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Convergence of the Finite Element Method
Applied to the Eigenvalue Problem

By

Kazuo ISHIHARA*

§ I. Introduction

This paper is concerned with the finite element approximation

schemes for the eigenvalue problem:

(1) Au + fai = Q in £

with the boundary condition

« = 0 on S (Dirichlet type)

or

du/dn — Q on S (Neumann type)

where A is the Laplacian, J2 is a bounded domain in R2, S is the piecewise

smooth boundary of J2, and n is the exterior normal.

We put the equation (1) into the weak form:

(2) a (u, v) — I (u, v) for any v^V

where

a (?/, v) = I (uxvx H- tiyVy) dxdy ,
JJ3

(u, v) = \ uvdxdy ,
Js

and where V=H0
1(£) or V =!?(£) according as the boundary condition

is Dirichlet type or Neumann type. Here JT(J2) is the Sobolev space

of order 1 and Ho1 (fl) is a subset of H1 (fl) composed of functions vanish-
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ing on S. We apply to (2) the consistent mass (CM) and the lumped

mass (LM) schemes, with the linear interpolation function. Then the

corresponding equations may be written in the following forms:

(3) KU^M.U for the CM scheme,

(4) KU=lM2U for the LM scheme

where K is the stiffness matrix, M1 is the consistent mass matrix and

M2 is the lumped mass matrix. Strang and Fix [3] have proved that

the approximate eigenvalues and eigenfunctions in the CM scheme con-

verge with a certain rate of convergence to the exact ones. However,

for the LM scheme it seems that no such proof has been published

explicitly.

In this paper, we propose the mixed mass (MM) scheme:

(5) KU=lMsU

where

and prove the convergence of the LM and the MM schemes with a

certain rate of the convergence. Finally we give the numerical examples.

The results by the three schemes show good agreements with the exact

solutions. In particular, the MM scheme demonstrates more accurate nu-

merical results than the other schemes.

§ 2. The Order of Convergence

We assume that every eigenvalue of (1) is distinct and simple. Fur-

ther for simplicity we assume that the domain J2 is a convex polygon.

Let us divide X? into the triangles of finite numbers in the usual manner:

where m is the number of the triangular elements. The finite number

of nodes are denoted by Pl9 P2, • • • , Pn. We further assume that any
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two adjacent triangles have an only common side. Now we define the

finite dimensional spaces Xh C L2 ($) and YhdV as follows :

Xh={$:$ is a piecewise constant function in each triangular ele-

ment in the sense stated below},

Yh={$:$ is a function which is linear in each triangular element

and $^V\

where h is the length of the largest side of all triangular elements.

''Piecewise constant" means, for instance,

where St is defined as in Figure 1. Then there exist the basis {$l9 • • - ,

and {0j, • • • , $ „ } for Xh and Y*, respectively, such that

Every (f>(EXfl or if) €E Yh can be uniquely determined as

=Z!?=i

where 01? • • • , 0 n are nodal values. We say that $^Xh and $<=Yh are

associated (0^^^), if they have a common nodal value at each nodal point.

We will use the following notations and definitions :

(u, v) -= uvdxdy ,
JQ

\\u\\* =(u,u),

a (it, v) = \ (ILXVX + iiyVy) dxdy ,
js * '

K : stiffness matrix K={a($i,$j)} (\<i,j<ri)9

M, : CM matrix ^ =

M2\ LM matrix M2=

M: MM matrix Ms=

G: center of gravit\

Figure 1. The region 5,
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h : the eigenvalues of (1) (/11<4<---)J

ut : the eigenfunctions corresponding to A2

A* : the eigenvalues of (3) (Ai<A2<^-'<;An),

Ui : the eigenvectors corresponding to At ( Ui
tMl Uj = 5^-) ,

vt : the eigenfunctions corresponding to A*

: the eigenvalues of (4) (Ai<A2<'"<An),

: the eigenvectors corresponding to At (Ut

i7 Wi} : the eigenfunctions correspondig to At

It : the eigenvalues of (5) (Ai<A2<- ••<A7l),

t/t : the eigenvectors corresponding to A^ (Ut

{%i, %i} '• the eigenfunctions corresponding to At

(zt~2i9 ( (zt, zj + (glf %) ) /2 = ^-, (M!, *,)

The solutions {A, v} of the CM scheme, {A, xe>, w} of the LM scheme

and {A, z, z} of the MM scheme are defined as follows:

a(v, u) =I(v, fi), v^Yh for any u<=Y\

a (w, u) =A(t£>, M), w^Xh, w^Yh, zv~w

for any u<=Xh, u^Yh, u~u,

for any tieXh, us=Yh, u~u.

In order to prove our results, we prepare some lemmas.

Lemma 1. ( [1] ) For any (/><=Xh and ij)<=Yh ($~$) , there exists

a constant c, -which is independent of h, such that

Lemma 2. ([!]) For any 0s=XA and $&Yh($~$), it holds

I! 01 > 11

Lemma 3. For any $^Xh and <^e Yh (0 ̂ $} , there exists a con-

stant C, 'which is independent of h, such that
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Proof. By the Schwarz inequality, the Poincare inequality and

Lemma 1, we have

< C0 a($9$) - J~ch a($,$) + Ma ($, $)

where C0 and C — max{C0\/~£~» <?-diam(J2)} are constants, which are inde-

pendent of /2. This completes the proof. (*}

Lemma 4. (min-max principle) Let Si denote any i-dimensional

sub space of V. Then, eigenvalues are characterized by the equation

, . a (u. ti)A* — mm max — — - — - .
Si u(ESi \\U\\

w-fcO " "

For the CM scheme, Straiig and Fix [3] proved the following two

theorems.

Theorem 1. For small h and the fixed i, there exists a constant

CL -which is independent of h, such that

Theorem 2. For small h and the fixed z, ihere exists a constant

c°it which is indepe?ident of h, such that

Now ^ve can prove the following results for the LM and the MM

schemes. First we give error bounds for the eigenvalues.

(*} As a matter of fact, if the boundary condition is of the Neumann type, we have to
replace a(utv) by a(utv) + r(u,v) with a positive f so that a(u, U^^T\\u\\2. How-
ever, if -9 has a certain symmetry and if we consider higher modes as in the numeri-
cal examples, we can apply the Poincare inequality directly.
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Theorem 3. For small h and the fixed i, there exists a con-

stant ciy 'which is independent of h, such that

Proof. By Lemma 2, we have

a ($, 0) <a& & for

Therefore we obtain

U'KU ^ U'KU / U'KU f ,for any vector

The eigenvalues 1^, ̂  and ^^ are also characterized by Lemma 4 in the

following manner:

U'KU.i = mm max - ,
U6M2U*

U'KU. max
UfEVi
U+Q

. U*KUt = mm max
UtM1U

where V{ is any /-dimensional vector space of JR". Further we define

the spaces Vt, Vt and Vt as follows:

,, •-,[/,],

Then, we have

U*KU ^ U1KU T ̂  U*KU ^ U1KU- <-max - = L^ max - - <-max -
- ' - -

By Lemma 3, we have

_ for any
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Hence we have

T U'KU U'KUAj = max

i + CA — + Ch
h A*

Therefore, by Theorem 1, we obtain

This completes the proof.

The following two theorems give error bounds to the approximate

eigenfunctions.

Theorem 4. Let {A*, wi9 Wi} be the LM solutions. For small

h and the fixed i, there exists a constant ciy 'which is independent

of h, such that

Ut- Wi<Ci,

\\Ui~ Wil^Cih.

Proof. Define two mappings P and L as follows:

P:V->Yh, a(Pu, v) =a(u, v) for any v^Y\

L:V-*X\ (Lu,v) = (u,v) for any v^X\ v^Y\ v^v.

By the approximation theorem ([3]), there exists a constant Cl9 which

is independent of A, such that

Since a(Put,Wj)=a(ui9Wj) by the definition of the weak solution and

since (Lui9 Wj) = (ui9 Wj} , we have

- Ai) (Put, Wj) = lj (Put, wj) ~ A* (Put, wi) = a (Puiy zt>j) - Xi(Pui9 W

= a (ui9 wi) - A/ (Put, wj) = At («i, wj) - ^ (Fui9 fe>y)
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= At (Lui, w)y) - li (Put, fe> ,) = /U (Lui - Put, w> ,)

where Pzci^^Pui^Xh. Because the set [te)ly • • • , w7l] forms an orthonormal

basis for X*1, we have

Since Ai is distinct from the other eigenvalues, for sufficiently small /z,

there exists a constant C2, which is independent of /?, such that

Hence, putting 0=(Pui,
iwi), there exists a constant C3, which is inde-

pendent of h, such that

<c,'_
3+i

Therefore, there exists a constant C4, which is independent of h, such

that

By the triangle inequality, we have

Recalling that Ui and Wi are normalized, and choosing the sign so that

^5^0, we have

Therefore, there exist constants C5 and C6, which are independent of /z,

such that

The proof is complete by taking Ci=max.{C5, C6}.
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Theorem 5. Let {liy zi9 zt} be the MM solutions. For small h

and the fixed z, there exists a constant ciy ivhich is independent of h,

such that

Proof. We introduce two spaces H=LZ(&) XV and

H= {{u, u} :u^X\u^Y\ v~fi}.

Addition and scalar multiplication are defined in the obvious manner and

the inner product and the norm are defined by

[X v}, {w,z}']= — {(u,rv) + (v9z)}9

Define two mappings P and Q as follows:

P:V-*Y\ a(Pu, £) = a(u, £) for any

for any {ze>, w} G H .

By the approximation theorem ( [3] ) , there exists a constant Ci9 which

is independent of h, such that

Since a(Puf, Zj) =a(uiy z^) by the definition of the weak solution, and

since [Q{«,, ttt} , {zJ9 %}] = [{^, Ut} , {%,%}], we have

Hi9 PUi} , { ,̂, £,} ]

- a ^, zy -

t, Put} , {zj9

= A, [ {ut9 u,} , {£,,
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= A«[{Q{««, ut} - iPHt, Pu,}}, {zj9 £,}]

where Pui^Pui^.Xh. Because the set [{z1,z1},-~,{zn,zn}'] forms an

orthonormal basis for H, we have

{FHt, Pu,} =S5

On the other hand, there exists a separation constant C2, which is inde-

pendent of A, such that

iV( / -WI<C 8 for all j(^0,

since the eigenvalue A* is distinct from the other eigenvalues. Hence,

putting {3=[{PuiPui} , {ff, z*}], there exists a constant C8, which is inde-

pendent of 7i, such that

, Put} - 0 {st, zt} |||« = ^j

<C2
2 {|||Q {«lf «,} - {«,, «,} HI + I {Ui, U(} - {K^ Pu,}

Therefore, there exists a constant C4, which is independent of A, such that

t, Pu{} I + I {?£«, Pa,} -/9{gi; 2,} HI

By the triangle inequality, we have

I {a,, «,} !|| - 1 {Mi, Mi> -0{s,, zt}

Choosing the sign so that /3^>0, ^ve obtain

1/3-11 ̂ 111 {««,«f}-/9{«i,2i} I I I ,

since ||| {ut, ut} ||[ = \ut\\ =1. Therefore, we have

HI {ut, Ui} - {zt, zt} 1 < III {it,, M,} -${z{, z(} I + U I / 9 {zt, zt} - {zt, z{} H

<2\l{ul,ul}-0{z{,z{}\\\<2Cih.

By taking Ci = 8C4
z, we can obtain
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Ik-sj'+lk-sj'^tf.
This completes the proof.

§ 3. Numerical Examples

For the purpose of checking the numerical accuracy of the finite

element schemes, we have dealt with two examples of the rectangular

domain (L rXL2 /) . The first example is the following equation:

An + kn — 0 in &

u = 0 on S (Dirichlet type).

The exact eigenvalues and the corresponding eigenfunctioiis are given by

. mty
= sm— -- sin— ̂ -

Lly

As the second example, we have dealt with the room acoustic w^ave

equation for steady state confined by a rigid wall. The equation is the

following form:

.= n a
cz

0 on S (Neumann type)

where P is the sound pressure, c is the sound speed and a) is the angular

frequency. The acoustic analysis is to determine the normal frequency

and the corresponding eigenfunction P. The exact normal frequency

values f and the corresponding eigenfunctioiis P are given by

7", nny / r, -, 0 \
p = Cos—±— - cos —^- , (m, n = 0, 1, 2, • • •) -

L,x L,y

Table 1, 2 and Figure 2, 3 show the results of the computations in

comparision with the exact eigenvalues and the normal eigenfrequency

values (in Hz) for a 2.0x1.1 rectangular domain. They demonstrate
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that the eigenvalues and normal frequency values converge with the mesh

size and the CM scheme gives the upper bound and the LM scheme

gives the lower bound for the exact values. And the MM scheme gives

more accurate approximations between the CM scheme and the LM

scheme.

We have used FACOM 230-28 computer in Ehime University and

FACOM 230-75 in Kyoto University.

Remark. As a natural extension of the MM scheme, we can pro-

pose the generalized mixed mass (GMM) scheme with a parameter a(0

Table 1. The results for Dirichlet type.

Mesh Configuration

(Size: 2.0X1.1)

1

2

3

/
/
/s

' //

' /
' //

/

/S

/

^̂/
/s

^

/
/
/
/

/

/
/

/

' S"
' S*

" /
/

/*" /
S* s

S' sS' ̂

' S
' s

' /

' /
' ' /" /
S /* /

' / /

' /s

' ̂' S*
' /S"
~? s"

Scheme

CM
MM
LM

CM
MM
LM

CM
MM
LM

Exact

Eigenvalues

(1,1) Mode

13.66
11.34
9.69

12.31
11.09
10.09

11.69
10.94
10.28

10.62

(1,2) Mode

30.62
19.44
14.19

25.29
19.44
15.75

22.61
19.12
16.53

18.03

(3,1) Mode

54.64
33.75
24.56

46.89
30.17
21.40

42.57
31.40
24.25

30.36

60

50

40

30

^ LM

1 2 3 mesh 1 2 3 mesh 1 2 3 mesh

(a) (1,1) mode (b) (1,2) mode (c) (3,1) mode

Figure 2. Convergence of the eigenvalues (Dirichlet type)
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Table 2. The results for Neumann type.

Mesh Configuration

(Size: 2.0 X l.lm)

1

2

3

4

^\^
s/\/r

/
/
/

</L7 /
' /

//
//
/

~7/s
s*

</_

/ /
/ /
/" /
/ >

^ /^
^ /^
^ (^
s' ^

^ _,/ _,/ ,_/" _s ^

s? S f
/ / _,
/l?t
X ./* s
/ / s

/ ^/" /s
/ /
s ̂
/* /^

Q 1bcheme

CM
MM
LM

CM
MM
LM

CM
MM
LM

CM
MM
LM

Exact

Hz'

100

95,
901-
„,!
60 1

80

75'

1

^M^^
/IM

^ exa
-e

Hz

170

160

150
ct 14C

13C

12C

11C
inr

Normal Frequencies (Hz)

(1,0) Mode

93.1

83.3

75.8

88.7

84.6

81.0

87.1

84.9

82.8

86.4

85.0

83.6

85.0

^*""-*- — s exact

7 /

J

)/
^

(0,1) Mode

167.6
131.6
107.0

160.9
153.6
138.6

158.2
154.2
150.4

157.0
154.4
151.9

154.5

Hz

200

190

180

170

160

150

140

2 3 4 mesh 1 2 3 4 mesh
a) (1,0) mode (b) (0,1) mode

(2,0) Mode

187.5
151.5
140.3

195.6
160.8
146.8

186.0
166.9
151.2

180.7
168.7
158.3

170.0

exact

'{%
1 2 3 4 mesh
( C ) (2, 0) mode

Figure 3. Convergence of the normal frequencies (Neumann type)

The GMM scheme includes as its special cases

(i) CM scheme (a = l),

(ii) MM scheme (a. =1/2),

(iii) LM scheme (a' = 0).

We can prove the convergence of the GMM scheme using the same

techniques used for the MM scheme. The proof will be published in

a forthcoming paper.
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