
Publ. RIMS, Kyoto Univ.
13 (1977), 255-275

The Singularities of Solutions of the Cauchy
Problems for Systems Whose Characteristic

Roots Are Non-Uniform Multiple

By
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§ 1. Introduction

R. Courant and P. D. Lax [1] and D. Ludwig [4] investigated the

singularities of the solutions of the Cauchy problems for diagonalizable

linear hyperbolic systems whose characteristic roots are real and uniform

multiple. They constructed a uniform asymptotic solution and proved

that the singularities of the solutions propagate only along the character-

istic surfaces on which the singularities of the initial data lie. Secondly,

D. Ludwig and B. Granoff [2] dropped the condition that the characteristic

roots are uniform multiple. They defined their hyperbolicity for systems

with constant coefficient in the principal part whose normal surface has

self-intersection points and discussed the propagation of singularities by

constructing a uniform asymptotic solution. An important feature of their

results is that the singularities of the solutions propagate also along the

characteristic surface which generally does not carry the singular support

of the initial data. Geometrically, this is an enveloping surface generated

by a family of surfaces which connect the two characteristic surfaces

with intersection points. The complex versions corresponding to the re-

sults of [1] and [4] were done by Y. Hamada [3], C. Wagschal [6],

especially for meromorphic Cauchy data.

The aim of this paper is to extend the results of [2] for a certain

type of systems with variable coefficients in the complex domain. Our

results include as a corollary the exactness of the asymptotic solution

constructed by D. Ludwig and B. Granoff [2] in the real analytic case.

Communicated by S. Matsuura, October 12, 1976.
Graduate School, Tokyo Metropolitan University, Tokyo.
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§ 2. Assumptions and Result

Let Cnnrl be the n + 1 -dimensional complex space and denote its point

by (t, x) = (t,xl, ••-,.£„). We also denote the covector at x=(xl9 •••,.rn)

by f = (ft, -,£„).

We consider a first order system:

(2. 1) J?u = du/dt + £!tA
ft(t9x)du/dxfl + B(t9x)u = 0,

/t=i

where A", B are k X ̂ -matrices whose components are holomorphic in

a neighborhood of the origin and u is a vector function. For convenience

we put A° = I (the identity matrix), xQ = t and use the convention that

repeated indices jit and v are summed from 1 to n and 0 to n respectively.

Now we assume the following assumptions (I) ~ (V) .

(I) For any (*, x) — 0 and ?~(1, 0, • • • , 0), the matrix -A"(t,x)g/( has

k (counting multiplicities) eigenvalues A l(£, x\f) (!</<!&) and the asso-

ciated eigenvectors form a complete set.

(II) Let rC*,*;?)^*-1 (*,*;?) and r (*,*; f )=**(*, *;?) are the

two eigenvalues which coincide at (£, ,r) =0, f = (1, 0, • • • , 0). Then, for

any (*, a;) ~0 f— (1, 0, • • • , 0), each set of eigenvalues {2+ (t, x\ ?), A l(^,

^•;f);l</<^-2}, {;r(^^;f),^(^x;f);l</<^-2} is mutually dis-

tinct.

(III) The eigenvalues lr(t^x\^) and the associated eigenvectors R± (t^

x\£) are holomorphic in (£, .r) ~0, f^^(l, 0, • • • , 0).

(iv) ;,+, /i- satisfy A e
h-Ar+v er-v,r-v fr-v,r=o for any (t,x)

—0 and f^(l, 0, - - - , 0).

From the assumption (III), there exist in a neighborhood of the ori-

gin regular and holomorphic phases cp~(t,x), (pl(t,x) (1 = 1,2, • • • , & — 2)

defined by

We also define an auxiliary phase 0(£, x, r) which is regular and holo-

morphic in a neighborhood of the origin by

(2.2)
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The existence of such @(t,x, r) is assured by the assumption (IV) which

corresponds to the integrability condition of the over determined system

(2.2).

The last assumption is as follows.
(V) (5(0,0, r)^0 (r~0).

Remark. It is possible to take another auxilary phase defined by

an equation which slightly differs from (2. 2). In this case, we must

assume the integrability condition corresponding to this equation instead

of the assumption (IV) . These conditions can be easily found if one

examines the following proof.

The assumption (V) is satisfied, for example, if we impose the follow-

ing assumption:

(2.3) Vf(r-r)-V,(r-r) = 0 for any (*,,r)~0 and *~ (1,0, .-,0).

In fact 0rr^0 ((*,:r)~0, f~(l, 0, •», 0)) follows from (2.3).

We impose on the system (2. 1) an initial condition which has a

pole on the hyperplane x1 = Q. Since the assumptions (I)~(V) and the

fact that the Cauchy data has a pole do not depend upon a choice of

a holomorphic basis for Ck, we may assume that the Cauchy data u(Q, x)

has the following form. Namely,

(2. 4) «(0, x) =vT(j;)^(0,^:;l, 0, • • • , 0) -f f ~(.r).R~(0, x; 1, 0, • • - , ( ) )

+ EavI(*)J?'(0,*;l,0, '",0),

where one of v± (x}, t/(.r) (!</<& — 2) has a pole on xl = 0 and ^l(^,

•£;?) (£ = 1» 2, • • • , & — 2) denote the eigenvectors with eigenvalues A^(£ ,

^;f) (/ —1, 2, • • • , ̂  —2). Furthermore, according to the principle of su-

perposition, it is enough to consider the special case:

<•/ w — v. -^j w •**} -w \^ ) i •*'q
(2.5)

v+ (x} = ( -1) '-1 (q -1) !zv+ (*') /x?

v~(x)=vl(x) =-.-=vk-*(x)=Q,

where q&N, x' = (x2, • • • , JTW).

From the assumption (V) and Weierstrass' preparation theorem,

there exist in a neighborhood of the origin a Weierstrass' polynomial
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t, x, r) of r and a nonzero holomorphic function W (t, x, r) which satisfy

Since @(Q,x,ty=x1, P(£, .r, r) is an irreducible polynomial of r. We

denote the discriminant of P by a).

In this situation we have the following theorem.

Theorem. There exists in a neighborhood of the origin a unique

solution u(t,x) of the Cauchy problem for the system (2.1) 'with

the initial condition (2.5). It is given in the folio-wing form :

(2. 6) u(t, x) = F+(t, x)/[_<p+ (t, *)]< + G+ (*, a:) log ̂  (t, x)

+ G (t, x, r) log 0 (t, x, r) } dr + Ij1 (*, ^ I \-Vl (t, x) ] «

-where F± (t, x) , G±(t9x)9 Fl(t,x), H(t,x), F(t,x,r), G(t,x,r) are

vector functions holomorphic at the origin. Moreover •, if -we prolong

the righthand side of (2. 6) by an analytic continuation, -we find that

the solution u(t,x) generally remifies around the analytic set D={(t,

x)\ti)(t9x} ^O} and also tends to infinity as (t,x) becomes close to D.

Remark. The analytic set D is characteristic with respect to J7.

Next we give an example which satisfies all the assumptions of the

theorem.

Example. Consider the Cauchy problem:

0 uA t, 0

o, -,

The solution is given by
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l (*, x) = l/x, - {log { (t + ?/2 + xz- V"0 ) /(f + t*/2 + xz +

- log { (x, + 1*/2 - V?) / (xz + ?/2 +

where 0 = £4/4-f 2/3- £3 + 2xtf + 2xl + xz
2. u^(t,x) ramifies algebraically

around the characteristic manifold 0 = 0 and tends to infinity as (£, x)

becomes close to 0 = 0. However this characteristic manifold 0 = 0 does

not contain {t = x1=0}.

The proof of the theorem consists of four parts. First we give the

construction of the phases. Secondly we construct the formal solution

(uniform asymptotic solution) . Thirdly we prove the exactness of the

formal solution. Finally we investigate the behavior of the solution u(t,

x) as a holomorphic function defined by (2. 6) .

§ 3. Construction of the Phases

The phase ( p * ( t , x ) and <pl(t,x) (!</<& — 2) can be constructed

in the same way as in [3]. Thus we only show how to construct the

auxiliary phase Q)(t, x,t) . To construct 0{t^x,r), we follow the way

of D. Ludwig-B. Granoff [2]. Though their procedure were made in

the constant coefficient case, it is still valid to our problem if we impose

the integrability condition (IV) on (2. 2) .

Let F(t,x,s) be the solution of the Cauchy problem:

(3.1)

By Hamilton- Jacobi's theory, F(t,x,s) is a holomorphic function of (£,

x9 5) in a neighborhood of the origin.

Differentiate F(s, x, 5) =(p+ (5, x) at t = s by s. Then we obtain

(3.2) F s(5,x,5)=A+(5,.r;V.TF(5,x,5))-/l-(5,^;VxF(s,a:,5)).

Next consider the bicharacteristic curve (3.3) X=X(t,x), X(sfx)

— JT associated with (3.1). What we want to prove is that Fs(t,x,s)

and Ar (t, x\ VxF(t, x, s)} — /T (t, x\ VxF(t, x, 5)) are invariant along the

curve (3. 3). In fact, we have Fst — V^/T • VXFS = 0 if we differentiate Ft(t,
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x, s) =k~ (t, x\ VxF(t, x, s)) by s. Thus Fs(t, x, s) is invariant along this

curve. On the other hand, we have

= is - L~ + vf

From the assumption (IV),

Namely, A+(£, x\ VxF(t, x, s)) — /T(£, x\ VxF(t, x, 5)) is invariant along

the curve (3.3). Since the mapping (£, x) l-> (t, X(t, x)) is locally ana-

lytic homeomorphism, (3. 2) implies

(3. 4) Fs (t, x, s) = r (*, X-, VxF(t, x} 5) ) - A' (*, x; V,F(^, x, s) )

for (^, x, 5) —0.

Now define 0(t9x,r) by 0(*, a:, r) =F(t, x, (^ + r)/2). Then using

(3. 4) we can easily prove the following relations:

As for @(t,x, —t)=(p~(t,x}, we observe

^, x) ) , 9~ (0, x) =<p+ (Of x) .

Thus we have F(t,x,0) =<p~(t,x) from the uniqueness theorem. Name-

ly, 0(t,X, -t)=<p-(t,x).

§ 4o Construction of the Formal Solution

In order to obtain a formal solution, let {/>(C)} "=-i ^e t^ie wave

forms defined by

(4.1)

where ATO = 1 + 1/2H hl/flz, Ao^O. Then we seek an asymptotic solu-

tion of the form:

/. (0 = (-1) «-' (q -1) !/C9, /i (O = (-1) 9~2 (<? - 2) !/C*-2, -,

,/a-i (O = 1/C, /«(C) = log C, /9+m (C) = C/ml • log C - *
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(4. 2) » (*, x) = £ [/, 0+ (*, x) ) a,+ (t, x*) +/, for (t, x) ) «,- (t, x)
j = 0

, x, r) ) i, (*, x, r) dr-] + f] S// (*>' (*, *) )
.7=0 1 = 1

where (4.3) iy(^, ^, r) - /?/ (^, x, r) R+ (t, X', VJD(t, *, 0) + ft- (^ x, r)

XR~(t,x\Vx$). We follow the argument of D. Ludwig-B. Granoff [2]

and make it complete by deriving the recurrence relations for aj±
9 a^

and $j±.

Substitute (4. 2) into (2. 1) and calculate formally, we obtain

(4. 4) Xu =/_, (?+) A+a
3="

/) + *, (*, x, 0 ] + S/y fo-) [A_aj+1 + JL
i=o

x, -OD+S r
y=o J-«

where A±=A>/, A=^V/. Taking account of (2.2) and (4.1), an

integration by parts yields

(" /,_, ((5) A'Qjb,dT =f, (<p+) [ - /?/ (*, x, 0 R+ + fa- (t, x, t} R--]
»/ — ̂

+fj (<p-) [/?/ (*, x, - 1) R+ -/?,- (t, x, - 1) R-]

Thus (4. 4) becomes

(4. 5) Xu =/_, (^+) 4+a0
+ +/_! (p-) A_a0- + f] /y (^+) [A+at+1

a,+) + 2/9,- (*, x, 0 R-\ + ] /, fo-) [A_aj+1 +

+ 9/9r
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Next we absorb /}($){*} aft into //-M (0**) [*] by the following
J-t

method. We require the coefficient of f0 (0) equals

• dfa-/dxf • R+ -

Integrate

f ' 2/0J-«

by parts and incorporate the results into /i(^:r)[*] and fi
J-t

of (4. 5) . Then we have

(4. 6) jCu =/_, (?+) A^+ +/_, (p-) A_«

+ (t, x, 0 £-] +/, (^+) [A+^2
+ + JL (fl

• dfa'/dxp (t, x, f)R+-

x dfc/dx, (t, x, t) R-] + i f j 0+) [A+«;+l + X («/)
.7=2

, ̂ , 0 *-] +/o(^~) [A_a,- + J?(«,-) + 2^+(^, x, - 0 R

t, x, - t)R+ + 2(L~ • dR^/dSJ • dPS/dx

(*, ̂ , - 0 #+]

= 1 j = 0

Generally, we require the coefficient of //($) equals

Integrate
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r
I 2fj(0)0r{(L

by parts and incorporate the results into/^+1(^±) [*] and I //+i(0) [ * ~\dr

of (4.6). Then the coefficients of /J-+1 (<£>*), /J-+i($) in (4.6) become

(4. 7) + A+a}+, + X (ajTl) + 207+1 (t, x, f)R~ + 2 (L+ • dR-/d$j

x dfo-/d*f (f, *, 0 R+ ~ 2 (L~ ' 9R+/d?^ • 9/3,- +/9^ (*, x, *) R- ,

(4. 7)_ A_aj+, + j: (aj.O + 2#+1(*, x, - *)#+ - 2(L+ • W?-/9?,)

x dfa-/9xf(t, x, - t)R+ + 2(L- • dR+/d£r) • dfa+/dxf(t, x, - t)R~ ,

X (bj^ + d/dr 09;+1J?
+ - /9j+l£-) + 2 •

x dfa-/9x • R+ + (L~ • Q

respectively. Here we vised the convention jSy± =0

Now we require the conditions :

L+ {J^. (a^ 0 + 28^ i (t x ± f) R* dz 2 (L

,.r, ±t)R+

(t,x, ±t)R+±2(L+
(4.8)

T 2 (L- - d R + / d £ J • d$j+/dx,(t, x,±)R~}=0

to hold everywhere in order to guarantee the existence of af+2 which

satisfy (4. 7) + =0 even if A± degenerate.

As for the coefficients of fj(,(pl) (1<^<I& — 2), we argue in the same

way as [4]. Then taking account of the initial condition (2. 5), we obtain

the sufficient conditions on aj~9 ajl, fi^ in order that (4. 2) will be an

asymptotic solution. Namely, with the conventions ^(t^x, t) =0 C/<CO)>

hj± (t, x) =Jijl(t, x} =0 (J<^1), we obtain

(4.9)
af (t, x) =aj

± (t, x)R± (t, x\ Vxtp* (t, x)) +hj
± (t, x),

af
l (t, x) = a,jl (t, x) R1 (t, x; Vx<pl (t, x) ) + hjl (*, x),
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d/df a}
+-Vs^-

SJ • 907-1/9*, (*, *, 0 ,
(4. 10) +

'9/9*

(4. 10) _

x 9/97-1/9^ («, x, -*),

(4.11) 9/9* a/-VfA
1-V:ca:/+Z/

(9/9* + 9/9r) ft+ - Vf A
+ • V,ft+ + L+ (9/9r

+ L+ ( - 9/0r 1Z- + JE (R-J) fa- = 2L+

x 9/97-1/9*,, • ̂ + - (i- • dR+/df
(4-12)

(9/9*-9/9r)0,—

-9/9r R~ + .TCR-))ft- = 2L-.9/9r{(L+.

(4.13) a}
+(0, x)R+(0, x- 1, 0, • • - , 0) +at~(0, *)-R~(0, *; 1, 0, • • - , 0)

fc-2

+ XI Q^" Z (^ x)^(0 ̂ ;; 1 0 ••• 0)
Z = l

lw+(x')R+(0,x;l,0, - - - ,0 ) for j=0 ,

,'(0.*)} for /:

where {!/(*, *; f), • • - , £,*-'(*, x; f ) , L+(it, a:; f), L" (*, a:; ?)} is the dual

basis of {J?1(«,*;f),-,^*"(*,*;f),^+(«,*;f).-R"(*,*;f)
j:), h}(t,x) are particular solutions of

* + -T (ajLO + 2/9?.! (*, *, ^ f) R*

T 2 (L+ • 9

± 2 (L- • 9

and



THE SINGULARITIES OF SOLUTIONS OF THE CAUCHY PROBLEMS 265

respectively.

Next we investigate more closely how h^ and /z/ are determined

by OLk~> cxk
l, 0k

± (k<J — 1). For this purpose we prove the following

lemma.

Lemma 4. I. Set

(4. 14) hf (t, x) = g f f f t m (t, x}Rm(t, x- V&* (t, x)),

fc-2

(4. 15) hjl (t, x) = £] ffi.mC*, &) Rm(t, x; Vxcpl(t, x}) + ffl
jtk^(t9 x)

X R+ (t, x\ Vy (t, x) ) + ffl
flt (t, x) R- (t, x\ Vx(p

l (t, x)) .

Then the following recurrence relations hold. Namely, -with the con-

ventions a}
± = a)

l = 0 O'<0) and fff,m = ffl
j,n = 0 0'<1),

ff J.„ = Mi. ± (*, x• 9.) a^-i 4-

hold for j>~L, 'where M£>±(t,x;dx) etc. denote holomorphic linear par-

tial differential operators of order <p 'with respect to the differen-

tials indicated in the bracket and are independent of j.

Proof. Taking account of (4. 8), we have

(4. 17) A±aJ
± =-£ Oj_0 - 2/9;_! (t, x, ± t) R*

X dfa-i/dxp(t, x, ±t)R+±2(L~-d.

X dfff-z/dxp (t, x, ±t)R~ = J^ /Cj,m (t, x) Rm (t, x\ V^± (t,.

where icfim (l<wz<^ — 2) are holomorphic functions defined in a neighbor-

hood of the origin. On the other hand, apply A± to h^ . Then

(4. 18) A±k,* (t, x) =E U* (*, a:; V^ (t, x))

- Am (t, x; V^ (t, x) ) Kf,m(t, x) Rm (t, x; W= (',
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because Rm(t, x\ V^* (t, x}} is the eigenvector of — AM(t, x)(p^ with

the eigenvalue /lm(£, x\ V^ (t, ̂ )). Here A± (t, x\ V^± (t, x)} -lm(t, x ;

V^±(^,^))^0 (l<w<&-2) for (t,x)-^ 0 by the assumption (II).

Thus comparing the two equations (4. 17) and (4. 18), we have (4. 19)

Now it is almost clear from (4.17) that fcftm(t, x) is given by

fa _ 2

Kf,n = M^±(t, x; dJaf-i + ̂ N^tt, x; dt, 9,)^_,.» ,
h = l

where M^i±(t} x; dx) etc. denote the same kind of operators mentioned

above. Thus we obtain the first equation of (4. 16) if we combine this

with (4.19).

In a similar manner we can prove the second equation of (4. 16) .

We omit its proof.

Using (4. 14) and (4. 15), we can rewrite the recurrence relations

(4.9), (4.11) as follows. Namely,

(4. 20) + d/dt a,+ - U+
l (t, x- dx} aj+ + K, + (t, x\

m = l

+ 1*V (*,*; 9.) #7-! (*,*,*),

(4.20). d/dt ai- = U_1(t,x;

(4.20), d/dt ai
l=Ul

1(t,x;d,)ai
l+ E V^(t, x- dx)ff},m ,

771 = 1, 771=7^=1

where U+p{t,x\dx) etc. are holomorphic linear partial differential oper-

ators of order <p with respect to the differentials indicated in the bracket

and are independent of j.

Further the initial conditions (4. 13) of (X,j± and a'/ become

for ./=0,
+ a/(0,:c)=

fo r^ '=0 ,

f o r j > l ,
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0 for j=Q,

(0, x]) for J>1 .

Here, we introduce a new independent variables t1 = l/2-(t + "C), tz

= 1/2-(t — r) and rewrite the equation (4.12) into a canonical form.

Namely, using the same symbols @~ for their (tl9 oc, £2) -space interpreta-

tion, we have

@J+ = &+ (fly X, £*'•> 9X) /?j

(4. 22)
(i,, x, tz ; dtl,

(0, x, t2~) =G+
1(«,,

Sr(*i, ^ 0) =G_1(«i, x; 9.) a/ (*,,

where K±(tl,x,tz\dx) etc. are differential operators of total order

whose order ^vith respect to the variables ^, /2
 are always not greater

than one.

For convenience, let us introduce a definition.

Definition. We say that a linear partial differential operator major-

izes another operator if each coefficient of the former operator majorizes

the corresponding coefficient of the latter operator.

Now, the following lemma guarantees that a"/-, a^ and /6y± are de-

termined successively by (4. 20) -j, (4.21).,. and (4.22).

Lemma 4, 2.

1° There exists in a neighborhood of the origin a unique holo-

morphic solution ocy-~ (resp. a'/) of the CaucJiy problem (4. 20) ± (resp.

(4.20)0 with the initial conditions (4. 21) ± (resp. (4.21)0- More-

over, let the operators U+1 (resp. Ui1} and the functions Fj~ (resp. F/)
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fc-2

are the respective major ants of U±
l(resp. L^1) and ]T] Vm,±Gf.m-r WV^y-i

fc m = l

(resp. X] Vljtfy.m). T&erc a:J-
±>ai/

±, a/>a/ (f a/, a/ satisfy the
m=l,m^l

folio-wing conditions:

d/dt
(4.23)±

,* (0,*) >«,*(<),*),

(4.23),

2° There exists in a neighborhood of the origin a unique holo-

morphic solution fa* of the Cauchy problem (4.22). Moreover, let

the operator K±\ L±° and functions Sj
± are majorants of K±

l, L±°

and PSPj^ + QSfij-!. Then fa*^fa* if fa* satisfy the following con-

ditions:

(4. 24)

Proof. Since 1° is well known, we omit its proof. As for 2°, the

first part can be proved by iteration process. In order to prove the

second part expand fa* into a power series: fa±{tl,x,t2}= 2 ^fm(^)
I, m = 0

X ^^2
m. It is enough to show that ^i~im(x) can be determined successively

from (4. 22). However, this is easily proved by the double induction

with respect to the index I and m. Since the argument is elementary,

we omit further illustration.

Consequently, we have constructed an asymptotic solution (4. 2).

§ 5. The Exactness of the Formal Solution

Since the formal solution (4. 2) satisfies the equation (2. 1) and the

initial condition (2. 5), it remains to prove its convergence and uniqueness.

However the uniqueness follows from the Cauchy-Kowalevsky theorem.

We only have to prove its convergence.

(0, x, <0 >/S/ (0, x, *0 , /Jy- («i, x, 0) >&- (<„ a:, 0)
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If we calculate formally reminding the definition of the wave forms,

we can rewrite the formal (asymptotic) solution (4. 2) in the form:

(5. l) u(t,x)=F+(t,

- E 4y_,

<?)!- E ^W«ry-'
j=q .7=5+1

+ E {Fl (t, x) / (?') « + (log p1) f; (?') '- V/ 0- g) !
t=l ^=5

E

{(log 0) E *'-«*,/ (.;-«)!- E Ay_^'-«
t y=q J=g+i

where F~(t,x), Fl(t,x) and F(t,x,r) are vector functions which are

holomorphic in a neighborhood of the origin.

We have by a simple calculation A3--q/ (j — q)\<\/ (j — q)\ + \/ (j — q

— 1)! for j>q-\-1. Thus it is enough to show that

S <>*) '"'ay*/ O'- (7) !, E (?*) '-'«// 0- ff - 1) ! ,
^=a j=s+i

<7) ! , S (^) '-'a// 0- ff - 1) !,

E

converge absolutely and uniformly in a neighborhood of the origin.

Next we prepare some lemmas which are necessary to estimate

First we introduce a family of functions {^/(C)}~=o originated by

C. Wagschal [6] to establish successive majorants of functions defined

by recurrence relations.

Lemma 5. 1. (C. Wagschal [6]). Let ^-(O = (d/d£)' l/(r-C)

—j!/( r~~O"7+1 f°r a constant ?~>0 and nonnegative integers j. Then

he folio-wing properties.
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2° Let C = P* + S*XrwA C = p(*i + *2) +Z!*/'), then

3° L^ Qp(*,.r;9^) (r*#>. Qp(^, x, *2; 9tl, 9*, 9,2)) be a linear

partial differential operator 'whose respective orders with respect to

the variables (t,x) (resp. (t^x9t^)} and t (resp. (*i, *2)) are p and q.

We assume that the coefficients of Qp are holomorphic in the polydisk

{(*,*); \t\, Ix^R} (resp. {(A,^^2);lAUU2 i ,!^|<^» and are ma-

jorized by

M/{R-(t^xj} (resp. M/{R~ (t, + fe + 2 ̂ )»-
fji n

Then there exists a constant C0>0 which depends only upon

, r and p such that

(resp. C = P(ft + *.

Remark. Henceforth, for convenience, we simply put the sign "^"

on the symbols to denote their majorants both for functions and operators.

Here we assume that Mmt±, C7+1, K etc. simultaneously satisfy the property

3° of Lemma 5. 1. We also make a remark on the property 1°. That is

the factor (j + 1)"1 which was neglected in [6] is very important for

our calculations.

The following lemma can be easily proved.

Lemma 5.2. Let <^(C) (C^C1) and/(£, x, r) are functions -which

are holomorphic in a neighborhood of the origin. Put

Then zve have the fallowings.

1° /fo, x, tz} < (p(p(t, -i-t2) + ̂ i x^ implies f(t, x9 ± t) < cp(pt + !
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2° f(t, x, 0 <<? (pt + X] *„) zm^/zw /(*!, x, 0) <p (p^ + £] *„) .
/« <«

3° /(*, x, - 0 <p (p* + 2 x^) implies /(O, *, *2) <<? (p*2 + H *„) .

Now we are ready to prove the following key lemma.

Lemma 5. 3. There exist constants Ci^>0 and p>l such that

(5.2)

for 0<^r<^R and j>0. Here cpj stands both for (Pj(pt + ̂ x^ and

Remark. The estimates (5. 2) will hold, for example, if C, and p

satisfy the following conditions:

d>max (M, C0R (k - 1) /2) , C0 {1 + C0# (*-!)/ (2C:) }<p,

C0 {1 + C0,R(^ - 1)/(2C,)> <Clt C0 {1 + .R/2 + jR(2? 4- 4p)/(8C1
2)} <p ,

1/C, + CopR (*-!)/ (2C,1) <1 .

We assume these conditions and C0I>1 in the proof.

Proof. We follow the way of C. Wagschal [6; p388~390]. How-

ever our case is more complicated.

Set

Then taking Lemma 4. 2 and Lemma 5. 2 into account, it is enough to prove

that the following relations hold for some Ci>0 and p>~L. Namely,

772=1

(5. 3) d/dt a/ > £/,'«/ + II .. ?i.«?/. - ,

(5.4)
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w+(X) for ./=0,
(5. 5)+ a/ (<>,*)> *_,

2 ?,.*_!((), a:) fo r j> l ,

(5.
0 for ./=0,
s_2
I! ?,.»((>,*) fo r j> l ,

0 for ./=0,
(5.5), a/(0,x)>

for

07-i(*i,*,°),
m=i

*-2 _

(5.7)± ?,*.„

(5.7), ff',..

From Lemma 5. 1 the right hand side of (5. 3) ± are majorized by

C0 {CV'+Wi//! + Cod1' (* - 2) ̂ w/ 0'-1)! + CV Vw/ 0'-1)!} -

Since

by Lemma 5. 1, this is majorized by

/ ^ /^sy+i / i i c* ~&(l> ~\\ /(f)Ci\\,~
V_xgV_xj "^JL ~t~ Wo-^ \^— ) I \ l / /V^2/-r l /

On the other hand d/dtaj
±=pC?+l<pv+l/jl Since C0

p, (5.3)+ hold. Similary we can prove (5.3)^

Using Lemma 5. 1 we see that the right hand side of (5. 4) are

majorized by

C0 (Cf'+fa+t/jl + C,"^ Wi//' + PC,'W/ 0-1)! + C.'Vy/ 0-1)!).

Since
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for j>~L, j>® and j>l respectively by Lemma 5. 1, this is majorized by

CoC^2 {1 + R/2 + R (R + 4p) / (SCi2) } ̂ ^/j\ .

On the other hand d/dt, #,+, 9/9^2 j9," =pC1
2j+2<p2J+2/jl Since

C0 {1 + R/2 4- 5 (£ + 4p) / (8C,2) } <p ,

(5.4) holds.

Next, we assume ZVT (xf) <M/(jR — X] x^. Then
ft

M/ (R - H x,) < Mr/^ (r - S ^) < &0
+ (0, a) ,

because C^M. Thus (5. 5) h holds for J = 0. For j>l, observe that
the right hand side of (5. 5) + is majorized by

CQC^(k-2)cpzj^/(j-V)\. Since ?2yVO'-l)!<^/2 WA this is
majorized by C0C1

2JR(k-- 2) /2-(p2j/jl. On the other hand

aj+(09x)=C^+1^/jl Since C1'>CQR(k~l) /29 (5.5) +

holds for j^l.

Similary, we can prove (5. 5) _ and (5. 5)z.

As for (5. 6) , the right hand side of (5. 6) are both majorized by

W" Wi/V ! + (* - 2) W V,/ ( j - 1) ! + C,f W 0- 1) ! .

Since

WO'-l)!<^/2-^w+i/;! for j>l

by Lemma 5. 1, this is majorized by

C0C^+1 {1 + COJR (*-!)/ (2CO } ̂ +i//! -

On the other hand 0/(0, *,*,), /3y~ (/„ x, 0) =Q"+*^+1/;!. Therefore

reminding

C0 {1 -h C0£ (*-!)/ (2CO } <Cj ,

(5. 6) holds.

Finally, let us investigate the validity of (5.7)+ and (5. 7) f . By

the same reasoning,

C0C,2' {1/C, + C0pR (k-2)/ (2C,2) } ̂ _,/ 0- 1) !

majorizes the right hand side of (5. 7) ±. Since
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-l)! and

(5.7)+ hold. Similary, we can prove (5. 7)z.

Thus we have completed the proof.

Let us return to the proof of convergence. Since the arguments are

same, we only prove the convergence of IJ(<^±)1/~9<Zj±/C/~<?) !. From
j=q

(4.9),

j=q j=q

oo

Thus it is enough to prove the convergence of 2 (

f](<ry~atf£m/o'-a)!. From Lemma 5-3>
3=1

j=q j=q

where £ = p\t\+'£\xft\. Therefore S(p±) /~f la>±/O" ~~ 0)! converges ab-
n y=e

solutely and uniformly in any compact subset of the domain 4C1
2|<^±(£, x) \

oo

<Xr~C)2- Similary, we can prove the convergence of
/=«

(j — q)\. Thus we have proved the exactness of the formal solution (4. 2).

Further, (4. 2) can be rewritten in the form (2. 6) .

§ 6* Interpretation of the Results

In this section we investigate the behavior of the functions

T F(t, x, r) / (0 (t, x, r) ) qdt and T G(t, x, r) log <D(t, x, r) dr

given in (2. 6) .

Integration by parts yields

G (t, x, r) log (5 (*, x, r) dr = (log (p+ (t, x) ) [G (t, x, ff) dff
t Jo

+ (log <p~ (t, x}} J° G (t, x, tf) dff- £ { JQ G (t, x, (T) J(7

Therefore, it is enough to investigate the integral
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*,:c,r)/(P(*,:c,r)Vdr

where H(t, x, r) =F(t, x, r) (¥(t, x, r)) ~5.

For this purpose let us recall the well known fact "Let a) be the

resultant of pseudo-polynomials D and E whose respective orders are

d and e. Then there exist pseudo-polynomials A and B whose respective

orders are not greater than e — \ and d—\ such that ADJrBE = a) is

valid." Then, using this fact we can prove the latter half of the theorem

if we adapt the argument of integrating rational functions of one inde-

pendent variable. Since the argument is elementary, we omit further

illustrations.
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