is a polynomial wthout constant term, we obtain by compar-

ing the constant terms of both sides

n-! dim E2*'«(X, x) +2p+q.n-t dim Ef*(Y9 y)

= rf-^i^oxy0 (exp (2mm/ d) )

From this it follows the inequality dim Hn~l(X\x, €) +dim Hn

C)^dim Hn~1(X\Y, C). But the opposite inequality is obvious from the

standard exact sequence
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(2. 2. 7) Q^>Hn-l(X\x, O -^H"-1 tX"\ Y, O ->HB"2(Y\y,

vc, c) ->H"(x\y, c) -^H-'cyVy, O -

Thus 2^=,-! dim E;»«(X, :r) = dim Hn~\X\x, Q, ^p+g=7l_2 dim E^*(Y, y)

- dim Un-2 ( Y \y, €) . These prove

Theorem 2. 2. 2, TA* E2-terms E2
p'q(X,x), E/'q(Y,y) are de-

generate. The exact sequence (2. 2. 7) splits into two exact sequences

0-*H*(X\x, C) -^Hn(X\ Y, C) -Wf-X Y\y, C) ->0 .

We end this section by proving a useful formula which is needed

in the next section to compute characteristic functions. Let (X, x} , T

be as above and suppose that fl9 f2 are two analytic functions on X such

that T(c)*ft=c*'f< (z = 1,2), that (X,, xt) = (fr'CO), x) (z = l,2) are the

hypersurfacesections of (X", x), and that (Y,y) = (Xlr\Xz,x) is the hy-

persurfacesection of (Xt, xj defined f j \ X t for each i9 where j — 1, 2 ac-

cording to z = 2, 1. Set, for brevity, Az(s, t) = KX(S, t) — xz°(0 —

5n+V(O, ^<(^0=^i(^0-xi*(0-5nxi*(O ('" = 1,2), JF(55^) =

XF(5, O-XrW-^-^/Cr1)- We now apply Theorem 2.2.1 to the

hypersurfacesection (Y,y)^> (Xt, x^) and to (Xi9 x^) c-> (X, x) . Then we

obtain

(s-t^AY(s, t) = (t^-l)AXt(s> *) +**'*»- V(*") - V(*")

and

(5-^)^(*. 0 = (<"-i)4z(*, 0 +<"*"& (0 -*xiXO.
From these it follows

where dots indicate heigher order terms with respect to s. The right

hand side does not change when i9j are interchanged, so we obtain finally

(2. 2.8) (**-**OxAO = (<*'-!) j&CO -(<*-l) &(0.

In particular, we can compute %r°(^) if di=^d^ and if we know %i£(^),

£ = 1,2.
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2. 3. Explicit Calculation of Characteristic Function

In this section we shall briefly discuss the isolated singularities admit-

ting C*-actioii and being complete intersections and compute some of the

characteristic functions denned for them. First we shall fix a C^-action

T on CN:(z1,Zz9~-,zN}. Let al9aZ9 •••,€£& be positive integers and set

for ir = (X, zz, • ' • , z#) and

A polynomial f in z is said to be quasi-homogeneous (with respect to T)

if T(c}*f=cdf(c^C*) for some integer d^>0. The integer d is called

the quasi-degree of/. If sufficiently general ( f i , f z , ' " , f r ) (r2S^O are

given, then -X"Vlf/af...i/r) = {^eC^;/i(«) =0, l^z^r} is the complete inter-

section of the hypersurfaces fi(z) — 0 and has singularity at most at z = 0.

More precisely, given a system d= (dl9 d2, • • • , dr) , we define inductively

the set V(S) of r-tuples of quasi-homogeneous polynomials (fi9fZ9
 m"9fr)

of quasi-degree dl9 dZ9 • • • , dr respectively, by the requirement that (fl9

/„-,/,) 6=^(0) if and only if &, - ,fr) <=V(dz, •-, dr) and XVl>/1...../r)

is a hypersurfacesection of ^(/2,/3,...,/r) by /. Ordering the coefficients of

fit l^*£sr U1 some fixed manner, we can regard Y(5) as a Zariski

open subset of a complex euclidean space. Now we shall also fix d= (dly

dz, •", dr} and let r denote a general element of V(<J). Thus Xr denotes

the set Xyii/1,..../r, if r= (/i,/2, --- , /r) . By Lemma 1.2.1 each (X"r, 0)

satisfies the condition (Z/). By some elementary argument, 1} it can be

shown that the Milnor number of (XT, 0) is a constant j t t ( 8 ) . We thus

have by Lemma 2. 2. 1

dim #o°(SJ)

here /2 — A^— r. Setting £ = 1 in (2. 2. 3) we obtain

Lemma 2.3.1. Let r=-(/1?/2, • • - , /r) e F((J) a^J sitf n = N-r.

The?i the dimension of 0*^ = 0" rl/ (Sr
Mfi8*^ + I!r

Mdft/\8*'') does not

depend on r, where £p is the stalk flgy,0 ot;er 0 o/ the p-forms on CN.

Now we can easily prove the stability of the characteristic function

15 This is supplied in the last half of the Appendix.
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%xr (•*, f) (defined for the given action T). For this purpose we set for

and we set further for all integers m

&(m), Qt(m) are all finite-dimensional and Qr(m) depends continuously

on r. Thus dim(B(m)/QT(m)) is upper semicontinuous. But Im

dim(&(m)/QT(m)) is constant by Lemma 2.3.1. Thus each dim(S(m)

/Qr (m) ) itself is constant. In other words, the character of C* over «0/*5

does not depend on r. In view of (2. 2. 3) and (2. 2. 4) this proves

through the induction on r

Lemma 2. 3. 2. T%e characteristic function of (Xr, 0) ze;z£/z

£0 ^A^ action T does not depend on special choice of re

Here we shall denote this characteristic function by x<y(X f) though

it is determined not only by 8 but also by ((Xi, (X2,
 m",&N)- Let us now

determine 5(5(5, t) under the following assumption:

Assumption. Each dt is divisible by aly a2, • • • , <XN>

This restriction means that there is in the family (Xr, 0), r^V(d) a

complete intersection of the Brieskorn varieties: Let (<zy) be a given

(r, AT) -matrix whose all r-minors are not zero. Set

Then certainly rfl=(/1°,/2°, • • - , /r°) e F(5). According to the formulas

(2. 2. 3) and (2. 2. 4), in order to compute %a(s, £) it is sufficient to deter-

mine the character of C* over the space

By (2. 2. 8) we can further assume that dl = d2= ••- = dp. Thus we have

first to make the structure of the above space as clear as possible. For
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this purpose we denote by Ft the analytic set where the values of the

forms df®, dfz°, • • • , dfi are not linearly independent. (That is, the set

where the coordinate functions of the form dfi/\--/\dfi (with respect to

an arbitrary trivialization of GCN) vanish. This is obviously the union

of the (z — 1) -dimensional coordinate linear varieties of C^.) Set now

Then £*(/) is locally free outside Ft. Note that F^F^-'^Fr and

FiXFi-t is non-singular. Thus we have Si q
F ̂ F ._^p (i — 1) | cwv!) = ®

for q^=N—i-\-I. In particular, the natural map Sl^p .^(^ (i — 1)) ->

Jttq
F.(@p(i — T)^ is isoinorphic for <?<jV— z' + l. Using this fact we shall prove

by the induction on i that Mq
F. ($p (z) ) = 0 when p + q<^N~ i -p 1. Suppose

£Cq
F.^(Qp(i — 1)) =0 when p + q<^N—i-r2. Then the isomorphism proved

above shows Slq
Fi(S

p(i — 1)) =0 in case p^-q<^N— z + 1. Note there is a

natural exact sequence Qp~l(i) — >J2p(z~l) ->J?p(z) — »0 where the first map

is monomorphic outside F£. Hence we obtain the long exact sequence

0->Ker Gfi*-1 (z) -^J2P (z - 1) ) ->c5V0
Fi (J?^1 (z) )

Thus we obtain monomorphisms &*Fi(S*(i)) ^^^(^"'(O) when

<^N—i. Combining these, we have completed the induction. In parti-

cular the map J2F~l(z") — > QN~l~l(i — 1) is always monomorphic, and thus

we obtain monomorphism

i — r - i
the image of which obviously coincides with that of J?"^1 - >

QN . Through the isomorphism OCN,G — - - -> SN, we obtain the isomor-

phism ^/(Z^dff^ti^^A where A is the ideal of OCN,Q generated

by the elements 77ye/2:^<rfj"/a:j'~1) where I ranges over all sets consisting

of r — 1 elements of {1, 2, • • • , N} . We thus obtain finally the isomorphism

where Af is the ideal of 0CNi0 generated by IIj&jZj{<ii/ai~l} with J ranging

over all sets of r-elements of {1, 2, • • • , N\ . Although 7] is not C^-equiv-

ariant, there is the relation 7?oT(c) * = cn'T(c) *o^ which, in view of
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(2.2.3), implies that ^(0, f) + ^(0, f) , where d' = (dz, ds, • • • , <f r), is

equal to the character of €* over A/(2r
J=9ffA + A') times tn\n = iLi <*<

— J^=2 di) . But this last group is explicit enough to accomplish the com-

putation of the character over it. The result is, however, rather com-

plicated, and for its formulation we still need the following notation:

Let u=(u1,u2, ••- ,«#) be indeterminates and define inductively the poly-

nomials Pl(u; zl9 z2, • • • , Zt), with rational functions in u as coefficients,

by the identities:

(u ;

Theorem 2. 3. I. The notation being as above, it holds

t > — s

_j_ c yr-1 •" i=l (1 ~" £ *) //^) (f\ fdj+1n+js}J = 1 + * ~
-where Qi{t) , l^z^r ar^ given by

Qi(f) =

Remark. The argument used to obtain the isomorphism ^ is essen-

tially due to Greuel [4]. See the proof of "De Rham Lemma" which

is formulated in a much more general way.

Let us now discuss the case c%i = (X2='"=cxr = l. In this case the

divisibility assumption given above is trivially satisfied and the quasi-homo-

geneity means the usual homogeneity, so each r= (/i,/2, "•»/»•) ^ V(S*)

defines the algebraic manifold Vr which is the complete intersection of

hypersurfaces /i = 0, regarding (zly z2, • • • , ZN) as the homogeneous coordi-

nates of PN~l(C). fo is then the cone C(Vr) over Vr; in other words,

X7\Q is identified with L"1 minus the zero section where L is the line

bundle over VT induced by the hyperplanesection of PN~1(C). Thus there
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is the canonical projection n: Xr\Q->Vr. Evidently we have natural iso-

morphism

(The sheaves S* are to be defined as in Section 2. 1.) Since the fiber

of 7T:Xr\0— >Vr is Stein, it follows

, Qf)

where C: Xr\Q<->Xr and the last sum is infinite sum converging with respect

to some suitable topology when q = 0 or q = n — I. (Note the sum is

finite if 0<^q<^n — l according to the vanishing theorem of Kodaira.) Us-

ing the Gysin sequence (2. 1. 1) and Theorem 2. 1. 1, we have for

Moreover, by the exact sequence Qe
f^>l*t*Se

p-*3lt(Qe
f)-+Q and by the

fact that, if 0=5^0) efif.o and if T(c) *a) = cs:co(ce C*), then ^>^> + l (recall
+1), we can show that

XT, (0 -^»o«

is a polynomial divisible by tn. We can as well prove the vanishings

by (2. 1. 1) and Theorem 2. 1. 1. Now let the polynomials

Rl(zl,zz, --iZt) i = l929'~ be defined inductively by

Then it follows from Theorem 2. 3. 1

Corollary 2. 3. I. Le£ V be the complete intersection of r -hyper -

surfaces of degree dl9dz9"-9dr in Pn+r~1(C) and L the line bundle

over V induced by the hyperplane section. Then Hq(V, $p(Lfc)) =0



40 ISAO NARUKI

if P + q^n — 1, k=^0 or if p + q=£n — I, p^q. Further it holds the

congruence

dim H* (V,

t-l' t-l

mod 5n

'where the right hand should be interpreted as power series in s whose

coefficients are rational functions in t. Moreover %C(V) (t) — 2k<nt
k

dimH°(V, tin~l(Lk}} is a polynomial divisible by tn.

This corollary, combined with Hirzebruch [8], determines all of the

dimensions of H« ( V, tip (Lfc) ) .

Appendix

The purpose of this appendix is to prove the duality stated in Lemma

1. 1. 1 and the statement mentioned at I t 9 of p. 35. Let M be a

complex manifold of dimension n, V and analytic vector bundle over M

and y* its dual. We denote by A(33'3)(V) (resp. 3)^^ ( V*)) the space

of V- valued C°° (p, q) -forms on M (resp. the space of Y*-valued distri-

bution (p,q) -forms on M with compact support). Between A ( p > 9 )(V)

and <g)c
(n-*n-«)(V*) there is a natural pairing which, through the

Dolbeault isomorphism, gives rise to a pairing

Hq (M, W ( V) ) x He71'5 (M, £n~p ( V*) ) 3 (a, /9) -><a, /?> e €

where we have denoted by J?*(V), J?s(y*) the sheaves of analytic 5- forms

on X with values in V, V* respectively. The problem is to examine

whether this <( , ) define the actual duality or not. Our object is

the following

Theorem A. 1. Assume that there is a smooth proper map <p of
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M onto an open interval (a,b} (possibly a = — oo orb = oo} such that

d(p vanishes nowhere in M and that the complex Hessian idd(p is

positive definite everywhere. Then the pairing <C , ^ defines the dn-

ality between Hq (M, fip(V)) and Hc
n~q(M, J2n-p(F*)) for any q<ji-2.

Proof, Step I. By Andreotti-Grauert [1], H*(M,GP(V)) is finite

dimensional for 0<g<;z-l, so A(p'q) (V)^>A(p'q + l} (V) has closed image

for q<ji — 2. (This is also true q>n — 2 by Malgrange, Bull. Soc. Math.

France 85 (1957), p. 236.) Hence, by Serre [14], the pairing < , >

defines the duality between JH* (M, fi* ( V) ) and Hc
n~q(M7 ,SW-*(V*)) for

q<^?7 — 3. Unfortunately the general theory of [14] seems to be not

adequate to prove the duality for q = n — 2. But we can at least prove

the following statement: It holds always the inequality dim Hn~2(M,

5p(V))^dimJ^c
2(Af,£n-p(V*)^ where the equality holds if and only

if the duality for q = n-2 holds. For, let o)^ A(p 'n~2) (V} be a d-closed

form such that <o), 0>^0 for every ^-closed 0e^Dc
(7l-p'2) (V*) . Then,

by Hahn-Banach Theorem, (0 lies in the closure of the image of

A (p 'n-s)(V)-4ACp 'n-2)(V). But this image is certainly closed as indicated

above. This shows that <«,/?> = 0 for all &^He
2(M9a

n-p(V*)) implies

a — 0. We have thus proved the required assertion.

Step II. It remains to prove the opposite inequality dim Htl~2(M,

£p(V));>dim/fc
2(M, J2n~p(y*)). To show this, it suffices to prove the

isomorphisms Hq(M, S} =HC* + 1(M, Q} , 0<g<;z-l for any locally free

0j¥-Module Q. For, if these isomorphisms are true, then Hn~2(M, J2P(Y))

= Hrl(M90*(V)), /iTc
2(M,J?7l-p(F*))=H1(M,^-p(Vr*)). Therefore,

it suffices to prove dim H '(M, £n~p( Y*)) <;dim Hc
n~l(M, J?P(F)). But

this is just the inequality obtained in Step I in case n — ̂ > when p, V

are replaced by n—p, V*. In case ?z^>4, l^;z — 3, so, again by what

was proved in Step I, we obtain the equality dim H^M, $n~p(y*)) =

We have thus reduced the proof of Theorem A. 1 to the isomorphisms

}=Hc
q+1(M,£^ 0<g<77-l, which, combined again with

Theorem A. 1, prove Lemma 1. 1. 1. We start with the following

consequence of Andreotti-Grauert [1].
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Lemma A. 1. Let <p\M-*(a, b) be as in Theorem A. 1. Let fur-

ther Q be a locally free 0M-Module. Then, for c<= (a, £), the restric-

tion maps

#• (M, £)-»«•(?-'( (a, c)) ,£)

are isomorphisms.

Let now Q be as in this lemma. Take a fine resolution Q' of Q and

set r+ (M, Q") = lim r (<p-1 ( (c, b} ) , £•) , r_ (M, 5") = lim r (?r ' ( (a, c) ) ,
c/"6 c\a

5'). Then the restriction maps F (M, £') ->r± (M, 5') give rise to the

exact sequence 0-*rc(M, Q')~*F(M, S')-*r+(M, 5')0r_(M, 5') -»0

where jTc(M,5") denotes the complex of sections with compact support.

From this it follows the long exact sequence

(a. 1) ''•^

where we have put H^(M, 5) = lim /^(^(fc, *)), 5), H
c/6

= lim Hq((p~1((a, c)), 5). Combined with Lemma A.I, this implies

Lemma A. 2. £T+
9(M, 5) =Hc

q+1(M, S) if g^O, an^ ff_5(M, 5)

= Hc
q+1(M, Q} if q=£n-l. In particular Hq(M, Q} ̂ H^^M, Q) if

0<q<n-l.

Let now (X, x) be an isolated singularity and suppose X is imbedded

into CN: (zl9 z2, •••,2;^) so that ^ = 0 and r\x\x has no critical point where

r(z) =^f=i\Zi\2. Then, setting M=X\x, <p — r\x\x and applying Theo-

rem A. 1 and Lemmas A. 1 and A. 2, we obtain Lemma 1. 1. 1.

To prove the fact remarked after Lemma 1. 1. 1, we first note that

the restriction map Hq(M, J2") ->H±
q(M, J2') is quasi-isomorphism. For, by

Lemma A.I, H*(M, 0') -+H^(M, Q'} (q=£0), Hq(M, fl') ->J^_9(M, fl')

(q^n-l) are actually isomorphisms. Moreover, E/'q = Hp(Hq(M,&)) ,

±E2
p>q = Hp(H±

q(M,£')') are regarded £2-terms of the three spectral

sequences which converge to the same limit (The facts that (p\M-*(a9b)

is proper and that dcp vanish nowhere, imply that the inclusions (p~1((a,

c) ) , (p~l ( (c, b) ) C->M are homotopy equivalences) . Therefore, Hp (Hq (M,
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£'))— Hp(H±
q(M, £'))• Next, set M=X\x, (? = r\x\x and observe that

H-*(X\x,Qm) = (l*l*Qz)x and that Hp((^*£/),) are finite dimensional

when n^>2. (Note Hp($x',x) are finite-dimensional, and the kernel and the

cokernel of Qz\x-*(l*l*Qz)z are finite dimensional.) Note that H*(M, £p)

are Frechet, that the complex If(M, $') has finite-dimensional cohomology

and that H°(M,QP) and Hc
n(M, ^h~p} are dual each other. Thus, argu-

ing as in [14], we conclude that HP(HQ(M, £')) ^Hp((c*C*Qz')x) and

JP-p(H/W£0)=H*-*(HJ|-1(M^ are mu-

tually dual, which was to be proved.

Now we shall prove a duality theorem which was needed in Section

2. 2. Let / be an analytic function on M such that dfz^Q for z^M.

As in Section 1. 1, we define Qf = tiM
p/df/\ttM

p~1. Then Q/ are regarded

as analytic vector bundles over M. Moreover, the exterior multiplication

induces the pairing 10/(g)l0/
n"p"1-»J2/

n~1, where Qf-^Qj? by the multipli-

cation of df. In view of this fact, we can regard ^/l~p~1 as $n(y*) if

we set V:=@fp. Thus Theorem A. 1 and Lemma A. 2 define duality be-

tween JH*(M,fi/) and H^^CM, fl/"*-1) for l^g^w-2, which, passing

to the limit, proves the desired duality pairing ( , ) between RqC*C*Sf
p

and R^^c^G"'*-1 in the notation of Section 2. 2. The proof of

(T(£:)*a),T(c)*a) /)=c~ ( f(fl),a)') is left to the reader.

In the rest of this appendix we shall prove the statement mentioned

at the I t 9 of p. 35, that is, that the Milnor number of (Xr, 0), re V(<?)

does not depend on r. Let the action T over CN'.(z^ • •• ,£#) be as in

Section 2. 3 and recall that V((J) (8 is a system (Wl5 6?2> '*% dr) of quasi-

degrees ^vith respect to T) is a Zariski open subset of some complex

euclideaii space. In this space we take a linear system of coordinates r

— (ri> ^2, •", O- ^e shall further define the polynomials J<\, z" = l, 2,

• • • , r of rl3 r2, • • • , rp, z^ zz, • • - , 2;AT as follows: Recalling that each

rey(^) is a system of quasi-homogeneous polynomials fi(z), fz(%)> •",

fr(z) of quasi-degree ^, <^2, • • • , d^ respectively, we set Fi(r,z) =fi{z),

l^i<,r. Setting X"/ - {2; e €*; F* (r, z) = F,+1 (r, s) = •» = Fr (r, «)} for

reV((5), we obtain a series of isolated singularities (Xr, 0) — (-X^1,0)

^ (X,2, 0) c->... (Xr
r, 0) ̂ > (Cv, 0) , where each (Xr*, 0) is a hypersurfacesec-

tioii of (X""1, 0). Let a^ a2, • • • , aN be such that T(c) (zl9 z2, • • • , 2;̂ )

~ (c^1^, ca=2:2, - ' , c a w Z f i i ) and define ft,/92, "•y^^ so that o^& are equal to
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the smallest common multiple m of <xlf az, • • • , OCN. If we set r(z)=2f=i

z,\z0\ we know by Milnor [10] (Corollary 2. 8), for any r€E V((J), there

is £>0 such that r(2;)|^rin{2ecy;r(2)<e}\0, l^z'^r have no critical points.

But the formula r(T(c)z) = \c\zmr(z) implies that r(z)\Xrt\o have no crit-

ical points. (Note that for z^X* we can find c<EC* such that T(c)z

(E.X* n {z; r(z) <£}.) This fact means that, for (r, z) such that z^X^O,

the following 2(r — z'-fl) +1 real linear forms in t= (t^, tz, -- , t$) <^Cn

are linearly independent over 1?:

(The linear independence of the first 2(r — z + 1) forms in the restatement

of that (XT\ 0) is an isolated singularity.) From this it follows

Lemma A. 3. One can find (real) C°° vector fields Zt (/ = !, 2, • • • ,

p) over V(d} X (C^\0) such that Z{rj = dV9 Ztr(z) =0, Z^-=0 mod. Fj9

FJ+l9 -•, Fr, FJ, FjT-l9 •-, Fr, zvhere zve have let (7=0 mod. h l 9 h z , m m m , h g

mean that g lies in the ideal generated by hly 7i2, -',hs is the ring

of C°° functions.

Proof. We express the required Zt in the form Re [9/9^ — S^tig

(r, z)d/dzs~] where tis(r, z) are C°° functions in V(8) X (C*\Q). Then ZtFk

= 0 is equivalent to A/r'2) (^(r, «), ^2(r, «) , • • • , *^(r, «))

r, «)/9rJ, and further Z«r(«) =0 is equivalent to C(r'2)(^(r, 2;),

*<2(r,z), ••• ,* i t f(r ,z))=0. Since 2(r~z + l) +1^27Vr(V r^N), by what

was remarked before the lemma, in some neighborhood of (r0, ZQ) such

that zQ^X{0\0, we can find the solution tis(r,z), l<^"5Sp, 1^5^A^ of

these equations for j<^k<^r. Suppose now z^Xr
J^\Xr

J.

Then we can find vector fields Z/ in a neighborhood of (r, z) such

that Z/rfc = Oifc, Zi'r(z) = 0, Z/.Ffc vanish identically for j<^k. By shrink-

ing the neighborhood if necessary, we also see that the vector fields

Z/ satisfy Z/Ffc=0 mod. Fk, -••,Fr,Fk9 • • • , Fr for k<j, since F] is

among Ffc, '-,Fr and z^X/ implies Fy (r, z) ^=0. We have thus shown
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the local existence of the required vector fields. The global existence

is proved now by using the partition of unity.

Using this lemma, we shall show

Theorem A. 2. Set Ss = {z^CN- r(z) = e} and Mr'(e) =X;' OSe

for l<;z<>, rey(5),anrfe>0. For any r',r"eY(5) there is a dif-

feomorphism of S£ onto itself -which maps Afr/(s) onto Mr/(
£)-

Proof. It suffices to prove when r', r" are sufficiently near. Let

U be an open subset of V(S) which is convex in the linear space contain-

ing V(8) and let r' = (r/, r2', • • • , r/), r" = (r/', r2", - • - , r/) e U. We set

Z=2'ip
&i(rj" — r/)Z£. Since Zr(s) =0, Z is tangent to the surfaces [7

XS£. Since the projection UxSB^>U is proper, the definition domain

of exp tZ is just the product of *S£ and the definition domain of exp £(J57=1

(r/' — r/)9/9r$), for every t^R. Thus exp Z induces a diffeomorphism

of {r'}x5e onto {t"} XtSs. We regard this as a diffeomorphism 0? of

5£ onto 5£ through the projection UxSs-^Ss. Then the condition ZFj

= 0mod. Fjt • • • , Fr, Fj, • • • , Fr implies ^ maps each M//(e) onto Mri(e).

Recall that the Milnor number of (X^, 0) is a topological invariant of

M/^OOWr'OO (Milnor [10] (Remark 8. 6) combined with Hamm [5] ).

Hence Theorem A. 2 proves that the Milnor number of (Xr, 0) is a

constant, which was to be proved.
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