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Algebraic Structures of Characteristics
in Involutive Systems of Non-Linear

Partial Differential Equations
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Kunio KAKIE*

Introduction

An involutive system of partial differential equations is, roughly

speaking, such a system that its general solution can be obtained by solving

successively equations of Cauchy-Kowalevsky's type. It was E. Cartan

who introduced the notion of involution for exterior differential systems.

On this subject one has the Cartan-Kahler theorem and the prolongation

theorem due to E. Cartan, M. Kuranishi and M. Matsuda (cf. Cartan

[2, 4]; Kuranishi [11-12]; Matsuda [13-14]). M. Kuranishi constructed

the process of standard prolongation, which was applied to infinite Lie

groups by himself. It was also applied to the equivalence problem of

G-structures by V.W. Guillemin, LM. Singer and S. Sternberg. In this

course they clarified the algebraic structures of involutive systems. By

their results M. Kuranishi gave a clear definition of involutive systems.

His standard prolongation was improved by M. Matsuda, who combined

it with the classical method of prolongation due to Lagrange and Jacobi.

On the other hand, it is well-known that, in the classical and modern

theory of partial differential equations, consideration of characteristics in

various senses leads us to fruitful results. In our subject the two con-

cepts of Cauchy characteristics and Monge ones will be particularly impor-

tant. Effectiveness of the former was shown by E. Cartan for general

systems ([2-4]). However, that of the latter seems to have been shown

only for special systems (cf. Cartan [4], Chap. IV, Part III).

The principal aim of this paper is to investigate algebraic structures
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of the above two characteristics of general non-linear involutive systems.

In our investigation, a principal role will be played by the introduced

concept "characteristic module". It is to be emphasized that we deal

with non-linear involutive systems with several unknown functions and

that we discuss also the case when the characters of higher order do

not necessarily vanish. Besides, our investigation enables us to establish

the method of integration for involutive systems whose characters of order

more than one vanish, generalizing the one obtained recently by the pres-

ent author ([9-10]).

All notions such as functions and manifolds occurring in this paper

are assumed to be in the real or complex analytic category though our

argument can be carried out in the C°° category except when the Cartan-

Kahler existence theorem is applied.

Our main results are summarized as follows. Let 0 be a system

of partial differential equations of order I in a fibered manifold («_3K, 3?, p).

It is denned to be a locally finitely generated subsheaf of ideals in the

sheaf of rings of germs of analytic functions on the space of Z-jets of

cross-sections of («_3K, 32, p). Suppose that 0 is involutive. We introduce

the characteristic module M of 0 by generalizing the characteristic ideal

defined for systems with a single unknown function (cf. Kakie [10]);

The latter is, roughly speaking, the ideal in a polynomial ring generated

by the characteristic polynomials of all differential equations in 0. The

module M is a homogeneous submodule of that Noetherian graded module

L over a polynomial ring which is canonically associated with (J5K, 32, p).

The characteristic module M admits a reduced primary decomposition in
V

L:M=(~]Qj where each Qj is a primary homogeneous submodule of L.
.7=1

For a homogeneous submodule N of L, we denote by ju. (M; L) the mul-

tiplicity of N with respect to L; y.(M\L} is defined to be the positive

integer obtained from the coefficient of the highest degree r of the Hilbert

characteristic polynomial of the graded module L/N by multiplying it

by r\. Let sl9 sz, • • • , sn be the Cartan's characters of 0 of order 1, 2, • • • , n

respectively (;z = dim!72). One of the fundamental results is the follow-

ing: Assume that 0 is involutive and that sp^>0, sp+1 = •-• =sn = 0. Let

3$j be the associated prime ideal of Qy(l^/^v). Then the greatest

projective dimension of the homogeneous prime ideals ^3, is equal to /> —1.
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Moreover the following is valid:

proj dim 93y=p— 1

(Theorem III in § 5) . The primary decomposition of M enables us to

investigate algebraic structures of Monge characteristics of 0. Corre-

sponding to each ^?y, a Monge characteristic system of 0 is defined

(§§ 6-7) . Furthermore we can give a sufficient condition in order that

the differential system associated with 0 admits Cauchy-Cartan character-

istics (Theorem IV). Suppose that s2= ••• = sn = Q. In this case, we can

clarify more completely algebraic structures of Monge characteristics. In

fact, considering the problem of constructing from 0 suitable involutive

systems for integration, we can show effectiveness of Monge characteristics

(Theorems V and VI in § 9) . It is a classical problem to find a process

of reducing the solution of the Cauchy problem for 0 with a given

initial value to the integration of a completely integrable Pfaffian system.

As an application of our theory, we can solve this problem for 0 with

S2=...=Sn=Q (cf. Kakie [9-10]).

This paper is divided into three parts. Part I (§§ 1-3) is devoted

to the investigation on modules associated with involutive subspaces. Part

!!(§§ 4-7) is concerned with involutive systems of partial differential equa-

tions. The concept of characteristic module is introduced and algebraic

structures of Monge characteristics is studied. In part III (§§8-10), we

deal with only involutive systems of which characters of order more

than one vanish.

The author would like to express his sincere gratitude to Professor

M. Sato for his perspicacious suggestion and encouragement during the

investigation. It is owing to his suggestion that the algebraic discussion

becomes much simpler than the original one.

The author also would like to express his sincere gratitude to Pro-

fessor M. Kuranishi for his kind advice and encouragement.

Part I. Modules 4ssociated with Involulive Subspaces

§ I. Primary Decomposition

Let K be a field of characteristic zero, and R be the polynomial
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ring over K in n variables. The ring R is a graded one with usual

direct sum decomposition: R = ̂ 2 Rq. Let L = ̂ 2 Lq be a finitely gener-

ated graded ^-module. Obviously L is a Noetherian module; it satisfies
CO

the maximal condition concerning its submodules. Let A/= J] Mq be a

homogeneous .R-submodule of L. The submodule M admits a reduced

primary decomposition in L:M= r\Qj where the modules Qj are homo-

geneous primary submodules of L(cf. Bourbaki [1], Chap. IV). Let

Qj be ^-primary in L. For any element f in R9 the homomorphism

hf in the .R-module L/Qj defined by h$(z) =£z is injective or locally

nilpotent (presque nilpotent). The ideal 9$j is the set of all elements

S^R such that the homomorphism hf is locally nilpotent. Since M is

a homogeneous submodule, the ideals 5f5y are necessarily homogeneous.

The reduced primary decomposition is unique in the sense that the number

V of the submodules Qj and the set {^31? ••-,$£,,} are uniquely determined

only by M. Let Ass(N) denote the set of prime ideals associated with

an ^-module N. Then Ass (L/M) = {%, ••• ,^v}. Moreover if $& is a

minimal element in the set Ass (L/M), the corresponding submodule Qj

is uniquely determined by M.

Let P(N9x) denote the characteristic polynomial of Hilbert of JV,

where N=^ Nq is a finitely generated graded ^-module. (cf. Serre

[17], Chap. II; Zeriski-Samuel [18], Chap. VII, §12). The number

P(N,q) indicates dim Nq for every sufficiently large integer q.

Let r be the degree of P(L/M,x). The polynomial P(L/M,x)

can be written in the following form:

x\ I x

rj \r-l

where ( )= — and the coefficients a0, "',ar are
\ 5 / s I

integers. The coefficient aQ is usually called the multiplicity of M 'with

respect to L over K. We shall denote it by /j(M;L); ju(M;L)=a0.

It is a positive integer except the case when Mq
:=L(L for large q.

The degree of P(L/M,x) is closely related to the projective dimen-

sions of the homogeneous ideals in Ass (L/M). In fact, the following is

valid (Zariski-Samuel [18], p. 235, Theorem 42').
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Lemma 1. The degree of the characteristic polynomial P(L/M,

x) is equal to the greatest protective dimension of the associated

prime ideals Ass(Z//Af) of L/M.

Let Qp be the set of all />-dimensional subspaces of the vector space

RI of dimension n over K (Q^P^n) . Gp forms a (ii—p) ^-dimensional

algebraic variety with Pliicker coordinates. This is usually called Grass-

mann manifold when K is the field of real or complex numbers.

The multiplicity ju. (M ; L) possesses a geometrical interpretation. In

fact, one has the following

Lemma 2. Let r be ihe degree of P(L/M,x). Then the fol-

lowing are valid'.

(i) Let p be the smallest integer p for -which there is an element

Fp^Sp such that (M-\rFpL} CiLq coincides with Lq for all large q.

Then r is equal to p~I.

(ii) For any element Fr^Qr outside its proper algebraic sub-

variety, the characteristic polynomial of the graded R-module L/ (M

-f jFrL) is of degree 0 and jJ.(M\ L) is equal to ^(M-\-FrL\ L) . More-

over

; L) -min{dim

for sufficiently large q.

Proof. We prove this lemma by dividing into five steps. In this

proof, we denote /^(Af; L) simply by ft(M). By polynomials of negative

degrees we mean zero.

(a) Let Fp be an arbitrary element of Sp(0^p^n). Then the

characteristic polynomial of L/(M-}-FpL) is of degree^>r— p. If Fr is

an element of Qr such that the characteristic polynomial of L/(M+FrL)

is exactly of degree 0, then /t(M) is equal to or less than #(M+jPrL).

Proof. We write N=L/M. Let us consider the homomorphism Ov

from N into itself defined by 09(y) =fly, where y^Ri. Writing 5 = ker 6^

and T = N/01l(2
tf)i we have the exact sequence of modules
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where i and j are natural homomorphisms. This gives rise to the exact

sequence of vector spaces over K

where N= Nq, S = 2 Sq, T = X] Tq (direct sum decompositions of grad-
g=0 g=0 g=0

ed modules) . Obviously

Hence, applying the well-known lemma (Zariski-Samuel [18], p. 233,

Lemma), we get from the above exact sequence the following equalities:

(1) P(N9q + l)-P(N9q)=P(L/(M+fiD9q + l)-^mSq

(q: sufficiently large).

The term on the left side can be written in the form

r—l

Therefore we conclude from (1) that the characteristic polynomial of

L/(MJ
r7/L) is of degree>r— 1, and that if it is of degree r — 1, jU(M)

<LfJL(M-\-7jLi) . Proceeding step by step in just the same manner, we know

that the characteristic polynomial of L/{M-{- (7jl9 • • • , tfp) L} is of degree

^>r—p (l<l£<^7z), and that if the characteristic polynomial of L/{M

-i- (ft, •", f i r } L } is exactly of degree 0, then that of L/{M+ (^, • - - , 7}p)L}

is of degree r—p for each p = l, 2, • • • , r. In this case it also holds that

where f j p ^ R ^ this completes the proof of (a).

(b) There exists a sequence FQd ••• dFrc:Fr+1 where FP^SP such

that the characteristic polynomial of L/(M-{-FpL,} is exactly of degree

r-/>(0</>^r + l), and that ju(M) =Ju(M+F1L) = ••• =/i(M+ FrL) .

Proof. We use the same notations as in the proof of (a) . Suppose

firstly that none of the ideals in Ass(N) = {^3l5 • • • , tyv} coincides with

the maximal ideal 3E = 1>2 Rq
 m R- We can choose an element

9=1
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not belonging to any ideal $py. Then the homomorphism 0Vl is injective

(cf. Bourbaki [1], p. 132, Corollaire 2). Hence ker 09l = 0. Suppose

secondly that one of the ideals ^, say ^3,, coincides with $. Since

J f fLcQv for some positive integer 0", it follows that Qvr\Lq = Lq for
v-l

large g. Therefore Mg = C\ QjC\Lq for large #. Let ^ be an element
*=i
V — 1

in JRj not belonging to U 5JJ/. By the same reason as above, 0Vl is
j=i

injective in Nq, and hence ker 07l f) Nq = 0 for large <?. Hence, in any case,

we have the equality (1) in which t] = y1 and dim5g = 0. By the remark

below (1), it follows that P(L/ (M+fyL) , .r) is of degree r — 1 and that

H{MJrf]lU) — /j.{M) . Repeating the same argument successively, we can

find r-fl elements "ft, • • • , i^.^ in R^ such that the characteristic polynomial

of L/{M+ (ft, • • • , r j p ) L } is of degree r—pfor eachp = l,2, • • • , r + 1, and

that ^(M) =/JL(M+-q1L) =- - -=^(M+ (^, • • • ,^ r )^ / ) . As is readily seen,

V i » ' " » ^ r i - i are necessarily linearly independent. Let Fp be the space

spanned by 7?l5 • • • , ^ p . Then the space Fp have the required property.

(c) There is an element J^V+j of 5r+1 such that

(2) (M+F^L) C]Lq = Lq for large g.

Proof. This is an immediate consequence of (b).

(d) Let N' =^ Nq be a homogeneous submodule of L such that
g=0

there is an element y^Ri for which ( N' -f ̂ -L) fl Z/q = -Lq for large <?.

Then dim Lq/Nq'^>dim Lq^/Nq+L for large g.

Proof. The assumption implies that the homomorphism defined by

the multiplication by 7] from Lq/Nq' to Lq ^!/Nq+1 is surjective for large q.

The required result follows immediately from this.

(e) We are now in a position to complete the proof of Lemma 2. If

there is an element Fd¥1^Sd+1 such that (M-\-Fd+1 L) r\Lq=Lq for large

q, then P(L/M,x) is of degree fSrf. In fact, recalling that P(L/M9q)

"dim Lq/Mq for large q, we find no difficulty in showing that

P(L/M, q) < Const. ( for large q .
I

This inequality implies that P(JL/M,x) is of degree <^d. It follows

from this and (c) that the assertion (i) is valid.

Let us next prove (ii). Since (c) is valid, we can readily prove
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that the set S of elements ~Fr<EiQr for which there is no element

such that (2) holds for the space Fr+1 spanned by Fr and f\ forms a

proper algebraic subvariety of Qr. We put

dq (Fr) = dim LJ (M+ FTL) H L

The function Sq(Fr) attains its minimum value outside a proper algebraic

subvariety D(q) of Qr. By virtue of (b), there exists Fr^Qr such

that jU(M) = {l(MJrFTL) = Sq (Fr) for large q. Hence we have ^^

jm(M) for large #. Let Fr be an element of Qr not belonging to its

proper subvariety S(jD(q). Since the assumption (d) is satisfied for

the module M-{-FrL, we have 8q(Fr)^>8q+1(Fr^) if q is large enough.

It follows that

(3) Sq = Sq (Fr) ^<Vi (Fr) ^<Vi •

Thus the sequence {Sq} of non-negative integers is a descending one

when # varies sufficiently large integers. We conclude from this fact

that Sq = dq+1=Sq+2="' for large q. Then it follows from (3) that for

any Fr outside SU D(q), dq(Fr) =dq^(Fr) =Sq+1(Fr) = • • - . From this it

follows that the characteristic polynomial of M~rFrL is of degree 0

and ^(M-i-FrL) =8q(Fr') =dq for such Fr. On the other hand, (a) as-

serts that /^(M)^^(M+FrL) — dq for such Fr. Combining this with

the fact dq^ju(M) shown already, we have /J.(M) =dq for large q. Thus

we have all the required results in (ii). Q.E.D.

Let us now consider a reduced primary decomposition M= D Qs in
y=i

Z/, QJ being ^-primary. If the projective dimension of ^3fc is equal to

deg P(L/M, x), then ^3fc is a minimal element in the set {^31? • • • , ^3V}

(cf. Lemma 1), and hence the corresponding module Qk is uniquely deter-

mined only by M by the uniqueness theorem of reduced primary decom-

positions: In particular, /^(Q f t;Z/) is also so. There exists a link be-

tween the multiplicity JJ.(M\ L) and the multiplicities/^(Qy; L). In fact,

the following theorem is valid.
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Theorem I. Let M— 0 Q/ be a reduced primary decomposition
j=i

of M in L, and let Qj be ^-primary. Let r denote the degree of

the Hilbert characteristic polynomial P(L/M,x). Then

proj dim

To prove this theorem, we shall recall the following lemma.

Lemma 3* Let A^ and Nz be homogeneous submodules of L.

Then

Proof. Obviously we have the following two exact sequences of

jR-modules with natural homomorphisms :

0-> (N,

Q-+NZ/N! n N^L/N, n NZ->L/NZ->® .

It follows from these that the following equalities are valid for all suffi-

ciently large q:

P(N2/Nl n N,, q) -P(L/N, n AT,, «) +P(L/N2, q) =0 .

( A^ -f- NZ) /Ni is isomorphic to N2/Ni P, N2, and hence we have the desired

result. Q.E.D.

Let t'L(M) be the ideal in R defined to be the set of all elements

f <=jR such that f f fLcM for some integer ff. This ideal tL(M) coincides

with the intersection of the prime ideals associated with L/M\ TL(M)
V

^0 %. It is clear that XL(N1
JrN2) contains XL(N^ -hXL(2V2) for any

j=i
two submodules A^ and Nz of L.

Proof of Theorem I: Applying Lemma 3 to Nl — Ql and N2= H Q/,
.7=2

have
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P(L/M,x)=P(L/f] Q,,*)
J=l

= P(L/Qi,*)+JB(L/n Qf,x)-P(L/N,x),
J=2

V

where we write N= Qi -f- fl Qj. Let us prove that the prime ideals asso-
j=z

dated with L/N are of projective dimension less than r. Let 21 be
y

any element of Ass (L/N). Since XL(N) contains ^-f- fl 5Jjy, the ideal
.7=2

21 also contains the latter ideal. It follows that 21 contains ^ and ^3fc

for some k=f=-\. If one of ^ and ^3fc is of projective dimension<>,

then it is obvious that 21 is also so. Assume that both ideals 5j3j and

^3fc are of projective dimension r. Then Spi-f^P* is distinct from ^3l5

for $)3i^^3fc. We conclude that 2l^2^?i. Hence 21 is of projective di-

mension <r = proj dim ̂ 32, for in the contrary case, both prime ideals

would have the same dimension and one of the two ideals contains the

other, and hence they would coincide. Thus we have the desired result.

What we have just deduced implies, by virtue of Lemma 1, that P(L/N,

x) is of degree <V. Consequently the above formula indicates that the

term of (the highest) degree r of P(L,/M,x) is equal to the sum of

those of P(L/Ql9x) and P(LftQ<9x)\ that is,

Repeating the same argument for the modules f) Qy (2<^<^) succes-
j=k

sively, we obtain

P(L/M, x} =± P(L/QS, x) (mod 1, x, ••-, xr~^ .
y=i

Since P(L/Qj,x) is of degree r if and only if ^3/ is of projective dimen-

sion r (Lemma 1), it follows that /J.(M\L) is equal to the sum of

ja(Qk\ Z,) where Qk are those submodules the prime ideals associated with

which are of projective dimension r. Q.E.D.

In concluding this section, we recall that the exponent of a ^3-

primary submodule Q of L is, by definition, the smallest integer (J for

which $P'LcQ.



NON-LINEAR INVOLUTIVE SYSTEMS 117

§ 2e Involutive Subspaees

Let E and F be vector spaces over K of dimensions m and n respec-

tively. Let F* denote the dual space to F and S9(F*) denote the q-th

symmetric power on F*. The vector space J5(X)S* (F*) can be considered

as the subspace of the space {E(X)Sl-^*)}(X)F* -Hom(F, F®^'1^*))

(£>1). Let A be a subspace of F(X)Sl(F*). The prolongation M of

A. is defined by

PA = A (g) F* n E (g) 5I+1 (F*) .

We shall denote by -S^(F) the algebraic variety of all ^-dimensional

subspaces of F. For an element Ffce5fc(F), A(Ffc) is defined to be

the space of those elements in A which annihilate the subspace Fk. Let

us put

It is obvious that g0[^]^(7i[^]^"'^(7n[^.]==0- The space A is called an

involutive subspace of {E®Si~1(F*)}®F* if and only if dimpA is equal
71

to X] (7fc[^] (cf- Kuranishi [12], §6). Throughout this and the next
k=0

sections, by involutive subspaces we mean involutive subspaces of {E

E§§Sl~1(F*)}(>§F* except when otherwise is expressly stated.

Let R be the graded ring f] Sq(F) and Rq be Sq(F) (5°(F) means
5=0

K) . The graded ring R is (isomorphic to) the polynomial ring over K

in n variables. We shall denote by L the graded .R-module j

L = E £*®5' (F) , Lq = E*(X)S< (F) .
5=0

This module L is finitely generated as an .R-module, and hence it is

a Noetherian ^-module.

Let D be the annihilator of A in the space Lz dual to E®Sl(F*).

We shall use the following notation: Let 3 and Z be subsets of R and

L respectively. The set of all finite sums XI f izi where ^EES1, Zi^Z

is denoted by 3L. Now it is not hard to see that the annihilator of

A(Fk) is D+(F f rL) nl/z. Therefore we have

dim A(Ft) =dim L,/{D+ (FfcL) H L,}
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/ l+n-k-~.

~\ I

where ( . ) is the binomial coefficient (p-\-q — 1) l/plql, which in-\ P
dicates the number of forms of degree p in q variables. Since

l+n

it follows from the above equalities that

f] gfc[A] = (l
7

+n\ -£] max {dim

On the other hand, the aiinihilator of pA in Ll^l coincides with FD

(see Kuranishi [12], §6, Lemma 6.1), and dim Ll + 1 = f -, -, J, and hence

we have

dimpA=[
W + l /

Let N be the homogeneous submodule of L generated by D; N=^ Nq.

Clearly Nq = 0 for g = 0, 1, -, /-I, Nt = D and Nl+1 = FD. Then it fol-

lows from the above argument that A. is an involutive subspace if and

only if

(4) dim Nl+1=fl max{dim Nt/Nt H FkL; Fk^Qk(F}}.
fc = 0

Let N be an arbitrary homogeneous submodule of L such that it

is generated by a subspace of Lt. It is clear that dim NL/NL f] FkL where

Fk^Sk(F) takes its maximum value outside a certain proper algebraic

subvariety of Qk(F). Hence we find no difficulty in proving that there

is a sequence F0 C FI C • • • C Fn = F where Fk e Qk(F) such that dim Nt/NL fl

FkL attains the maximum value (£ = 0, 1, • • • , TZ). The submodule FkL

of L is obviously a (-Ffc) -primary submodule of Z/, (ffc) being the ideal

in R generated by Fk. Accordingly Fk+1zdFkL implies z^FkL, and

hence we have

{z e Nt ; Ft^z C F.AT,} c JV, n F»L

The vector space Fk+1Nt/FkNi is isomorphic to
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where £k+1 is an element of FJc^1 not belonging to Fk, and the latter

space has the same dimension as the space Nt/{z^ ATZ; gk

Hence we obtain the inequalities

(5) dimF^N^FM^dimNJN^F^ (& = 0, 1, • • • , n-V).

Since Nl{l = FNly it follows that

(6) dim Nt^ = 2 dim F

>£ dim JV,/JV, n FkL
k = Q

= f; max {dim JV./JV, n Fk'L • Fk' e 5, (F) } .
* = 0

Accordingly we have the following

Proposition I. Let N be a homogeneous submodule of L gener-

ated by a sub space of Lt; N=^ Nq. Then

dim JVi, ̂ E max{dim Nt/Nt 0

The equality holds if and only if the sub space of E(g)Sl (-F*) of which

annihilator in Lt is the space Nt is an involutive sub space.

Suppose that A is an involutive subspace. Let N be the submodule

of L generated by the annihilator D of A. Then equality (4) holds.

Let J^oCJPjC ••• C FTJ be a sequence of subspaces of F such that the func-

tion dim Nt/Nt r\Fk'L on Qk(F) attains the maximum value at Fk (0<^&

5^77). Such a sequence -FoC-FiC ••• cJPn actually exists as ^ve already

explained. Combining (6) with (5), we see that the equalities in (5)

hold. The argument above (5) indicates that the equalities in (5) hold

if and only if

Conversely, we readily see that if these conditions are satisfied for some

sequence FoC^C ••• cF71, then equality (4) holds, that is, A is an in-

volutive subspace. These results can be summarized as follows.
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Lemma 4. Let A and N be as above. A is an involutive sub-

space if and only if there exists a sequence FoC-FjC ••• cFn zvhere

such that

or such that

In this case the latter conditions are satisfied for

if and only if the function dim N^Ni^} Fk'L on Sk(F) attains the

maximum value at Fk (0<I

Using this lemma, we shall deduce the following

Proposition 2, Let N be as in Proposition 1. If equality (4)
holds, then the following equality holds for any integer q^>l:

dim Nq+l = £ max {dim Nq/Nq n FkL- Fk^Qk(F)}.
fc=0

Proof. By Lemma 4, the desired equality holds if and only if there

is a sequence FoCFjC--- cFn where Fk^Sk(F) such that

(7),

The assumption means that (7)^ holds for some sequence jF^C-F^C ••• ClFn

by Lemma 4. We shall prove that (7)q holds for the same sequence

FQ C FI C • • • C Fn by induction on q. Suppose that (7) q holds. Let us

prove (7)q+1. To do so, it is sufficient to prove

(8) W={z€=Nq+1;F»lzc:FltNq+1}^Nq+1nFtL

for each fixed k (cf. the argument above (5)). We write Vs = FsNq 0 FkL.

We first prove that Vsk-1 is contained in Vk for s>^k (, and hence Vs+1 =

Vk for s^>k). To show this, it suffices to prove that for each s^>k, Vs+1 is

contained in Vs. Let z be any element of Vs+1. When JF, n is spanned by

Fs and f s+i, z can be written as follows: z = ?gJ.1 zs+1-\-z zvhere zs+i^Nq,

z^FsNq. Since fs+1$Fs, zs+1 is necessarily an element of FsLnNq = Vs.

It follows from the induction assumption (7)g that fs+1 zs+1^FsNq. Con-

sequently 2; = ^Tlz,+14-S belongs to FsNq. This implies that 2:^V,.

Hence VS+1C.VS as desired. We now prove (8). Obviously VkdW.
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Therefore, by what we have just deduced, VgdW for all s = 0, 1, • • • , ;z.

In particular we have Vn C W. Since Nq^i = FnNq, Vn = Nq^(~] FkL.

Combining these, we have (8) as desired. Q.E.D.

Remark. The above proof also implies the following: If FoC^

C-"C.Fn where Fk^Sk(F} is a sequence such that (7\ holds. Then

FsNqHFkL = FkNq for s^k and q^L.
n

Note. It is well-known that dim/>A^][] gfc[A], and that if A is
fc = 0

an involutive subspace, then pA is also an involutive subspace of {E

(g)5l(F*)}(g)F* (cf. Kuranishi [12]). Propositions 1 and 2 are equiva-

lent to these facts respectively. The reason why we give our direct

proofs is that the discussion in the course of the proofs is needed in

the following investigation.

§ 3. Modules Associated with Involutive Subspaees

Let R and L be the same ring and jR-module as in Section 2 respec-

tively. Let AT be a homogeneous submodule of L. We denote by 3£

the maximal ideal in R;?i = ^Rq.
q=l

Notation. We denote by H(N) the smallest (homogeneous) sub-

module M of L which contains N and which possesses the property

(9) JzcM implies

The submodule JJ(AT) is constructed from N as follows. Writing

MW=N, we define the submodules M(s) of L inductively by

M(s^ = {z^L;lzc:M(s}} (5-0,1,2, • • • ) •

It is obvious that M(0) C M(1) C M(2) C • • • . Since L is Noetherian, there

exists an integer s such that M(s} =M(S^1) = • • • . Then H(N) is nothing

else than U M™ = M(s\ It is to be noted that H(N) fl Lq coincides with
*=o

Nr\Lq for all sufficiently large q. Conversely, if N and N' be two

homogeneous submodules of L such that N fl Lq — N' Pi Lq for all large q,

then H(N)=H(N'~).

We can interpret the process of constructing H(N) from N quite

differently, applying the theory of primary decompositions: A reduced
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primary decomposition of H(N} in L is obtained from that ofN by

omitting the component 'which is ^-primary (if it exists}. When N

is itself 3E-primary, by this statement we mean that H(N) = L. Let us

prove this fact. Let Q be a ^3-primary submodule of L. We first prove

that if ^3§^£, then H(Q) =Q. It is enough to show that Q has the

property (9). There exists an element feX not belonging to ^3. It

follows from the very definition of primary modules that f^eQ implies

z^Q. This shows that %z C Q implies z e Q. Hence our desired result

follows. We next prove that if *$ = !, then H(Q)=L. Since FLcQ

for some positive integer 6 and L is generated by LQ, Q fl Lq — Lq for

q^>0~. From this and the definition of H(Q) it follows that H(Q)=L.
p

We now prove our original assertion. Let N= f! N^ be a reduced
y=i p

primary decomposition in L. It is not hard to show that H(N) = Pi
j=i

H(N(J)) (cf. the first process of constructing H(N) from N). Hence

our assertion follows from what we have just deduced.

Let A be a subspace of E(g)Sl (F*). We associate with A an R-

submodule of L as follows.

Definition. Let N be the submodule of L generated by the anni-

hilator D of A in Lt. We define the (homogeneous) submodule M(A)

of L to be H(N}, and call it the module associated with A.

It is clear that the module associated with pA coincides with M(A") ;

In other words, the module associated with a space is unchanged under

the prolongation. Moreover there never exists the maximal ideal 3: in

Ass (L/M ( A) ) as we explained above. These are the reasons why we

associate with A the module M(A) =H(N) instead of N itself.

In the remaining part of this section, we devote ourselves to inves-

tigating the structure of the module M(A) under the condition that A

is an involutive subspace. A link between M(A) and N~ (see the above

definition) is given by the following lemma. We write: M(A) —

(direct sum decomposition of graded modules).
q=0 q=0

Remark that Nq = Q for 0 = 0,1, ••-, /-! and JVZ = £>.
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Lemma 5. Suppose that A is an involutive sub space. Then, un-

der the above circumstances, Mq(A)=Nq for all q^l.

This lemma indicates that the elements to be added to N in order

to obtain the module M(A) (if they exist) are of degrees less than I.

Of course, this is not valid in general when A is not an involutive

subspace.

Proof. For brevity, we write M=M(A), J\fq = Mq(A) . It follows

from the definition of H(N) that there exists an integer s such that

Mq = Nq for q^>s. Assume s^>l. Let us prove Mg-i^Ng-^ Obviously

M^DA^i. Let Fk be an element of £fc (F) (0<^<;n) . The natural

homomorphism from A^-ViV^ f| FkL to A1^1/AIS^1 fl FkL is obviously in-

jective. Therefore we have

dim N.-JN,-! H FfcL^dim M^/M,^ fl FkL (0<*k<^n) .

It follows from this that

2 max {dim N.^/N.., n FhL; Fk^Qk(F)}
fc=0

^£ max {dim A/.. ,/Af,-! n FtL; F* e 5, (F) } .
fc = 0

By virtue of Propositions 1 and 2 in § 2, the number on the left side

is equal to dim Ns. Besides, applying Proposition 1 to the module gener-

ated by Mg-i, we know that the number on the right side is equal to

or less than dim M8 . Combining these facts with dim Ms = dim Ng, we

conclude that the above inequality is actually the equality. Since each

term on the left side is equal to or less than the corresponding term on

the right side, as a consequence of the equality, we have dim Ms^

= dim JVg-i. Hence MS-1 = NS-1. If s — !]>/, by the same reasoning, we

have ]\fg-z = Ns_z- Proceed step by step, we can complete the proof of

the fact that Mq=NQ for all q^l Q.E.D.

Let us calculate the degree of the characteristic polynomial of

L/M(A) and /i(M(A) \ L) for an involutive subspace A.
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Lemma 6. Suppose that A is an involutive suhspace and that

gp_![A]>0, 0P[A] =0. Then the greatest protective dimension of the

prime ideals in Ass(L/M(A)) is equal to p — 1. Furthermore

lu(M(A);L) is equal to Qp

Proof. We write: M=M(A). The annihilator of A(FP) in L?

is MI + (FPL) fl LI (cf. Lemma 5), and hence the assumption gfp[A] =0

implies that (M+FPL) f| Lt =Lt for any Fpe5p(F) outside a proper

sub variety. Therefore we can prove without any difficulty that there

is a sequence FoCFjC ••• cFn where Ffre5fe(F) for which the conditions

in Lemma 4 in § 2 are satisfied and moreover (M+FPL) r\Ll=Ll. Then

by Remark at the end of § 2 and by Lemma 5, we have

(10) Fp_, L n FkM, = F^ Ml for

Let us prove the equality

(il) dim MVM-i n Fv->L= i+i +dim

Remarking Lemma 5, we have the equalities

dim M.i/M+i 0 Fp^ L

= dim Fk M,/ {Fp_, L n FKMt + F^ M,}
k=p

= fldimFkMl/Fk-1Ml (by (10))
k=P

= 2 dim Mi/Aft n F fc_j L (by the choice of
k=P

Obviously (M+FfcL) H L^ =Lt for *>/>, and hence

dim Ml/Ml 0 FfcL = dim L,/ (FkL) 0 L, = -
\ £

Since X] ( / ) = ( 7-4-1 )' ^ ^°^ows tnat equality (11) is in-

deed valid.

Let us put

dq(Fp-J =dimLg/(M+Fp_1L) nLg
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Equality (11) means that di (Fp_j) =ffZ J .1 (Fp_i) . Since the condition in

Lemma 4 is satisfied by our assumption,

Since j&A is an involutive subspace of {E®Sf(F*)}®F*, (cf. Note

at the end of § 2), we can prove in just the same manner that 8i+i=8i+2'9
and so on. Thus we have 8i=8i^i:==8i^2 = t".

Now the annihilator of A(FP_0 in Ll is D+ (Fp-, L) n Z/j = (M

4-Fp-jL) nL z , and hence gp_:[A] =5?>0. The fact that 8q is positive

means that (M+Fp_i L) n Lq^=Lq for any Fp_j ̂ Qp-i (F). Hence what

we have shown above implies that _#> is equal to the smallest integer &

for which there is an element Fk^Qk(F} such that (M+FfcL) nLq = Lq.

Applying (i) in Lemma 2 in § 1, we conclude that the degree of the

characteristic module P(L/M(A) , .r) is equal to /> — !. This means that

the greatest protective dimension of the prime ideals in Ass (JL/M ( A) )

is equal to/> — 1 by Lemma 1 in § 1. Moreover applying (ii) of Lemma 2,

we have /jt(M(A) ; L) =53 for large #. Combining this with the fact

gp-i[A] =f f i= t f i + 1 = - - - , we obtain gp-i[A] =^(Af(A) ; L) as desired.

Q.E.D.

We note that under the circumstances in Lemma 6, the integer (7P[A]

is unchanged under the prolongation; gp[A] =QP\J>A']. This is an im-

mediate consequence of Lemma 6, for Af(A) is also the module associated

with pA.

Applying Theorem I in the preceding section and using Lemma 6,

we have the following fundamental result.

Theorem II. Suppose that A is an involutive subspace of {E

(gjS'^C^XgjF* and that gp_1[A]>0, ffp[A] =0. Let M(A) = n Qj
j=i

be a reduced primary decomposition of the module M(A) associated

with A in L, and let Qj be ^-primary in L.

Then the greatest brojective dimension of the prime ideals in

{*4$i, •••,s^3,} is equal to p — 1, and the following is valid:

proj dim ?
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Part II. Involutive Systems of Partial Differential Equations

§ 4a Criterion of Involution

Let (t_5K, 37, p) be an analytic fibered manifold where p is the pro-

jection from c_5K onto 37, and Jl(Jtt, 37, p) be the space of Z-jets of cross-

sections of (cSK, 3?, p). We shall often denote the space J*(c_5K, 3?, p)

briefly by Jz. The sheaf of germs of analytic functions on an open set

^Lt in .7* is denoted by 0 (<-Ll). A locally finitely generated subsheaf of

ideals of the sheaf of rings 0 (U) is called a system of partial differential

equations of order I in (*_2K, 37, p). A point X of J* is called an integral

one of 0 if every (p^$x vanishes at X, where 0X denotes the ring of

germs of sections of 0 at X. The set of integral points of 0 is denoted

by 10. An integral point X is called an ordinary one if 0 = 0 gives

a regular local equation of the variety 10 around X. A cross-section

f of (i5K, 37, p) over an open set V in 37 is said to be a solution of 0

if and only if the Z-jet jV(/) of / at a is an integral point of 0 for

every a in V.

Let pfc* be the projection from Jl onto Jk defined by p/^C/VC/)) =Ja

(/) (Z:>&>0) and pl_! be pop0
z. For each point X^J1 and X = jo|_1X,

one has the injection i from Ox(J
l~l) into Ox(Jl) defined by i<p = (p°p\-i.

We identify Ox(J-1) with its image fOrG/'1).

Let (pLO* be the differential of the mapping p\_± at X; (pLi)# :

Tx(J
l}-+Tx(Jl~l\ where TT(J*) denotes the tangent space to </ at X.

The kernel of (pi_i)^ is denoted by Qx(Jl) • For brevity, we shall write

a = pl_lX and b = p0
lX.

Let Q5(J$0 be the kernel of the mapping p*: T&(JK)->Ta(37).

The space Qx(J
l) can be identified with &(JK)(8)Sl(Ta*(32)). The sub-

space Cy((P) of Qz(</) is defined by

Cx(0)={X<EQx(J
l)\%(<p)=Q for every ^e^} (X^I0^>.

This space is considered canonically as a subspace of Q,x(.Jl~l}®Ta*

(37). The notion of involutive subspaces of Qx (J^1) (X)Ta*(37) can be

introduced as we recalled in § 2 (See Kuranishi [12], § 6). The prolong-

ation of such subspaces is also defined (see §2). In particular, pCx(®}

is defined by
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pC,(®} = Cv(0) <g)T0* (3?) n Qx ( J1-1) (g)S2 (T* (3?) ) .

The (total) prolongation of 0 is denned as follows. Let (p be a

function on an open set QJ, in J1 and $ be a vector field on p

Let ^ denote a function on (pl+l} ~1(U defined b}^

For each open set QJ, in J* ' \ we denote by 5^ that ideal in the ring

of analytic functions on U which is generated by all sections of the

sheaf 0 over pi^l(U and all (p^ constructed from every section cp of 0

over p^l(U and every vector field f on pl^icU/- Let p^q? denote the

restriction mapping from QG& to Q^ where QJ^CL^V. Then we have the

presheaf {Qe&, p<ncp} over J1 ". The prolongation p0 of 0 is defined to

be the sheaf over Jl + 1 associated with the presheaf {QcQ,, P&CV} •

Let X be a point of (ft1"1) -1X. (P®}x^Ox(J
1} is independent of

the choice of such J£. 0 is said to be p-closed at X if and only if

(P®)x H Oj(Jl) is contained in <5y; When X is an ordinary integral point,

0 is ^-closed at X if and only if there exists a neighbourhood (U of

X such that the mapping ft1'1 from I(p<B) fl (<0/ + 1)~^U to 70 R ̂ Lt is sur-

jective (Matsuda [13]).

M. Kuranishi [12] gave a modern characterization of involutive sys-

tems of partial differential equations. Let us recall the criterion of involu-

tion given by M. Matsuda [13].

Theorem A. 0 is involutive at X0 if and only if the following

four conditions are satisfied:

(i) XQ is an ordinary integral point of 0.

(ii) dinipCx(0) remains constant on a neiglibourhood of XQ in

10.

(iii) CJo(0) is an involutive subspace of Q^G/1"1) (X)T*(3?) (X0

= pl
l^1X0,aQ = pl_1XQ).

(iv) 0 is p-closed at XQ.

Note. If 0 is involutive at XQ, then 0 is involutive at each point

on a neighbourhood of XQ in 10.

Let (xl9 • • - , ̂ n, 3^, • • • , vm) be a coordinate system of 3tt 011 L^ (;z
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= dim 37, n -\-m = dim Jiff) such that there exists a coordinate system (xi ,

--,xn
f) of 3? on pU satisfying xi=j:i' - p(l<zi<^n). Then a coordinate

system of Jl on (pQ
l) ~1U is given by

where

/•a*1"* Oa* (/) ) = &y" (g) . fa being ya- coordinate o f / .
dxtl'"dxik

By the contact forms of orders up to and including Z, we mean the

following Pfaffian forms on Jl(Jtt,yi, p):

dya - pa*dxt

In the usual way, one can associate with 0 the exterior differential system

2 (0} defined on the domain of 0 in Jl which is generated as a differential

ideal by 0 and the contact forms of orders up to and including /. Every

solution of 0 corresponds in a one-to-one manner to an ^-dimensional

integral manifold SDJ of 1(0} such that dim(|0l_i)* T(3Jl)=n.

The differential system 2(0) is said to be involutive at X 'with

respect to 71 if and only if the following two conditions (i) and (ii)

are satisfied:

(i) There exists at least one 7z-diinerisional integral element En

of 2(0) and of origin X such that dim(pz_i);)c-En
==^,

(ii) Every such integral element En is an ordinary one in the

sense that there exists a chain of integral elements E0d Eld ••• dEn where

each Ek except the last En is a regular integral element of 2(0) and

of dimension k (such a chain is called a regular chain.). (cf. Cartan

[4], Chap. V; Kuranishi [11], Definition I. 17; Kahler [8].)

The link between two concepts of involution is clarified by the fol-

lowing theorem (Kuranishi [12], Appendix; Matsuda [15]).

Theorem B. 0 is involutive at X if and only if 2(0) is invo-

lutive at X with respect to Jl.
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We finally recall the following theorem due to E. Cartan and Y.

Matsushima [161.

Theorem C. If ® is involutive at X, then p(D is involutive at

each point on I(p(D) H (p/41)"1^-

§ 5. The Characteristic Module

Let us denote by K the field of real or complex numbers according

as our discussion is carried out in the real or complex analytic category.

Let X be an integral point of 0. The spaces Q&C-5K) and Ta(3?) are

vector spaces over K of dimensions m and n respectively (cf. § 4) . We

shall apply the theory developed in Part I in which we shall set E

— Q&(c_2K) and F = TaC3T). We shall also use freely the same notations

as in Part I.

Suppose that 0 is involutive at X. We begin with recalling Cartan's

characters of 0 at X. From the space Cx($) we obtain the following

decreasing sequence of integers (see § 2) :

For brevity we write gk(X) =^fc[C^-((5)]. One can prove the following

inequalities (see Kuranishi [12], §6):

Let us put

These numbers sk(X) are indeed those characters of the differential system

J£(0) associated with 0 which were introduced by E. Cartan [2] (also

see Kahler [8], p. 55). The above inequalities imply that s1(X^>s2(X)

^•-l>sn(X)l>Q. It should be noted that the inequalities of this type

valid for Cartan's characters are always valid only in case of an exterior

differential system generated as a differential ideal by differential forms

of degree <^1. We call the number sk(X) Cartan's character of order

k of 0 at X. The characters sk(X) play an important role in the Cartan-

Kahler existence theorem for the differential system 2($) and they indi-
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cate the numbers of arbitrary functions upon which depends the general

integral manifold of dimension n (cf. Kahler [8], p. 55). In case of

partial differential equations, however, it is more adequate to introduce

the new numbers

ffk(X} = sk (X) -sk+1 (X) (l^A<»), ff. (.X) = sn (X)

as M. Kuranishi did in his lecture note [12]. In fact, it can be seen

that the latter numbers (Jk(X) indicate more precisely the numbers of

arbitrary functions upon which depends the general solution of 0 (Com-

pare the existence proof in Cartan [2] or Kahler [8] with that in Kura-

nishi [12] or Matsuda [14]). Let sp(X) (resp. 0V(X)) be the last

non-vanishing number in s1(X), • • - , sn(X) (resp. ff1 (X), • • •, ffn(X)).

Then it is clear that p = r and sp(X) = (Jr(X). It is this character sp(X)

which is of great importance in the following investigation. One reason

why the character sp(X) is especially important consists in the fact that

it is unchanged under the total prolongation; more precisely, the character

of order p of p0 at each point of l(pff) D (pi+l)~lX is equal to sp(X)

(cf. Lemma 6 in § 3).

The characters sk(X} remain constant on a connected open set C[7

in 10 at each point of which 0 is involutive. In particular, they are

constant on a neighbourhood in 10 of a point at which 0 is involutive.

In fact, Cy(0) is an involutive subspace of QrCJ1"1) {X)Ta*(32) if and only
n

if dimpCx(0) = ̂  Qk(X) (cf. § 2). Hence we conclude from Theorem A
fc = 0

n

that dimpCx(0} remains constant on C\? and it is equal to 2(7*0^0 f°r

fc=0

each X£=.£[?. Since the functions gk(X) are upper semi-continuous and

integral-valued, it follows that the functions gk(X) are constant on Q}.

Therefore the characters sk(X) are also so.

We now introduce the important concept "characteristic module".

To indicate precisely the dependence on the point X, we write:

Rq (X) = S« (Ta* (22)), R (X) =f}Rq (X)
g=0

Lq (X) =Q*(M) (g)S* (Ta* (3?)), L (X) = f] Lt (X).
q=0

Definition. We define the characteristic module M(X) of 0 at X

to be the module associated with the space Cx(®} in the sense of Section 3.
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The module M(X) is a homogeneous submodule of the R(X) -module

L(X}. It follows immediately from the definition that the characteristic

module is unchanged under the prolongation in the sense that the char-

acteristic module of p@ at X coincides with that of 0 at X, where X is

any integral point of p® satisfying pt
l+lX = X.

Suppose that 5P(.X)>0 and sp+1(X) = --=sn(X) =0. Clearly this as-

sumption means that gp-1(X)^>0 and QP(X) = 0. Moreover sp(X) is equal

to gp-1(X}. Hence applying Theorem II in §3, we have the following

fundamental result.

Theorem III. Suppose that 0 is involutive at X and that sp(X}

>0, 5 (X)=-=5B(X)=0 (!<£<^n). Let M(X) = fl Q, be a re-
j=i

duced primary decomposition of the characteristic module M(X} of

0 at X in L(X) where Qj is a ^rprimary homogeneous submodule

of L(X) (1^/^v).

Then the greatest protective dimension of the homogeneous prime

ideals 5pi, 5pz, • • • , ̂ 3y is equal to p — \ and the folio-wing equality is

valid:

proj dim ?P/=p-l

-where /^(Qy;L(X)) denotes the multiplicity of Qj -with respect to

L(X}.

Remark. Theorem III is the complete generalization of our previous

result ([10], Theorem 2).

§ 6. Characteristics

This section is devoted to the investigation on what is called charac-

teristics in the sense of Monge or Cauchy. It is the primary decompo-

sition of the characteristic module which enables us to clarify the structure

of characteristics for general non-linear systems of partial differential equa-

tions.

Let X be an integral point of 0. Obviously it is also an integral

point of the differential system 2(®) caiionically associated with 0 (see

§ 4). Let Ep be a ^-dimensional integral element of 2($) and of origin
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<». The space of such vectors F ̂ Tx(J
l) that Ep and F

spann an integral element of 2(0) is denoted by H(EP) and it is usually

called the polar element. Since 2(0} is generated by differential forms

of degree <^2 as an exterior algebra, a subspace E of TT(Jl) is an integral

element of 2(0) if and only if any linear element contained in E is an

integral one and furthermore, for any pair {El9 E/} of one-dimensional

subspaces of E, El and JS/ spann an integral element, in other words,

H(E1) contains JE/ . Let El be a linear element of origin X on which

the contact forms of orders up to and including I vanish. jE2 is spanned

by the vector F expressed in the following manner by using the local

coordinate system of Jl around -X" (cf. § 4) :

71 rJ m ft

(12) r = S A < - - + E ' '-"--

where

The element ^ is an integral one of 2(0) if and only if

(13) E-^ + S S rC.'--" = o (J-e^)

where functions of /-jets are assumed to represent their values at X.

The vector F of T%(Jl) possessing the form

X™«J " l> 1 ' £mm~l XB.! 3 M- _ I f ,

*=1 a^ «=l*iS-£*i dpa
 l

belongs to H(Ej) if and only if F spanns a linear integral element and

moreover

(14)

where the scalars C«7l'"n and the scalars Ca*1'"*2 are respectively supposed

to be defined for all superscripts {il9 • • • , ^ } in such a manner that they

are respectively symmetric with respect to the superscripts {ii,"m,ii}.
n

In fact, condition (14) means that the differential forms £j dpa
tl'"ll~il /\dxL

vanishes on the element spanned by E1 and F.
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Suppose that 0 is involutive at X. Then, according to Theorem B

in § 4, 2($) is involutive at X with respect to 3?, and hence there

exists at least one /^-dimensional integral element En of -2* ((5) and of

origin X such that (pl-i)*En is of dimension n. Let En be an ^-dimen-

sional subspace of Tx^Jl) on which the contact forms of orders up to

and including I vanish. We know at once that the En is spanned by n

vectors of the form

In order that En is an integral element of J?(0), it is necessary and

sufficient that

(16)

if

Let ^3 be one of the prime ideals in Ass (L (X) /M(X) ) , M(X) being

the characteristic module of 0 at X". Recall that Ass(Z/(X)/M(X)) co-

incides with the set {i|5i, •••,^1 under the circumstances of Theorem III

in the preceding section. We shall denote by <?(^3) the vector space

of elements of degree 1 in g?; c($P) =^f]Ri(X). Of course £0P) may

possibly vanish.

Definition. We define the subspace B($P) of Tr(J
z) to be the

space spanned by all those vectors each of which is contained in an

;2-dimensiona] integral element En of £($) of origin X such that dim

(pl-i)*En = 72 and is also contained in (pLi) ^"V (^3) . We denote by

the annihilator of 5(5p) in the dual space Tx*(Jl) to TY(Jl).

The space B(P) is expressed as follows:

, (16) ,

where by < / • • ) > we mean the vector space over K spanned by the elements

in it.
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Let us investigate the structure of J3(SP) in detail. Let £ be an

element of Ta(3?) (cf. §4). The linear mapping (T(f) from Qx(Jl)

(g)Ta*(3?) to Qjr(Jl) is defined to be the one obtained by extending

linearly the mapping

(g)t;*)=w*(f)w, where we QzG/'), v*eT0*(3Z).

This mapping is expressed as follows: When f =

Since we have the expressions

2

m 07^ )

(17)- E I] ^<r"'I'-^f-r = 0 ( f = l , 2 f - . . f n ; F e ^ ) f
a=l *!£."£€! dpa l >

where the same convention as in (14) is supposed to be applied, we know

that 0"(?) induces the mapping from pCx(Qi) to Cy((J).

Definition. Corresponding to each ^3 e Ass (L (X) / M(X) ) , we in-

troduce the following subspace of C^(0) :

For simplicity, we write: R = R(X), L = L(X), M=M(X). On

account of Lemma 5 in § 3, the annihilator of Cy(0) in LI is MI and

that of pCx($) in Lt+1 coincides with Ml+1. Hence the dual spaces to

Cx(®} and pCx(ffi) are canonically identified with Li/Ml and Lt+1/Ml+1

respectively. Let <7*(£) be the adjoint mapping of (T(f); (T*(f): Lt/Mt

-*Ll,1/Ml+1. It is easy to show that ff*(£) is given by (
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{), the multiplication being the one when L/M is regarded

as a graded J^-module. Moreover the kernel of (T*(?) coincides with

the annihilator of the image of 6 (?) . Therefore we know that the anni-

hilator Ann C(5)3) of C(5$) in Lt is the intersection of the spaces {z^Lt;

f2eE.Mi+1}, where f ranges over all vectors in c(5$). Consequently we

have

(18)

In case ty is generated by linear forms, that is, by ^(5$), the conditions

c(5$) zdMl+1 and ^zdM are equivalent. Hence we have the follow-

ing

Lemma 7. The annihilator Ann C(5$) of C(5$) in Lt is given

by (18). If the ideal 5$ is generated by £(5J?), then

Using the space C(5$), we can decompose -8(5$) as follows.

Proposition 3. The space -6(5$) admits the following direct

sum decomposition-,

where En is an n- dimensional integral element of 2(QT) of origin X

satisfying dim (pl_1)*En = n.

Proof. Suppose that En is spanned by (15) . Let F be any vector

of .6(5$). It is expressed as follows:

-1 m ^_- v v *i-M_o_~

where ^^id/dxt^c(^K) and the scalars %ar"lli satisfy the same condition
i=l

as the condition (16) satisfied by the 0a
ll'"llt. This vector possesses the

expression F = Fl-\-F2 where ri = f^3iir
w and

f=i
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Obviously FI belongs to En. We assert that F2 is actually a vector of

C(^5). In fact, the scalars <p^'"ili= jc**1"1*1* — 0**1"'*1* satisfy condition (17),

and hence the vector

belongs to pCx(®}. Putting f = ] ^9/&r<eE<;($P) , we have r2 =1=1
It follows from the very definition that F2^.C ($$'). Thus the proof

will be complete if we show that C($P) is a subspace of jB(^*). This

fact is, however, proved without an}7 difficulty. Q.E.D.

The remaining part of this section is devoted to the investigation

oil characteristics in the sense of Cauchy and Cartan. Let Ep be an

integral element of origin E0. The space H(EP) is obviously a subspace of

H(Eo). The element Ep is called a Cauchy -Car tan characteristic ele-

ment if and only if H(Ep} coincides with H(Eo) (cf. Cartan [2], Part

VIII; Cartan [4], Chap. Ill; Goursat [7], §66). As is well known,

Cauchy-Cartan characteristic elements can be characterized as an integral

element of the characteristic system in the sense of Cartan. The Cartan

characteristic system can be always constructed in the well-known manner,

and hence one can know, at least in theory, whether or not a given

differential system admits Cauchy-Cartan characteristics. There exists,

however, the more explicit condition in order that a differential system

admits Cauchy-Cartan characteristics. In fact, in the case of Pfaffian sys-

tems, Cartan [2] himself established such a condition stated by means

of Cartan's characters. Owing to our theory developed above, we can

establish such a new condition for the differential system 2 ($} . We

have actually the following

Theorem IV. Assume that the following lrwo conditions are sat-

isfied:

(i) 0 is involutive at X.

(ii) The characteristic module of 0 at X itself is a ^-primary

sub module of L = L(X} and its exponent is equal to 1.

Then the subspace 5(^3) of TX(J1} is a j- dimensional integral
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element of 2(0) such that dim(p l_i)#B($J3) = ?% where f = dir

Moreover B(*$) is a Cauchy-Cartan characteristic element of 2(0)

possessing the maximum dimension.

Proof. By virtue of Theorem B in § 4, condition (i) implies that

there exists an ;?,-dimensional integral element En of 2(0) and of origin

X such that (pl-i)*En is of dimension n. In this proof, we denote by

M the characteristic module of 0 at X. We prove this theorem by

dividing into four steps.

(a) B(ty) =Enr\ (pl-i)*~1c(<$). In particular, B(*$) is a f-di-

mensional integral element.

In fact, on account of Proposition 3, it suffices to show that the

space C(S|3) vanishes. Since the exponent of M is equal to 1 by assump-

tion, Lemma 7 indicates that the aiinihilator of C(^3) in LL coincides

with the total space Lt. This means that C(^3) vanishes.

(b) H(X) =En@Cj(0) (direct sum decomposition).

Suppose En is spanned by the n vectors (15). Let T be any vector

of H(X) expressed by (12). It is obvious that F can be written in

the following form:

n m n ^
j-i

= 1

The first term on the right hand side is obviously a vector of En. Since

the C's and the 0's satisfy (13) and (16) respectively, we conclude at

once that the second term is a vector in C%(0). This completes the

proof of (b).

(c) Let E! be a linear integral element of 2(0) of origin X. In

order that El is contained in H(E1
/) for any linear element E/ contained

in CY($), in other words, H(Ej) contains Cr($), it is necessary and

sufficient that (p^^Ei is contained in c(^$).

In fact, suppose that E{ be spanned by (12) and E/ be spanned b}^

(19) X=S 2 9ar'"tl-. ,....,-:

Then, jEj is contained in H(Ei') if and only if the following are satisfied

(cf- (14)):
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^'-'-'^O (l<a<m , !<»,, -,£,_,<»),

where the same convention as in (14) is assumed to be applied. Hence

E1 is contained in H(E^) for all E/ contained in Cy(^) if and only if

"*i-"-° mod s
where the 0>'s are regarded as indeterminates. We write ^i — d/dxi for

brevity. Recalling Lemma 5 in § 3, we find no difficulty in showing

that the latter condition is equivalent to the condition

Bearing in mind that the elements d;ya(R) ?*.£?)• ••$?)?<, span Lt-l9 we find
s s

immediately that this can be stated as follows:

(20) (£3 *,?«)£« -.CM,.
4 = 1

When M—L, the theorem is obviously valid (In this case, 0 is actually

completely integrable at X) . In the contrary case, MI-I is a proper

subspace of L z _j (cf. the very definition of the module associated with

involutive subspaces in § 3) . In other words, there is an element of

LI-I not belonging to M. Since M is a ^3-primary submodule of L with
»

exponent 1, it follows that (20) holds if and only if £j h$t belongs to
i-l

$P, that is, to c(^j3). The latter condition means that (0!_i) ^-Ei is con-

tained in £($P). The required result has been Therefore proved.

(d) We now complete the proof of Theorem IV. It suffices to prove

the following:

"A linear element of origin X is a Cauchy-Cartan characteristic ele-

ment of J?(0) if and only if it is contained in B (§£)."

Proof. Sufficiency: Suppose that El is a linear element contained

in B($P). By virtue of (a), E1 is contained in the element En. Let

Pf be any vector of H(X). By (b), Tr admits the decomposition Pf

= /Y + /Y where /Ye£n and P^CX($). Since ^ and T/ is con-

tained in the same integral element En, F1
/^H(E1). Let EI denote

the integral element spanned by F2'. By virtue of (a), (pLi)*
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Hence (c) implies that £/(£/) Z>JEi, that is, H(E^ =>£/ E3T2'. Com-

bining what we have proved, we obtain Tf GE H(E1) . This implies that

H(E1) coincides with H(X), and hence E1 is actually a Cauchy-Cartan

characteristic element.

Necessity: Suppose that EL is a Cauchy-Cartan characteristic ele-

ment, that is, H(E1)=H(X). Then, it is necessary that (pl_i)%E1is of

dimension 1. In fact, if the contrary is true, that is, if (pl_i)^E1 ==0,

then E1 is contained in Cr($) (cf. (b)). Assume E1 is spanned by 2C

given by (19) . The integral element En is obviously a subspace of

H^Ei), and hence any vector F EE En belongs to H^E^ . Therefore we

have

for any system (Aj, • • • , / l n ) of scalars (cf. (14)). This means that all

the elements

(21) SWy,,®^®-®^®*-, (l^o^w, l^i,, -,z,-,^n)
i=l 5 S 5

annihilate 3f. Since (A1? • • • , / l n ) is arbitrary, the elements (21) spanns Lt.

Therefore 3C must vanish. This is a contradiction, and hence (pl_^)^E1=^Q.

By what we have just proved, we can choose an (n — 1) -dimensional

subspace En_l of En such that (pl_i)^En-1 and (pl-i)^E1 spann the total

space Ta(Jl). The assumption H(E1)=H(X) implies that El and En-1

spann an 72-dimensional integral element En
f such that dim (pLi) ^E^ =n.

On the other hand, since Cy(0) cH(X) =H(E^ , (c) indicates that

(|0-i)*-£i is contained in c(5|3). Consequently £j in contained in JEn'

n (pLi)*~M$P). By the very definition of 5(^3), it follows that E1 is

contained in 5(^3). This completes the proof of necessity. Q.E.D.

§ 7, Monge Characteristic Systems

Let XQ be an integral point of 0. Suppose that 0 is involutive at X0.

There exists a neighbourhood ^V of X"0 in 10 such that 0 is involutive

at each point on Q7 and that the characters s,(X) , • • - , 5n(X) remains

constant on Ctf (cf. §§ 4-5) . Let M(X) be the characteristic module of

0 at X£^C(? and let it admit the reduced primary decomposition in
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where each Qj(X) is a ^?7-(X) -primary homogeneous submodule of

^3y(.X) being a homogeneous prime ideal in R(X). We shall assume

that the following regularity conditions (a), (b), and (c) are satisfied:

(a) y(-X") remains constant on C[?. (b) Each subspace c(^3J-(^C)) — ̂ 3/-

(X) nRi(X) of Ta(3l) (a = pl_1X) has the constant dimension ft on Ctf9

and it depends analytically on X^.C{? in the sense that there exist f/ vector
n

fields ^k(X) =^aki(X)d/dxi (1^&^7>) where the functions afci are an-
i=l

alytic on Q7 such that their germs at X spann the space c(^j(X)^ for

each X on C[7. (c) The dimension of C(^]37-(.X)) remains constant on QJ.

We shall denote by 9$j the ideal ^y(X) considered as a field which

assigns to each X^OJ the ideal %(X). Let $ be one of <$19 --,%

such that c(^J3(X)) is of positive dimension. For each X^^V ', ^3 defines

a subspace B($P(X)) of T^(Jl) and its annihilator D(^3(X)) in LL(X)

(see §6). By Proposition 3 in §6, B($$(X)) is the direct sum of two

subspaces En R (pLO*"1 c(5p(X)) and C(SP(X)). Therefore the space

5(^|3(X)) has the constant dimension on Q7. This fact enables us without

any difficulty to prove that there exists an analytic Pfaffiaii system on

^V such that the germs of Pfaffian forms belonging to it at X spann the

space Z)(SJ3(X)) for each .XeQ7. We shall denote the Pfaffian system

by Z?0P).

Definition. The Monge characteristic system (of order Z) of 0

defined on OJ corresponding to ty is defined to be the PfafEan system

We shall denote it by

Let us next define Monge characteristic systems of higher order.

By virtue of Theorem C due to Cartan and Matsushima, the prolonged

system p*~l0 is involutive at each point on C(7g = I(pq~l@) fl (Aa) ~lc(7

(q^f). Let Xq be a point on Q7« SUch that pl
<lXq=X. It follows im-

mediately from the definition that the characteristic module of pq~l0 at

Xq coincides with that of 0 at X. Hence we obtain the Monge charac-

teristic system (of order q) of pq~l0 defined on C{?q corresponding to ^5.
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Definition. The Monge characteristic system of order g(>l) of

0 over C[? corresponding to ^J3 is defined to be the Monge characteristic

system of pq~l0 defined on C(Jq corresponding to ^. We shall denote

it by

Let u be a function of #-jets defined on a neighbourhood of

Definition, u is called an integral of J9(^P) at Xq if and only if

rftts=0(mod J*0P)) on a neighbourhood of Xq in OJ*.

A function u such that dii^O at Xq is called a relative integral of

at Xq if and only if u vanishes at Xq and

du=Q (mod J* OP)) on a neighbourhood of Xq in ^Vq(u),

where C\?q(u) denotes the set of the points of CVq at which u vanishes.

We find no difficulty in proving that a function of </-jets is an integral

of J9(*P) at Xq if and only if it is an integral of Ja+1($P) at each

point on q^+1n (p^l}~lXq (cf. Kakie [9], § 5). Therefore we may say

that a function is, or is not, an integral of a characteristic system without

specifying the order. We shall denote by J(^3) the Monge characteristic

system corresponding to ^(3 without the specifying order. If a function

of <?-jets which cannot be regarded as a function of (# — l)-jets is a (rel-

ative) integral of Aq(?$}, we say that it is a (relative) integral of order

Q of J(«P).

Re?7iark. E. Cartan carried out a very suggestive discussion con-

cerning Monge characteristics ([4], Chap. IV, Part III). Our discussion

clarifies, however, the structure of Monge characteristics of general non-

linear involutive systems much more completely than the classical theory.

Part III. Involulive Systems Whose Characters of Order More

Than One Vanish

§ 8. Construction of New Involutive SuJbspaees

The remaining sections are devoted to investigating involutive systems

of which characters of order more than 1 vanish. Such systems are
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similar to systems with one unknown function of two independent vari-

ables. Suppose that 0 is involutive at X and its characters 52(-2Q, • • • ,

sn(X) vanish. By virtue of Theorem A in § 4, the space Cz(0) is an

involutive subspace of QzC*/"1) (X)Ta*(3?). Moreover the latter assump-

tion means that (7i[C,Y(0)] =0 (see §5). In this section, we treat the

algebraic problem of constructing new involutive subspaces contained in

such an involutive one. Instead of dealing with Cr(0) itself, we find

it appropriate to consider any subspace of Qx(Jl) . Throughout this sec-

tion, by involutive subspaces we mean involutive subspaces of Qx(Jl~1}

(X)Ta*(37). For brevity we shall write: R = R(X), L = L(X) (see § 5).

The following lemma is an immediate consequence of the definition

(see §2).

Lemma f$. Let A be a subspace of Qx(Jl) such that (7i[A] =0.

Then A is an involutive subspace if and only if dim p A = dim A.

Suppose that A is an involutive subspace in Qx(Jl) satisfying

= 0. Associated with A we have the submodule M ( A) of L (the module

associated with A; see § 3). Except when any confusion occurs, we shall
V

write: M=M(A). Let M = D Qj be a reduced primary decomposition
.7=1

of M in L where each Qj is a ^--primary homogeneous submodule of Z/.

No ^3y coincides with the maximal ideal 9£ in R (see § 3) . By Lemma 6

in § 3, the homogeneous prime ideals :py in R are of projective dimension

0. The fact that tyj is generated by an (n — 1) -dimensional subspace

of R1 means that the zero of ^j is located in the (TZ — 1) -dimensional

projective space Pn~l(K) over K.

Let Z be a subset of Lt. We shall denote by A[Z] the subspace

of A whose annihilator in Lt is the space spanned by MI and Z. In

particular, A [0] = Ml (Lemma 5 in § 3) .

Lemma 90 Assume that A is an involutive subspace satisfying

Qi\_A\ =0. Let z be an element of LI not belonging to MI. Then

A\_z\ is an involutive subspace if and only if the following two equiv-

alent conditions are satisfied'.

(a) There exist n — \ independent linear forms £l9-",£n-i ^n

R such that ^z, • • • , qn-lz^Ml-Tl.
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(b) There exists a prime ideal ^3 belonging to Ass(L/M) such

that it is generated by n — \ independent linear forms and that

Proof. We write: A'=A[z~\. Obviously gx[ A'] =0. By Lemma

8, A' is an invokitive subspace if and only if dim^>A' = dim A'. Since

dim pA = dim A, we readily find that A' is an involutive subspace if and

only if

(22) dim^s, R.M^/R.M, = 1 .

We remark that RiZ is not contained in R1Mi~Mi+1. In fact, if the

contrary is valid, we have R1zdM= f| Q/. Clearly there is $^R1 not
.7=1

belonging to U $/. Therefore, using the property of primary
^l

ules, we can readily show that z^M. This contradicts the assumption.

Thus we have proved the above remark. Bearing in mind this fact, we

find no difficulty in proving that condition (22) holds if and only if

condition (a) holds, and hence A' is an involutive subspace if and only

if (a) holds.

Let us prove that the conditions (a) and (b) are equivalent. Sup-

pose that (a) valid. Let ^ be the prime ideal generated by £l9 • • • , f n _ 1 .
i>

Then SJJzcM Since z&M, this implies that $CX*L(M) = D 33* (cf.
j=i

§1). Hence there is a prime ideal ^3fc such that ^3c$fc. Remarking

that both ideals have the same projective dimension 0, we have ^3=^.

Thus (a) implies (b) . Suppose conversely that (b) is valid. Let ^3 be

generated by Ci, • • • , ?n-i- Then it is obvious that for the &, the condition

in (a) is satisfied. Thus (b) implies (a) . Q.E.D.

Corresponding to each ^G Ass(L/Af), we have a subspace

of A (see § 6) :

(Except in this section, we denote by the same symbol C(^3^) the space

constructed from the space A = CX($}.} By Lemma 7 in §6, the anni-

hilator of C(5{$^) in Lt is {z^L^c^^z^M} . Suppose that ^ is

generated by n — 1 independent linear forms, that is, it is generated by
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*(SP,). Then

We now modify Lemma 9 as follows.

Proposition 48 Suppose that A is an involutive sub space satisfy-

ing C]i\_A] =0. Let A' be a sub space of A and of co dimension 1 in A.

Then in order that A' is an involutive subspace, it is necessary and

sufficient that there exists a prime ideal ^ in Ass(L/M) of which

zero is located in Pn'l(K) such that A' contains

Proof. Assume A' is given by A[z](zeLi). By Lemma 9, A

is an involutive subspace if and only if there exists an ideal ;p# in Ass

(L/M) of which zero is located in Pn~l(K) such that 5J3jjscM. The

remark made above indicates that ^zdAf if and only if 2:^ Ann C(^^).

The latter means that A\_z] 1)C(^0). Consequently we have the desired

result. Q.E.D.

Let us generalize Proposition 4.

Proposition 5. Assume that A is an involutive subspace satisfy-

ing Qi\_A\ = 0. Let 5f?0 be an ideal in Ass(L/M) whose zero is located

in Pn~l(K}. Then any subspace A of A containing C(^) is an

involutive one. Moreover the module 7l/f(A') associated 'with A' ad-

mits the primary decomposition in L of the folio-wing form : J\f(A')

= Nn{r\ QJ} zvhere N is either the total module or a ^p-primary
Ji*0

submodule containing Q0 such that its multiplicity /_t(N\L} is less

than /i(Qp\U) by the codimension of A in A.

Proof. Let s denote the codimension of A in A. Suppose that

A' = A[zl9 • • • , £ « ] zvhere z^ • • • , z s E ^ L l . On account of Lemma 7 in § 6,

the assumption A'Z)C(^^) implies s-P^c:M(l^z^5). Remarking that

^3^ is generated by n — 1 independent linear forms, we conclude from this

that
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In this inequality, the equality is actually valid. In fact, suppose that

the numbe • on the left side is less than s. Then there is a linear
s

combination ^^X] cixi with c^K. such that R^d MI+I. This implies that
j=i

z^Mi (recall the property of the module associated with an involutive

subspace; see §3). This is a contradiction to the choice of the elements

zt. Thus the equality holds. This equality implies that dim ̂  A' = dim

A'. Hence, by Lemma 8, A! is an involutive subspace.
r

We next prove the latter assertion. Let Af(A') = f) AT(fc) be a re-
k=l

duced primary decomposition where JV(r is an 2lfc-primary submodule of L.

No 2Ifc is the maximal ideal Hi in R. Since 0i[A'] = 0, on account of

Lemma 6 in § 3, the homogeneous prime ideals 3Ifc are of projective
V

dimension 0. Obviously M(A') Z)M, and hence N(Jfc, => D Qy (15^&^>).
y=i

V

Taking the operation XL ( ) (see § 1) , we get ?[fc D fl ^5y. From this
.7=1

it follows that each 2lfc contains one of the ideals tyj. Since both ideals

have the same dimension, they must coincide. We may assume without

loss of generality that 2lfc = ^3fc (l^&^r) . The prime ideal 2lfc — ̂ 3fc does
V

not contain ^ for j=f=k. We prove that the facts -/V(fc) Z) f| Qy, 2lfc$)35y
y=i

for each j^& implies that N(k) ID Qk. In fact, let q be an integer in

{1, • • • , v } distinct from &. We first prove that JV(fc) Z) 0 Q, To show
yM=Q

this, it is sufficient to prove that any element z of fl Qj not belonging
j=fg

to Qq belongs to A^(fc). By assumption there is an element f of ^q not

belonging to 2lfc. There is a positive integer 5 such that pz^Q^. Hence
V

fsz:£E D QjdN(k). Since the homomorphism from L/N(k) into itself de-
j=i

fined by $ $2tfc is an isomorphism (cf. The definition of primary sub-

modules), we have z^N(k^. By the same reasoning, we have Nw Z) fl Qy
y^?, ̂

where q=^k, t=^=k. Proceed step by step, we finally obtain A^(A;)I3Qfc.

Thus we have proved that N(k)'DQJe (l^^^r).

To simplify the explanation, without loss of generality, we assume

£ = K Then

Ann A' c Ann C(^v) = {z e Lz ; ̂ ,2: C Tlf} .

Since ^3, does not contain ^7- for j^/?, ^?,2:C7\f=n Qy implies that
y=i

2: £ H Qy (cf. the above argument) . Hence Ann A.' is contained in
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{H Q/}nLi. It follows that M(A') is contained in H(Ct Qi) = fl Qy
^ .7=^ .7=1

(see § 3). By the same reasoning as we have just done, we know that

each ^3,- (If^/^V — 1) coincides with one of the ideals 2lfc and that if

'Py—SI*, then QyZ)JV(A;). Combining this with the above result, we con-

clude that the number r is equal to either y— 1 or y, and that AT(fc)

~Qfc(l2S&£^~~l)« When r = v —1, the proof has been already complet-

ed. When r = y, we have already proved that 5Xy
 = ^3v and N(V)I^QV.

Therefore, in any case, we have the primary decomposition of Tkf(A')

stated in the proposition. Moreover, applying Theorem II in § 3, we

have

S MQ/; £) =dim A, jU(N; L) + £ MQ/; L) ^^im A'.

Hence ju(N-9 L) =jU(Qv; L) — (dim A —dim A')- Thus we have proved

all the required results. Q.E.D.

Proposition 6. Suppose that A is an involutive subspace satisfy-

ing Qi\_A~\=Q. Let S)3i, •••,^3, be s prime ideals in Ass(L/M) such

that their zeros are located in Pn~l(K). Let Ak be any subspace
s

of A containing C($J3fc) (IfS&SSs). Then the space f| Ak is an invo-

lutive subspace 'whose codimension in A is equal to the sum of the

codimensions in A of the s spaces Ak. Moreover the module associ-
s s y

ated -with fl Ak admits the primary decomposition { f) N^} Pi { fl Q/}

-where each N(k) is either the total module or a ?$k-primary submodule

of L.

k

Proof. We write: ^o^A, Bk = H A3 (1^^^^). By assumption,

B0 is an involutive subspace. By Proposition 5, Bl is also an involutive

subspace and its associated module M(Bi) admits the primary decomposi-
V

tion JV(1) fl { fl Qj} where N(1} is either the total module or a ^-primary

submodule. We note that B2 is a subspace of the involutive subspace B1

constructed from JB2 exactly in the same way as B1 is constructed from

A. In fact, the space C(^j) constructed from A contains the correspond-

ing space constructed from Bl = Al as is immediately seen. Therefore we

can apply Proposition 5 again, and we conclude that B2 is an involutive
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subspace and A/(S2) admits the primary decomposition JV(1) f! N(2) fl { Pi Qj}
.7=3

where N& is either the total module or a ^32-primary submodule. Proce-

eding step by step in the same way, we see that the subspaces Bk are
y

involutive ones. In particular, f| Aj is indeed an involutive subspace.
y=i

Let us prove the assertion concerning the codimension of that space.

We prove that dim Bk/Bk + l is equal to the codimension 7" of Ak+l in

A (l^£<s). Suppose Ak+1 is given by A\_zl9 • • • , zr~\ where zt^LL. It

follows from COP^) C A^ that $pfc+1s,cM (l^f^r)- This implies

2f G: f| Q; (cf. the argument in the proof of Proposition 5). Since zt $ M9
/=£*+!

- f^Qfc - i - Hence zi^AnnBk = M(Bk)nLl (cf. Lemma 5 in §3), for

Ann Bk is contained in Qk^i fl L^ From this it follows that Bk+1 = Bk

H Afc-r! is of codimension 7* in 5fc.

Using what we have just deduced, we can readily calculate the codi-

mension of Bs, and we know that the assertion is indeed true.

O.E.D.

In the above proof, if the exponents of QA. (If^fc^s) in L are

equal to 1, Ann C(^3fr) coincides with {Pi Q/} fi Lz. In fact, by the same
3+K

argument as in the proof of Proposition 5, we can prove the following:

Hence we have the desired result. Accordingly when Afc = C($Pfc) (1^^

<^s), we readily see that the submodule jV(fc) must coincide with the

total module (note that the modules associated with involutive subspaces

coincides if and only if their homogeneous part of degree I coincides;

see §3). Hence we have the following

Corollary. Under the circumstances of Proposition 6, suppose

further that the exponents of Qk (l<^<^s) in L, is equal to 1. Then
s

the module associated ^vith the involutive subspace f| C(^?fc) admits
k=l

v
the reduced primary decomposition f| Qy.

In concluding this section, we calculate the codimension of

in A.
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Lemma 10. Suppose that A is an involutive sub space such that

gl\_A]=Q. Let ^ be an ideal in Ass(L/M) such that the zero of

y$0 is located in Pn~1(K). If the exponent of Q0 in L is equal to 1,

the codimension of C(^3/s) in A is equal to

Proof. By Proposition 6 and its corollary, C(^0) is an involutive

subspace and the module associated with it admits the reduced primary

decomposition f| Q/. Since the prolongation of involutive subspaces are
j+0

also involutive ones (cf. Note at the end of § 2), applying Lemma 8

successively, we have

dim A = dim p*A , dim C(^) = dim ̂ C(^) for z^O .

By virtue of Lemma 5 in § 3 and Lemma 6.1 in Kuranishi's work [12],

the annihilators of p*A and plC(^^) are Ml+i and {fl Q/} ft Ll+i respec-
3+&

tively. Accordingly the codimension of C(^?^) in A can be known by

calculating the dimensions of the latter spaces.

Since the prime ideals ^3, are distinct and of projective dimension 0,

it is not difficult to show that the space (^ -f- f| s$/) H Rq coincides
}*»

with the total space Rq for large q, where (7 is a positive integer. Since

$P/LcQy (1<7<^) for large 0", we know at once that (Q&+ Pi Q/) fl Lq
j+0

= Lq for large q. Let us prove the vector space isomorphism

(n Q,)n

Consider the natural mapping r from ( f| Q/) fl Lq to the space on the

right side. By the above fact, r is actually surjective. Since the kernel

of r is obviously Mq, we get the desired isomorphism.

Combining what we have shown, we find that the codimension of

C*OP0) in A is equal to dim Lq/Qp f) Lq for large q. It follows from

the definition of ll(Q&\ Z/) that the latter is equal to fi(Q,$', L) for large q,

and hence we have the desired result. Q.E.D.

§ 9e Construction of New Involutive Systems

The problem considered in this section is to construct new involutive

systems of which solutions are also those of a given one. One of the
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essential problems to be solved in treating this problem is the algebraic

one of constructing new involutive subspaces contained in a given one.

In the preceding section, we have solved the latter problem only for

involutive subspaces associated with involutive systems whose characters

of order more than 1 vanish. In the general case, we find pretty different

circumstances in solving this problem. It is on account of this situation

that we shall deal with only such systems.

Suppose that 0 satisfies the following condition:

(H — 1) 0 is involutive at XQ and Si(.Xi)>0, s2 (X0) = • • • = sn (X0) = 0.

Then there is a neighbourhood C(7 of X0 in 10 such that the condition

(H — 1) is satisfied at each point on C(7 and the character s1(X) remains

constant on C{7 (cf. §§ 4-5) . Let the characteristic module M(X) of

0 at Xz=C(J admit the reduced primary decomposition in

where Qj C^O is a *$j CX") -primary homogeneous submodule of

y$j (X) being a homogeneous prime ideal in R (X) . For simplicity we

write: fa(X) =ju(Qj (X) ; L (X)). In virtue of Theorem III in §5, the
V

ideals ^ (X) are of protective dimension 0 and moreover 2 fa C^O ~ si '
y=i

(X) . We shall furthermore assume the following condition:

(H-2) There exists a neighbourhood OJ of XQ in 10 such that the fol-

lowing are satisfied: (a) The number v(X) remains constant on Q7 and

the exponents of the submodules Qj(X) in L(X) are equal to 1. (b)

Each ideal ^8y(X) is generated by an (;z — 1) -dimensional subspace of

and it is analytic in the sense that there exist n — 1 vector fields
n

= ̂  aki(X)d/dxi (k = l, 2, • • - , » — 1) where the functions akt(X) are
i = l

analytic on Q7 such that the germs of the vector fields $k(X) at X

generate the ideal %(X) for each X^Ctf.

Applying Lemma 10 at the end of § 8, we know that dim C(^Sy)

is equal to g0(^0 ~ fa(X) (Qo(X) =dim Cx(@)} . Since the functions

fa(X) are lower semi-continuous and s1(X) =gQ(X) is constant on C(7,
V

the equality ^ fy (X) = s, (X) implies that the numbers jU*(X) remain
j=i

constant on dj . Therefore condition (c) stated at the beginning of § 8

is satisfied, and hence we can define Monge characteristic systems zf(^3?)

which are actually analytic Pfaffian systems on dj (see § 8) . Hereafter
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we shall denote briefly by s1 and /^ respectively the numbers s1(X) and

fJij(X) being constant on Oj .

Let uly --,ur be r functions defined on an open set (Ui in J% • • • , on

an open set Ur in Jhr respectively (/?!, - • • , hr^l) . We shall write: h
-^ r

= max{Ai;l<Sz^r}, ^U = fl (0JL) ""'̂ U*. Let (>*) denote the subsheaf of
i=l

ideals in the sheaf 0 (f-LLi) of rings of germs of analytic functions on

QJii associated with the presheaf {£F^; C\JJ C^Ltf| with natural restriction

mappings, where 2^ denotes the ideal generated by ut in the ring of

analytic functions on QJ,' . Let J^* be that ideal in the ring of analytic

functions on <:Lt* which is generated by all sections of the sheaves ph~l0,

ph~hl(u^, --,ph~hr(ur). We denote by 0h(u1, • • - , ur) the sheaf of ideals

of 0(Ci) associated with the presheaf 0fq^; <:U*e: Ct} with natural re-

striction mappings. 0h(uly • • • , w r ) is a system of partial differential equa-

tions of order h with domain QJ, such that its solutions are also those

of 0.

Let u be a function of g-jets defined on a neighbourhood of Xq in

^l). We write:

which is an element of Lq = Q6(c5K)(g)5tt(Tfl*(32)) . We say that tt is

independent of 0 at Xq if and only if

When 0 is involutive at X=pt
qX<lE::Cl?, this condition is equivalent to

the condition 7rq%$ Mq(X) (cf. Lemma 5 in §3).

We are now in a position to discuss the problem proposed at the

beginning of this section.

Proposition 7. Suppose that 0 satisfies the conditions (H — 1)

and (H — 2). Let u be a function of I- jets defined on a neighbourhood

of XQ in 10 which is independent of 0 at X0. Then 0l («) is involutive

at XQ if and only if u is a relative integral of a characteristic system

J'($P,) at XQ.

In this case, the characteristic module ofd)l(ii) at XQ admits the

primary decomposition in L(X0):A rPi{n Qj(Xo)} where N is either
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the total module or a ^0(Xo) -primary submodule containing

such that ju(N;L(Xo))=ftf, — l.

Proof. Sufficiency: We prove that the four conditions (i)-(iv) of

Theorem A in § 4 are satisfied for 0l (u) . Since u is independent of 0

at XQ and u vanishes at X0f it is clear that XQ is an ordinary integral

point of 0l(u). Hence the condition (i) is satisfied for 0l (u) . Let us

prove that the condition (iii) for 0l (u) is satisfied. We call in this
n

proof a vector field 2 ^i(X)d/dXi which assigns to each point in a subset
i = l

of 10 a vector of c(^3^(X)) a characteristic vector field belonging to

c (^0) . Recalling the definition of characteristic systems and the argu-

ment in § 6, we find no difficulty in showing that u is a relative integral

of Jl(^30) at -Xo if and only if u vanishes at X0 and there is a neigh-

bourhood <W of XQ in I0l(i^ such that

(23)

for any characteristic vector field JJ /U d/dxt on
1=1

belonging to c ( ^ f t ) 9

^ in consequence of (16) on cffl .

We put: z(X} =nl*u^Ll(X). Choosing ^ sufficiently small if neces-

sary, we may assume that u is independent of 0 at each point on c^.

This means that

(24)

On the other hand, (23) implies that

for any characteristic vector field ]Tj A* d/dxt on

belonging to c (^3^) ,
(25) ^

"' 'm du

^ in consequence of (17) on

Since ^0(X) is generated by ^(^(.X)), it is readily seen that (25)

means that
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(26) $„ (X) * (X) c M(X) (X

Applying Lemma 9 in § 8, we conclude from (24) and (26) that

(0l(«)) is an involutive subspace of QrG/*"1) ®Ta* (3?) for each

Thus the condition (iii) is satisfied for 0l(u).

The condition (ii) is proved as follows. Obviously (7i [Qr(^ (*0) ]

= 0. Therefore, in virtue of Lemma 8 in § 8, what we have just proved

implies that the space pCx(®
1 ( u ) ) has the same dimension as Cz(@

l(ti))

for each X^^. Since u is independent of 0 at XE::0^, the latter space

has the dimension dimCy(0)—1, which is constant on °ffl. Combining

these, we know that the condition (ii) is satisfied for (Dl (u).

It remains to prove that @l (u) is ^-closed at X0. It suffices to show

that the mapping pt
l+1 from I{p0l(u)} fl (ft1*1)"1 <W to <W is surjective

(§3), that is, for each XE^cffl, the following system of linear equations

in Pa1'"11*1 actually possesses solutions:

(27)

|z = l, 2, • • • , w ,J > >

V~l V^ ™^ j. i,---i;i i ^^ A / ' 1 O
> , > , : r P a

l + — = 0 (Z= l ,2 ,

the functions being supposed to denote their values at X. Since
n

is exactly the set of linear forms £ = ̂ 2hd/dxi such that
t=i

, it follows from (23) that (27) has solutions. Thus we have

proved that the four conditions of Theorem A are satisfied for ffil(u),

and hence (ft1 (u) is involutive at XQ.

Necessity: Suppose conversely that fl)1 (u) is involutive at XQ.

There is a neighbourhood ^ of .X"0 in I®1 (u) such that 0l (u) is involutive

at each point X on cj/f/! and its characters remains constant. On account

of Theorem A, Cy(0l(*0) is an involuitve subspace of Qj? (J^1) (X)Ta*(AO

for each X^^. Since Qi\_Cx(®
1 (t£)}~\ =05 we can apply Proposition 4

in § 7; we know that there is a field of prime ideals ^ (X) on ̂  such

that Cx(®
1 (u)) contains C(5p^(JX)) for each Xe^. Bearing in mind

the assumption (a) in (H —2) and recalling the definition of the latter

space (cf. §§6 and 8), we conclude that (26) holds, and hence (25)

holds. Now 0l(«) is p-closed at XQ, and hence we may assume that

the mapping pt
l+1 from I{p0l(u)} 0 (pil+1) ~l ^ to ^ is surjective; that



NON-LINEAR INVOLUTIVE SYSTEMS 153

is, system (27) actually admits solutions. Combining (25) with this fact,

we conclude that (23) is valid. This means that u is a relative integral

of Jl(930) at XQ. The proof of Necessity is thus complete.

The characteristic module of 0l (u) at X0 is nothing else than the

module associated with the involutive subspace CA-($l(&)), which is of

codimension 1 in Cx(®) . Therefore the last assertion follows immediately

from Proposition 5 in § 8. Q.E.D.

Proposition 7 can be generalized as follows.

Theorem V. Suppose that 0 satisfies the conditions (H — 1) and

(H-2). Let XQ
q be a point of I(pq~l0) fl (p^'lX^(q^f)9 and u be

a function of q-jets defined on a neighbourhood of X0
q 'which is inde-

pendent of 0 at X0
q. Then in order that 0q(ii) is involutive at XQ

q,

it is necessary and sufficient that u is a relative integral of a char-

acteristic system dq($$0) at X0
q.

In this case, the characteristic module of 0q(ii) at X0
q admits

the primary decomposition in L(Xo):Nr\{n Qy(X0)} where N is ei-
j^&

ther the total module or a ?$p(X^) -primary submodule containing Q$-

such that jm(N\ L(X0)) =^ — 1.

Proof. As we pointed out in § 7, the prolonged system pq~l0 is

involutive at XQ
q and its characteristic module at XQ

q is nothing else but

that of 0 at XQ. Hence it is immediately seen that the conditions (H — 1)

and (H — 2) are satisfied for pq~l@. Moreover, by the very definition,

the characteristic systems of order q of 0 are those (of order </) of

pq~l@. Applying Proposition 7, we have at once the desired result.

Q.E.D.

Let us next try to construct involutive systems by adjoining to 0

several equations. Let X*1, --,Xqr be a point of J"91, • • - , a point of Jqr

respectively such that pl
qtXq<=XQ and pgX**=X*' for any pair {qt, qj}

with Qi^qj (qi9 •-, qr^f) • Let XQ denote such the point of Jq that pl-XQ

= Xqi (l^z'^r), where q = max{g^ l<^"<^r}. Let 5= {u^ • • • , ur} be a
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system of r functions where each ut is a function of <?rjets on a neighbour-

hood of Xq*. We may assume without oss of generality that the functions

Ui are arranged in such a manner that q1^q2^"'^Qr- We say that S

is independent of 0 over X0 if and only if ui+1 is independent of

0qi(ul7 . . - , fO at Xqi+1 for each z = 0, 1, • • - , r-1.

Theorem VI. Suppose that 0 satisfies the conditions (H — 1) and

(H — 2), and that X0^I(pq~l0). Let Sl={ul, ~',uri}9 • • - , S, = {urg_^l9 -"9ur}

be s systems of functions -where each iii is a function of qi- jets defined

on a neighbourhood of Xqi. If each system S0 is independent of 0

over XQ (1^/9^5) and if every u^S& is a relative integral of J9i(^30)

at Xqt, then 0q(u1, '-,ur) is involutive at XQ.

If furthermore r1=/jt1, rz — rl=]LLz,'-,r — rs-.}=/is, then the charac-

teristic module of 0q(u1, • • • , ur) at X0 admits the reduced primary
V

decomposition Pi Qj(Xo) in

Proof. We may assume that q1 is the smallest one of the numbers

qt. By Theorem V, 0qi (u^ is involutive at Xqi, and its characteristic
V

module at Xqi admits the primary decomposition A/i fl { Pi Q/ (Xo) } where
J=2

N! is either the total module or a ^ (XQ) -primary submodule such that

/l(Nl\L(X^))=/JL1 — \. We readily see that the conditions (H — 1) and

(H — 2) are satisfied for @qi (z^) at Xqi. Let qk be the smallest one of

the numbers qt except qlm For brevity we write h = qk. When uk^Sly

it follows from the assumptions that uk is independent of 0qi(u^ at Xh.

Suppose uk^Sff with 0=^=1. We set zk(X) — nh^u^Lh(X). The assump-

tion that uk is a relative integral of ^(^) independent of 0 at Xh implies

that zk(X0)^Ml(XQ) and SP^(X0) zk (X0) C M(X0) (cf. the discussion

in the proof of Proposition 7, in particular, (24) and (26)). By the

same reasoning as in the proof of Proposition 6 in § 8, we deduce from

these that zk (X0) £ Q0 (X0) and zk(X^) ^ fl Qj(X0). It follows that zk-
j^e

(Xo) does not belong to the characteristic module of 0qi (u^ at X91. This

means that uk is independent of 0qi(u^ at Xh. Thus, in any case, we

can apply Theorem V. Hence we know that (Dh(ul9u^) is involutive at

Xh and its characteristic module at Xh is given by A/"/ 0 {D Qj(Xo)} or
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N! f! Np fl { 0 Qy(X0)} according as uk^.Sl or uk^S09 where the A^'s are
W, £

primary submodules such that /j(A/"/; L(X0)) =A — 2, fjL(Np; L(X<d) =fJL$

— 1. Proceeding step by step in the same way, we can complete the

proof of the assertion that 0q(uly • • • , # , • ) is involutive at X0. It also fol-
~ s

lows that its characteristic module at XQ is given by { 0 Q/} fl { fl Q.r
.7=1 J=S + 1

where the Q/ are primary sumbodules of L(X^) such that ju(Q/;

) =/*/— (ry — ry_i) (!</<:s) where r, = r, r0 = 0.

Suppose ry — r,--! = #y (l^jfrSs) . Then /« (Q/ ; L (Xn) ) = 0, that is, the

codimension of Q/nLh(XQ) in Lh(Xo) equals zero for large h;Q/r\Lh

(Xo) =Lh(X^) (cf. the definition of multiplicities in §1). Since Q/ is

primary in L(X^), H(Q/}=Q/ (see the beginning of §3). Combining

these, we conclude that the submodules Q/ must be the total module.

Consequently the last assertion is also valid. Q.E.D.

§ 10. The Method of Integration

Suppose that 0 is involutive at XQ and the characters 5 2 (X" 0 ) , - - - ,

sn (Xo) vanish. As usual, we identify a solution of 0 with the correspond-

ing ^-dimensional integral manifold of 2(@) in the space J1. By a p-

dimensional manifold in J\ we mean all along such a manifold 3Jfp that

(pl-i)* TY(3J(P) is of dimension p for each point X on "fftp. An integral

curve $ of 2 ($) is said to be non-characteristic if and only if no

spaces c(^j(X)) contain (p_i)*'TY($) for each Xe$. By the Cartan-

Kahler theorem (cf. Kahler [8], p. 26), there exists a unique analytic n-

dimensional integral manifold of 2($) passing through a given non-char-

acteristic integral curve. Thus the following Cauchy's problem possesses

a unique solution: "Find an 72-dimensional integral manifold of 2(0) pass-

ing through a given non-characteristic integral curve." Throughout this

section, by Cauchy's problem for 0 we mean the one just explained.

The problem to engage our attention is the following one arisen from

the classical method of integration: To reduce the solution of Cauchy's

problem for 0 to the integration of a completely integrable Pfaffian system.

(Refer to Goursat [6] and Forsyth [5] for the classical theory of inte-

gration. See also Kakie [9-10] for its recent development.)

Suppose Sj(XQ)=Q. Then 0 is completely integrable at X0
m, there
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passes a unique 72-dimensional integral manifold of ̂ (0) passing through

a given integral point sufficiently near X0. This manifold can be obtained

by integrating the system I,'($) which is completely integrable at XQ.

We shall exclude this trivial case in the following discussion.

The vanishing of $! (-Xo) means that the characteristic module M(X^)

of 0 at X0 coincides with the total module; M(X^) is a proper submodule

of L(Xo) if and only if s1^XQ) is positive. It is, however, the number

v of the components in the reduced primary decomposition of M(X0)

which is of importance in treating our problem.

Suppose that 0 satisfies the conditions (H —1) and (H —2) . Let us

distinguish the following two cases.

1°) The case -when v = 1: By Theorem IV in § 6, the differential

system 2((D) admits Cauchy-Cartan characteristics of dimension 77 — 1.

Moreover its Cartan characteristic system is given by the only one Monge

characteristic system of order / of 0. Let ^5 be a non-characteristic

integral curve of 2(0). The one-parameter family of (n~I) -dimensional

Cauchy-Cartan characteristic manifolds each of which passes through a

point of £y generates an ^-dimensional integral manifold 3Kn of 2(0)

(cf. Cartan [4], Chap. Ill, Goursat [7], §66). Since the Cartan charac-

teristic system is completely integrable (Cartan [4], Chap. Ill), the mani-

fold yjln is obtained by integrating a completely integrable Pfaffian system.

This fact may be stated as follows:

"Ifp=l, then the solution of Cauchy's problem for 0 can be

reduced to the integration of a completely integrable Pfaffian system"

2°) The case 'when v>l: It is this case that we must consider

to establish a method of integration. Let £y be a non-characteristic inte-

gral curve of 2(0). The curve Qf can be uniquely prolonged to a curve

Qf9 in Jq in such a manner that $q is an integral curve of 2(pq~l0)

and that Pl
q$q = % (q^l).

Let Xqi, "-.X^ be a grjet on /(#>«'-*0), • • - , a g^-jet on I(pq^-l0}

respectively such that pl
qiXqt = XQ and p%Xq*=Xq* for any pair {qi9 QJ}

with qt^qj (<?i, • ~,qv-i^l). We denote by XQ the g-jet on I(p*~l0)

determined by pq.XQ = Xqi (1^/^v —1), where <? = max{^; 1<^"<^ — 1}.

Let J($P!), • • • , J(^SV_!) be y —1 distinct Monge characteristic systems of

0 over a neighbourhood of XQ in 10.
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Our method of integration is stated as follows:

"If each 4($$i) possesses /^ + 1 functionally independent integrals

of order <^qp defined on a neighbourhood of Xqfi such that jj.& functions

of them form a system independent of 0 over X0 (l^jS^v —1), then

for any non-char act eristic curve ^ such that ^ passes sufficiently

near XQ, Cauchy's problem for 0 'with initial curve $ can be solved

by integrating a completely integrable Pfaffian system."

Applying Theorem VI in § 9, we can construct a new involutive

system admitting $q as an integral curve whose solutions are those of

0 and to which the method of integration stated in 1° can be applied.

The solution is obtained by applying to the new involutive system the

method explained in 1°. The proof is carried out quite easily in just

the same way as in the previous case (see Kakie [9], § 7), and hence

we omit the detail.

Some remarks concerning our method of integration are found in

the last section of our previous work [9].
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