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Algebraic Structures of Characteristics
in Involutive Systems of Non-Linear
Partial Differential Equations

By

Kunio KAKIE*

Introduction

An involutive system of partial differential equations is, roughly
speaking, such a system that its general solution can be obtained by solving
successively equations of Cauchy-Kowalevsky’s type. It was E. Cartan
who introduced the notion of involution for exterior differential systems.
On this subject one has the Cartan-Kihler theorem and the prolongation
theorem due to E. Cartan, M. Kuranishi and M. Matsuda (cf. Cartan
[2, 47; Kuranishi [11-12]; Matsuda [13-14]). M. Kuranishi constructed
the process of standard prolongation, which was applied to infinite Lie
groups by himself. It was also applied to the equivalence problem of
G-structures by V.W. Guillemin, I.M. Singer and S. Sternberg. In this
course they clarified the algebraic structures of involutive systems. By
their results M. Kuranishi gave a clear definition of involutive systems.
His standard prolongation was improved by M. Matsuda, who combined
it with the classical method of prolongation due to Lagrange and Jacobi.

On the other hand, it is well-known that, in the classical and modern
theory of partial differential equations, consideration of characteristics in
various senses leads us to fruitful results. In our subject the two con-
cepts of Cauchy characteristics and Monge ones will be particularly impor-
tant. Effectiveness of the [ormer was shown by E. Cartan for general
systems ([2-4]). However, that of the latter seems to have been shown
only for special systems (cf. Cartan [4], Chap. IV, Part III).

The principal aim of this paper is to investigate algebraic structures
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of the above two characteristics of general non-linear involutive systems.
In our investigation, a principal role will be played by the introduced
concept ‘“‘characteristic module”. It is to be emphasized that we deal
with non-linear involutive systems with several unknown functions and
that we discuss also the case when the characters of higher order do
not necessarily vanish. Besides, our investigation enables us to establish
the method of integration for involutive systems whose characters of order
more than one vanish, generalizing the one obtained recently by the pres-
ent author ([9-10]).

All notions such as functions and manifolds occurring in this paper
are assumed to be in the real or complex analytic category though our
argument can be carried out in the C category except when the Cartan-
Kihler existence theorem is applied.

Our main results are summarized as follows. Let @ be a system
of partial differential equations of order [ in a fibered manifold (¥, J, ).
It is defined to be a locally finitely generated subsheaf of ideals in the
sheaf of rings of germs of analytic functions on the space of ljets of
cross-sections of (M, Jl, 0). Suppose that @ is involutive. We introduce
the characteristic module M of @ by generalizing the characteristic ideal
defined for systems with a single unknown function (cf. Kakié [10]);
The latter is, roughly speaking, the ideal in a polynomial ring generated
by the characteristic polynomials of all differential equations in @. The
module M is a homogeneous submodule of that Noetherian graded module
L over a polynomial ring which is canonically associated with (M, Jl, 0).
The characteristic module M admits a reduced primary decomposition in
L:M= (%le where each Q; is a primary homogeneous submodule of L.
For a fmmogeneous submodule N of L, we denote by #(M; L) the mul-
tiplicity of N with respect to L; u(7; L) is defined to be the positive
integer obtained from the coefficient of the highest degree 7 of the Hilbert
characteristic polynomial of the graded module L/N by multiplying it
by 7. Let s;, 5, -+, s, be the Cartan’s characters of @ of order 1, 2, -+, 2
respectively (z=dim JI). One of the fundamental results is the follow-
ing: Assume that @ is involutive and that s,>0, s,.;=++=5,=0. Let
PB; be the associated prime ideal of Q;(1<j<<v). Then the greatest

projective dimension of the homogeneous prime ideals ; is equal to p—1.
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Moreover the following is wvalid:

= 2 un@pL

proj dim PBj=p—1

(Theorem III in §5). The primary decomposition of M enables us to
investigate algebraic structures of Monge characteristics of @. Corre-
sponding to each R;, a Monge characteristic system of @ is defined
(88 6-7). Furthermore we can give a sufficient condition in order that
the differential system associated with @ admits Cauchy-Cartan character-
istics (Theorem IV). Suppose that s,=:--=s5,=0. In this case, we can
clarify more completely algebraic structures of Monge characteristics. In
fact, considering the problem of constructing from @ suitable involutive
systems for integration, we can show effectiveness of Monge characteristics
(Theorems V and VI in §9). It is a classical problem to find a process
of reducing the solution of the Cauchy problem for @ with a given
initial value to the integration of a completely integrable Pfaffian system.
As an application of our theory, we can solve this problem for @ with
s;=--=s5,=0 (cf. Kakié [9-10]).

This paper is divided into three parts. Part I (§§1-3) is devoted
to the investigation on modules associated with involutive subspaces. Part
II(§§ 4-7) is concerned with involutive systems of partial differential equa-
tions. The concept of characteristic module is introduced and algebraic
structures of Monge characteristics is studied. In part III (§§ 8-10), we
deal with only involutive systems of which characters of order more
than one vanish.

The author would like to express his sincere gratitude to Professor
M. Sato for his perspicacious suggestion and encouragement during the
investigation. It is owing to his suggestion that the algebraic discussion
becomes much simpler than the original one.

The author also would like to express his sincere gratitude to Pro-

fessor M. Kuranishi for his kind advice and encouragement.

Part I. Modules Associated with Involutive Subspaces

§ 1. Primary Decomposition

Let K be a field of characteristic zero, and R be the polynomial
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ring over K in 7 variables. The ring R is a graded one with usual
direct sum decomposition: RZio R, Let LZEO‘: L, be a finitely gener-
ated graded R-module. Obviout'zs—ly L is a Noetl‘;—grian module; it satisfies
the maximal condition concerning its submodules. Let Mzio M, be a
homogeneous R-submodule of L. The submodule M admitqs_ a reduced
primary decomposition in L:M= (VWQ, where the modules Q; are homo-
geneous primary submodules osz(cf. Bourbaki [1], Chap. IV). Let
Q; be Pjprimary in L. For any element § in R, the homomorphism
he in the R-module L/Q; defined by h.(2z) =6z is injective or locally
nilpotent (presque nilpotent). The ideal P3; is the set of all elements
£ R such that the homomorphism A, is locally nilpotent. Since M is
a homogeneous submodule, the ideals %3, are necessarily homogeneous.
The reduced primary decomposition is unique in the sense that the number
y of the submodules Q; and the set {{3;, ---, L3,} are uniquely determined
only by M. Let Ass(IN) denote the set of prime ideals associated with
an R-module N. Then Ass(L/M) =4, -, B,}. Moreover if L; is a
minimal element in the set Ass(L/M), the corresponding submodule Q;,
is uniquely determined by M.

Let P(N,x) denote the characteristic polynomial of Hilbert of N,
where NZi N, is a finitely generated graded R-module. (cf. Serre
[177, Chap.q_QII; Zeriski-Samuel [18], Chap. VII, §12). The number
P(N, g) indicates dim N, for every sufficiently large integer q.

Let r be the degree of P(L/M,z). The polynomial P(L/M, x)

can be written in the following form:

Z\ x
P(L/M,x>=ao(7_}+a1(7__l J+tan,

where <x>=x(:c—1)---'(x—s+1)
s s!
integers. The coefficient a, is usually called the multiplicity of M with

respect to L over K. We shall denote it by u(M; L); u(M; L) =a,.

It is a positive integer except the case when M,=L, for large q.

and the coefficients aq, ---, a, are

The degree of P(L/M,x) is closely related to the projective dimen-
sions of the homogeneous ideals in Ass(L/M). In fact, the following is
valid (Zariski-Samuel [18], p. 235, Theorem 42’).
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Lemma 1. The degree of the characteristic polynomial P(L/M,
x) is equal to the greatest projective dimension of the associated
prime ideals Ass(L/M) of L/M.

Let .g,, be the set of all p-dimensional subspaces of the vector space
R, of dimension 7 over K (0<p<n). &, forms a (n— p)p-dimensional
algebraic variety with Pliicker coordinates. This is usually called Grass-
mann manifold when K is the field of real or complex numbers.

The multiplicity #(M; L) possesses a geometrical interpretation. In

fact, one has the following

Lemma 2. Let r be the degree of P(L/M,x). Then the fol-
lowing are valid:

(i)  Let p be the smallest integer p for which there is an element
F,e4, such that (M+F,L) N L, coincides with L, for all large q.
Then r is equal to p—1.

(i) For any element F.c 4, outside its proper algebraic sub-
variety, the characteristic polynomial of the graded R-module L/ (M
+ F,L) is of degree 0 and n(M; L) is equal to u(M+F,L;L). More-

over
#(M; L) =min{dim L,/ (M+F,L) N L,; F,€4,}

for sufficiently large q.

Proof. We prove this lemma by dividing into five steps. In this
proof, we denote #(M; L) simply by /t(M). By polynomials of negative
degrees we mean zero.

(a) Let F, be an arbitrary element of &,(0<p<n). Then the
characteristic polynomial of L/(M+F,L) is of degree=r—p. If F, is
an element of &, such that the characteristic polynomial of L/(M+ F,L)
is exactly of degree 0, then /(M) is equal to or less than u(M+F.L).

Proof. We write N=L/M. Let us consider the homomorphism 0,
from N into itself defined by 6,(v) =7y, where 7€ R,. Writing S=ker 0,
and T'=N/0,(N), we have the exact sequence of modules

0-SLNSNLT S0,
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where 7 and j are natural homomorphisms. This gives rise to the exact

sequence of vector spaces over K
058, 5N, 5N, 5T, >0
q q g+1 q+1 ’

where N=i N, S=i So TZi T, (direct sum decompositions of grad-
g=0 q=0 a=0
ed modules). Obviously

Tyi1=Ny1/0,(Ny) =Lgsr/ (M+9L) N L.y .

Hence, applying the well-known lemma (Zariski-Samuel [18], p. 233,

Lemma), we get from the above exact sequence the following equalities:
@Y) P(N,q+1)—P(N,q) =P(L/(M+7L),g+1) —dim S,

(g: sufficiently large).
The term on the left side can be written in the form

PN, q+1) —P(N, @) =#(M)<:l >+b1<rj2 >+---+b_1

+1 +1
=,a(M)<q >+c1<q >+-~+c,_1.
r—1 r—2

Therefore we conclude from (1) that the characteristic polynomial of
L/(M+7L) is of degree=r—1, and that if it is of degree r—1, u(M)
<u(M+nL). Proceeding step by step in just the same manner, we know
that the characteristic polynomial of L/{M+ (7, ---,7,) L} is of degree
=r—p (1<p<n), and that if the characteristic polynomial of L/{M
+ (1, -+, 7-) L} is exactly of degree 0, then that of L/{M~+ (q,, ---, 7,) L}
is of degree —p for each p=1, 2, ---, . In this case it also holds that

u(M)=p(M+nL)<--=pu(M+ (n, -, 7:) L),

where 7,&R,. this completes the proof of (a).

(b) There exists a sequence F,C---C F,C F,.; where FPEQP such
that the characteristic polynomial of L/(M+F,L) is exactly of degree
r—p(0<p<r-+1), and that u(M)=u(M+F,L)=---=u(M+F.L).

Proof. We use the same notations as in the proof of (a). Suppose
firstly that none of the ideals in Ass(IN) ={,, ---, B,} coincides with

the maximal ideal j{:i R, in R. We can choose an element 7,ER,
a=1
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not belonging to any ideal ¥;, Then the homomorphism 0, is injective
(cf. Bourbaki [1], p.132, Corollaire 2). Hence ker 0, =0. Suppose
secondly that omne of the ideals T;, say PB,, coincides with X. Since
X°LcQ, for some positive integer ¢, it follows that Q,NL,=L, for

y—1
large g. Therefore M,= N Q;NL, for large q. Let % be an element
j=1

in R, not belonging to VL_Jl B;,, By the same reason as above, 0, is
injective in N, and hence {i_elr 0,, N N, =0 for large ¢q. Hence, in any case,
we have the equality (1) in which 7=7, and dim §,=0. By the remark
below (1), it follows that P(L/(M+7L), x) is of degree » —1 and that
pm(M4+mL) =pu(M). Repeating the same argument successively, we can
find r+1 elements 7, -+, %,., in R, such that the characteristic polynomial
of L/{M+ (, -, 7,) L} is of degree r—p for each p=1, 2, ---, 7+1, and
that u(M) =p(M+m,L) =---=pu(M+ (9, -+, 7,) L). As is readily seen,
My, ***, Wy are necessarily linearly independent. Let F, be the space
spanned by 7, +-+,7,. Then the space F, have the required property.
(¢) There is an element F,.; of &,,, such that

(2) (M+F,..L)NL,=L, for large q.

Proof. This is an immediate consequence of (b).

(d) Let N’Zio N,” be a homogeneous submodule of L such that
there is an elementh—WER1 for which (N’ -+9L) NL,=L, for large gq.
Then dim L,/N,/>dim L,.,/N,,, for large g.

Proof. The assumption implies that the homomorphism defined by
the multiplication by % from L,/N,’ to L,.;/ Ny, is surjective for large g.
The required result follows immediately from this.

(e) We are now in a position to complete the proof of Lemma 2. If
there is an element Fy,, & G4, such that (M+ Fy,; L) NL,=L, for large
g, then P(L/M, x) is of degree <d. In fact, recalling that P(L/M, q)
=dim L,/M, for large ¢, we find no difficulty in showing that

+d
P(L/M, g) < Const. <q

> for large ¢.
q

This inequality implies that P(L/M,x) is of degree <d. It follows
from this and (c) that the assertion (i) is valid.

Let us next prove (ii). Since (c) is valid, we can readily prove
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that the set S of elements F,= 4, for which there is no element 7€ R,
such that (2) holds for the space F,,; spanned by F, and % forms a
proper algebraic subvariety of &,. We put

0,(F,) =dim L,/ (M+F,L)NL,,
0,=min {0, (F,); F,e4,}.

The function §,(F,) attains its minimum value outside a proper algebraic
subvariety D(qg) of &,. By virtue of (b), there exists F,=d, such
that u(M) =p(M~+F,L) =0, (F,) for large g. Hence we have 0,<
u(M) for large gq. Let F, be an element of &, not belonging to its
proper subvariety SUD(g). Since the assumption (d) is satisfied for
the module M+ F.L, we have 0,(F,)=0,+:(F,) if ¢ is large enough.
It follows that

(3) 6«1 :6q(Fr) zﬁqﬂ(Fr) zaqﬂ .

Thus the sequence {0,} of non-negative integers is a descending one
when ¢ varies sufficiently large integers. We conclude from this fact
that 0,=04+1=04+2=-"- for large ¢. Then it follows from (3) that for
any F, outside SU D(q), 0,(F,) =04:1(F,) =04+1(F,) =---. From this it
follows that the characteristic polynomial of M-+ F,L is of degree 0O
and y(M+F,L)=0,(F,) =0, for such F,. On the other hand, (a) as-
serts that #u(M)<pyu(M+F,L) =0, for such F,. Combining this with
the fact 0,y (M) shown already, we have y(M) =0, for large q. Thus
we have all the required results in (ii). Q.E.D.

Let us now consider a reduced primary decomposition M= (3 Q; in
L, Q; being P;-primary. If the projective dimension of . is g;ual to
deg P(L/M, x), then PBF is a minimal element in the set {B, -+, B,}
(cf. Lemma 1), and hence the corresponding module Q; is uniquely deter-
mined only by M by the uniqueness theorem of reduced primary decom-
positions: In particular, #(Q;; L) is also so. There exists a link be-
tween the multiplicity #(M; L) and the multiplicities #(Q;; L). In [act,

the following theorem is valid.
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Theorem I. Let M:ruﬁ Q; be a reduced primary decomposition
j=1
of M in L, and let Q; be B,primary. Let r denote the degree of
the Hilbert characteristic polynomial P(L/M,z). Then

uM;Ly= " > u(@Q;;L).

proj dim 5[3_,:1
To prove this theorem, we shall recall the following lemma.

Lemma 3. Let N, and N, be homogeneous submodules of L.
Then

P(L/NiN Ny, ) +P(L/(N:+N,), ) =P(L/Ny, ) + P(L/N,, ).

Proof. Obviously we have the following two exact sequences of
R-modules with natural homomorphisms:
0—>(N;+N,) /N,—L/N,—~L/(N,+ N,) -0,
0—N,/N, N N2_>L/N1 N N2—>L/Nz—>0 .

It follows from these that the following equalities are valid for all suffi-

ciently large gq:
P((Ni+N,) /Ny, @) —P(L/Ny, q@) + P(L/ (N +N,), q) =0,
P(Ny/Ni(\ Ny, @) —P(L/N, N\ Ny, q) +P(L/N,, q) =0.

(N;+ N,) /N, is isomorphic to N,/N, N N,, and hence we have the desired
result. Q.E.D.

Let v,(M) be the ideal in R defined to be the set of all elements
£=R such that £LC M for some integer ¢. This ideal 1tz (M) coincides
with the intersection of the prime ideals associated with L/M; t.(M)
:ﬁ By, It is clear that 1v,(NV;+1V,) contains 1,(N;) +1.(NV,) for any
tW]o—lsubmodules N, and N, of L.

Proof of Theorem I: Applying Lemma 3 to N;=Q, and N,= .fy] Qi
j=2

we have
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P(L/M,2) =P(L/(1 Q)
=P(L/Q. %) +P(L/ N, Q2) —P(L/N, ),

where we write N———QI—I-ry] Q;. Let us prove that the prime ideals asso-
ciated with L/N are ofj;)i'ojective dimension less than . Let 2 be
any element of Ass(L/N). Since t,(IN) contains ‘.Bl+ﬁz§]3j, the ideal
I also contains the latter ideal. It follows that con:ains B, and Py
for some k==1. If one of P, and B, is of projective dimension<r,
then it is obvious that ¥ is also so. Assume that both ideals %, and
B are of projective dimension 7. Then P+, is distinct from By,
for P,#P.. We conclude that AP, Hence A is of projective di-
mension <7 =projdim PB,, for in the contrary case, both prime ideals
would have the same dimension and one of the two ideals contains the
other, and hence they would coincide. Thus we have the desired result.
What we have just deduced implies, by virtue of Lemma 1, that P(L/N,
x) is of degree <(». Consequently the above formula indicates that the
term of (the highest) degree r of P(L/M,x) is equal to the sum of
those of P(L/Q;, x) and P(Ljry]sz, x); that is,

P(L/M, 2)=P(L/Q;, @) + P(L/ (1 Oy %) (mod 1, z, -+, " 7).

Repeating the same argument for the modules N Q; (2<k<y) succes-
j=k

sively, we obtain
P(L/M,z)=3) P(L/Q;, ) (mod 1, z, -, 2 Y).
i=1

Since P(L/Qj, x) is of degree r if and only if L; is of projective dimen-
sion » (Lemma 1), it follows that u(M;L) is equal to the sum of
#(Qy; L) where Q, are those submodules the prime ideals associated with

which are of projective dimension 7. Q.E.D.

In concluding this section, we recall that the exponent of a -
primary submodule Q of L is, by definition, the smallest integer ¢ for
which PBLcCO.
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§ 2. Involutive Subspaces

Let E and F be vector spaces over K of dimensions 7.2 and 7 respec-
tively. Let F* denote the dual space to F and S*(F*) denote the g-th
symmetric power on F*. The vector space EXS'(F*) can be considered
as the subspace of the space {ERS'™(F*)} QF*=Hom (F, EQS ' (F*))
(I=1). Let A be a subspace of ERS'(F*). The prolongation pA of
A is defined by

pA=ARF*NER S (F*).

We shall denote by &, (F) the algebraic variety of all k-dimensional
subspaces of F. For an element F,&G, (F), A(F) is defined to be
the space of those elements in A which annihilate the subspace Fj. Let
us put
g:[ A] =min{dim A (F,); F,€ 4, (F)} (k=0,1, ---, n).

It is obvious that g,[A]=0.[A]=-=9.[A]=0. The space A is called an
involutive subspace of {EXRS "' (F*)} ®F* if and only if dim pA is equal
to Zﬂ:gk[A] (cf. Kuranishi [12], §6). Throughout this and the next
sec:;(:ns, by involutive subspaces we mean involutive subspaces of {E
ERS"(F*)} QF* except when otherwise is expressly stated.

Let R be the graded ring i S?(F) and R, be S*(F) (S°(F) means
K). The graded ring R is (is:;rolorphic to) the polynomial ring over K
in n variables. We shall denote by L the graded R-module E*QR:

Lzﬁ0 E*®S*(F), L,= E*QS'(F).

This module L is finitely generated as an R-module, and hence it is
a Noetherian R-module.

Let D be the annihilator of A in the space L, dual to EQRS'(F*).
We shall use the following notation: Let = and Z be subsets of R and
L respectively. The set of all finite sums Z]Eiz,- where &€&, z,€2
is denoted by ZL. Now it is not hard to ;ee that the annihilator of
A(F,) is D+ (FL) NL,. Therefore we have

dim A(F,) =dim L,/{D+ (F.L) N L}
=dim{L,/(FxL) N Lo} /{(D+ (FxL) N L)/ (FeL) O L}
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__<l+n—k—1

z >—dim D/DNF,L,

where <P+g_1> is the binomial coefficient (p+q—1)!/p!q!, which in-

dicates the number of forms of degree p in ¢ variables. Since

<l+n> <l+n—1>+<l+n—2> l +<l>
1+1) "\ ¢ A 1)
it follows from the above equalities that

n l+n n
kz_og,c[A] =<l+1 ) —kz—omax{dim D/DNF.L; F,e&,(F)}.

On the other hand, the annihilator of pA in L,., coincides with FD

(see Kuranishi [12], § 6, Lemma 6.1), and dim L, ., = Gi 7{) , and hence
we have
. [+n .
d1mpA=< )——dlmFD.
I+1

Let N be the homogeneous submodule of L generated by D; NZi N,.
a=0

Clearly N,=0 for ¢=0,1, --,I—1, N,=D and N,,;,=FD. Then it fol-

lows from the above argument that A is an involutive subspace if and

only if
@ dim Ny.; =3 max{dim N;/N, N F,L; Fo & G, (F)}.
k=0

Let N be an arbitrary homogeneous submodule of L such that it
is generated by a subspace of L;,. It is clear that dim N;/N, N FL where
F.e 4, (F) takes its maximum value outside a certain proper algebraic
subvariety of G,(F). Hence we find no difficulty in proving that there
is a sequence F,C FyC ---C F,=F where F, € G ,(F) such that dim N,/N, N
F,L attains the maximum value (£=0,1,---,7). The submodule F,L
of L is obviously a (F})-primary submodule of L, (F}) being the ideal
in R generated by F,. Accordingly Fy.,2C F,L implies g€ F,L, and

hence we have
{zeN,; F,..2CF.N} CN,NF,L.

The vector space FyiN/FyN, is isomorphic to &, IV,/Eci NN FpN,,
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where €., is an element of Fj., not belonging to Fj, and the latter
space has the same dimension as the space N,/{z&N,; &,z FN;}.

Hence we obtain the inequalities
(5) dim quM/Fkledim Nl/NlanL (k:O, 1, "',n'_l).

Since N;,,=FN,, it follows that

n—1

(6) dim Nyoy =2 dim Fe N,/ FeN,
k=0

>3 dim N;/N,N F;L

=3 max{dim N,/N, N Fy'L; F,’ € G, (F)}.

k=0

Accordingly we have the following

Proposition 1. Let N be a homogeneous submodule of L gener-

ated by a subspace of L;; NZi N,. Then
gq=1

dim N,.,>3 max{dim N,/N, " F,L: F,& G, (F)}.
k=0

The equality holds if and only if the subspace of EQS' (F*) of which

annihilator in L, is the space N, is an involutive subspace.

Suppose that A is an involutive subspace. Let N be the submodule
of L generated by the annihilator D of A. Then equality (4) holds.
Let FyC F,C---CF, be a sequence of subspaces of F' such that the func-
tion dim N,/N;,NF,/L on G,(F) attains the maximum value at F, (0<%
<n). Such a sequence F,CF,C---CF, actually exists as we already
explained. Combining (6) with (5), we see that the equalities in (5)
hold. The argument above (5) indicates that the equalities in (5) hold
if and only if

{zeN,; Ft .12CF.N}=N,NF,L (k=0,1, -, n—1).
Conversely, we readily see that if these conditions are satisfied for some

sequence FyC F,C - CF,, then equality (4) holds, that is, A is an in-

volutive subspace. These results can be summarized as follows.
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Lemma 4. Let A and N be as above. A is an involutive sub-
space if and only if there exists a sequence F,CF,C---CF, where
ergk(F) such that

dim Fy.;N,/FyN,=dim N,/N,NF,L (k=0,1, -, n—1),
or such that

{zeN,; ForizCF N} =NNF,L  (k=0,1, -.n—1).

In this case the latter conditions are satisfied for F,C F,C---CF,
if and only if the function dim N,/N,NF,’L on G,(F) attains the

maximum value at F, (0<k<n).
Using this lemma, we shall deduce the following

Proposition 2. Let N be as in Proposition 1. If equality (4)
holds, then the following equality holds for any integer q=L:

dim Ny.y =3 max{dim N,/N, N F,L; F,€ G, (F)}.
k=0

Proof. By Lemma 4, the desired equality holds if and only if there
is a sequence F,C F,C---CF, where F,&G,(F) such that

(D) {2€N,; FoozC F N} =N,NFL (k=0,1, -, n—1).

The assumption means that (7), holds for some sequence F,C F,C---CF,
by Lemma 4. We shall prove that (7), holds for the same sequence
F,cF,C---CF, by induction on ¢. Suppose that (7), holds. Let us
prove (7),:1. To do so, it is sufficient to prove

(8) W={2EN,s1; Fri1 2 CF Ny} DNy N FL

for each fixed £ (cf. the argument above (5)). We write V,=F,N, N F, L.
We first prove that Vj,, is contained in V} for s=% (, and hence V,,;=
Vi for s=k). To show this, it suffices to prove that for each s=k, V,, is
contained in V,. Let z be any element of V,,;. When Fj., is spanned by
F; and &, = can be written as follows: =z2=¢&.; 2,4, +2 where z,,,EN,,
2e F;N,. Since &, F,, 254, is necessarily an element of F,LNN,=V,.
It follows from the induction assumption (7), that &y 2,1 € F;N,. Con-
sequently ==& ,2,,,+2 belongs to F,N, This implies that z&V,.
Hence V,,,C V, as desired. We now prove (8). Obviously V,CW.



NON-LINEAR INVOLUTIVE SYSTEMS 121

Therefore, by what we have just deduced, V,C W for all s=0,1, ---, .
In particular we have V,CcW. Since N,.,=F,N, V,=N,,,NF,L.
Combining these, we have (8) as desired. Q.E.D.

Remark. The above proof also implies the following: If FyCF,
c--CF, where F,=G,(F) is a sequence such that (7); holds. Then
FN,NF.L=F,N, for s=k and ¢=L.

Note. It is well-known that dimpAgki g:[A], and that if A is
an involutive subspace, then pA 1is also an_(;nvolutive subspace of {E
RS (F*)} QF* (cf. Kuranishi [12]). Propositions 1 and 2 are equiva-
lent to these facts respectively. The reason why we give our direct
proofs is that the discussion in the course of the proofs is needed in

the following investigation.

§ 3. Modules Associated with Involutive Subspaces

Let R and L be the same ring and R-module as in Section 2 respec-
tively. Let N be a homogeneous submodule of L. We denote by ¥
the maximal ideal in R;:’E=Zm: R,

Notation. We denote {I;y1 H(N) the smallest (homogeneous) sub-

module M of L which contains N and which possesses the property
(9 X2 C M implies z& M.

The submodule H(XN) is constructed from N as follows. Writing
M® =N, we define the submodules M® of L inductively by

MeP={zeL; X2 M} (s=0,1,2, ).

It is obvious that M@ c MPc M®c---. Since L is Noetherian, there
exists an integer s such that M® =7“""=.... Then H(N) is nothing
else than .GO M®P=M®. Tt is to be noted that H(IN) N L, coincides with
NN L, fo;_all sufficiently large g. Conversely, if N and N’ be two
homogeneous submodules of L such that NN L,=N"NL, for all large g,
then H(N)=H(N").

We can interpret the process of constructing H(N) from N quite

differently, applying the theory of primary decompositions: A reduced



122 KuNi1o KAKIE

primary decomposition of H(N) in L is obtained from that of N by
omitting the component which is X-primary (if it exists). When N
is itself X-primary, by this statement we mean that H(N)=L. Let us
prove this fact. Let Q be a PB-primary submodule of L. We first prove
that if 513%%, then H(Q) =Q. It is enough to show that Q has the
property (9). There exists an element £§€X not belonging to B. It
follows from the very definition of primary modules that £z = Q implies
z& Q. This shows that XzC Q implies z&Q. Hence our desired result
follows. We next prove that if L'=2X%, then H(Q)=L. Since ¥'LCQ
for some positive integer 0 and L is generated by L,, QNL,=L, for
gq=0. From this and the definition of H(Q) it follows that H(Q) =L.

P
We now prove our original assertion. Let N=1 Ny be a reduced
j=1

primary decomposition in L. It is not hard to show that H(N):.a
H(N,) (cf. the first process of constructing H(N) from N). Henjge
our assertion follows from what we have just deduced.

Let A be a subspace of ERS' (F*). We associate with A an R-

submodule of L as follows.

Definition. Let N be the submodule of L generated by the anni-
hilator D of A in L,. We define the (homogeneous) submodule M(A)
of L to be H(N), and call it the module associated with A.

It is clear that the module associated with p A coincides with AM(A);
In other words, the module associated with a space is unchanged under
the prolongation. Moreover there never exists the maximal ideal X in
Ass(L/M(A)) as we explained above. These are the reasons why we
associate with A4 the module M(A) =H(N) instead of N itself.

In the remaining part of this section, we devote ourselves to inves-
tigating the structure of the module AM(A) under the condition that A
is an involutive subspace. A link between M(A) and N (see the above
definition) is given by the following lemma. We write: M(A) =
io M, (A), NZi N, (direct sum decomposition of graded modules).
Eemark that N:_ZOO for ¢=0,1, ---,[—1 and N,=D.
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Lemma 5. Suppose that A is an involutive subspace. Then. un-

der the above circumstances, M,(A) =N, for all q=I.

This lemma indicates that the elements to be added to N in order
to obtain the module NM(A) (if they exist) are of degrees less than [
Of course, this is not valid in general when A is not an involutive

subspace.

Proof. For brevity, we write M=M(A), D, =M,(A). It follows
from the definition of H(XN) that there exists an integer s such that
M,=N, for g==s. Assume s>I. Let us prove M, ;=N,_,. Obviously
M, ;D N,_.,.. Let F;, be an element of &,(F)(0<k<n). The natural
homomorphism from N,_,/N,_ N F.L to M,_/]M;_, N\ FL is obviously in-

jective. Therefore we have
dim N,_ /N, N F.L<dim M, /M, N F.L (0<k<n).

It follows from this that

kiomax{dim N, /N, N FL; Foe Gy (F)}

<Y max{dim M, /M, " F,L; F,& G, (F)}.
k=0

By virtue of Propositions 1 and 2 in § 2, the number on the left side
is equal to dim N,. Besides, applying Proposition 1 to the module gener-
ated by M, ;, we know that the number on the right side is equal to
or less than dim A,. Combining these facts with dim A,=dim N,, we
conclude that the above inequality is actually the equality. Since each
term on the left side is equal to or less than the corresponding term on
the right side, as a consequence of the equality, we have dim M,_,
=dim N,.;. Hence M, ,=N,_,. If s—1>/[ by the same reasoning, we
bave AL_,=N,_,. Proceed step by step, we can complete the proof of
the fact that M;=N, for all ¢=[. Q.E.D.

Let us calculate the degree of the characteristic polynomial of

L/M(A) and n(M(A):; L) for an involutive subspace A.
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Lemma 6. Suppose that A is an involutive subspace and that
0,-1LA1>0, g,[A]1=0. Then the greatest projective dimension of the
prime ideals in Ass(L/M(A)) is equal to p—1. Furthermore
U(M(A); L) is equal to g,-,[ A].

Proof. We write: M=MC(A). The annihilator of A(F,) in L,
is M+ (F,L)NL, (cf. Lemma 5), and hence the assumption g,[A]=0
implies that (M+F,L) NL,=L, for any F,=4,(F) outside a proper
subvariety. Therefore we can prove without any difficulty that there
is a sequence FyC FyC +--C F, where F.€ &, (F) for which the conditions
in Lemma 4 in § 2 are satisfied and moreover (M+F,L) NL,=L,. Then
by Remark at the end of § 2 and by Lemma 5, we have

(10) Fpis LOFM,=F, . M, for k=p—1.

Let us prove the equality

(A1) dim Mo/ Mo Fyy L= PP dim M/ MO Fy L.

Remarking Lemma 5, we have the equalities

dim Mﬂ/MH N Fp—l L

M=

dim F, ]V[L/{Fp-l LNF .M+ Fyy My}

k

P

M=

dim FeM,/Fe-y M; (by (10))

k

?

Il
M-

dim M,/M, N F_; L (by the choice of F}).

I

k=p

Obviously (M+ F,L) N L,=L, for k=p, and hence
. P _(l+n—k—-1
dim M,/M, N F,L=dim L,/ (F.L) N L,= ( ; .

n—1
Since > (H—n_l-k_l) =<H}ZIP>, it follows that equality (11) is in-
k=p T

deed wvalid.

Let us put

0,(F,_,) =dim L,/ (M+F,_,L) N L,

=<q+’;—?> _dim M,/M,NF,_, L,
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0, =min {0, (F,_.): Fpmy €8, (F)}.
Equality (11) means that 0,(F,-;) =0,.,(Fp-1). Since the condition in
Lemma 4 is satisfied by our assumption,

0,=0,(Fp-1) =01 (Fp-1) =041 -

Since pA is an involutive subspace of {EXRS'(F*)} XF*, (cf. Note
at the end of § 2), we can prove in just the same manner that §;.; =0;..;
and so on. Thus we have 0,=0,,;=0;.,="".

Now the annihilator of A(F,-,) in L, is D+ (Fp; L) NL,= (M
+F,., L)L, and hence g,-;[A] =0,>0. The fact that §, is positive
means that (M+F,, L) N L,#L, for any F, ,4, ,(F). Hence what
we have shown above implies that p is equal to the smallest integer £
for which there is an element F,& G, (F) such that (M+F,L) N L,=L,.
Applying (i) in Lemma 2 in § 1, we conclude that the degree of the
characteristic module P(L/M(A),z) is equal to p—1. This means that
the greatest projective dimension of the prime ideals in Ass(L/M(A))
is equal to p—1 by Lemma 1in § 1. Moreover applying (ii) of Lemma 2,
we have y(M(A): L) =0, for large gq. Combining this with the fact
gp-1lA]=0,=0;4; =+, we obtain g, ;[A]=u(M(A); L) as desired.

Q.E.D.

We note that under the circumstances in Lemma 6, the integer g,[ 4]
is unchanged under the prolongation; ¢,[ A]=g,[pA]. This is an im-
mediate consequence of Lemma 6, for M(A) is also the module associated
with pA.

Applying Theorem I in the preceding section and using Lemma 6,

we have the following fundamental result.

Theorem Il. Suppose that A is an involutive subspace of {E
QSN (F¥)}QF* and that g,,[A]>0, ¢,[A]1=0. Let M(A)=n O,
be a reduced primary decomposition of the module M(A) assoczj';;ed
with A in L. and let Q; be P;-primary in L.

Then the greatest projective dimension of the prime ideals in
Ass(L/M(A))={R,, -, B.} is equal to p—1, and the following is valid:

9p-1[A] = > uQy:L).

proj dim Eszp—l
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Part II. Involutive Systems of Partial Differential Equations

§ 4. Criterion of Involution

Let (JM,J1,0) be an analytic fibered manifold where o is the pro-
jection from M onto JI, and J*(M, T, 0) be the space of Ijets of cross-
sections of (M, T, 0). We shall often denote the space J'(H, T, 0)
briefly by J'. The sheaf of germs of analytic functions on an open set
QL in J* is denoted by O(l). A locally finitely generated subsheaf of
ideals of the sheaf of rings O (<) is called a system of partial differential
equations of order I in (M, I, 0). A point X of J*is called an integral
one of @ if every ¢ =@y vanishes at X, where @y denotes the ring of
germs of sections of @ at X. The set of integral points of @ is denoted
by I0. An integral point X is called an ordinarv one if @=0 gives
a regular local equation of the variety I0@ around X. A cross-section
f of (M,T,0) over an open set V in JI is said to be a solution of O
if and only if the ljet j,'(f) of f at a is an integral point of @ for
every a in V.,

Let 0.’ be the projection from J' onto J* defined by 0,'(.' (f)) =7,
(f) (I=k=0) and (o', be po0,'. For each point X&J' and X =0!_,X,
one has the injection i from Qg (J'?) into Og (J*) defined by ip=go0}_;.
We identify Og(J'™!) with its image Qg (J*™Y).

Let (0i_1)4 be the differential of the mapping 0i_; at X; (0}_1)x:
Tx(J) —>Tx(J™"), where Tx(J") denotes the tangent space to J' at X.
The kernel of (0i_,)4 is denoted by Qx(J*). For brevity, we shall write
a=0"X and b=p,"X.

Let Q,(M) be the kernel of the mapping 0y: TH(H)—->T,(JD).
The space Qx(J") can be identified with Q, (M) RS (T,*(J1)). The sub-
space Cy(D) of Qy(J") is defined by

Cx (D) ={XQx(J); X(p) =0 for every 90y (XID).

This space is considered canonically as a subspace of Qg (J"™)XT,*
(J). The notion of involutive subspaces of Qg (J* ™) XT,*(J]) can be
introduced as we recalled in § 2 (See Kuranishi [12], § 6). The prolong-
ation of such subspaces is also defined (see § 2). In particular, pCx(®)
is defined by
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pCr(®) =Cx (D) QT,* (I N Ox (J'™H RS (T* (D).

The (total) prolongation of @ is defined as follows. Let ¢ be a
function on an open set ] in J* and & be a vector field on 0", U CI.
Let ¢ denote a function on (0}™) Q[ defined by

¢: U () =0 ().

For each open set ] in J''!, we denote by Ug that ideal in the ring
of analytic functions on (] which is generated by all sections of the
sheaf @ over 0,'"*q] and all @; constructed {rom every section ¢ of @
over pll”@ and every vector field £ on plfllqj. Let oge denote the
restriction mapping from Y& to Gg, where CZTLCC(r? Then we have the
presheaf {Gq, oge} over J'*'. The prolongation p@ of @ is defined to
be the sheaf over J''! associated with the presheaf {Gq, oga}.

Let X be a point of (0, 'X. (p0)%NOx(J) is independent of
the choice of such X. @ is said to be p-closed at X if and only if
@0)x N Ox(J") is contained in @y; When X is an ordinary integral point,
@ is p-closed at X if and only if there exists a neighbourhood < of
X such that the mapping ¢,''! from I(p®) N (0,**") U to 10N is sur-
jective (Matsuda [13]).

M. Kuranishi [12] gave a modern characterizalion of involutive sys-
tems of partial differential equations. Let us recall the criterion of involu-
tion given by M. Matsuda [13].

Theorem A. O is involutive at X, if and only if the following
four conditions are satisfied:

(i) Xy is an ordinary integral point of O.

(1)  dim pCx (@) remains constant on a neighbourhood of X, in
10.

(i) Cy, (@) is an involutive subspace of Qx,(J'™) QXTI (X,
=0 1 Xo, an=0"1X0).

(iv) @ is p-closed at X,.

Note. 1{ @ is involutive at X, then @ is involutive at each point
on a neighbourhood of X, in I@.

Let (&, *+, Zn, ¥, ', ¥m) be a coordinate system of M on U (n
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=dim J1, n+m=dim ) such that there exists a coordinate system (z,’,
v, xy’) of Il on oU satisfying z;=x;"-0(1<i<#). Then a coordinate
system of J' on (0,)) 7'U is given by

(xi; Yas Pai’ Pailizv ""Pailmit; 1§a§7n7 ng, Z.lt:_g_n)s

where

Pt (G (F)) =— 9T« (4, f. being y.— coordinate of f.

0x; - 0x;,

1

By the contact forms of orders up to and including /, we mean the
following Pfaffian forms on J'(M, T, 0):

dy,—3" paidz, A<a<m),
=1

1=a=m, 1_§k<l>

d ail-ni,‘_ & JEULE . (
P i;lpa i léil, z,,én

’

In the usual way, one can associate with @ the exterior differential system
2 (@) defined on the domain of @ in J' which is generated as a differential
ideal by @ and the contact forms of orders up to and including . Every
solution of @ corresponds in a one-to-one manner to an n-dimensional
integral manifold M of X (@) such that dim(0%,) s T (M) =n.

The differential system 2 (@) is said to be involutive at X with
respect to Jl if and only if the following two conditions (i) and (ii)
are satisfied:

(i)  There exists at least one n-dimensional integral element E,
of (@) and of origin X such that dim(p%,)+«E,=n,

(il) Every such integral element E, is an ordinary one in the
sense that there exists a chain of integral elements E,C E,C ---C E, where
each E, except the last E, is a regular integral element of 2 (@) and
of dimension 2 (such a chain is called a regular chain.). (cf. Cartan
[4], Chap. V; Kuranishi [11], Definition I. 17; K#hler [8].)

The link between two concepts of involution is clarified by the fol-
lowing theorem (Kuranishi [12], Appendix; Matsuda [15]).

Theorem B. 0 is involutive at X if and only if Y (@) is invo-
lutive at X with respect to Jl.
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We finally recall the following theorem due to E. Cartan and Y.
Matsushima [16].

Theorem C. If @ is involutive at X, then p@ is involutive at
each point on I(p®) N (pt'") 'X.

§ 5. The Characteristic Module

Let us denote by K the field of real or complex numbers according
as our discussion is carried out in the real or complex analytic category.
Let X be an integral point of @. The spaces Q,( M) and T,(Jl) are
vector spaces over K of dimensions 7 and n respectively (cf. §4). We
shall apply the theory developed in Part I in which we shall set E
=0Qy(M) and F=T,(Jl). We shall also use freely the same notations
as in Part 1.

Suppose that @ is involutive at X. We begin with recalling Cartan’s
characters of & at X. From the space Cy(@) we obtain the following

decreasing sequence of integers (see § 2):
GolCx(D) 1= [Cx (D)1 =+ =7.[Cx(0)]=0.

For brevity we write ¢;(X) =¢,[Cx(®)]. One can prove the following
inequalities (see Kuranishi [12], § 6):

Je2(X) =01 (XN =051 (X) —9: (X)) (k=2, -+, n).

Let us put
SK(X) :gk—l(X) _gk(X) (k:l’ 2! T ﬂ)

These numbers s, (X) are indeed those characters of the differential system
2 (@) associated with @ which were introduced by E. Cartan [2] (also
see Kahler [8], p. 55). The above inequalities imply that s,(X)=>s5,(X)
=-2>5,(X)=0. It should be noted that the inequalities of this type
valid for Cartan’s characters are always valid only in case of an exterior
differential system generated as a differential ideal by differential forms
of degree <1. We call the number s,(X) Cartan’s character of order
k of @ at X. The characters s,(X) play an important role in the Cartan-
Kihler existence theorem for the differential system X (@) and they indi-
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cate the numbers of arbitrary functions upon which depends the general
integral manifold of dimension z (cf. Kiahler [8], p. 55). In case of
partial differential equations, however, it is more adequate to introduce
the new numbers
0c(X) =50 (X) = 5041 (X) A=<k<n), 0.(X) =5,(X)

as M. Kuranishi did in his lecture note [12]. In fact, it can be seen
that the latter numbers 0,(X) indicate more precisely the numbers of
arbitrary functions upon which depends the general solution of @ (Com-
pare the existence proof in Cartan [2] or Kihler [8] with that in Kura-
nishi [12] or Matsuda [14]). Let s5,(X) (resp. 6,(X)) be the last
non-vanishing number in s(X), -, 5,(X) (resp. 0,(X), -+, 0.(X)).
Then it is clear that p=7 and s,(X) =0,(X). It is this character s,(X)
which is of great importance in the following investigation. One reason
why the character s,(X) is especially important consists in the fact that
it is unchanged under the total prolongation; more precisely, the character
of order p of p@ at each point of I(p®@) N (0,'"") X is equal to s,(X)
(cf. Lemma 6 in § 3).

The characters s,(X) remain constant on a connected open set C{/
in I0 at each point of which @ is involutive. In particular, they are
constant on a neighbourhood in I@ of a point at which @ is involutive.
In fact, Cyx(@) is an involutive subspace of Qz (J*™) @T,*(J1) if and only
if dim pCx (D) =kiogk (X) (cf. §2). Hence we conclude from Theorem A

that dim pCy (@) remains constant on C}/ and it is equal to > g,(X) for
k=0

each X&C). Since the functions ¢,(X) are upper semi-continuous and

integral-valued, it follows that the functions ¢,(X) are constant on C{/).

Therefore the characters s,(X) are also so.
We now introduce the important concept ‘“‘characteristic module”.

To indicate precisely the dependence on the point X, we write:
R, (X) =S“(Tu*(37)),R(X)=:é‘oRq(X)

Lo(X) =04 () QSUT* (D)), L(X) = 2 L,(X).

Definition. We define the characteristic module M(X) of @ at X

to be the module associated with the space Cx(®@) in the sense of Section 3.
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The module M(X) is a homogeneous submodule of the R(X)-module
L(X). It follows immediately from the definition that the characteristic
module is unchanged under the prolongation in the sense that the char-
acteristic module of p0 at X coincides with that of @ at X, where X is
any integral point of p0 satisfying 0,'"'X=X.

Suppose that s,(X) >0 and s,.,(X) =---=s5,(X) =0. Clearly this as-
sumption means that ¢,_;(X) >0 and ¢,(X) =0. Moreover s5,(X) is equal
to ¢,-1(X). Hence applying Theorem II in § 3, we have the following

fundamental result.

Theorem III. Suppose that @ is involutive at X and that s,(X)
>0, spu(X) = =5,(X) =0 (1=p=n). Let M(X)=N Q, be a re-
duced primary decomposition of the characteristic m(;c:ilule M(X) of
O at X in L(X) where Q; is a Y ;-primary homogeneous submodule
of L(X) (1=j=w).

Then the greatest projective dimension of the homogeneous prime
ideals B, %, -+, B, is equal to p—1 and the following equality is
valid:

5,(X) = 2 #(Qy; L(X)),
proj dim §B;=p—1

where y(Q;; L(X)) denotes the multiplicity of Q; with respect to
L(X).

Remark. Theorem III is the complete generalization of our previous
result ([10], Theorem 2).

§ 6. Characteristics

This section is devoted to the investigation on what is called charac-
teristics in the sense of Monge or Cauchy. It is the primary decompo-
sition of the characteristic module which enables us to clarify the structure
of characteristics for general non-linear systems of partial differential equa-
tions.

Let X be an integral point of @. Obviously it is also an integral
point of the differential system X' (@) canonically associated with @ (see

§4). Let E, be a p-dimensional integral element of 2'(@) and of origin
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X (0<p<n). The space of such vectors I'ETx(J") that E, and I
spann an integral element of X'(®) is denoted by H(E,) and it is usually
called the polar element. Since X (@) is generated by differential forms
of degree <2 as an exterior algebra, a subspace E of T¢(J*) is an integral
element of 3 (@) if and only if any linear element contained in E is an
integral one and furthermore, for any pair {E,, E,’} of one-dimensional
subspaces of E, E; and E,’ spann an integral element, in other words,
H(E,) contains E,’. Let E, be a linear element of origin X on which
the contact forms of orders up to and including / vanish. E,; is spanned
by the vector I' expressed in the following manner by using the local

coordinate system of J' around X (cf. § 4):

nooogd o» B
12 = ah"'lt - ,
(12) F=yag+3 3
where
d 0 >, 0 [ 5& feig 0
= + o« —— T+ el
dxi axi Q:Z=1p aya q= ,1Z=1 ilsgs,;qp apa“...zq

The element E, is an integral one of X' (@) if and only if

(13) 2 df wty ¥ O o (Fedy,
=1 1

d a=11i,d<i; aﬁai""il

where functions of [jets are assumed to represent their values at X

The vector I’ of T'x(J*) possessing the form

d Z ’C\ail...il 0
dzx; @=1u57=0 Opir i

ﬁ=§21

belongs to H(E,) if and only if I spanns a linear integral element and

moreover
(14) Z (—' Cuilmilqizi + ,C\air"il_lili) =0 (1§a_—<_7n; léih Y il—li”‘) )
i=1

where the scalars £,*"% and the scalars fai"“i‘ are respectively supposed
to be defined for all superscripts {z;, -*-, %} in such a manner that they
are respectively symmetric with respect to the superscripts {Z, -, 7;}.
In fact, condition (14) means that the differential forms i} dp it Adx,

vanishes on the element spanned by E, and I
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Suppose that @ is involutive at X. Then, according to Theorem B
in §4, (@) is involutive at X with respect to JI, and hence there
exists at least one n-dimensional integral element E, of 2(@) and of
origin X such that (0",)«E, is of dimension n. Let E, be an n-dimen-
sional subspace of Tx(J") on which the contact forms of orders up to
and including [ vanish. We know at once that the E, is spanned by 7

vectors of the form

(15) I-v(i) — _d__ + i o fbah I 0

x; a=1i,<<iy ap iyedy

(i:1’2a ”'777’)'

In order that E, is an integral element of N (@), it is necessary and

sufficient that

_fz‘F__;_ }n_b‘_l > ¢aix"'it‘i};z=0 (E=1,2,---,n; Fe0y),
(16) { dx astissn 0ba™

=g e i (g, e g = LRy e, R
Let B be one of the prime ideals in Ass(L(X)/M(X)), M(X) being
the characteristic module of @ at X. Recall that Ass(L(X)/M(X)) co-
incides with the set {35, ---, B,} under the circumstances of Theorem III
in the preceding section. We shall denote by ¢(¥§3) the vector space
of elements of degree 1 in PB; c(BV) =P N R, (X). Of course ¢(P) may

possibly vanish.

Definition. We define the subspace B(LB) of Tx(J") to be the
space spanned by all those vectors each of which is contained in an
n-dimensional integral element E, of XY(@) of origin X such that dim
(") «E.=n and is also contained in (0%,)x 'c(P). We denote by
D() the annihilator of B(P) in the dual space Ty*(JY) to Tx(JY).

The space B(P) is expressed as follows:

R S ]

i=1 a= 1»15 <iy 0Pa’1"'”
= 0
_Z i b s > ’
=i Qx;

where by ¢---> we mean the vector space over K spanned by the elements

in it.
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Let us investigate the structure of B(Y) in detail. Let € be an
element of 7,(J1) (cf. §4). The linear mapping 0(€) from Qx(J")
RT,*(T) to Qx(J") is defined to be the one obtained by extending
linearly the mapping

0(&) (wQv*) =v*(&)w, where weQx(JY), v¥eT,*(TD).

This mapping is expressed as follows: When $=i 2;0/0x;,
i=1

0® (L3 2 et 0 @az)

i=1 a=1 i,<.-<i; 0pui*"'“
= 3 - iyeeiyd 0
aZ=1 i Sy (ig li(o"‘ ) apuil--.i; .
Since we have the expressions
C m = {m atl---i, a :
X( ) ‘12=1 ixggit ¢ apail'"iz
3 iy OF }
iyeiy —
2;1 P P Bp 0 Febyt,
ch(@) = {i ® Tyiey 6' .
R A “« ap,j*'““ﬂ
3 iy OF .
(17) Z Z (ﬂal z———_——~=0 (Z=1,2,"',7’L; FE@X) ,
a=1i; <<y apah---it

where the same convention as in (14) is supposed to be applied, we know

that ¢(§) induces the mapping from pCy (@) to Cy(D).

Definition. Corresponding to each PeAss(L(X)/M(X)), we in-
troduce the following subspace of Cx(®):

C(P) =<0 (©)pCx(@); 6 €c(P))-

For simplicity, we write: R=R(X), L=L(X), M=M(X). On
account of Lemma 5 in § 3, the annihilator of Cx(@) in L, is M, and
that of pCy(@) in L,,, coincides with M,,;. Hence the dual spaces to
Cx(®) and pCy(@) are canonically identified with L,/M, and L,.,/M,.,
respectively. Let ¢%(£) be the adjoint mapping of ¢(&); ¢*(£): L,/ M,
—L, .,/ M,,;. It is easy to show that ¢*(§) is given by 0*(§)T=£%
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(€ L,/M,), the multiplication being the one when L/M is regarded
as a graded R-module. Moreover the kernel of ¢*(§) coincides with
the annihilator of the image of 0(§). Therefore we know that the anni-
hilator Ann C(PB) of C(P) in L, is the intersection of the spaces {z € L;;
§ze M,.,}, where £ ranges over all vectors in ¢(3). Consequently we

have
(18) Ann C(B) ={z=L;;c(Plzc M,.,,}.

In case '} is generated by linear forms, that is, by ¢ (), the conditions
c(P) =2 M,,; and Pz M are equivalent. Hence we have the follow-
ing

Lemma 7. The annihilator Ann C() of C(B) in L, is given
by (18). If the ideal B is generated by c(R), then
Ann C(B) = {z= L,; Pz M}.

Using the space C(%3), we can decompose B(J3) as follows.

Proposition 3. The space B(B) admits the following direct
sum decomposition:
B(P) ={E.N (0L 5 e (P DC(B),

where E, is an n-dimensional integral element of 2 (0) of origin X

satisfying dim (0.)) « E,=n.

Proof. Suppose that E, is spanned by (15). Let I be any vector
of B(B). It is expressed as follows:

5 d .3 tizi 0 >
r_i;l L(E‘f;ﬂ i;gsiz ha 0pa )’
where Y 4,0/0x;€c(P) and the scalars g, satisfy the same condition
i=1
as the condition (16) satisfied by the ¢,""!. This vector possesses the
expression I'=7I";+ 1, where I'y/=>3 ,I"® and
i=1

0

- - fyeeigd g Ggeeedyd
I'= Z Z {i; e (Xu (bu >} apail...i, :

a1 i, Ssn
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Obviously I'; belongs to E,. We assert that I, is actually a vector of
C(PB). In fact, the scalars @, =y 10t —¢ i-4? satisfy condition (17),
and hence the vector

Tof y g D

e Dpgti
belongs to pCyx(@). Putting £=2 1,0/0x;=c(PB), we have r,=c®%.
i=1

It follows from the very definition that I,&C($). Thus the proof
will be complete if we show that C(®8) is a subspace of B(}). This
fact is, however, proved without any difficulty. Q.E.D.

The remaining part of this section is devoted to the investigation
on characteristics in the sense of Cauchy and Cartan. Let E, be an
integral element of origin E,. The space H(E,) is obviously a subspace of
H(E,). The element E, is called a Cauchy-Cartan characteristic ele-
ment if and only if H(E,) coincides with H(E;) (cf. Cartan [2], Part
VIII; Cartan [4], Chap. III; Goursat [7], §66). As is well known,
Cauchy-Cartan characteristic elements can be characterized as an integral
element of the characteristic system in the sense of Cartan. The Cartan
characteristic system can be always constructed in the well-known manner,
and hence one can know, at least in theory, whether or not a given
differential system admits Cauchy-Cartan characteristics. There exists.
however, the more explicit condition in order that a differential system
admits Cauchy-Cartan characteristics. In fact, in the case of Pfaffian sys-
tems, Cartan [2] himself established such a condition stated by means
of Cartan’s characters. Owing to our theory developed above, we can
establish such a new condition for the differential system 2'(@). We

have actually the following

Theovem IV. Assume that the following two conditions are sat-
isfied:

(1) @ is involutive at X.

(i) The characteristic module of @ at X itself is a V-primary
submodule of L=L(X) and its exponent is equal to 1.

Then the subspace B(P) of Tx(J) is a 7-dimensional integral
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element of X(0) such that dim(0“,)«B(P) =7, where 7=dim c(P).
Moreover B(P) is a Cauchv-Cartan characteristic element of X (D)

posscssing the maximum dimension.

Proof. By virtue of Theorem B in § 4, condition (i) implies that
there exists an 7z-dimensional integral element E, of 2 (@) and of origin
X such that (0“1)4E, is of dimension #. In this proof, we denote by
M the characteristic module of @ at X. We prove this theorem by
dividing into four steps.

(a) BM)=E,NE D 'e(P). In particular, B(R) is a 7r-di-
mensional integral element.

In fact, on account of Proposition 3, it suffices to show that the
space C(B) vanishes. Since the exponent of N is equal to 1 by assump-
tion, LLemma 7 indicates that the annihilator of C(¥5) in L, coincides
with the total space L;. This means that C(§3) vanishes.

(b) H(X)=E,PCy(D) (direct sum decomposition).

Suppose E, is spanned by the n vectors (15). Let I" be any vector
of H(X) expressed by (12). It is obvious that [° can be written in

the following form:

all 21 — li a’lq 1t _—
R

7z

=3I+
i=1

@T1 4, <=

The first term on the right hand side is obviously a vector of E,. Since
the ’s and the (’s satisfy (13) and (16) respectively, we conclude at
once that the second term is a vector in Cy(@). This completes the
proof of (b).

(¢) Let E; be a linear integral element of X (@) of origin X. In
order that E, is contained in H(E,") for any linear element E,” contained
in Cy(@), in other words, H(E,) contains Cy(@), it is necessary and
sufficient that (0*4)4+E, is contained in ¢ (P).

In fact, suppose that E, be spanned by (12) and E,” be spanned by

(19) ¥=3 3 a0

a=11,<<i; apair"iz

Then, £; is contained in H(E,”) if and only if the following are satisfied

(cf. (14)):
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kid 3 . . - -
Z ]-t(oahm”-ﬂz 0 (léaém ’ 1§11, Ty ZL—lgn) ’
i=1

where the same convention as in (14) is assumed to be applied. Hence

E, is contained in H(E,”) for all E,’ contained in C;(®@) if and only if

n m

S agatii=0  (mod 3 3 T s Feny),

i=1 a=1i,<<i; apah"'ll
where the ¢’s are regarded as indeterminates. We write §;=0/0x; for
brevity. Recalling Lemma 5 in § 3, we find no difficulty in showing
that the latter condition is equivalent to the condition

a:192,.'.’m’ >

S 2y R Es R weM <
%i,ldy ®$ 1C§> @Eu-n@gh‘e 1 lgil,-",il_lgﬂ

Bearing in mind that the elements dy,Q§&:;,®---X§;,_, span L,_;, we find
R

immediately that this can be stated as follows:
(20) <1§ M) Ly, C M, .

When M=L, the theorem is obviously valid (In this case, @ is actually
completely integrable at X). In the contrary case, M;_; is a proper
subspace of L;_; (cf. the very definition of the module associated with
involutive subspaces in §3). In other words, there is an element of
L,_; not belonging to M. Since M is a P-primary submodule of L with
exponent 1, it follows that (20) holds if and only if é 2;§; belongs to
B, that is, to c¢(P). The latter condition means thatl—l(pl_l)*El is con-
tained in ¢(P). The required result has been Therefore proved.

(d) We now complete the proof of Theorem IV. It suffices to prove
the following:

“A linear element of origin X is a Cauchy-Cartan characteristic ele-
ment of 2 (@) if and only if it is contained in B(P).”

Proof. Sufficiency: Suppose that E; is a linear element contained
in B(P). By virtue of (a), E; is contained in the element E,. Let
I’ be any vector of H(X). By (b), I"” admits the decomposition I’
=0+I, where I'Y’€E, and 'Y €Cy(@). Since E, and I,’ is con-
tained in the same integral element E,, I/’ H(E;). Let E,’ denote
the integral element spanned by 77,’. By virtue of (a), (0“1) s« EiCc(P).
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Hence (c) implies that H(E,”) DE,, that is, H(E, DE/'>TI,. Com-
bining what we have proved, we obtain I'"€ H(E,). This implies that
H(E,) coincides with H(X), and hence E, is actually a Cauchy-Cartan
characteristic element.

Necessity: Suppose that E, is a Cauchy-Cartan characteristic ele-
ment, that is, H(E,) =H(X). Then, it is necessary that (0%,)xE, is of
dimension 1. In fact, if the contrary is true, that is, if (o';)4E,=0,
then E, is contained in Cyx(@) (cf. (b)). Assume E; is spanned by X
given by (19). The integral element E, is obviously a subspace of
H(E,), and hence any vector I'€ E, belongs to H(E,). Therefore we

have
S gt =0 (IZam, 1<, i1 n)

for any system (4, :--,4,) of scalars (cf. (14)). This means that all

the elements

(21) Z lidya®$il®"' X Eil_1®$i (1éa’§m, 1§7'1’ Tt Z-L—lgn)
i=1 K K

S

annihilate 2. Since (4, -*-, A,) is arbitrary, the elements (21) spanns L,.
Therefore X must vanish. This is a contradiction, and hence (0“;) 4 E; 0.
By what we have just proved, we can choose an (7 —1)-dimensional
subspace E,_, of E, such that (0%,)4E,_; and (0“;)4«E, spann the total
space T,(J]). The assumption H(E,) = H(X) implies that E, and E,_,
spann an #z-dimensional integral element E,” such that dim (0,) +E, =7.
On the other hand, since Cy(@) C H(X)=H(E,), (c) indicates that
(0“1« E, is contained in c¢(¥5). Consequently E, in contained in E,’
N(E- )« c(B). By the very definition of B(P), it follows that E, is
contained in B(%}). This completes the proof of necessity. Q.E.D.

§ 7. Monge Characleristic Systems

Let X, be an integral point of @. Suppose that @ is involutive at X.
There exists a neighbourhood CI/ of X, in I@ such that @ is involutive
at each point on CJ and that the characters s,(X), -+, s,(X) remains
constant on CJ/ (cf. §§ 4-5). Let M(X) be the characteristic module of
@ at XeC) and let it admit the reduced primary decomposition in L (X)
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MX) =0 QX)) (r=v(X)),

where each Q,;(X) is a 3,(X)-primary homogeneous submodule of L(X),
B;(X) being a homogeneous prime ideal in R(X). We shall assume
that the following regularity conditions (a), (b), and (c) are satisfied:
(a) v(X) remains constant on CY. (b) Each subspace ¢(L;(X)) =%;-
(X)NR(X) of T,(I) (a=0"1X) has the constant dimension 7; on CV,
and it depends analytically on X&Cl/ in the sense that there exist 7; vector
fields &,(X) =ii‘1a“(X)a/ax,- (1Zk<7;) where the functions ay; are an-
alytic on CV/ su—ch that their germs at X spann the space ¢(3;(X)) for
each X on CV. (c) The dimension of C(%3;(X)) remains constant on Cl/.

We shall denote by %, the ideal 1';(X) considered as a field which
assigns to each X&CU) the ideal P5;(X). Let P be one of Py, -, B,
such that ¢ (P (X)) is of positive dimension. For each X=C, 5 defines
a subspace B(P (X)) of Tx(J") and its annihilator D(P (X)) in L,(X)
(see §6). By Proposition 3 in § 6, B(P (X)) is the direct sum of two
subspaces E,N (0L1) ' c(PB(X)) and C(P(X)). Therefore the space
B(B (X)) has the constant dimension on CI/. This fact enables us without
any difficulty to prove that there exists an analytic Pfaffian system on
Cl/ such that the germs of Pfaffian forms belonging to it at X spann the
space D(P(X)) for each X&C). We shall denote the Pfaffian system

by D(P).

Definition. The Monge characteristic system (of order I) of @
defined on OV corresponding to B is defined to be the Pfaffian system
D(P). We shall denote it by 4 ().

Let us next define Monge characteristic systems of higher order.
By virtue of Theorem C due to Cartan and Matsushima, the prolonged
system p% '@ is involutive at each point on CPV?=I(p%"'®) N (0,9 "'V
(g=I). Let X® be a point on CI/? such that 0,2X?=X. It follows im-
mediately from the definition that the characteristic module of p? '@ at
X7 coincides with that of @ at X. Hence we obtain the Monge charac-
teristic system (of order g) of »* '@ defined on C/? corresponding to .
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Definition. The Monge characteristic system of order q(=1) of
@ over CV corresponding to [> is defined to be the Monge characteristic
system of p?7'0 defined on CI’? corresponding to L. We shall denote
it by 44(P).

Let # be a function of g-jets defined on a neighbourhood of X*&C{J4,

Definition. « is called an integral of 4*(P) at X7 if and only if
du=0(mod 4*(3)) on a neighbourhood of X% in C/%.

A function # such that du=-0 at X? is called a relative integral of
4°(P) at X* if and only if « vanishes at X? and

du=0 (mod 4*(B)) on a neighbourhood of X* in CP%(w),

where C/¢(u) denotes the set of the points of CI/? at which # vanishes.

We find no difficulty in proving that a function of ¢-jets is an integral
of A2(3) at X? if and only if it is an integral of 4*"'(P) at each
point on CP* N (0,27") 71X (cf. Kakié [9], §5). Therefore we may say
that a function is, or is not, an integral of a characteristic system without
specifying the order. We shall denote by 4(3) the Monge characteristic
system corresponding to {5 without the specifying order. If a function
of gjets which cannot be regarded as a function of (¢—1)-jetsis a (rel-
ative) integral of 4°(*P3), we say that it is a (relative) integral of order
q of A(P).

Remark. E. Cartan carried out a very suggestive discussion con-
cerning Monge characteristics ([4], Chap. IV, Part III). Our discussion
clarifies, however, the structure of Monge characteristics of general non-

linear involutive systems much more completely than the classical theory.

Part IIl. Involutive Systems Whose Characlers of Order More

Than One Vanish

§ 8. Consiruction of New Involutive Subspaces

The remaining sections are devoted to investigating involutive systems

of which characters of order more than 1 vanish. Such systems are
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similar to systems with one unknown function of two independent vari-
ables. Suppose that @ is involutive at X and its characters s,(X), -+,
5,(X) vanish. By virtue of Theorem A in § 4, the space Cy(®) is an
involutive subspace of Qx (J*™)X®T,*(J1). Moreover the latter assump-
tion means that ¢,[Cy(@)] =0 (see §5). In this section, we treat the
algebraic problem of constructing new involutive subspaces contained in
such an involutive one. Instead of dealing with Cy(@) itself, we find
it appropriate to consider any subspace of Qx(J"). Throughout this sec-
tion, by involutive subspaces we mean involutive subspaces of Qg (J'™)
RT,*(I). For brevity we shall write: R=R(X), L=L(X) (see §5).

The following lemma is an immediate consequence of the definition

(see § 2).

Lemma 8. Let A be a subspace of Qx(J") such that ¢,[ A]=0.
Then A is an involutive subspace if and only if dim pA=dim A.

Suppose that A is an involutive subspace in Qy(J") satisfying ¢;[ A]
=0. Associated with A we have the submodule M(A) of L (the module
associated with A; see § 3). Except when any confusion occurs, we shall
write: M=M(A). Let ]\4=ﬁ Q; be a reduced primary decomposition
of M in L where each Q; is jzi_liIij-primary homogeneous submodule of L.
No B, coincides with the maximal ideal ¥ in R (see § 3). By Lemma 6
in § 3, the homogeneous prime ideals P; in R are of projective dimension
0. The fact that %3; is generated by an (7 —1)-dimensional subspace
of R, means that the zero of f; is located in the (7#—1)-dimensional
projective space P" '(K) over K.

Let Z be a subset of L,, We shall denote by A[Z] the subspace
of A whose annihilator in L, is the space spanned by M, and Z. In
particular, A[0] =M, (Lemma 5 in § 3).

Lemma 9. Assume that A is an involutive subspace satisfying
0:[A]1=0. Let =z be an element of L, not belonging to M, Then
Alz] is an involutive subspace if and only if the following two equiv-
alent conditions are satisfied:

(a) There exist n—1 independent linear forms &, -, &_, in

R such that &z, -, ¢ni2E M. ..
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(b) There exists a prime ideal B belonging to Ass(L/M) such
that it is generated by n—1 independent linear forms and that
Pzc M.

Proof. We write: A’=A[z]. Obviously ¢;[A4’]=0. By Lemma
8, A’ is an involutive subspace if and only if dimpA’=dim A’. Since
dim pA =dim A, we readily find that A’ is an involutive subspace if and
only if

(22) dim{Rz, Ri\M,>/R, M, =1.

We remark that R,z is not contained in R,M,=2M,,,. In fact, if the

v
contrary is valid, we have RizC M= Q,;. Clearly there is £ R, not
=1

belonging to LyJ %B;. Therefore, using the property of primary submod-
ules, we can Jr_eladily show that e M. This contradicts the assumption.
Thus we have proved the above remark. Bearing in mind this fact, we
find no difficulty in proving that condition (22) holds if and only if
condition (a) holds, and hence A’ is an involutive subspace if and only
if (a) holds.

Let us prove that the conditions (a) and (b) are equivalent. Sup-
pose that (a) valid. Let % be the prime ideal generated by &, ---, &,_..
Then =CM. Since z& M, this implies that BC1; (M) =N B, (cf.
§1). Hence there is a prime ideal P, such that P B,. Ié;narking
that both ideals have the same projective dimension 0, we have P.=P,.
Thus (a) implies (b). Suppose conversely that (b) is valid. Let 3 be
generated by &, -+, &,-;. Then it is obvious that for the §;, the condition
in (a) is satisfied. Thus (b) implies (a). Q.E.D.

Corresponding to each LPy=Ass(L/M), we have a subspace C(P,)
of A (see §6):

CCPy) =<0 (E)pA;E=c(Po) ).

(Except in this section, we denote by the same symbol C(3,) the space
constructed from the space A=Cx(0).) By Lemma 7 in §6, the anni-
hilator of C(P,) in L, is {g=L;;¢c(PBp)zCM}. Suppose that LB, is

generated by 7 —1 independent linear forms, that is, it is generated by
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c($s). Then

Ann C(,) =4{z=L,; Bz < M}.

We now modify Lemma 9 as follows.

Proposition 4. Suppose that A is an involutive subspace satisfy-
ing ¢.[A]1=0. Let A’ be a subspace of A and of codimension 1 in A.
Then in order that A’ is an involutive subspace, it is necessary and
sufficient that there exists a prime ideal B, in Ass(L/M) of which
zero is located in P '(K) such that A’ contains C(P,).

Proof. Assume A’ is given by A[z](z€L,). By Lemma 9, A’
is an involutive subspace if and only if there exists an ideal P, in Ass
(L/M) of which zero is located in P*'(K) such that Lz M. The
remark made above indicates that 3,2 C M if and only if 2& Ann C($,).
The latter means that A[z] DC(PB;). Consequently we have the desired
result. Q.E.D.

Let us generalize Proposition 4.

Proposition 5. Assume that A is an involutive subspace satisfy-
ing ¢:[A]1=0. Let P, be an ideal in Ass(L/M) whose zero is located
in P""Y(K). Then any subspace A’ of A containing C(Ls) is an
involutive one. Moreover the module M(A’) associated with A’ ad-
mits the primary decomposition in L of the following form: DM(A’)
=Nn {Q Q;} where N is either the total module or a Ls-primary
submodju,ii containing Qp such that its multiplicicy p(N; L) is less
than 1(Qp; L) by the codimension of A’ in A.

Proof. Let s denote the codimension of A’ in A. Suppose that
A’ '=A[z,, -+, z,] where 2z, -, 25, L;. On account of Lemma 7 in § 6,
the assumption A’ DC(Y,) implies Pz, T M(1<:<s). Remarking that
3, is generated by 7 —1 independent linear forms, we conclude from this

that

dim’ M1, Ryzy; 1i<]s>/ M, <s.
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In this inequality, the equality is actually valid. In fact, suppose that

the numbe- on the left side is less than s. Then there is a linear
s

combination 2 =3 ¢;z; with ¢;E K such that R,z M,,;. This implies that
z& M, (recall tjl;:: property of the module associated with an involutive
subspace; see § 3). This is a contradiction to the choice of the elements
2;. Thus the equality holds. This equality implies that dim p A’ =dim

A’. Hence, by Lemma 8, A’ is an involutive subspace.

We next prove the latter assertion. Let M(A’) :kfr)lN(k) be a re-
duced primary decomposition where N is an ,-primary szlbmodule of L.
No ¥, is the maximal ideal ¥ in R. Since ¢;[A’]=0, on account of
Lemma 6 in § 3, the homogeneous prime ideals 2, are of projective

dimension 0. Obviously M(A’) DM, and hence N(,C,Dry] QO (AZk<r).
j=1

Taking the operation t.( ) (see §1), we get A, D E\l‘Bj. From this
it follows that each [, contains one of the ideals ;. ]_Since both ideals
have the same dimension, they must coincide. We may assume without
loss of generality that [, =%, (1=k<r). The prime ideal A, =B, does
not contain ; for j~k. We prove that the facts Ny, D ﬁle, W DY,
for each j#k implies that Ny, DQ;. In fact, let g be jz;n integer in
{1, ---, v} distinct from k. We first prove that Ny >N Q;. To show
this, it is sufficient to prove that any element g of ﬂjaq,- not belonging
to Q, belongs to Ni,. By assumption there is an e{:rqnent & of P, not
belonging to .. There is a positive integer s such that £’z Q,. Hence
Eze ‘(y]lQ]-CNUC,. Since the homomorphism from L/Ng, into itself de-
ﬁnedjl_)y £ A, is an isomorphism (cf. The definition of primary sub-
modules), we have z& N,. By the same reasoning, we have Ny D N Q;
where g=&k, t==k. Proceed step by step, we finally obtain Ny, :)154:

Thus we have proved that Ny D2Q, (1=<k<r).

To simplify the explanation, without loss of generality, we assume

f=v. Then
Ann A’CAnn C(&8,) ={z= L,; B, C M}.
Since ¥, does not contain B; for j=£B. P, zC M= F] Q; implies that
=1

z€ N Q; (cf. the above argument). Hence Ann A’ is contained in
J#v
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{N Q;t NL,. It follows that M(A’) is contained in H(N Q) ZVF—]I Q;
(:eé:s § 3). By the same reasoning as we have just done, i::: knowj;Lat
each PB; (1<j<yv—1) coincides with one of the ideals U, and that if
B; =AU, then Q;DNy,. Combining this with the above result, we con-
clude that the number 7» is equal to either y—1 or y, and that Ng,
=0Q,(1<k<y—1). When r=y—1, the proof has been already complet-
ed. When =y, we have already proved that ,=%5, and N, D0,
Therefore, in any case, we have the primary decomposition of M(A”")
stated in the proposition. Moreover, applying Theorem II in § 3, we

have
v v—1
j‘é‘lﬂ(Qf;L)ZdimA, ﬂ(N;L)Jrj};lﬂ(Qj;L):dim A

Hence #(N;L)=#p(Q,; L) —(dim A—dim A’). Thus we have proved
all the required results. Q.E.D.

Proposition 6. Suppose that A is an involutive subspace satisfy-
ing ¢;[A]1=0. Let Py, -, P, be s prime ideals in Ass(L/M) such
that their zeros are located in P*'(K). Let A, be any subspace
of A containing C(,) (1=k<s). Then the space k;} A, is an invo-
lutive subspace whose codimension in A is equal to =tlhe sum of the
codimensions in A of the s spaces A,. Moreover the module associ-
ated with fs) Ay admits the primary decomposition {rs] Nyt NA rv] Os}
where eachic =11V<k, is either the total module or a Slgk-p:'i:rlnary subj;(;cliule

of L.

Proof. We write: By=A, B,,ka}lA, (1<k<s). By assumption,
B, is an involutive subspace. By Progosition 5, B, is also an involutive
subspace and its associated module M (B;) admits the primary decomposi-
tion Ny N {fwz Q;} where Ny, is either the total module or a P,-primary
submodule. ]_VVe note that B, is a subspace of the involutive subspace B,
constructed from B, exactly in the same way as B; is constructed from
A. In fact, the space C($3;) constructed from A contains the correspond-
ing space constructed from B, = A, as is immediately seen. Therefore we

can apply Proposition 5 again, and we conclude that B, is an involutive
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subspace and M (B,) admits the primary decomposition Ny, N N N {_(u]aQ,}
where N, is either the total module or a P,-primary submodule. i;roce-
eding step by step in the same way, we see that the subspaces B, are
involutive ones. In particular, f% A; is indeed an involutive subspace.

Let us prove the assertion i:;lncerning the codimension of that space.
We prove that dim B,/B,,; is equal to the codimension 7 of A, in
A (1<k<s). Suppose A, is given by Alz, '+, 2,] where ;& L,. It
follows from C($;.,) C Ay.; that Pey, 2;CM (1=<¢<y). This implies
ZE N Q; (cf. the argument in the proof of Proposition 5). Since ;& M,
@& 0y, Hence 2 Ann By=M(B)NL, (cf. Lemma 5 in §3), for
Ann B, is contained in Q.;NL,. From this it follows that B, =B,
N Aj.1 is of codimension 7 in B;.

Using what we have just deduced, we can readily calculate the codi-

mension of B,, and we know that the assertion is indeed true.

Q.E.D.

In the above proof, if the exponents of Q, (1=<{k<s) in L are
equal to 1, Ann C(%;) coincides with {N OQ,;} N L,. In fact, by the same
ok

argument as in the proof of Proposition 5, we can prove the following:

{zeL;BizCcM}i=n O,.
Sk

Hence we have the desired result. Accordingly when A, =C(B,) Ak
<s), we readily see that the submodule N, must coincide with the
total module (note that the modules associated with involutive subspaces
coincides if and only if their homogeneous part of degree [ coincides;

see §3). Hence we have the following

Corollary. Under the circumstances of Proposition 6, suppose
Surther that the exponents of Q, (1=k<s) in L is equal to 1. Then

s
the module associated with the involutive subspace N C(P,) admits
k=1

v
the reduced primary decomposition N Q.
F=s+1

In concluding this section, we calculate the codimension of C(%3,)

in A.
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Lemma 10. Suppose that A is an involutive subspace such that
9:[A]=0. Let Ly be an ideal in Ass(L/M) such that the zero of
B, is located in P*'(K). If the exponent of Qg in L is equal to 1,
the codimension of C(B,) in A is equal to u(Qg; L).

Proof. By Proposition 6 and its corollary, C(35) is an involutive
subspace and the module associated with it admits the reduced primary
decomposition Q@ Q;. Since the prolongation of involutive subspaces are
also involutivej ones (cf. Note at the end of §2), applying Lemma 8

successively, we have
dim A=dim p’A, dim C(B,) =dim p*C(LB,;) for i=0.

By virtue of Lemma 5 in § 3 and Lemma 6.1 in Kuranishi’s work [12],
the annihilators of p’A and p*C(P;) are M,.; and {N Q;} N L,,; respec-
tively. Accordingly the codimension of C(;) in fféf:an be known by
calculating the dimensions of the latter spaces.

Since the prime ideals P; are distinct and of projective dimension 0,
it is not difficult to show that the space (LPr+ N %B;) N R, coincides
with the total space R, for large g, where 0 is a pj::sﬁitive integer. Since
BSLCQ; (A<j<v) for large 0, we know at once that (Qﬁ+jgﬁ O)NL,

=L, for large g. Let us prove the vector space isomorphism

(N Q) NLy/My=Lo/QsN L.
i+B

Consider the natural mapping 7 from (N Q;) N L, to the space on the
right side. By the above fact, 7 is actuj:ﬁy surjective. Since the kernel
of v is obviously M,, we get the desired isomorphism.

Combining what we have shown, we find that the codimension of
C(PBy) in A is equal to dim L,/OsN L, for large gq. It follows from
the definition of x#(Qy; L) that the latter is equal to #(Qp; L) for large g,
and hence we have the desired result. Q.E.D.

§ 9. Construction of New Involutive Systems

The problem considered in this section is to construct new involutive

systems of which solutions are also those of a given one. One of the
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essential problems to be solved in treating this problem is the algebraic
one of constructing new involutive subspaces contained in a given one.
In the preceding section, we have solved the latter problem only for
involutive subspaces associated with involutive systems whose characters
of order more than 1 vanish. In the general case, we find pretty different
circumstances in solving this problem. It is on account of this situation
that we shall deal with only such systems.

Suppose that @ satisfies the following condition:
(H—1) © is involutive at X, and s,(X;) >0, s5,(Xp) =+ =s,(X,) =0.

Then there is a neighbourhood €V of X in I® such that the condition
(H—1) is satisfied at each point on C{/ and the character s;(X) remains
constant on CJ (cf. §§4-5). Let the characteristic module M(X) of
@ at XeCl) admit the reduced primary decomposition in L (X)

MX)=QX)NGX) N NQX) (=r(X))

where Q;(X) is a P;(X)-primary homogeneous submodule of L(X),
BR;(X) being a homogeneous prime ideal in R(X). For simplicity we
write: 2;(X) =u(Q;(X); L(X)). In virtue of Theorem 1II in §5, the
ideals P, (X) are of projective dimension 0 and moreover i Ui (X) =s;-
(X). We shall furthermore assume the following conditiz;ll:

(H-2) There exists a neighbourhood €|/ of X, in I@ such that the fol-
lowing are satisfied: (a) The number v(X) remains constant on C{/ and
the exponents of the submodules Q;(X) in L(X) are equal to 1. (b)
Each ideal PB;(X) is generated by an (nz—1)-dimensional subspace of
R,(X) and it is analytic in the sense that there exist #—1 vector fields
& (X)Zg ay(X)0/0x; (=1, 2, ---,n—1) where the functions a,;(X) are
analytic on CI/ such that the germs of the vector fields §,(X) at X
generate the ideal L;(X) for each Xy,

Applying Lemma 10 at the end of §8, we know that dim C(%;)
is equal to ¢o(X) —;(X) (go(X) =dim Cx(#)). Since the functions
4;(X) are lower semi-continuous and s (X) =¢,(X) is constant on C{/,
the equality il,uj(X)zsl(X) implies that the numbers #;(X) remain
constant on Cj(} Therefore condition (c) stated at the beginning of § 8
is satisfied, and hence we can define Monge characteristic systems 4" (3;)

which are actually analytic Pfaffian systems on CU/ (see § 8). Hereafter
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we shall denote briefly by s, and #; respectively the numbers 5,(X) and
#;(X) being constant on C/.

Let u,, ---,u, be r {functions defined on an open set ¢, in J™, ---, on
an open set [, in J™ respectively (h;, --+, h,==I). We shall write: &
=max{h;; 1<i<r}, q’j:.frﬁl(pﬁi) U Let (u;) denote the subsheaf of
ideals in the sheaf @(Q,lis_ of rings of germs of analytic functions on
QU; associated with the presheaf {Fq.; U U} with natural restriction
mappings, where ¢ denotes the ideal generated by z; in the ring of
analytic functions on QU’. Let Hq. be that ideal in the ring of analytic
functions on * which is generated by all sections of the sheaves p"'0,
P (), e, PV (n,). We denote by @"(w,, -+, u,) the sheaf of ideals
of O(qQ]) associated with the presheaf {Haw; U*C Q} with natural re-
striction mappings. @"(w, -+, #,) is a system of partial differential equa-
tions of order 4 with domain (] such that its solutions are also those
of @.

Let z be a function of g-jets defined on a neighbourhood of X? in
JU(g=0). We write:

0

mtu=3 % X0y @=L

Sk, gp e 9z, S
which is an element of L,=Q,(HM)RXSU(T,*(J1)). We say that = is
independent of @ at X if and only if
7 *u£0 (mod 7, *F; FE (p77'0) x,).
When @ is involutive at X=0,"X*&C{/, this condition is equivalent to
the condition 7, *ue& M, (X) (cf. Lemma 5 in § 3).
We are now in a position to discuss the problem proposed at the

beginning of this section.

Proposition 7. Suppose that @ satisfies the conditions (H—1)
and (H—2). Let u be a function of l-jets defined on a neighbourhood
of X, in I® which is independent of @ at X,. Then @' () is involutive
at X, if and only if u is a relative integral of a characteristic system
4'(Ps) at X,

In this case, the characteristic module of @' (u) at X, admits the

primary decomposition in L(Xy) NN {N Q;(X,)} where N is either
8
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the total module or a Py(Xy)-primary submodule containing Qy(X,)
such that p(N; L(Xp)) =u,—1.

Proof. Sufficiency: We prove that the four conditions (i)-(iv) of
Theorem A in § 4 are satisfied for @*(x). Since u is independent of @
at X, and u vanishes at X, it is clear that X, is an ordinary integral
point of @' (u). Hence the condition (i) is satisfied for @'(«). Let us
prove that the condition (iii) for @'(ux) is satisfied. We call in this
proof a vector field i} 2;(X)0/0x; which assigns to each point in a subset
of IQ a vector of cgé,g(X)) a characteristic vector field belonging to
¢(B4). Recalling the definition of characteristic systems and the argu-
ment in § 6, we find no difficulty in showing that « is a relative integral
of 4(B,) at X, if and only if z vanishes at X, and there is a neigh-
bourhood G} of X, in I®' () such that

g n
for any characteristic vector field > 1;8/0x; on
i=1

belonging to ¢ (%),
(23)

PRGNS S T

i ; e Op it

in consequence of (16) on /.

We put: 2(X)=m*uc L,(X). Choosing I} sufficiently small if neces-
sary, we may assume that # is independent of @ at each point on /.

This means that

(24) z2(X)eMX) (Xeg).

On the other hand, (23) implies that

for any characteristic vector field é 2:0/0x; on GY
i=1

belonging to ¢(Py),

@) . ;
APHLS PSRN T g
i=1 a=1 1< <y apal !

in consequence of (17) on .

Since P4(X) is generated by c¢(Pz(X)), it is readily seen that (25)

means that
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(26) PBe(X) 2(X) cM(X) (XeW).

Applying Lemma 9 in § 8, we conclude from (24) and (26) that Cyi-
(@' (%)) is an involutive subspace of Qg (J'™)RT,*(J1) for each X&I.
Thus the condition (iii) is satisfied for @ (u).

The condition (ii) is proved as follows. Obviously g,[Cx(@"(x))]
=0. Therefore, in virtue of Lemma 8 in § 8, what we have just proved
implies that the space pCy(®* (%)) has the same dimension as Cy(@"(z))
for each X&9)). Since u# is independent of @ at X</, the latter space
has the dimension dim C;z(@) —1, which is constant on . Combining
these, we know that the condition (ii) is satisfied for @"(u).

It remains to prove that @'(x) is p-closed at X,. It suffices to show
that the mapping 0,'*! from I{p@'(x)} N (0™~ Y to G is surjective
(§ 3), that is, for each X&), the following system of linear equations

in p,i actually possesses solutions:

L 6'F iyeigd dF {121 2,1 }
9 p 4+ 22 = 0 s “s ) s s
a=1 ilggi, apail'“il b dzx; Feby,
@7
= ou iigi | AU .
ieind =0 =1.2 ...
o WO e P apa“""‘ Pa *dxi (1 » &y Tt n),

the functions being supposed to denote their values at X. Since ¢ (¥{;-
(X)) is exactly the set of linear forms SZi 2:0/0x; such that £2z(X)
eM(X), it follows from (23) that (27) haLs_lsolutions. Thus we have
proved that the four conditions of Theorem A are satisfied for @'(«),
and hence @'(z) is involutive at X.

Necessity: Suppose conversely that @'(z) is involutive at X,.
There is a neighbourhood G/ of X, in I@*(x) such that @ («) is involutive
at each point X on 9}/ and its characters remains constant. On account
of Theorem A, Cyx(@"(«)) is an involuitve subspace of Qg (J'™)RT,*(N)
for each Xe9). Since ¢;[Cx(@" (2))] =0, we can apply Proposition 4
in § 7: we know that there is a field of prime ideals L3,(X) on I}/ such
that Cyx(0"(x)) contains C(Pz(X)) for each X&J). Bearing in mind
the assumption (a) in (H—2) and recalling the definition of the latter
space (cf. §§ 6 and 8), we conclude that (26) holds, and hence (25)
holds. Now @'(z) is p-closed at X, and hence we may assume that

the mapping 0,'*! from I{p@ (%)} N (0,'")) ™ I to G is surjective; that
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is, system (27) actually admits solutions. Combining (25) with this fact,
we conclude that (23) is valid. This means that « is a relative integral
of 4/(B,) at X,. The proof of Necessity is thus complete.

The characteristic module of @'(x) at X, is nothing else than the
module associated with the involutive subspace Cy(@'(%)), which is of
codimension 1 in Cyx(0@). Therefore the last assertion follows immediately

from Proposition 5 in § 8. Q.E.D.

Proposition 7 can be generalized as follows.

Theorem V. Suppose that @ satisfies the conditions (H—1) and
(H—2). Let X,* be a point of I(p*'0) N (0,Y) *X,(¢=1), and u be
a function of q-jets defined on a neighbourhood of X,* which is inde-
pendent of @ at X,°. Then in order that @%(u) is involutive at X',
it is necessary and sufficient that u is a relative integral of a char-
acteristic system A*(P;) at X,

In this case, the characteristic module of 0%(u) at X,® admits
the primary decomposition in L(X;):NN {.QH Q;(Xy)} where N is ei-
ther the total module or a Py(Xp) -primar;;submodule containing Qg-
(Xy) such that u(N; L(Xp)) =py,—1.

Proof. As we pointed out in § 7, the prolonged system p%7'0 is
involutive at Xi? and its characteristic module at X,? is nothing else but
that of @ at X,. Hence it is immediately seen that the conditions (H—1)
and (H—2) are satisfied for p? ‘0. Moreover, by the very definition,
the characteristic systems of order g of @ are those (of order ¢) of
P70, Applying Proposition 7, we have at once the desired result.

Q.E.D.

Let us next try to construct involutive systems by adjoining to @
several equations. Let X%, .-, X% be a point of J%, ---, a point of J%
respectively such that 0*X% =X, and p§X*=X% for any pair {g;, q;}
with ¢;=¢; (g, -+, ¢.=I). Let X, denote such the point of J* that .OgiX'O
=X% (1<i<r), where g=max{q;; 1=<7<r}. Let S={u,, -, %} be a
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system of r functions where each #; is a function of g;-jets on a neighbour-
hood of X% We may assume without oss of generality that the functions
u; are arranged in such a manner that ¢;<qg,<--<¢q,. We say that S
is independent of ® over X, if and only if u;,, is independent of
0% (u,, -+, u;) at X% for each 7=0,1, ---, r—1.

Theorem VI. Suppose that O satisfies the conditions (H—1) and
(H—2), and that X,€I(p*'0). Let S,={wy, - 16}, -+ Se={tly, -1, -, 1}
be s systems of functions where each u; is a function of q;-jets defined
on a neighbourhood of X%. If each system S; is independent of @
over Xy A<B<s) and if every w;, €S, is a relative integral of 4% (L)

at X%, then 0*(uy, -+, u,) is involutive at X..
If furthermore ri=[,, ro—1r=MUs, ~*+  F—7Ts_y=/l;, then the charac-
teristic module of O0%(w,, ---,u,) at X, admits the reduced primary

decomposition 1 Q;(Xy) in L(X).
F=s+1

Proof. We may assume that g, is the smallest one of the numbers
q¢;. By Theorem V, 0% (#;) is involutive at X% and its characteristic
module at X% admits the primary decomposition N; N {.ri Q;(Xy)} where
N, is either the total module or a P, (X;)-primary subjr;l-odule such that
U(Ny; L(X,)) = —1. We readily see that the conditions (H—1) and
(H—2) are satisfied for 0% () at X%. Let g, be the smallest one of
the numbers ¢; except ¢;. For brevity we write A=¢g,. When %, =S,
it follows from the assumptions that #; is independent of @% (z;) at X"
Suppose u#, €S, with §£1. We set 2,(X) =n,*2= L,(X). The assump-
tion that u, is a relative integral of 4(,) independent of @ at X" implies
that z,(Xp) & M;(X,) and PBp(Xp) 2:(Xp) CM(X;) (cf. the discussion
in the proof of Proposition 7, in particular, (24) and (26)). By the
same reasoning as in the proof of Proposition 6 in § 8, we deduce from
these that 2z, (Xp) € Qp(X,) and z,(Xp) en Q;(X,). It follows that zj-
(Xp) does not belong to the characteristic];Bodule of 0% (u,) at X%. This
means that #, is independent of &% (%;) at X" Thus, in any case, we
can apply Theorem V. Hence we know that @"(u,,u,) is involutive at
X" and its characteristic module at X" is given by N, N {le Q;(Xy)} or
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NN NgNA{ (] Q;(X,)} according as #, €S, or #; €S, where the N’s are
primary su{;’l;lyoﬁdules such that #(N,; L(Xy)) = —2, #(Ng; L(Xp)) =,
—1. Proceeding step by step in the same way, we can complete the
proof of the assertion that @%(u,, ---,u,) is involutive at X, It also fol-
lows that its characteristic module at X, is given by {F\l Q' rn{ ﬁ lQ,”
(X,)} where the Q," are primary sumbodules of L(‘Xoj)_such that]_,ZtJr(Q]-';
L(X)) =p;— (ri—ri—y) (A<j<s) where r,=7r, r,=0.

Suppose 75— 7, =2;(1j<s). Then #(Q,"; L(X,)) =0, that is, the
codimension of Q;’ N L,(X,) in L,(X,) equals zero for large h; Q;’ N L,
(Xy) =L, (Xy) (cf. the definition of multiplicities in §1). Since Q;" is
primary in L(X,), H(Q;") =Q;" (see the beginning of §3). Combining
these, we conclude that the submodules Q,” must be the total module.

Consequently the last assertion is also valid. Q.E.D.

§ 10. The Method of Integration

Suppose that @ is involutive at X, and the characters s,(Xp), -,
5,(X,) vanish. As usual, we identify a solution of @ with the correspond-
ing n-dimensional integral manifold of X (@) in the space J'. By a p-
dimensional manifold in J', we mean all along such a manifold I, that
(') Tx(M,) is of dimension p for each point X on M,. An integral
curve & of X (@) is said to be nom-characteristic if and only if no
spaces ¢ (;(X)) contain (0',) T+ (§) for each X&&. By the Cartan-
Kihler theorem (cf. Kihler [8], p. 26), there exists a unique analytic 7-
dimensional integral manifold of 2 (@) passing through a given non-char-
acteristic integral curve. Thus the following Cauchy’s problem possesses
a unique solution: “Find an n-dimensional integral manifold of 2 (@) pass-
ing through a given non-characteristic integral curve.”” Throughout this
section, by Cauchy's problem for @ we mean the one just explained.
The problem to engage our attention is the following one arisen from
the classical method of integration: To reduce the solution of Cauchy’s
problem for @ to the integration of a completely integrable Pfaffian system.
(Refer to Goursat [6] and Forsyth [5] for the classical theory of inte-
gration. See also Kakié [9-10] [or its recent development.)

Suppose 5;,(Xp) =0. Then @ is completely integrable at X;; there



156 Kunio KAKIE

passes a unique n-dimensional integral manifold of 2 (@) passing through
a given integral point sufficiently near X,. This manifold can be obtained
by integrating the system X (@) which is completely integrable at X.
We shall exclude this trivial case in the following discussion.

The vanishing of s,(X,) means that the characteristic module M (X,)
of @ at X, coincides with the total module; M (X;) is a proper submodule
of L(X,) if and only if s5,(X,) is positive. It is, however, the number
y of the components in the reduced primary decomposition of M (X))
which is of importance in treating our problem.

Suppose that @ satisfies the conditions (H—1) and (H—2). Let us
distinguish the following two cases.

1°) The case when y=1: By Theorem IV in § 6, the differential
system 2 (@) admits Cauchy-Cartan characteristics of dimension z—1.
Moreover its Cartan characteristic system is given by the only one Monge
characteristic system of order I of @. Let & be a non-characteristic
integral curve of 2 (@). The one-parameter family of (z—1)-dimensional
Cauchy-Cartan characteristic manifolds each of which passes through a
point of & generates an n-dimensional integral manifold 9, of X (@)
(cf. Cartan [4], Chap. III, Goursat [7], § 66). Since the Cartan charac-
teristic system is completely integrable (Cartan [4], Chap. III), the mani-
fold I, is obtained by integrating a completely integrable Pfaffian system.
This fact may be stated as follows:

“If v=1, then the solution of Cauchy’s problem for @ can be
reduced to the integration of a completely integrable Pfaffian system.”

2) The case when vy>1: It is this case that we must consider
to establish a method of integration. Let & be a non-characteristic inte-
gral curve of 2 (@). The curve & can be uniquely prolonged to a curve
¢ in J? in such a manner that ¢
and that 0§ =5 (¢=10).

Let X%, ---, X% be a g;jet on I(p®7'D), -+, a q,_,jet on I(p™~'0)
respectively such that 0,%X%“=X; and 0ofi X%“=X% for any pair {g;, g;}
with ¢:.=>q; (a1, -, q,-1=>0). We denote by X, the gjet on I(p? ‘@)
determined by pgi}?(,:X“ (1<7i<y—1), where g=max{q;; 1<;<y—1}.
Let 4(%B,), -, 4(*B,_,) be y—1 distinct Monge characteristic systems of
@ over a neighbourhood of X, in I@.

is an integral curve of X (»p?'@)
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Our method of integration is stated as follows:

“If each 4(B,) possesses pg+1 functionally independent integrals
of order <q, defined on a neighbourhood of X% such that Y, functions
of them form a system independent of @ over X, (1<pB<v—1), then
for any non-characteristic curve X such that & passes sufficiently
near X., Cauchy’s problem for O with initial curve X can be solved
by integrating a completely integrable Pfaffian system.”

Applying Theorem VI in §9, we can construct a new involutive
system admitting ? as an integral curve whose solutions are those of
@ and to which the method of integration stated in 1° can be applied.
The solution is obtained by applying to the new involutive system the
method explained in 1°. The proof is carried out quite easily in just
the same way as in the previous case (see Kakié [9], §7). and hence
we omit the detail.

Some remarks concerning our method of integration are found in

the last section of our previous work [9].
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