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Notes on Minimality and Ergodicity of Compact
Abelian Group Extensions of Dynamics
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§ 0. Introduction and Definitions

W. Parry [5] introduced the notion of a G-extension of a topological

dynamics, where G is a compact abeliaii group, and gave necessary and

sufficient conditions for a G-exteiisioii of a minimal (respectively uniquely

ergodic) topological dynamics to be minimal (uniquely ergodic). In the

first part of this paper a proof of the Minimality Theorem of W. Parry

without his "simple free" condition is given. In the purely measure-

theoretic case W. Parry [6] introduced the notion of G-extension of type

fi, where tf" is an automorphism of G, and spectrally analysed it. In the

second part of this paper a necessary and sufficient condition for a G-

extension of an ergodic measure-preserving dynamics to be ergodic is

shown. As particular cases of this result we have well-known necessary

and sufficient conditions for a translation, a group-automorphism and an

affine transformation on a compact group to be ergodic.

Throughout, G and G will respectively denote a compact abelian

metric group and its character-group. An element f of G is called n-

periodic with respect to an automorphism 6 of G if f(J^J, -•, jfffn~1=^Y

and Yffn = Y (?^>1). A topological dynamics (X, 5) is a compact metric

space X, together with a homeomorphism S. A topological dynamics

(Xi, Sj) is conjugate to (X, S) if there is a homeomorphism r of X onto

X1 such that the diagram
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S
X - > X

commutes. A set F is 5-in variant if SF = F. An S-in variant closed set

F is 5-minimal if the only S-invariant closed subsets of F are F and 0.

(X, S) is minimal if X is 5-minimal. Denote respectively by C(X) and

C(X,K)9 the set of all continuous complex-valued functions defined on

X and the set of all functions in C(X) with absolute value 1.

A continuous G-action on X is a continuous map ^ of GxX onto

X such that ^ (g, ^ (h, x) ) = ^ (<7 A, .r) for x in X and g, 7z in G and x (X ^)

= :c for x in X where £ is the identity element of G. If the map ^

is understood we shall write gx for %(g, ^). If (X, S) is a topological

dynamics such that S commutes with the G-action (i.e. Sgx = gSx for

x in X and g in G) then S induces the homeomorphism Sf/ on the

G-orbit space X/G defined by S'G(x) =G(Sx} where G(^) = {gx; geG}.

If a topological dynamics (-Xi, SO is conjugate to the topological dynamics

(X/G,SX) we shall say that (X, S) is a G-extension of (-X^Si). (W.

Parry [5]).

A measure-preserving dynamics (J2, /£, ̂ ) (in this paper) is a Lebesgue

measure space (J2, /O , jj. (J?) = 1, together with a bimeasurable bijection

<p such that jtt(cpA) =jU(A) for any measurable set yi. For simplicity of

notation, expressions involving sets or functions will be stated disregard-

ing sets of measure zero. A measure-preserving dynamics (J2i, jttl9 (p^) is

conjugate to (J2, ju, <p) if there is a bimeasurable, measure-preserving

bijection r from (J?, JJL) onto (J3i, /^i) such that the diagram

commutes. (J2, /^, £?) is ergodic if every measurable function /with

=f((d) is constant. Denote by Lz(Q,/Ji) the set of all square-integrable

functions on Q. A measurable G-action on (J2, /^) is a measurable map
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% of GX@ onto & such that %(g, %(/&, fl))) =x(g/z, o>) for o) in £ and

g, h in G, %(e, .r) =x for a: in J2, and /*(%((?> ^)) =/^(^) for any measur-
able set vi and any g in G. If the map ^ is understood we shall write

go) for % (g, to). If ($, #, 0 is a measure-preserving dynamics such that

<pgu) = ff(g')(ptd for a) in $ and g in G for some automorphism (7 of G, then

(p induces the measure-preserving transformation q>' on the G orbit space

S/G. If a measure-preserving dynamics (Ql9 jul9 (p^) is conjugate to the

(S/G9 lla/G9<p'} we shall say that (.0,//, 0>) is a G-exteiision of type (7 of

(fi,,A,^). (W. Parry [6]).

§ 1. Minimality of a G-extension

Lemma 1. Let (X, S) be a G-extension of a minimal topological

dynamics. Then for any S-minimal set C, gC is S-minimal for any

g in G and X= U gC.
g^G

Proof. It is easy to see that gC is S-minimal for any g in G.

We denote by 7t the map from (X, S} to the minima] topological dynamics

(-Xi, 5j) defined by nx = "C~lG(x). The set U gC is closed and S-invariant
gee?

and the set T r ( U g C ) is closed and Si-invariant. From the minimality
gee

of (-Xi,Si) we have n(UgC)=Xl. Therefore we have \J gC = X.
g£G geG

q.e.d.

Lemma 2. Let Y be a compact topological space on 'which there

is a conti?mous G-action such that Y={gy\ geG} for some (any) point

y in Y. And let F be the set of all 7* in G such that there exists

an fr in C(Y, K) -with fr(gy) =r(flr)/r(y) f°r y in Y and g in G. Then
for h in G, 7* (Ji) = 1 for any 7* in F if and only if hy~y for any y

in Y. In particular, F'= {1} if and only if Y is one point space.

Proof. For/in C(Y) and f in G, put/r(;y)= jr({7)/({7~1:y)^g where

dg is the Haar measure 011 G, then fr(gy) = T(g)/r(y) and fr = 0 for f

not in F. Now 7 (h) =1 for any f in F, iff fr(hy) =fr(y) for y in Y,

any / in C(Y) and any r in G, iff Jr(g)
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for y in Y, any f in C(Y) and any 7 in G, iff f(hy) =f(y) for 3; in

Y, any / in C(Y). All these hold iff hy=y for y in Y. q.e.d.

Theorem 1. Z/££ (-X, S) be a G- extension of a minimal topolog-

ical dynamics. Then (X, S) is not minimal if and only if there

exists a Y in G, f=/=\ and f in C(X, K) such that f(gx) =r(g)f(x)

and f(Sx) —f(x) for any x in X and any g in G.

Proof. Note that the quotient space X/C is Hausdorff (and com-

pact) and apply Lemma 1 and Lemma 2. q.e.d.

Corollary I. (H. Fiirstenberg [2], W. Parry [5]). Let (X, S)

be a minimal topological dynamics and a, be a continuous G-valued

function defined on X. S is a homeomorphism of the product space

XxG defined by

S(x,g) = (Sx,a(x)g), Or, g) in XxG.

Then the topological dynamics (XxG,S) is not minimal if and

only if there exists a f in G, f=^=l and an f in C(X, K) such that

r(a(x))f(Sx) =f(x) for all x in X.

Proof. Consider the G-action g (x, h) = (x, gli) on XxG. (XxG,

S) is a G-extension of (X, S) . Corollary 1 follows from Theorem 1.

q.e.d.

§ 2e Ergodicity of a G-extension

Lemma 3. ( W. Parry [6] ) . Let (J2, ju, cp) be a measure-preserv-

ing dynamics such that p(ga)) =ff(g)(p(a)) for o) in Q and g in G for

some automorphism 6 of G.

Let Vr (reG) be the set of all fr in L2(J2, /j) such that fr(go))
= Y(g)fr(0)^ 'with a) in Q and g in G. Then

(1) L\®,IJL) =^®Vr (orthogonal suiri) and
reg

(2) if fr is in Vr then frcp is in Vrff .
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Proof. (1) For an fr in Vr and an fr in Vr we have

- r (0) rCFT J/r

If 7=^=7', 7 (00 7'(00 ¥=1 for some g in G, and so fr is orthogonal to fr.

Suppose that / in Z/2(J2, ju) is orthogonal to any function in (J Vr. Put
re3

fr(a)) = I Y(g}f(jg~l(ti)dg for 7 in G, then fr is in Vr. We have

Hence fr(o)) =0 for &) in $ and 7 in G, and thus /(co) =0 for a) in

Assersioii (2) follows from the equation

Theorem 2. L#£ (J2, //, ^) ^^ a G- extension of type 0" of an er-

go die measure-preserving dynamics. Then (p is riot ergo die if and

only if there exists a positive integer n and a Y in G, n-periodic with

respect to 0~ and not equal to 1, and an fr in L2($, /O, /^O, such

that fr((p
nco) =/r(ft)) and fr (go)} =Y(Q^fr(0)^ f°r ® ™ @ and Q in G.

Proof. Let fr be a function w^hich satisfies the conditions of Theorem

2. Put /(o))-/r(co)+/r(^)4-.-.-f/r(^~1o)). Then / is in Vr@Vrff@

•••0V r f f n-i and f((pa)} —f(ti>) for (0 in &. That is, f is not constant

and ^-invariant. Hence <p is not ergodic. Conversely, let f be a not

constant function drawn from L2(@,/.t) such that/<^=/, and let f= ^ ®fr
reS

with fr in Vr be the direct sum decomposition of f. Then f(p = ̂  ®fr<P
r<=3

where fr<p is in V7ff. From fq>=f we have fr(p=frff and || fr \\LZ = \\ frff ||L.

for 7 in G. From the orthogonality of //s we have fr = Q if 7 is not

periodic w.r.t. CT. Since any (^-invariant, G-in variant function is constant
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from the ergodic assumption, there exists a positive integer n and an

^-periodic 7- in G, 7-=^=! such that/r=^0. We have /r (<pnu)) =/r<r»(ft)) =/r(ft))

for co in J2. q.e.d.

Corollary 28 Let ($, /*, 0 &e an ergodic measure-preserving

dynamics, a (a)) be a measurable G-valued function an d (J be an auto-

morphism of G. (p is a measure-preserving transformation of the

product J2xG defined by

^(a>,f lO = (pa>,a(a>)<r(00), (X 00 i n £ x G .

Then (&XG, yxdg, $} is not ergodic if and only if there exists a

positive integer n and a f in G, n-periodic -with respect to 6" and not

equal to 1, and an f in Lz ($ , /S) , f=^=Q such that r(a((pn~l(£>)$(a((pn~zo)))

for o) in ®.

Proof. Consider the G-action g (a), h) = (a), gh) on Si X G. (Q X G,

p. X dg, tp) is a G-extension of type 0" of (J2, /£, #?) . Corollary 2 follows

from Theorem 2. q.e.d.

Corollary 3. (1) WA£^ (J of Corollary 2 is the identity, (p is

not ergodic if and only if there exists a 7 in G, f=f=19 and a measur-

able function f such that | /(ft)) | =1, and 7" (tt (ft)) )/($%)) = /(ft)) /or ft)

m 0. (H. Anzai [1]).

(2) When a: (ft)) =/& /or a) m J2 a^<f G 75 co?inected, <p of Corollary

2 z's TZO^ ergodic if and only if (i) there exists an n^>2 and an n-

periodic r in G, or (ii) there exists a \-periodic f in G, 7"=^!, and

a measurable function / such that |/(ft))| —1 a;?^ 7"(A)/(^ft)) =/(ft)) /or

a) z";z J2, ^/ia^ ^5, l"(Ji)~l is in the point spectrum of <p.

Proof. (1) Clear from Corollary 2.

(2) If ?z^>2 and f be ^-periodic, put fi = ~- Then jl is in G, ft^l

and Ti(T7lz:=7'1. Let TZj be the period of 7^; we may represent n as 72^
r pffk I r ffk \ ?

where ^? is a positive integer. If p
 = I I — 1 for a positive integer

7"i \ Ti '
T ^fc

k, we have —— = 1 from the connectedness of G. This means that ftp
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is also /^-periodic. Since j* (htJh-'G^K) = ri(hGh-'6n~l1i) = 1,

(Jni~l1i)f((pni~lu)) =/"(ft)) for any constant function f. The rest of the

proof is obvious. q.e.d.

Corollary 4. (1) The affine transformation gi-»A(T(g) on connect-

ed G is not ergodic if and only if there exists an n-periodic ? in

G zvith n^>2 or there exists a \-periodic J in G, 7^1 with y(h) =1

(F. Hahn [3]).

(2) The group automorphism gM->(7(gr) on G is not ergodic iff there

exists an n-periodic f in G, f=/=\. for some 77^>1. (P.R. Halmos [4]).

(3) The translation gl-»hg on G is not ergodic iff there exists a J

in G, 7-^=1 'with 7' (&)=!.
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