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Relative Entropy for States of
von Neumann Algebras II

By

Huzihiro ARAKI*

Abstract

Earlier definition of the relative entropy of two faithful normal positive linear {unc-
tionals of a von Neumann algebra is generalized to non-faithful functionals. Basic
properties of the relative entropy are proved for this generalization.

§ 1. Introduction

For two faithful normal positive linear functionals ¢ and ¢ of a von
Neumann algebra M, the relative entropy S(J/@) is defined and its prop-
erties are proved in an earlier paper [1].

When M is a finite dimensional factor, it is given by

1.1 S(¢id) = (log 0s—1log 0,)

where 04 and p, are density matrices for ¢ and ¢. If ¢ and ¢ are
faithful, 0, and p, are strictly positive and (1.1) clearly makes sense.
However the first term of (1.1) always makes sense (under the conven-
tion A log A=0 for A=0) and the second term is either finite or infinite.
Therefore (1.1) can be given an unambiguous finite or positive infinite
value for every ¢ and .

We shall make corresponding generalization for an arbitrary von
Neumann algebra M and any normal positive linear functionals ¢ and ¢.
We shall also define the relative entropy of two positive linear functionals
of a C*-algebra 9 and give an alternative proof of a result of [2].
For the latter case, we relate the conditional entropy introduced in [3]

with our relative entropy.
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The relative entropy for non-faithful functionals will be shown to
satisfy all properties proved for faithful functionals in [1]. Some of
these properties will be applied to a discussion of local thermodynamical
stability in [3].

For simplicity, we shall assume that M has a faithful normal state

although many of the results are independent of this assumption.

§ 2. Relative Modular Operator

Let @ and ¥ be vectors in a natural positive cone V' ([4], [5], [6])
for a von Neumann algebra M on a Hilbert space H and let ¢ and ¢
be the corresponding normal positive linear functionals of M. Let s%(2)

denote the R-support of a vector £, where R is a von Neumann algebra.

Definition 2. 1. Operators S;y and Fy, with their domains
D(So.y) =M¥ +(1—s"¥))H,
D(Foy) =M¥7+(1—-s"¥))H,
are defined by
(2.1) So,p{2¥ + 82} =s" (W) z*0,
(2.2) Foul{z'¥+92} =s" (@) z'*0,
where xeM, x’eM’, s" (¥)2=0, s" (&)L =0.

Lemma 2.2. S,y and F, v are closable antilinear operators.

Proof: U x¥+8&=2¥+82, for zx,x,€M and £,82,€(d—
s (@))H, then 2,=2, and (x;,—x,)s”"(¥) =0, so that s*(¥)z,*0=
sY(@)x,*@. This shows that S, is well-defined. Then it is clearly
antilinear. Similarly F , is an antilinear operator.
Let xeM, 2’ e M, s" (@) 2=s"(¥)L2 =0. Then
(So,v{x¥ + 2}, {2’V +2'}) = (%0, 2'7)
= (Fou{x'¥ + 2}, {27+ 92}).

Since Ss.» and F,, have dense domains, this shows the closability of
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S,p_yr and Fg,yr.

Definition 2. 3. The relative modular operator 4y v is defined by
(2. 3) do.v= (Sw,y') *gw,yf

where the bar denotes the closure.

We denote by J the modular conjugation operator associated with

the natural positive cone V.

Theorem 2. 4.
(1) The kernel of dp.y is 1—s" (¥)s™(0).
(2) The following formulas hold, where the bar denotes the closure.

(2.4) Sw. v =J(4o.0)"", Fm.w = (do.v)"?J,
(2. 5) JAp,wJAw'W:dw’WJAy’mJ: SI'I’ (?F) Sﬂl(@).
(3 If s"(®) | s"(@,), then

(2 6) Awl—w,,w:Aml,y"*‘Amg.w .

Proof:
(1) and (2): First we prove Theorem for the special case O=¥.

The domain of Sy, is split into a direct sum of 3 parts:

D(Spy) =s"T )MV +A—s"@))M¥ +(1—s"(¥)) H.
Accordingly, we split Sy as a direct sum

Srr=S8rs DODO
where Sy, is the operator on s*(¥) s¥ (¥)H defined by
Sy 2V =20, res"(W)Ms" &)

and the splitting of the Hilbert space is

H=s"(T)s" (@) HPA—s"@))s" (@) HPA—s"¥))H.

Since ¥ is cyclic and separating relative to s (%) Ms" (¥) in the subspace
sY@Ys™ (WY H,

(2. 7) ﬁ’yf,r;':iyf.y'@() @O
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where dyy is the modular operator of ¥ relative to s (%) Ms*(¥).
Since” s"(@F) =J s"(@)J, J commutes with s*(¥) s (%) and hence
leaves s”(¥)s™ (¥) H invariant. The restriction of J to this subspace
is the modular conjugation operator for ¥, as can be checked by the
characterization of J given in [4]. Therefore the known property of
the modular operator for a cyclic and separating vector implies (1) and
(2) for the case ¥ =0.

To prove (1) and (2) for the general case, we use the 2X 2 matrix
method of Connes [7]. Let 1\7=M®M with M, a type I, factor on
a 4-dimensional space K, let u; be a matrix unit of A, let e; be an
orthonormal basis of K satisfying w#ye,, =0;es, let Jx be the modular

conjugation operator of e; +e, (ie. Jxe;=e;), and let

(2.8) 2=3"2,Re;;
with 2,=¥ and £,=0. From definition, we obtain
2.9 s @) =20 s"(2) Quyy

sST(R) =32 s (2) QT xuz T
1 ®uii) Se.o (1®uﬂ) = S.o,, .Qi®uiiJKujj .

Since the modular conjugation operator J for the natural positive cone
of M containing V(R (e;+e,) is given by J&XJk, we obtain
(2 10) Jg,g(].@JKuiiJKuﬁ) ZA;;I’ 91®JKuiiJKujj .
Hence (1) and (2) proved above for 4g , imply the same for 4, » and 4y 4.

(3) If s"(®,) is mutually orthogonal for j=1, 2, then the same
holds for s (@;) =Js"(@;)J. By (1) and (2), the range projection of
S@,y iS

Js™ () s (@;) T=s" (&) s™ (@;)

and is mutually orthogonal for j=1,2. The same holds for the corange

projection. From definition we obtain
(2.11) So, 050 =S0, v +So, v -
Hence we obtain (2. 6). Q.E.D.

D This follows from J¥=Y.
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§ 3. Relative Entropy for States of von Neumann Algebras

Let M,%,d,¢ and ¢ be as in the previous section. Let E;** denote
the spectral projections of 4y, s(w) denote the support of the positive

linear functional w.

Definition 3.1. For ¢=£0, the relative entropy S(¢/¢) is defined by

- j“;log (0, ES70) i s($)=s(h).

S(9/¢)

=+ o0 otherwise .

Lemma 3.2. S(J/¢) is well defined, takes finite value or + oo and

satisfies

(3.1 S/ =—¢ (D) log{P(s(#)) /¢ (D)} .

Proof: First consider the case s(¢)=s($). Since s"(¥)=s()
=>s(¢) =s"(0), we have S, , ¥ =0.
Since JO=0, we have (dy.»)"*¥=0. Hence

(3.2) L: 27d(0, E2T0) = (7, (1—E%)T)
=@, s"@)s"(O)¥)

=, s(HP)=¢(s($))=1.

This implies that the integral defining S(¢/¢) converges at the lower
end. Hence it is well defined and takes either finite value or -+ oo.

Since s(¢) =s(¢) implies
j d(0. ES*0) = (0.5 () s (0)0) =4 (1),

d(®, E>*®)/$(1) is a probability measure on (0, +o0). By the con-

cavity of the logarithm, we obtain

S@/H == [ log1d(@, ES0) /3 (1)

=—pog! [T 1a . Bov0) 161}
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=—=¢ (1) log{p(s(4))/d(1)}.

The statement of Lemma holds trivially for the case where s(J)=s(¢)
does not hold.

Remark 3.3. The definition of S(J/¢) uses the (unique) vector
representatives ¥ and @ in a natural positive cone V. The value S(¢/¢),
however does not depend on the choice of the natural positive cone V
because of the following reason. If V’ is another natural positive cone,
then there exists a unitary w’ & M’ such that V' =w'V. ¥ =w'¥ and
@' =w’'0® are representative vectors of ¢ and ¢ in V’. We then obtain

dory.=w Ay y (w’)* and hence S(¢/@) is unchanged.

Remark 3.4. By Theorem 2.4 (2), we have
{log 4o,¢ + J(log 4y,) J} s™ (@) s (¥) =0.

Hence, for the case s(¢) =s(¢), we obtain the following expression ([1]):

(3.3) S(¢/¢) = — (@, log 4y,40).

Remark 3.5. If s(¢)=s(¢), then dp,y is 0 on (L —s(P)JIs(y)J)H
and coincides with the relative modular operator for s(¢)Ms(¢) on the
space s(¢)Js(¢)JH, where @ and ¥ are cyclic and separating for
s()Ms(¢). Hence S(¢/¢) in this case is the same as the relative en-

tropy of two faithful normal positive linear functionals ¢ and ¢ of

s(¢) Ms ().

Theorem 3. 6.

Q) If ¢(1) =¢(1) >0, then S(P/$)==0. The equality S(p/$) =0
holds if and only if =4¢.

(2) If s($) 1 s5(¢s), then

(3.4 S(P/$1) +S(P/$2) =S (/b1 +s).
(3) For 1, 2,>0,
(3- 5) S(ll‘:b//lzﬁb) :/IZS((/’/QS) —/Izﬁb (1) log (/11//12) .

(D If yh=¢s, then
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(3.6) S/ =S(e/b).

Proof.

(1) Since ¢(s(¢))<¢ (1), the assumption (1) =¢(1) and (3.1)
imply S(¢/$)=0. Furthermore, the equality S(¢/$) =0 holds only if
s(P)=s(@) and ¢(s($)) =¢(1). We then have s(¢) =s(¢J); hence Re-
mark 3.5 and the strict positivity of S(¢/¢) for faithful ¢ and ¢ ([1])
imply ¢ =¢ also in the present case. Conversely ¢ = implies S(J/¢) =0.

(2) (3.4) follows from (2.6) and Definition 3. 1.

(3) The vector representatives for Ay and A,¢ differs from those
for ¢ and ¢ by factors (4;)'* and (4,)* respectively. Hence this induces
a change of S, » by a factor (1,/4,)'? and a change of 4, by a factor
(2:/4). The latter proves (3.5).

(4) If s(P)=s5(¢) does not hold, then (3.6) is trivially true.
Hence we assume s(¢,) =s(¢). Since {,=>¢, implies s(¢)=s(¢s), we
also have s(¢,)=>s(¢). The following proof is then the same as that
for the case of faithful ¢’s and ¢:

Denoting representative vectors of ¢, ¢, and ¢ in the natural positive

cone by 7;, ¥, and 0, respectively, we obtain
I (4o, o) *20|* = ||.S,,.0x0|*= || s (¢) 2*¥ |*
= (zs(B) ) = e (x5(8) %) = (dv,,0) 20|*,

for all xeM. Since both (dy,e)"* vanish on (s"(0)H)* and since
Mo+ (1—s" (0)) H is the core of (dy,0)"? it follows that the domain
of (dy,.e)'® is contained in the domain of (4y,,)'* and for all 2 in the

domain of (dy, o)
| (4r,,0) 21 =] (4v,.0) 2]

Hence
| (o7 Q1= (e, +7) 2]

for all such £ and »>0. Taking 2= (4y, o +7) *2’ with an arbitrary £2’,

we find
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” (Ayz,w+r)1/2(AW1,w+r) —1/2“§1 i

Taking adjoint operator acting on 2= (dy,,+7) "2’ with an arbitrary
2, we find

| (o +7) 29 '] (dr,o 4 7) 22|
and hence
&7 (dro +7) S (dryo+7)
By (3.3) we have

(3.8) S(¢y/P) = — Lw{Lm[(lJrr)‘l—(/lnLr)‘l]dr}d(a), E+°0)

— Lm(@,[(7~+4¢,,0)“~(1+r)“]a))dr

where E,*#® is the spectral projection of 4y, o and the interchange of
r- and A- integrations are allowed because the double integral is definite

in the Lebesque sense (finite or +o0) due to
L Ad(@, EF+°0) = || (d,.0) *0|*= || s (D) ;<< oo

The equations (3.8) and (3.7) imply (3.6). Q.E.D.
The following Theorem describes the continuity property of S(¢/$)

as a function of ¢ and ¢. (It is the same as the case of faithful ¢
and ¢.)

Theorem 3. 7.

Assume that lim|¢,—@| =lim|¢,—¢|| =0.

(1) liminf S(Yo/¢.) =S(Y/P) (the lower semicontinuity).
(2) If AMpo=¢, for a fixed A1>0, then

lim S(¢o/Ba) =S(/9).
(3) If ¢, is monotone decreasing, then

lim S(¢o/¢) =S(4/P).

We shall give proof of this Theorem in the next section. Using
this theorem in an approximation argument, we obtain the next theorem

from the same theorem ([1]) for faithful functionals.
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Theorem 3. 8.
(1) S/d) is jointly convex in  and .
(2) Let N be a von Neumann subalgebra of M and Eyw denotes

the restriction of a functional ® to N. Then
3.9 S(Exp/Ex$) <S($/¢)

1" N is any one of the following type:
(@) N=W' NM for a finite dimensional abelian x-subalgebra 2 of
M.
(B)  M=NRN.,.
(1) N is approximately finite.

Proof.
(1) We have to prove the following

(3.10) S(g ljﬁb:‘/jz:l Aid5) §§ 23S (/1)
for 4,>0, 2°4=1. Let =2 4, b= 4¢;,, o=¢+¢@. By Remark 3.5,
S+ e0/b+10) S Sy +20/6;+10)

follows from the convexity of S(o/@,) for faithful ¢, and ¢. We first
take the limit 7— +0 using Theorem 3.7 (2) and then take the limit
¢—+0 using Theorem 3.7 (3) to obtain (3. 10).
(2) Let w, be a faithful normal state of M and let w=w,+¢+¢.
Then

S(Ex(p+ew) /Ey(d+70)) <SP +ew/d+7w).
Again Theorem 3.7 (2) and (3) yield (3.9). 0Q.E.D.

The following Theorem describe some continuity property of S(Ew)/
Ey$) on N.

Theorem 3.9. Let N, be monotone increasing neil of wvon
Neumann subalgebras of M generating M.
1) liminf S(Ex/Ex,$) =S(/8).
(2) If N, is an AF algebra for all o, then



182 HUZIHIRO ARAKI

lim S(Ey, ¢/ Ey,$) =S(¢/9).

Proof of (1) and (2) will be given in the next section.

(2) follows
from (1) and Theorem 3.8 (2) (7).

Let ¢ be a faithful normal positive linear functional of M correspond-

ing to a cyclic and separating vector ¥ and h=h*& M. Let ¥ (h) denote
the perturbed vector defined by (4.1) in [8].

Let ¢" denote the per-
turbed state defined by

G(x) = ¥ (h), z¥(h)), z=DM.

Theorem 3. 10.

S/ d) =—d(h) +S/9),
S(@/¢") =" (h) +S(8"/¢") .

§ 4. Some Continuity Properties

We first prove some continuity properties of the relative modular
operators.

Lemma 4.1. If lim |¢,—d|| =lim|.—¢| =0, then

(4.1 Hm@r+ (dogr) V) 5™ (@) = (r+ (do.e) ) 7's™ ()

for v>0 and the convergence is uniform in r if r is restricted to
any compact subset of (0, o0), where O,, ¥,, O and ¥ are the repre-

sentative wvectors of G., (o ® and  in the positive natural cone,
respectively.

Proof. The condition lim||¢,— @] =lim|¢,— | =0 implies (Theorem
4(8) in [4])

4. 2) lim|0,—@| =lim|¥,— 7| =0.
For '€ M’, we have

lim||s" (¥ )2’V —2'¥ |

=lim|s" @)z’ @ —¥,) +x' ¥ .—¥)|=0.
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Hence
(4.3) lim s™(¥,) s" (&) =s"(¥).
For x&M s"(¥), we have
I (dog.va) *2¥ o — (do, ) *z¥ |
= (dog.ve) *2¥ o — I (do,r) ¥ ||
=|s" (¥ ) x*0,—x*0|
<[ (" @) s" @) —s" @) x*0| + || s (¥ ) x* (0, — D) | 0.
Hence
{01+ (dogwa) 17 = [1+ (do,0) "1} [1 + (do.0) "1 27|
=1+ (dogw) "1™
XA{x (W =¥ o) + [ (do.0) *2¥ — (dop,va) *2¥ ]} +x (T =) |
2z @ =) |+ | (douv) *x¥ o= (do.9) *x¥| =0
Since M s"(T)¥+ (1—s"(F))H is a core for (4s)"? the vectors
L+ (o)) 2¥, x€Ms"(¥)
are dense in s (¥)H. Since
1T+ (dog,va) 17 I=1
is uniformly bounded, we obtain
Hm [+ (dogve) V1 7™ () = [+ (4o.) V"1 7™ (F).
The rest of the proof is standard. For >0 and 4,=4%=0,
4. 4) (r+4,)'=R,(4,) A+4,)"
with
R,(4)={1+(—D@Q+4)7}7,
IR, (4a) | =max{1, 77"}.

If 4=4*%=0, lim(1+4,) 's= (1+4)'s for a projection s commuting with
4, then the formula

(r+d4) 7= (r+4) 7 =R, (4){(A+4) "= A +DH7}
R, (4) (r=D{A+4) "= A+H TR (D A+ DT



184 HUZIHIRO ARAKI
implies
lim{(r+4,) '—(r+4)}s=0,

where the convergence is uniform if r is restricted to any compact subset
of (0, ). By applying this result to 4,= (dop v,) "’ 4= (do)"? and
=s"(¥), we obtain the Lemma. Q.E.D.

Proof of Theorem 3.7 (1). We divide our proof into several steps.
Obviously we may omit those « for which s(J.)=>s(¢,) does not hold
out of our consideration so that we may assume s(¢,)=>s(¢,) for all «

without loss of generality.

(@) The case where ¢ is faithful: Due to s(¢) =1, we have
s(W) =Js"(@)J=1. Hence (4.2) and Lemma 4.1 imply

(4.5) lim LL dr (@,,{ (A +7) '—[r+ (donv.) *1 7} 0,)

L
:ﬁ dr(@,{L+7) " = [r+ (do.s) "] "1} 0)
for all 0<<e<<L<(oo. (Note that

“ [7" + ("Ww ’1"01) 1/2] ! ” érh‘l

is uniformly bounded.)

We also have the following estimates:

(4.6) fdr @ {(L+7) " = [+ (dog e) *1 7} B,)

= [[@] [T asnasmma—1mae. B
0 | JO

< j dr r max (1, - d(@,, E2="=0,)
0 0

=e(d.(1) +¢. (1))

due to (3.2), where E;°*%= is the spectral projection of dy,, y,-

(4.7) fdr

[1a+n = crin1a@. Bore0)

oo 1
= [[or [[asna+sm e -na@., B,
0
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< [Taora+n - [ 4@ B0y
<log(1+L D¢, (1).
Finally
s [Car [Tasn = e A, Eereo) 20,

Hence

(4.9)  liminf r’ A (Do {(1+7) " — [+ (dour) "] B,)
0

= jL dr (@, {(1+r) ' —[r+ (do.e) "] '} 0)
—e(d(D) +¢ (1)) —{log(A1+ LD} (1).

We now use the following formula, which holds if s(¢)=s(¢).

(4.10)  S(¢/) =2 Lm( f{ (177 — (2% "} dr)d (@, E* D)

=2 {74, (4R = [ (o) ) 0),

where the change of the order of - and - integrations is allowed because
the integral is definite in the Lebesgue sense (finite or +o0) due to
(3.2).

By taking the limit e—>+0 and L— + oo and by substituting (4. 10)
and the same formula for the pair ¢, ¢,, we obtain Theorem 3.7 (1)

for this case.

(b) The case where ¢, is independent of «: By (3.3) and by

the same computation as (4. 10), we obtain

A1) S@/B) =2 [ ar@ A+ [ W) )
where the boundedness

@12 [0 B0) = ) 01 = 4. (5 (8) <o

guarantees the definiteness of the integral in (4.11). (Note that s(¢,)

=s(%a) =s(4).)
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By Lemma 4.1 and by the same argument as the Case (a), we

obtain

(4.13)  liminf S(¢u/d)
>_2 f dr (0,{(1+7) " — [r+ (dp.0) "] "} 0).

Since (4¢.0)"* commutes with s"(¥) =Js" (¥)J, the inner product in
(4.13) is the sum of contributions from the expectation values in (1—
s"(T))O and s (¥)D. The first one is given by

—2 J: dr(@{(1+7) " — 7Y (L— s (T))B) = + oo
if
@,(1—s"@))0) =¢({1—s()}) >0,

ie. if s(¢)=s(¢) does not hold. The second one is either finite or + oo
by (4.12). Hence if s(¢) =s5(¢) does not hold, then

(4.19) lim S(¢a/@) = + 00 =S(¢/P).
If s(¢)=s(¢) holds, then (4.13) already proves Theorem 3.7 (1) for

the present case.

(c) General case: Let w be a normal faithful state. For >0,

we obtain
lim inf S (o +ew/Bo) =S (P +ew/P)
by the Case (a). By Theorem 3.6 (4),
S(paten/¢) <S(Ya/ba) -
Hence

lim inf S(Ja/Po) =S (P +ew/$).

By taking the limit é—+0 and using the Case (b), we obtain Theorem
3.7 (1) for the general case.

Proof of Theorem 3.7 (2). If o'=2""w for 2>>0, then (3.7) implies

(doro+7) 'S (A g o +7) 7.
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Due to the identity

(r+0®) =" j‘: (o+x) Y(x+7) 2%dx, r>0,

for a positive self-adjoint p, this implies

(’,._}_ (A_(p_ !Z) 1/2) —lg (7__{_1'-1/2 (A.{Z,.Q> 1/2) -1 .

Hence
o(D) = @A+ "= [+ (4do0) *17} 2)
oM {A+7) 7" =@+
=o(1) (1+7) A+ (A —2).
Therefore

(4.15) —e(D)<— L dr(2,{(A+7) "= [r+ (de )" 17} 2)

<o) log{(1+e) (1+2"%) "}
for £0. We also have for L>0

(4.16) oM log(1+L )=~ ["(@ {A+n"=r}9)

=- [T ar @0 -+ (411D

= I: dr(2,A+7r) r+ (de.o)?] {(de. o) *—1} 2)

> _ LN (L+7) "dr| (do.o) 2|*

=—w 1)log(1+L™).

187

where the last inequality is obtained by using the spectral decomposition

do o= jldEl and majorizing (42" "*(”2—1) by r~'2 for 0<A. Since

lim r dr (0, {(1+7) "= [r+ (dvpe,) "]} @.)

= J;L dr(@.{(A+7) " = [r+ (dp.0) "]} D),

the estimates (4.15) and (4.16) for (0, ®) = (Yo, $.) and for (o', »)

= (¢, @) yield
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(4.17) lim j T dr @ {(L+7) " — [+ (dey o) Y]} B
0

- Lw dr (@, {(L+7) [+ (dy.0) "]} 0).

Since Ap,=>¢, and its consequence AY=¢ imply s(¢,)=s(%,) and s(P)
=5(4), the equations (4.17) and an expression of the form (4.11) for

s(Yo/P.) and s(P/¢p) imply Theorem 3.7 (2).

Proof of Theorem 3.7 (3). This follows from Theorem 3.7 (1)
and Theorem 3.6 (4). 0Q.E.D.

Remark 4.2. The argument leading to (4.14) implies that the

formula
(4.18) S(p/¢) =—2 Lw dr(@0,{(1+7) "' —[r+ (dv.0)*] '} D),

which is used in (4.11) for the case s(¢)=s(¢), holds for a general
pair ¢ and ¢ (even if s(¢)=s($) does not hold). this is not the case
for the formula of the form (4.10).

Proof of Theorem 3.9 (1). Let w, be a faithful state, o =w,+ ¢+,
and 1>e>#>0. The proof of Lemma 3 in [1] (without the assumption
¢=k¢ there) implies

(4.19) lim inf S(Ev e/ En,$.) =S (be/ )
where

be=A—e)¢+tew, $,=A—pm)¢+uo.
By the convexity (Theorem 3.8 (1)),
(4.20)  S(Ewe/Enybs)

S A=) S(Eyype/ Eno®) + 1S (Enghe/ Exy) .
By Theorem 3.6 (4) and (3), we have
(4.21)  S(Eys/Eneg0) <S(Ey,(ew) /Ey,0)

=—u(1) loge<oo .

By Theorem 3.7 (2)
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(4.22) lim S(Pe/b0) =S (Pe/b).
H—>

The formulas (4.20), (4.21) and (4.22) imply in the limit x#—+0
(4. 23) tim inf S(Enybe/ Exo$) =S (/).

By Theorem 3.7 (3),

(4. 24) m S(Pe/B) =S(D/P).

e—0

By Theorem 3.6 (4),
(4. 25) S(Exybe/ Exe) <S(Ey,(1—¢)$/Ex,$)
=S(Ex/Ex,$) —¢ (1) log(1—¢).

The formulas (4.23), (4.24) and (4.25) imply in the limit ¢—+0
Theorem 3.9 (1).

Proof of Theorem 3.9 (2). This follows from Theorem 3.9 (1)
and Theorem 3.8 (2) (7). Q.E.D.

Proof of Theorem 3.10. First consider the case where ¢ is faithful.
Then £ given by (2. 8) is cyclic and separating for M. From the defini-

tion of the perturbed state and the expression (2.10), we obtain
(4. 26) V' (h) RQen+0Ren=2(hRwy,).

By (4.13) of [8], we have

(4. 27) log doagu,, =log de+ M@, —Jj (h) QJ gy Jy -

Here j(#) denotes JhJ. By (2.10), we obtain

(4. 28) log dy .o =log dy,o+ 1,

(4. 29) log do.q ay = log du,s —j (1).

By (3.3), for example, we obtain Theorem 3. 10 for the present case
of a faith{ul ¢.
For the general case, we apply the result just proved to
pe=(1—g)hp+ep, &>0,

which is faithful:
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(4. 30) S/ ¢e) = — A—e) (k) —ep(h) +S(P/Pe).

From the convexity of the relative entropy, we obtain

S/ b)) =< (A=) S(J"/$) —ed(h).

Combining the limit e— 40 of this relation with Theorem 3.7 (1), we

obtain
(4. 31) igg S/ ¢e) =SW*/9).

For =0, we have the same equation for ¢. Hence the first equation of
Theorem 3.10 follows from (4.30). The second equation of Theorem
3.10 is trivially true for a non-faithful ¢ because both sides of the equa-

tion is then -+ oo,

§ 5. Relative Entropy of States of C*-Algebras

For two positive linear functionals ¢ and ¢ of a C*-algebra ¥, we
define the relative entropy S({/$) by

(5.1) SW/$=S/$)

where ¢ and @ are the unique normal extension of ¢ and ¢ to the envelop-
ing von Neumann algebra .

If the cyclic representation 7, associated with ¢ does not quasi-contain
the cyclic representation 7, associated with ¢, then the central support

of ¢ does not majorize that of ¢, hence s()=>s(¢) does not hold. There-

fore
(5.2) S(¢/$) = + o0
if 7, does not quasi-contain m,.

From the definition (5.1), it follows that
(5.3) S(g/$) =S($/$)
where § and § are the unique normal extension of ¢ and ¢ to M=m ()"
where 7=m,Pm, If A is separable, then M=n(A)” for this 7 has
a separable predual and hence all results in previous sections apply. In

particular, if 2, is a monotone increasing net of nuclear C*-subalgebras

of 9 generating Y, then
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(5. 4) lim S(Eu/Eu,$) =S(¢/9).
This implies the result in [2] that if
sup S(Eu, )/ Eu,$) oo,

then 7, quasi-contains 7.

If A is separable, then the restriction of the envelopping von
Neumann algebra 2” to a direct sum of a denumerable number of cyclic
representations of ¥ has a faithful normal state. Hence Theorems 3. 6,
3.8, and 3.9 as well as Theorem 3. 7 for sequences are valid for positive
linear functionals of C*-algebras.

If ¢ is a positive linear functional of a C*-algebra ¥ such that the
corresponding cyclic vector ¥ for the associated cyclic representation 7,
of I is separating for the weak closure 7,(2)”, then the perturbed
state " for Ah=h*E is defined by

(5.5) (@)= Flr,(W], m(@¥[m,(W]), acA.
For such ¢, Theorem 3.10 holds for C*-algebras.

§ 6. Conditional Entropy

Let A be a UHF algebra with an increasing suquence of finite

dimensional factors 9, generating 9. Let A5 . be the relative com-

mutant of ¥, in ¥,. The conditional entropy S,(#) of a positive linear
functional ¢ of ¥ is defined by

(6.1) Sa(g) = Li_ri(S(Emmqﬁ) — S (Eus, .4))
where

S(¢) = —¢(log 0,)

for a positive linear functional ¢y of a finite dimensional factor IR, and

0y is the density matrix of ¢ defined by
P(a) =t(0a), acsW

with the unique trace state 7 of Wi. ([3])
Let ¢, be the relative commutant of U, in ¥, w be the restriction

of ¢ to A°, and w’ be any positive linear functional on A°,. Then



192 HUZIHIRO ARAKI
(6.2) S(Eu,¢)—S(Eu.p)= —S(Eu,(t.Q0")/Eu,p)+ S(Eug, 0" /Euxg, ,0)

where 7, is the unique trace state on ,, because the density matrices

for Ey, (7,Qw’) and for Eyg " are the same element of L.
By taking the limit m-—>o0c0 and using (5.4), we obtain
(6.3) Su($) =S (0’ /) —S(t.Qw’ /).

Since the left hand side is finite, it follows that if either S(w’/w) or
S(t,Qw’/P) is finite, then both quantities are finite and (6.3) holds.
This formula has been used in [3].
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