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§ 0. Introduction and Definitions

W. Parry [5] introduced the notion of a G-extension of a topological
dynamics,'where G is a compact abelian group, and gave necessary and
sufficient conditions for a G-extension of a minimal (respectively uniquely
ergodic) topological dynamics to be minimal (uniquely ergodic). In the
first part of this paper a proof of the Minimality Theorem of W. Parry
without his “simple free” condition is given. In the purely measure-
theoretic case W. Parry [6] introduced the notion of G-extension of type
0, where ¢ is an automorphism of G, and spectrally analysed it. In the
second part of this paper a necessary and sufficient condition for a G-
extension of an ergodic measure-preserving dynamics to be ergodic is
shown. As particular cases of this result we have well-known necessary
and sufficient conditions {or a translation, a group-automorphism and an

affine transformation on a compact group to be ergodic.

Throughout, G and G will respectively denote a compact abelian
metric group and its character-group. An element 7 of G is called n-
periodic with respect to an automorphism ¢ of G if yo=£y, -+, y0" ‘57
and 70"=7y (n=1). A topological dynamics (X, .S) is a compact metric
space X, together with a homeomorphism S. A topological dynamics
(Xi, S;) is conjugate to (X,S) if there is a homeomorphism 7 of X onto
X, such that the diagram
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commutes. A set F is S-invariant if SF=F. An S-invariant closed set
F is S'minimal if the only S-invariant closed subsets of F are F and @.
(X, S) is minimal if X is S-minimal. Denote respectively by C(X) and
C(X, K), the set of all continuous complex-valued functions defined on
X and the set of all functions in C(X) with absolute value 1.

A continuous G-action on X is a continuous map y of G XX onto
X such that ¥ (g, x (A, x)) =x(9h,x) for z in X and ¢, A in G and y (e, x)
=z for x in X where e is the identity element of G. If the map ¥
is understood we shall write gz for y(g,z). If (X,S) is a topological
dynamics such that S commutes with the G-action (i.e. Sgzx=g¢gSx for
z in X and ¢ in G) then S induces the homeomorphism S’ on the
G-orbit space X/G defined by S'G(x) =G(Sx) where G(x) = {gx; g=G}.
If a topological dynamics (X, S;) is conjugate to the topological dynamics
(X/G, S") we shall say that (X,S) is a G-extension of (X, S;). (W.
Parry [5]).

A measure-preserving dynamics (£, #, ¢) (in this paper) is a Lebesgue
measure space (&, x), #(£) =1, together with a bimeasurable bijection
¢ such that u(pd) =u(A) for any measurable set 4. For simplicity of
notation, expressions involving sets or functions will be stated disregard-
ing sets of measure zero. A measure-preserving dynamics (@i, t, ¢1) is
conjugate to (&, 4,¢) if there is a bimeasurable, measure-preserving

bijection r from (&£, #) onto (£, #) such that the diagram

2 2 0

rl lr
-91 _—> .Ql
&1
commutes. (8, /#, ¢) is ergodic if every measurable function f with f(¢w)
=f(w) is constant. Denote by L*(£, #) the set of all square-integrable

functions on #£. A measurable G-action on (£, 4) is a measurable map
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y of GX2 onto & such that (g, y(h,0)) =y(gh,0) for w in £ and
g, h in G, y(e,x) =z for x in &, and u(y(g, 4)) =u(4) for any measur-
able set 4 and any ¢ in G. If the map y is understood we shall write
go for y(g,w). If (2,4, ¢) is a measure-preserving dynamics such that
ogu=0(g)pw for w in £ and ¢ in G for some automorphism ¢ of G, then
¢ induces the measure-preserving transformation ¢’ on the G orbit space
2/G. 1f a measure-preserving dynamics (£, th, ¢;) is conjugate to the
(R/G, tto, ') we shall say that (£, 4, ¢) is a G-extension of type 0 of
&1, 1, 0). (W, Parry [6]).

§ 1. Minimality of a G-extension

Lemma 1. Let (X,S) be a G-extension of a minimal topological
dynamics. Then for any S-minimal set C, gC is S-minimal for any
g in G and X=U gC.

ge6

Proof. It is easy to see that ¢gC is S-minimal for any ¢ in G.
We denote by 7 the map from (X, S) to the minimal topological dynamics
(X1, S;) defined by mr=1"'G(x). The set U gCis closed and S-invariant
and the set n(vLéggC) is closed and Sl-invfreiant. From the minimality

of (X;,S;) we have n(U gC) =X,. Therefore we have U gC=X.
g6

9@

g.e.d.

Lemma 2. Let Y be a compact topological space on which there
is a continuous G-action such that Y=1{gy; 9= G} for some (any) point
yin'Y. And let I' be the set of all 7 in G such that there exists
an f, in C(Y, K) with f,(9y) =7(@)f;(y) for v in Y and g in G. Then
Jor hin G, y(h) =1 for any v in I' if and only if hy=y for any vy
in' Y. In particular, I'={1} if and only if Y is one point space.

Proof. For fin C(Y) and 7 in G, put f5(y) = Jr(g)f(g"ly) dg where
dg is the Haar measure on G, then f,(gy) =7(9)f;(y) and f,=0 for 7
not in I'. Now y(h) =1 for any 7 in I, iff f;(hy) =f;(y) for v in Y,

b

any £ in C(Y) and any 7 in G, iff [1(@) Ufg™h) —F(g™»)}dg =0
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for vy in Y, any f in C(Y) and any 7 in G, iff S(hy) =f(y) for y in
Y, any f in C(Y). All these hold iff Ay=y for y in Y. g.e.d.

Theorem 1. Lez (X,S) be a G-extension of a minimal topolog-
ical dynamics. Then (X,S) is not minimal if and only if there
exists a v in G, =1 and f in C(X,K) such that f(gx) =7r()f(x)
and f(Sx) =f(x) for any x in X and any ¢ in G.

Proof. Note that the quotient space X/C is Hausdorff (and com-
pact) and apply Lemma 1 and Lemma 2. g.e.d.

Corollary 1. (H. Firstenberg [2], W. Parry [5]). Let (X,S)
be a minimal topological dynamics and o be a continuous G-valued
Sfunction defined on X. S is a homeomorphism of the product space
XX G defined by

S(z,9) = (Sz, a(x)g), (x,9) in XXG.

Then the topological dynamics (XXG,S') is not minimal if and
only if there exists a 7 in G, 11 and an f in C(X,K) such that

r(a(x))f(Sx) =f(x) for all x in X.

Proof. Consider the G-action g (x, h) = (x,gh) on XXG. (XXG,
S) is a G-extension of (X,S). Corollary 1 follows from Theorem 1.
q.e.d.

§ 2. Ergodicity of a G-extension

Lemma 3. (W. Parry [6]). Let (2,4, ¢) be a measure-preserv-
ing dynamics such that ¢(gw) =0(9)¢(w) for v in £ and g in G for
some automorphism o of G.

Let V, (reé) be the set of all f, in L*(2, u) such that f,(gw)
=r()fr(w) with w in & and g in G. Then
1) L2, w =ZA(-DVT (orthogonal sum) and

reé

(2) if f; is in V, then frp is in V,,.
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Proof. (1) For an f; in V, and an f,. in V,. we have

[fr@r@anw = [f@of Gordnw

=17 [£Fr @) du).

If v=£7', v(9)7' (9) =*1 for some ¢ in G, and so f, is orthogonal to f,.

Suppose that f in L*(2, #) is orthogonal to any function in U V,. Put
reé

fr(w) = jr(g)f(g“a)) dg for 7 in G, then f, is in V,. We have

[fwi@anw = [fw (107G d dnw)
= ”fr (g70)f (g7 '0) du(w) dg

= [ F@mw=o.

Hence f;(w) =0 for w in £ and 7 in G, and thus f(w) =0 for w in 2.

Assersion (2) follows from the equation

S (pgw) =£(6(9) pw) =7(0(9))f; (pw). q.e.d.

Theorem 2. Let (8, u,p) be a G-extension of type ¢ of an er-
godic measure-preserving dynamics. Then ¢ is not ergodic if and
only if there exists a positive integer n and a 7 in G, n-periodic with
respect to 0 and not equal to 1, and an f, in L*(2,n), /50, such
that 1,(¢"w) =f,(w) and f,(gw) =7(g)f; (@), for w in £ and g in G.

Proof. Let f; be a function which satisfies the conditions of Theorem
2. Put f(w) =1 () +f;(g0) + -+, (¢"'w). Then f is in V,V,,D
<@Vt and f(ew) =f(w) for w in £. That is, f is not constant
and g@-invariant. Hence ¢ is not ergodic. Conversely, let f be a not
constant function drawn from L*(£, ) such that fo=f, and let f= ZA(—BfT

re
with f; in V; be the direct sum decomposition of f. Then fo=3  ®f¢

reé

where f¢ is in V,,. From fo=f we have f,o=f;s and |file=|Frelre
for 7 in G. From the orthogonality of fys we have f,=0 if 7 is not

periodic w.r.t. . Since any g¢-invariant, G-invariant function is constant
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from the ergodic assumption, there exists a positive integer z» and an
n-periodic 7 in G, y=~1 such that f+70. We have f;(¢"0) =frs (0) =F(0)
for v in 2. g.e.d.

Corollary 2. Let (2,u,9) be an ergodic measure-preserving
dynamics, a(w) be a measurable G-valued function and 0 be an auto-
morphism of G. § is a measure-preserving transformation of the

product & XG defined by
P(w,9) = (o, a(@)0(), (»,9) in 2XG.

Then (2 XG,uxdg,y) is not ergodic if and only if there exists a
positive integer n and a 7 in @, n-periodic with respect to ¢ and not
equal to 1, and an fin L*(L, 1), f50 such that 7(a(¢" " 'w)o(a (" *w))
0" N a (@) f(g'w) =f(0) for v in L.

Proof. Consider the G-action ¢g(w, k) = (w,gh) on 2XG. (£XG,
uxXdg,?) is a G-extension of type 0 of (&, u, ). Corollary 2 follows
from Theorem 2. q.e.d.

Corollary 3. (1) When ¢ of Corollary 2 is the identity, § is

not ergodic if and only if there exists a 7 in 6, r==1, and a measur-
able function f such that |f(w)| =1, and v(a(w))f(pw) =Ff(w) for w
in £. (H. Anzai [1]).
(2) When a(w) =h for w in £ and G is connected, § of Corollary
2 is not ergodic if and only if (i) there exists an n=2 and an n-
periodic v in G, or (ii) there exists a 1-periodic y in 6, 771, and
a measurable function f, such that |f(w)| =1 and 7(h)f(ew) =f(w) for
w in 8, that is, y(h) ™' is in the point spectrum of .

Proof. (1) Clear from Corollary 2.
(2) If =2 and 7y be m-periodic, put 7’127;‘—0-‘. Then 71, is in C\, 115-1
and 1;,0"=7. Let n, be the period of 7;; we may represent n as 2.}

. e r.Po" 7.0%\? e
where p is a positive integer. If 17’_?: <IT_> =1 for a positive integer
1 1

k
k, we have %:1 from the connectedness of G. This means that 7,?
1
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is also my-periodic. Since 7,*(hCh---6™'h) =7, (ACh---6"'h) =1, 7> (hCh---
oML f(¢'w) =f(w) for any constant function f. The rest of the

proof is obvious. g.e.d.

Corollary 4. (1) The affine transformation g\—>ho(g) on connect-

ed G is not ergodic if and only if there exists an n-periodic 7 in
G with n=>2 or there exists a l-periodic 1 in @, r=+1 with y(h) =1
(F. Hahn [3]).
(2) The group automorphism g\—>0(g) on G is not ergodic iff there
exists an n-periodic v in G, 71 for some n=1. (P.R. Halmos [4]).
(8) The translation gi—hg on G is not ergodic iff there exists a 7
in G, 11 with 7(h) =1.
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