Publ. RIMS, Kyoto Univ. 13 (1977), 285-300

A Class of Approximations of Brownian Motion

Dedicated to Professor K. Itô on his 60 th birthday

By

Nobuyuki IKEDA,* Shintaro NAKAO** and Yuiti YAMATO*

§ 1. Introduction

Let $B(t) = (B^{1}(t), B^{2}(t), \dots, B^{d}(t))$ be a *d*-dimensional Brownian motion and let $\{B_n(t) = (B_n^1(t), B_n^2(t), \dots, B_n^d(t))\}$ be a sequence of approximations to B(t). We assume that the sample paths of $B_n(t)$ are continuous and piecewise smooth for each n and $B_n(t)$ converges to B(t). Let u(x) be a twice continuously differentiable function on R^d whose partial derivatives of order ≤ 2 are all bounded. In the one-dimensional case E. Wong and M. Zakai [5] showed that $\int_0^t u(B_n(s)) dB_n(s)$ converges to $\int_{a}^{t} u(B(s)) \circ dB(s)$ where the symbol \circ denotes the symmetric stochastic integral of Stratonovich (K. Itô [2]). They also dealt with the convergence of the more general functional of $B_n(\cdot)$, ([6]). In the two-dimensional case P. Lévy [3] showed that $S(t;n) = \int_0^t (B_n^{-1}(s) \cdot t) dt$ $dB_n^2(s) - B_n^2(s) dB_n^1(s))/2$ converges to the stochastic integral S(t) = $\int_{a}^{t} (B^{1}(s) \circ dB^{2}(s) - B^{2}(s) \circ dB^{1}(s))/2 \text{ if } \{B_{n}(t)\} \text{ is a sequence of polygonal}$ approximations to B(t). E. J. McShane [4], on the other hand, gave an example of the sequence $\{B_n(t)\}$ of approximations to B(t) such that S(t; n) converges to $S(t) + t/\pi$.

In this paper we treat systematically a class of approximations of Brownian motion including McShane's example. In Section 2 we state the main results of the paper. We consider a sequence of Stieltjes integrals of the form $I_n(u) = \int_0^t u(B_n(s)) dB_n^{j}(s)$. First we will give some conditions under which $I_n(u)$ converges in the quadratic-mean sense. It

Communicated by K. Itô, October 21, 1976.

^{*} Department of Mathematics, Osaka University, Toyonaka 560, Japan.

^{**} Department of Mathematics, Nara Women's University, Nara 630, Japan.

is then shown that the limit of $I_n(u)$ is expressed as the sum of the symmetric stochastic integral $\int_0^t u(B(s)) \circ dB^i(s)$ and a certain "correction term", (cf. Theorem 2.1). In particular, we will give a criterion such that S(t;n) converges to S(t), (cf. Corollary 2.1 in Section 2). We will also give a couple of examples for Theorem 2.1 in which the correction terms really appear. Section 3 is devoted to the proof of Theorem 2.1. Finally Section 4 concerns the convergence of the solutions of the ordinary differential equations determined by $B_n(t)$.

§ 2. Approximations of Stochastic Integral

Let \mathcal{Q} be the space of continuous functions defined on $[0, \infty)$ with values in \mathbb{R}^d . The value of the function $\omega \in \mathcal{Q}$ at time t will be denoted by $B(t, \omega) = (B^1(t, \omega), B^2(t, \omega), \dots, B^d(t, \omega))$. The argument ω may be suppressed occasionally. \mathcal{F}_t and \mathcal{F} denote the smallest σ -algebras with respect to which $B(s, \omega)$ are measurable for $0 \leq s \leq t$ and for $0 \leq s < \infty$ respectively. The shift operator is denoted by θ_t : that is $B(s, \theta_t \omega)$ $= B(s+t, \omega), (s \geq 0)$. Let $(\mathcal{Q}, \mathcal{F}, \mathcal{F}_t, B(t), \theta_t, P_x)$ be the d-dimensional Brownian motion. In this paper the following class of the approximations of the Brownian motion will be considered.

Definition 2.1. Let $\{B_{\delta}(t,\omega) = (B_{\delta}^{1}(t,\omega), B_{\delta}^{2}(t,\omega), \dots, B_{\delta}^{d}(t,\omega)); \delta > 0\}$ be a family of \mathbb{R}^{d} -valued stochastic processes defined on $(\mathcal{Q}, \mathcal{F}, P_{x})$ and let κ be a positive constant. We say $\{B_{\delta}(t,\omega)\} \in \mathcal{A}(B;\kappa)$ if, for each $\delta > 0$, $B_{\delta}(t,\omega)$ satisfies the following conditions:

(A. 1) $B_{\delta}(k\delta, \omega) = B(k\delta, \omega)$, for $\omega \in \mathcal{Q}$ and $k = 0, 1, \cdots$.

(A. 2)
$$B_{\delta}(t+k\delta,\omega) = B_{\delta}(t,\theta_{k\delta}\omega)$$
, for $\omega \in \mathcal{Q}$ and $k=1, 2, \cdots$.

(A. 3)
$$B_{\delta}(t, \omega + x) = B_{\delta}(t, \omega) + x$$
, for $\omega \in \Omega$, $t > 0$ and $x \in \mathbb{R}^{d}$,

where $\omega + x$ is the function defined by $(\omega + x)(t) = B(t, \omega) + x$, $t \ge 0$.

(A. 4) $B_{\delta}(t, \omega)$ is \mathcal{F}_{δ} -measurable for $0 \leq t \leq \delta$.

(A.5) $B_{\delta}(t, \omega)$ is continuous and piecewise smooth in t for $\omega \in \mathcal{Q}$.

(A. 6) $E_0\left[\left(\int_0^{\delta} |\dot{B}_{\delta}^i(s)| ds\right)^{\epsilon}\right] \leq \kappa \delta^3$, for $i=1, 2, \cdots, d$,

where $\dot{B}_{\delta}^{i}(s) = \frac{\partial}{\partial s} B_{\delta}^{i}(s)$, $i=1, 2, \dots, d$, and $E_{x}[\cdot]$ denotes the expectation with respect to the probability measure P_{x} .

Let us consider a differential 1-form on R^d of the following form:

$$\alpha_{ij} = (x^i dx^j - x^j dx^i)/2, \qquad (i, j = 1, 2, \dots, d),$$

and let $S_{ij}(t; \delta)$ be the integral of α_{ij} along $C_{\delta}[0, t]$: i.e.

$$S_{ij}(t;\delta) = \int_{C_{\delta}[0,t]} \alpha_{ij},$$

where $C_{\delta}[0, t]$ is the curve defined by $C_{\delta}[0, t] = \{B_{\delta}(s, \omega); 0 \leq s \leq t\}$. Then we have

(2.1)
$$S_{ij}(t; \delta) = \int_0^t (B_{\delta}^i(s) dB_{\delta}^j(s) - B_{\delta}^j(s) dB_{\delta}^i(s))/2.$$

Setting

$$s_{ij}(\delta) = E_0[S_{ij}(\delta; \delta)]/\delta$$
,

we have

Proposition 2.1. Suppose $\{B_{\delta}(t)\} \in \mathcal{A}(B; \kappa)$ for some positive constant κ . Then there exists a sequence $\{\delta_n\}$ of positive numbers such that $\lim_{n\to\infty} \delta_n = 0$ and for $1 \leq i$, $j \leq d$ the sequence $\{s_{ij}(\delta_n)\}$ has a finite limit as $n\to\infty$.

Proof. Fix *i* and *j*. To complete the proof we need only to show that $\{s_{ij}(\delta)\}$ is bounded. By (A. 6), we have

$$\begin{aligned} |s_{ij}(\delta)| \leq & E_0 \bigg[\int_0^\delta |\dot{B}_{\delta}{}^i(s)| ds \int_0^\delta |\dot{B}_{\delta}{}^j(s)| ds \bigg] / \delta \\ \leq & \left(E_0 \bigg[\Big(\int_0^\delta |\dot{B}_{\delta}{}^i(s)| ds \Big)^6 \bigg] \Big)^{1/6} \Big(E_0 \bigg[\Big(\int_0^\delta |\dot{B}_{\delta}{}^j(s)| ds \Big)^6 \bigg] \Big)^{1/6} / \delta \\ \leq & \kappa^{1/3}. \end{aligned}$$

This estimate proves the proposition.

In the remainder of the paper let $S = (s_{ij})$, $(1 \leq i, j \leq d)$, be a skewsymmetric $d \times d$ -matrix and let $\{\delta_n\}$ be a sequence of positive numbers satisfying $\lim \delta_n = 0$. Now we will give a notation.

Definition 2.2. Let $\{B_{\delta}(t)\} \in \mathcal{A}(B;\kappa)$. We say $\{B_{\delta_n}(t)\} \in \mathcal{A}(B;\kappa,S)$ if

$$\lim_{n \to \infty} s_{ij}(\delta_n) = s_{ij}, \qquad \text{for every} \quad 1 \leq i, \ j \leq d.$$

Still some more notation is needed. Let $\mathcal{H}(R^d)$ be the space of twice continuously differentiable functions on R^d whose partial derivatives of order ≤ 2 are all bounded. Finally set

(2.2)
$$S_{ij}(t) = \int_0^t (B^i(s) \circ dB^j(s) - B^j(s) \circ dB^i(s))/2, \quad t > 0,$$
$$i, j = 1, 2, \cdots, d.$$

The result we want to show is the following:

Theorem 2.1. Suppose $\{B_{\delta}(t)\} \in \mathcal{A}(B; \kappa)$ for some positive constant κ . Let $S = (s_{ij})$ be a skew-symmetric $d \times d$ -matrix. Then the following four statements are equivalent.

(i) $\{B_{\delta_n}(t)\} \in \mathcal{A}(B; \kappa, S).$

(ii)
$$\lim_{n \to \infty} E_0[|S_{ij}(t; \delta_n) - S_{ij}(t) - s_{ij}t|^2] = 0,$$

(iii)
$$\int_{n\to\infty}^{t} E_0 \left[\left| \int_0^t B^i_{\delta_n}(s) dB^j_{\delta_n}(s) - \int_0^t B^i(s) \circ dB^j(s) - s_{ijt} \right|^2 \right] = 0,$$

for $1 \leq i, j \leq d$ and $t > 0.$

(iv)
$$\lim_{n \to \infty} E_0 \left[\left| \int_0^t u(B_{\delta_n}(s)) dB_{\delta_n}^i(s) - \int_0^t u(B(s)) dB^i(s) - \sum_{i=1}^d s_{ij} \int_0^t \frac{\partial}{\partial x^i} u(B(s)) ds \right|^2 \right] = 0,$$

for $u \in \mathcal{H}(\mathbb{R}^d), \ 1 \leq j \leq d \text{ and } t > 0.$

The proof of Theorem 2.1 will be given in the next section. Now we will define a typical subclass of approximations in $\mathcal{A}(B; \kappa, S)$.

Definition 2.3. Let $\{B_{\delta_n}(t)\} \in \mathcal{A}(B; \kappa, S)$. We say that $\{B_{\delta_n}(t)\}$ is symmetric if each component of S is equal to 0.

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.1. Let $\{B_{\delta_n}(t)\} \in \mathcal{A}(B; \kappa, S)$. Then $\{B_{\delta_n}(t)\}$ is symmetric if and only if

(2.3)
$$\lim_{n \to \infty} E_0[|S_{ij}(t; \delta_n) - S_{ij}(t)|^2] = 0,$$

for $1 \le i, j \le d$ and $t > 0.$

Remark 2.1. Let $B(t) = (B^{1}(t), B^{2}(t))$ be a two-dimensional Brownian motion starting at 0 and let $C_{\delta}^{*} = \{C_{\delta}^{*}(s); 0 \leq s \leq t+1\}$ be the closed curve in \mathbb{R}^{2} defined by

$$C_{\delta}^{*}(s) = \begin{cases} (B_{\delta}^{1}(s), B_{\delta}^{2}(s)), & 0 \leq s \leq t, \\ (t+1-s) (B_{\delta}^{1}(t), B_{\delta}^{2}(t)), & t < s \leq t+1. \end{cases}$$

As mentioned in the Introduction, P. Lévy [3] proved (2.3) in the case that $\{B_{\delta_n}(t)\}$ is a sequence of polygonal approximations to B(t). In this case, we can write

$$S_{12}(t;\delta) = \int_{c_{\delta^*}} lpha \, ,$$

where $\alpha = (x^1 dx^2 - x^2 dx^1)/2$. We may, therefore, consider $S_{12}(t)$ as a stochastically defined area enclosed by a Brownian curve up to moment t and its chord, (P. Lévy [3], pp. 262-266).

Remark 2.2. Suppose $\{B_{\delta_n}(t)\} \in \mathcal{A}(B; \kappa, S)$. If $\{B_{\delta_n}(t)\}$ is symmetric, then $(B^i_{\delta_n}(t), S_{jk}(t; \delta_n)), (1 \leq i, j, k \leq d)$, converges to the diffusion process $(B^i(t), S_{jk}(t)), (1 \leq i, j, k \leq d)$, in $L^2(\mathcal{Q}, P_0)$, (cf. M.B. Gaveau [1]).

Finally we will give three examples. For this purpose we introduce the following notations. $\boldsymbol{\Phi}$ denotes the space of continuously differentiable functions $\boldsymbol{\phi}(t)$ on [0, 1] such that

$$\phi(0) = 0$$
 and $\phi(1) = 1$.

For
$$\phi \in \Phi$$
, set $\dot{\phi} = \frac{d}{dt}\phi$. For $\delta > 0$ and $k = 0, 1, \dots$, set
 $\Delta_k B^i = B^i(k\delta + \delta) - B^i(k\delta)$.

Example 2.1. Let $\phi^k \in \emptyset$, $k=1, 2, \dots, d$. Set, for $i=1, 2, \dots, d$,

$$B_{\delta}^{i}(t) = B^{i}(k\delta) + \phi^{i}((t-k\delta)/\delta) \varDelta_{k}B^{i}, \quad \text{if } k\delta \leq t < k\delta + \delta, \ k = 0, \ 1, \ \cdots.$$

Then $\{B_{\delta}(t) = (B_{\delta}^{1}(t), B_{\delta}^{2}(t), \dots, B_{\delta}^{d}(t))\} \in \mathcal{A}(B; \kappa)$ for some positive constant κ . In this case, since

$$s_{ij}(\delta) = 0$$
, for every $\delta > 0$ and $1 \leq i, j \leq d$,

 $\{B_{\delta}(t)\}\$ is symmetric. Hence if $\{B_{\delta}(t)\}\$ is a sequence of polygonal approximations to B(t), $\{B_{\delta}(t)\}\$ is symmetric and $S_{ij}(t;\delta)$ converges to $S_{ij}(t)$ in the quadratic-mean sense.

Example 2.2. (E.J. McShane [4]). Let d=2 and let $\phi^i \in \mathcal{O}$, i=1, 2. For i=1, 2, we define

$$(2.4) \quad B_{\delta}^{i}(t) = \begin{cases} B^{i}(k\delta) + \phi^{i}((t-k\delta)/\delta) \varDelta_{k}B^{i}, & \text{if } \varDelta_{k}B^{1}\varDelta_{k}B^{2} \ge 0, \\ & \text{for } k\delta \le t < k\delta + \delta. \\ B^{i}(k\delta) + \phi^{3-i}((t-k\delta)/\delta) \varDelta_{k}B^{i}, & \text{if } \varDelta_{k}B^{1}\varDelta_{k}B^{2} < 0, \end{cases}$$

Then $\{B_{\delta}(t) = (B_{\delta}^{1}(t), B_{\delta}^{2}(t))\} \in \mathcal{A}(B; \kappa)$ for some positive constant κ . By (2.1) and (2.4) we have

$$S_{12}(\delta; \delta) = \frac{|\mathcal{A}_0 B^1 \mathcal{A}_0 B^2|}{2} \left\{ 1 - 2 \int_0^1 \dot{\phi}^1(s) \phi^2(s) \, ds \right\} \\ + \left[B^1(0) B^2(\delta) - B^2(0) B^1(\delta) \right] / 2 \, .$$

Since $E_0[|\varDelta_0 B^1 \varDelta_0 B^2|] = 2\delta/\pi$, it follows that

$$s_{12}(\delta) = \left(1-2\int_0^1 \dot{\phi}^1(s)\,\phi^2(s)\,ds\right)/\pi, \qquad ext{for every } \delta > 0 \ .$$

Example 2.3. Let $\phi_j^i \in \emptyset$, $(i=1, 2, \dots, d \text{ and } j=1, 2)$. Set, for $i=1, 2, \dots, d$,

(2.5)
$$B_{\delta}^{i}(t) = \begin{cases} B^{i}(k\delta) + \phi_{1}^{i}((t-k\delta)/\delta) \varDelta_{k}B^{i}, & \text{if } \varDelta_{k}B^{i} \ge 0, \\ & \text{for } k\delta \le t < k\delta + \delta. \\ B^{i}(k\delta) + \phi_{2}^{i}((t-k\delta)/\delta) \varDelta_{k}B^{i}, & \text{if } \varDelta_{k}B^{i} < 0, \end{cases}$$

Then $\{B_{\delta}(t) = (B_{\delta}^{1}(t), B_{\delta}^{2}(t), \dots, B_{\delta}^{d}(t))\} \in \mathcal{A}(B; \kappa)$ for some positive constant κ . By (2.1) and (2.5), we have, for every $\delta > 0$ and $i \neq j$, $S_{ij}^{*}(\delta; \delta)$

$$= \begin{cases} |\mathcal{A}_{0}B^{i}\mathcal{A}_{0}B^{j}| \left(1-2\int_{0}^{1}\dot{\phi}_{1}^{i}(s)\phi_{1}^{j}(s)ds\right)/2, & \text{if } \mathcal{A}_{0}B^{i} \ge 0, \ \mathcal{A}_{0}B^{j} \ge 0, \\ -|\mathcal{A}_{0}B^{i}\mathcal{A}_{0}B^{j}| \left(1-2\int_{0}^{1}\dot{\phi}_{1}^{i}(s)\phi_{2}^{j}(s)ds\right)/2, & \text{if } \mathcal{A}_{0}B^{i} \ge 0, \ \mathcal{A}_{0}B^{j} < 0, \\ -|\mathcal{A}_{0}B^{i}\mathcal{A}_{0}B^{j}| \left(1-2\int_{0}^{1}\dot{\phi}_{2}^{i}(s)\phi_{1}^{j}(s)ds\right)/2, & \text{if } \mathcal{A}_{0}B^{i} < 0, \ \mathcal{A}_{0}B^{j} \ge 0, \\ |\mathcal{A}_{0}B^{i}\mathcal{A}_{0}B^{j}| \left(1-2\int_{0}^{1}\dot{\phi}_{2}^{i}(s)\phi_{2}^{j}(s)ds\right)/2, & \text{if } \mathcal{A}_{0}B^{i} < 0, \ \mathcal{A}_{0}B^{j} \ge 0, \end{cases}$$

where $S_{ij}^*(\delta; \delta) = S_{ij}(\delta; \delta) - [B^i(0)B^j(\delta) - B^j(0)B^i(\delta)]/2$. Hence

(2.6)
$$s_{ij}(\delta) = -\int_0^1 (\dot{\phi}_1^i - \dot{\phi}_2^i)(s) (\phi_1^j - \phi_2^j)(s) ds/2\pi$$
,

for every $\delta > 0$ and $i \neq j$.

Using (2.6) we can prove that for any skew-symmetric $d \times d$ -matrix S, there exists a sequence $\{B_{\delta_n}(t)\}$ of approximations to B(t) such that $\{B_{\delta_n}(t)\} \in \mathcal{A}(B; \kappa, S)$.

§ 3. Proof of Theorem 2.1

Before proceeding to the proof of Theorem 2.1 we will prepare four lemmas. Set

(3.1)
$$c_{ij}(\delta) = E_0 \left[\int_0^{\delta} \dot{B}_{\delta}^i(s) \left(B_{\delta}^j(\delta) - B_{\delta}^j(s) \right) ds \right] / \delta.$$

Lemma 3.1. For $\delta > 0$,

(3.3) $c_{ij}(\delta) = s_{ij}(\delta), \quad \text{for } 1 \leq i, j \leq d \text{ and } i \neq j.$

Proof. By (3.1),

$$c_{ij}(\delta) + c_{ji}(\delta) = E_0[B^i(\delta)B^j(\delta)]/\delta.$$

Since $E_0[B^i(\delta)B^j(\delta)] = \delta \delta_{i,j}$, we have

Nobuyuki Ikeda, Shintaro Nakao and Yuiti Yamato

(3.4)
$$c_{ii}(\delta) = 1/2 \text{ and } c_{ij}(\delta) = -c_{ji}(\delta) \text{ for } i \neq j.$$

Combining this with (3.1) we can prove that if $i \neq j$, then

$$c_{ij}(\delta) = (c_{ij}(\delta) - c_{ji}(\delta))/2$$

= $E_0 \bigg[\int_0^{\delta} (B_{\delta}^i(s) dB_{\delta}^j(s) - B_{\delta}^j(s) dB_{\delta}^i(s)) \bigg]/2\delta$
= $s_{ij}(\delta)$.

This completes the proof of Lemma 3.1.

Lemma 3.2. For any
$$\delta > 0$$
 and $1 \leq i, j \leq d$,

$$E_{x} \left[\left\{ \int_{0}^{\delta} \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(\delta) - B_{\delta}^{j}(s) \right) ds \right\}^{p} \right]$$

$$(3.5) \qquad = E_{0} \left[\left\{ \int_{0}^{\delta} \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(\delta) - B_{\delta}^{j}(s) \right) ds \right\}^{p} \right],$$

$$for \ p = 1, 2 \ and \ x \in \mathbb{R}^{d},$$

and

292

(3.6)
$$E_0 \left[\int_{k\delta}^{(k+1)\delta} \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s) \right) ds / \mathcal{F}_{k\delta} \right] = \delta c_{ij}(\delta),$$

for $k = 0, 1, \cdots$.

Proof. (3.5) follows from (A. 3). Appealing to the Markov property, we have

$$E_{0}\left[\int_{k\delta}^{(k+1)\delta} \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta+\delta)-B_{\delta}^{j}(s)\right) ds/\mathcal{F}_{k\delta}\right]$$
$$=E_{0}\left[\int_{0}^{\delta} \dot{B}_{\delta}^{i}(s,\theta_{k\delta}\omega) \left(B_{\delta}^{j}(\delta,\theta_{k\delta}\omega)-B_{\delta}^{j}(s,\theta_{k\delta}\omega)\right) ds/\mathcal{F}_{k\delta}\right],$$
(by (A. 2)),

$$=E_{B(k\delta)}\bigg[\int_0^\delta \dot{B}_{\delta}^i(s) \left(B_{\delta}^j(\delta)-B_{\delta}^j(s)\right)ds\bigg].$$

Combining this with (3.5) we can complete the proof of Lemma 3.2.

For the sake of brevity, we introduce the following notations. For $\delta > 0$, set

$$\begin{cases} [s]^+(\delta) = (k+1)\delta \\ & \text{, for } k\delta \leq s < (k+1)\delta, \ (k=0, 1, 2, \cdots). \\ [s]^-(\delta) = k\delta \end{cases}$$

Setting $s(\delta) = [s]^{-}(\delta)/\delta$, we have

Lemma 3.3. Let $Z_1(s, \omega)$ be a bounded \mathcal{F}_s -adapted process defined on $(\mathcal{Q}, \mathcal{F}, P_x)$ with piecewise continuous sample paths. If $\{B_{\mathfrak{g}}(t)\} \in \mathcal{A}(B;\kappa)$, then

$$E_{0}\left[\left\{\int_{0}^{\lfloor t \rfloor^{-}(\delta)} Z_{1}(\lfloor s \rfloor^{-}(\delta)) \left[\dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(\lfloor s \rfloor^{+}(\delta)) - B_{\delta}^{j}(s)\right) - c_{ij}(\delta)\right] ds\right\}^{2}\right]$$

$$\leq \kappa^{2/3} (K_{1})^{2} [t]^{-}(\delta) \delta, \qquad for \ 1 \leq i, \ j \leq d \ and \ t > 0,$$

where $K_1 = \sup_{s,\omega} |Z_1(s,\omega)|$.

Proof. Since

$$E_{0} \left[\int_{k\delta}^{(k+1)\delta} \left[\dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s) \right) - c_{ij}(\delta) \right] ds / \mathcal{F}_{k\delta} \right] = 0$$

from (3.6), it follows that

$$E_{0} \left[\left\{ \int_{0}^{[t]^{-}(\delta)} Z_{1}([s]^{-}(\delta)) \left[\dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}([s]^{+}(\delta)) - B_{\delta}^{j}(s) \right) - C_{ij}(\delta) \right] ds \right\}^{2} \right]$$

$$(3.7) = E_{0} \left[\sum_{k=0}^{t(\delta)-1} Z_{1}(k\delta)^{2} \left\{ \int_{k\delta}^{(k+1)\delta} \left[\dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s) \right) - C_{ij}(\delta) \right] ds \right\}^{2} \right].$$

Using Lemma 3.2, we have

$$(3.8) \qquad E_{0} \left[\left(\int_{k\delta}^{(k+1)\delta} \left[\dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s) \right) - c_{ij}(\delta) \right] ds \right)^{2} / \mathcal{F}_{k\delta} \right] \\ = E_{0} \left[\left(\int_{0}^{\delta} \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(\delta) - B_{\delta}^{j}(s) \right) ds \right)^{2} \right] - \left(c_{ij}(\delta) \delta \right)^{2}.$$

On the other hand, by (A. 6) in Section 2,

(3.9)
$$E_0\left[\left(\int_0^\delta \dot{B}_{\delta}^i(s) \left(B_{\delta}^j(\delta) - B_{\delta}^j(s)\right) ds\right)^2\right]$$

Nobuyuki Ikeda, Shintaro Nakao and Yuiti Yamato

$$\leq E_0 \left[\left(\int_0^\delta |\dot{B}_{\delta}^i(s)| ds \right)^2 \left(\int_0^\delta |\dot{B}_{\delta}^j(s)| ds \right)^2 \right]$$
$$\leq \kappa^{2/3} \delta^2.$$

Combining (3.7), (3.8) and (3.9), we have

$$E_0 \left[\left\{ \int_0^{[\iota]^-(\delta)} Z_1([s]^-(\delta)) \left[\dot{B}_{\delta}^i(s) \left(B_{\delta}^j([s]^+(\delta)) - B_{\delta}^j(s) \right) - c_{ij}(\delta) \right] ds \right\}^2 \right]$$
$$\leq \kappa^{2/3} (K_1)^2 [t]^-(\delta) \delta ,$$

which completes the proof of Lemma 3.3.

Lemma 3.4. Let K_2 be a positive constant and let $Z_2(s, \omega)$ be a stochastic process defined on $(\Omega, \mathcal{F}, P_x)$ with piecewise continuous sample paths satisfying the following condition:

$$(3.10) |Z_2(s)| \leq K_2 \sum_{m=1}^d \int_{[s]^{-(\delta)}}^{[s]^{+(\delta)}} |\dot{B}_{\delta}^m(u)| du, \quad for \ s \geq 0.$$

If
$$\{B_{\delta}(t)\} \in \mathcal{A}(B;\kappa)$$
, then
(3.11) $E_0\left[\left\{\int_0^{[\iota]^{-}(\delta)} Z_2(s) \dot{B}_{\delta}^{i}(s) (B_{\delta}^{j}([s]^+(\delta)) - B_{\delta}^{j}(s)) ds\right\}^2\right]$
 $\leq \kappa (K_2[t]^{-}(\delta) d)^2 \delta, \quad \text{for } 1 \leq i, j \leq d \text{ and } t > 0.$

Proof. By (3.10),

$$\left| \int_{0}^{[t]^{-(\delta)}} Z_{2}(s) \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}([s]^{+}(\delta)) - B_{\delta}^{j}(s) \right) ds \right|$$

$$\leq \left| \sum_{k=0}^{t(\delta)-1} \int_{k\delta}^{(k+1)\delta} Z_{2}(s) \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}([s]^{+}(\delta)) - B_{\delta}^{j}(s) \right) ds \right|$$

$$\leq K_{2} \sum_{k=0}^{t(\delta)-1} \sum_{m=1}^{d} \int_{k\delta}^{(k+1)\delta} |\dot{B}_{\delta}^{m}(s)| ds \int_{k\delta}^{(k+1)\delta} |\dot{B}_{\delta}^{i}(s)| ds \int_{k\delta}^{(k+1)\delta} |\dot{B}_{\delta}^{j}(s)| ds .$$

Hence by (A. 2), (A. 4) and (A. 6), the left-hand side of (3. 11) is bounded above by

$$egin{aligned} &(K_2t\left(\delta
ight))^2\sum\limits_{m=1}^d\sum\limits_{k=1}^dE_0iggg[\int_0^\delta|\dot{B}_\delta{}^m(s)|ds|\int_0^\delta|\dot{B}_\delta{}^k(s)|ds| &\times \Big(\int_0^\delta|\dot{B}_\delta{}^i(s)|ds\Big)^2\Big(\int_0^\delta|\dot{B}_\delta{}^j(s)|ds\Big)^2\Big]{\leq}\kappa\,(K_2[t]^-(\delta)d)^2\delta\,, \end{aligned}$$

which completes the proof of Lemma 3.4.

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. The implication $(iv) \rightarrow (iii)$ is trivial. Since $s_{ij} = -s_{ji}$, certainly (iii) implies (ii).

Proof of (ii) \rightarrow (i). Suppose (ii) holds. First we note that $s_{ii}(\delta) = 0$ for any $\delta > 0$. Fix *i* and *j* such that $i \neq j$. From (ii), $E_0[S_{ij}(1; \delta_n)]$ converges to s_{ij} . Hence, using $B_{\delta}(t) \in \mathcal{A}(B; \kappa)$, we can prove that $E_0[S_{ij}([1]^-(\delta_n), \delta_n)]$ converges to s_{ij} . Consequently we have

(3.12)
$$\lim_{n \to \infty} E_{0} \left[\int_{0}^{[1]^{-(\delta_{n})}} \left\{ \left(B_{\delta_{n}}^{i}(s) - B_{\delta_{n}}^{i}([s]^{+}(\delta_{n})) \right) \dot{B}_{\delta_{n}}^{j}(s) - \left(B_{\delta_{n}}^{j}(s) - B_{\delta_{n}}^{j}([s]^{+}(\delta_{n})) \right) \dot{B}_{\delta_{n}}^{i}(s) \right\} ds \right] / 2 = s_{ij}.$$

On the other hand, by Lemma 3.2, the left-hand side of (3.12) is equal to

$$\lim_{n \to \infty} \sum_{k=0}^{i(\delta_n)^{-1}} E_0 \bigg[\int_{k\delta_n}^{(k+1)\delta_n} (B_{\delta_n}{}^i(s) - B_{\delta_n}{}^i((k+1)\delta_n)) \dot{B}_{\delta_n}{}^j(s) ds \\ - \int_{k\delta_n}^{(k+1)\delta_n} (B_{\delta_n}{}^j(s) - B_{\delta_n}{}^j((k+1)\delta_n)) \dot{B}_{\delta_n}{}^i(s) ds \bigg] / 2 \\ = \lim_{n \to \infty} \sum_{k=0}^{i(\delta_n)^{-1}} E_0 \bigg[\int_0^{\delta_n} (B_{\delta_n}{}^j(\delta_n) - B_{\delta_n}{}^j(s)) \dot{B}_{\delta_n}{}^i(s) ds \\ - \int_0^{\delta_n} (B_{\delta_n}{}^i(\delta_n) - B_{\delta_n}{}^i(s)) \dot{B}_{\delta_n}{}^j(s) ds \bigg] / 2 \\ = \lim_{n \to \infty} [1]^- (\delta_n) c_{ij}(\delta_n).$$

Hence, by (3.12) and Lemma 3.1,

$$\lim_{n\to\infty} [1]^{-}(\delta_n) \, s_{ij}(\delta_n) = s_{ij} \,,$$

and (i) follows.

Proof of (i) \rightarrow (iv). Suppose (i) holds. Set $u_i = \frac{\partial}{\partial x^i} u$ for $u \in \mathcal{H}(\mathbb{R}^d)$ and put $c_{ij} = s_{ij} + \delta_{i,j}/2$. Since

$$\int_{0}^{t} u(B(s)) \circ dB^{j}(s) = \int_{0}^{t} u(B(s)) dB^{j}(s) + \frac{1}{2} \int_{0}^{t} u_{j}(B(s)) ds,$$

we have

(3.13)
$$\int_{0}^{t} u(B(s)) \circ dB^{j}(s) + \sum_{i=1}^{d} s_{ij} \int_{0}^{t} u_{i}(B(s)) ds$$
$$= \int_{0}^{t} u(B(s)) dB^{j}(s) + \sum_{i=1}^{d} c_{ij} \int_{0}^{t} u_{i}(B(s)) ds.$$

By integration by parts, we obtain

$$\int_{k\delta}^{(k+1)\delta} u\left(B_{\delta}(s)\right) dB_{\delta}^{j}(s)$$

$$= -\int_{k\delta}^{(k+1)\delta} u\left(B_{\delta}(s)\right) \frac{d}{ds} \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s)\right) ds$$

$$= u\left(B_{\delta}(k\delta)\right) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(k\delta)\right)$$

$$+ \sum_{i=1}^{d} \int_{k\delta}^{(k+1)\delta} u_{i}\left(B_{\delta}(s)\right) \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s)\right) ds$$

$$= u\left(B(k\delta)\right) \left(B^{j}(k\delta + \delta) - B^{j}(k\delta)\right)$$

$$+ \sum_{i=1}^{d} \int_{k\delta}^{(k+1)\delta} u_{i}\left(B_{\delta}(s)\right) \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(k\delta + \delta) - B_{\delta}^{j}(s)\right) ds,$$

$$(by (A. 1)).$$

Now we put

$$\begin{split} I_{1}(\delta) &= \int_{[\iota]^{-}(\delta)}^{\iota} u(B_{\delta}(s)) dB_{\delta}^{j}(s) - \int_{[\iota]^{-}(\delta)}^{\iota} u(B(s)) dB^{j}(s) \\ &- \sum_{i=1}^{d} c_{ij} \int_{[\iota]^{-}(\delta)}^{\iota} u_{i}(B(s)) ds , \\ I_{2}(\delta) &= \int_{0}^{[\iota]^{-}(\delta)} (u(B([s]^{-}(\delta))) - u(B(s))) dB^{j}(s) , \\ I_{3}(\delta) &= \sum_{i=1}^{d} \int_{0}^{[\iota]^{-}(\delta)} u_{i}(B([s]^{-}(\delta))) [\dot{B}_{\delta}^{i}(s) (B_{\delta}^{j}([s]^{+}(\delta)) - B_{\delta}^{j}(s)) \\ &- c_{ij}(\delta)] ds , \\ I_{4}(\delta) &= \sum_{i=1}^{d} \int_{0}^{[\iota]^{-}(\delta)} [u_{i}(B_{\delta}(s)) - u_{i}(B([s]^{-}(\delta)))] \dot{B}_{\delta}^{i}(s) (B_{\delta}^{j}([s]^{+}(\delta)) \\ &- B_{\delta}^{j}(s)) ds , \\ I_{5}(\delta) &= \sum_{i=1}^{d} \int_{0}^{[\iota]^{-}(\delta)} [u_{i}(B([s]^{-}(\delta))) - u_{i}(B(s))] dsc_{ij} , \end{split}$$

$$I_{\mathfrak{s}}(\delta) = \sum_{i=1}^{d} \int_{0}^{[\iota]^{-}(\delta)} u_{i}(B([s]^{-}(\delta))) ds(c_{ij}(\delta) - c_{ij})$$

Combining (3.13) with (3.14), we have

(3.15)
$$\int_{0}^{t} u(B_{\delta}(s)) dB_{\delta}^{j}(s) - \int_{0}^{t} u(B(s)) \circ dB^{j}(s) - \sum_{i=1}^{d} s_{ij} \int_{0}^{t} u_{i}(B(s)) ds = \sum_{i=1}^{n} I_{i}(\delta).$$

It is obvious that

(3. 16)
$$\lim_{\delta \to 0} E_0 \left[\left\{ I_1(\delta) + I_2(\delta) + I_5(\delta) \right\}^2 \right] = 0.$$

Applying Lemmas 3.3 and 3.4 to $I_{\mathfrak{s}}(\delta)$ and $I_{\mathfrak{t}}(\delta)$ respectively, we have

(3. 17)
$$\lim_{\delta \to 0} E_0 \left[\left\{ I_{\mathfrak{s}}(\delta) + I_{\mathfrak{t}}(\delta) \right\}^2 \right] = 0.$$

It is also clear that (i) implies

(3.18)
$$\lim_{n\to\infty} E_0[(I_6(\delta_n))^2] = 0.$$

Combining (3.15), (3.16), (3.17) and (3.18), we can see that (iv) follows from (i).

§ 4. Stochastic Differential Equations and Related Ordinary Differential Equations

Let $\sigma(x) = (\sigma_j^{a}(x))$, $(1 \leq \alpha, j \leq d)$ be a $d \times d$ -matrix valued function defined on \mathbb{R}^d . We assume that each component of $\sigma(x)$ is a bounded twice continuously differentiable function whose partial derivatives of order ≤ 2 are all bounded. We will consider a sequence $\{B_{\delta}(t)\}$ of approximations to B(t) such that $\{B_{\delta_n}(t)\} \in \mathcal{A}(B; \kappa, S)$ for some skewsymmetric $d \times d$ -matrix $S = (s_{ij})$. Let $X_{\delta}(t) = (X_{\delta}^{-1}(t), X_{\delta}^{2}(t), \cdots, X_{\delta}^{d}(t))$ be the unique solution of the following ordinary differential equation:

(4.1)
$$\begin{cases} dX_{\delta}(t) = \sigma(X_{\delta}(t)) dB_{\delta}(t), \\ X_{\delta}(0) = x_{0} \in \mathbb{R}^{d}. \end{cases}$$

Let $X(t) = (X^{1}(t), X^{2}(t), \dots, X^{d}(t))$ be the unique solution of the following stochastic differential equation:

(4.2)
$$\begin{cases} dX^{\alpha}(t) = \sum_{j=1}^{d} \sigma_{j}^{\alpha}(X(t)) \circ dB^{j}(t) \\ + \sum_{i, j=1}^{d} \sum_{\beta=1}^{d} s_{ij} \left(\sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} \right) (X(t)) dt , & \text{for } 1 \leq \alpha \leq d , \\ X(0) = x_{0} \in \mathbb{R}^{d}. \end{cases}$$

The result we want to show is the following:

Theorem 4.1. If
$$\{B_{\delta_n}\} \in \mathcal{A}(B;\kappa,S)$$
, then
(4.3)
$$\lim_{n \to \infty} E_0[\|X_{\delta_n}(t) - X(t)\|^2] = 0, \quad for \ t \ge 0.$$

Proof. The proof uses the same lemmas as in the proof of Theorem 2.1. First we note that for every $\delta > 0$ and $s \ge 0$,

(4.4)
$$\|X_{\delta}(s) - X_{\delta}([s]^{-}(\delta))\| \leq K_{\delta} \sum_{m=1}^{d} \int_{[s]^{-}(\delta)}^{[s]^{+}(\delta)} |\dot{B}_{\delta}^{m}(u)| du ,$$

where K_3 is a positive constant depending only on σ . By integration by parts, we have

Now put $c_{ij} = s_{ij} + \delta_{i,j}/2$. Then, by (4.2),

$$\begin{aligned} X^{\alpha}(t) - X^{\alpha}(0) &= \sum_{j=1}^{d} \int_{0}^{t} \sigma_{j}^{\alpha}(X(s)) dB^{j}(s) \\ &+ \sum_{i,j,\beta=1}^{d} c_{ij} \int_{0}^{t} \left(\sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \alpha_{j}^{\alpha} \right) (X(s)) ds , \qquad \alpha = 1, 2, \cdots, d . \end{aligned}$$

Combining this with (4.5), we have

(4.6)
$$X_{\delta}^{\alpha}(t) - X^{\alpha}(t) = \sum_{j=1}^{6} I_{j}^{\alpha}(t; \delta), \qquad \alpha = 1, 2, \cdots, d,$$

where

$$\begin{split} I_1^{\alpha}(t;\delta) &= X_{\delta}^{\alpha}(t) - X_{\delta}^{\alpha}([t]^{-}(\delta)) - X^{\alpha}(t) + X^{\alpha}([t]^{-}(\delta)), \\ I_2^{\alpha}(t;\delta) &= \sum_{j=1}^d \int_0^{[t]^{-}(\delta)} [\sigma_j^{\alpha}(X_{\delta}([s]^{-}(\delta))) - \sigma_j^{\alpha}(X(s))] dB^j(s), \end{split}$$

$$\begin{split} I_{3}^{\alpha}(t;\delta) &= \sum_{i,j,\beta=1}^{d} \int_{0}^{\lfloor t \rfloor^{-(\delta)}} \sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(\lfloor s \rfloor^{-}(\delta))) \\ &\times \left[\dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(\lfloor s \rfloor^{+}(\delta)) - B_{\delta}^{j}(s) \right) - c_{ij}(\delta) \right] ds \,, \\ I_{4}^{\alpha}(t;\delta) &= \sum_{i,j,\beta=1}^{d} \int_{0}^{\lfloor t \rfloor^{-(\delta)}} \left[\sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(s)) - \sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(\lfloor s \rfloor^{-}(\delta))) \right] \\ &\times \dot{B}_{\delta}^{i}(s) \left(B_{\delta}^{j}(\lfloor s \rfloor^{+}(\delta)) - B_{\delta}^{j}(s) \right) ds \,, \\ I_{5}^{\alpha}(t;\delta) &= \sum_{i,j,\beta=1}^{d} \int_{0}^{\lfloor t \rfloor^{-(\delta)}} \left[\sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(\lfloor s \rfloor^{-}(\delta))) - \sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(\lfloor s \rfloor^{-}(\delta))) \right] ds c_{ij} \,, \\ I_{6}^{\alpha}(t;\delta) &= \sum_{i,j,\beta=1}^{d} \int_{0}^{\lfloor t \rfloor^{-(\delta)}} \sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(\lfloor s \rfloor^{-}(\delta))) ds [c_{ij}(\delta) - c_{ij}] \,. \end{split}$$

Now fix T > 0. Set

$$Z_1(s, \omega) = \sum_{\beta=1}^d \left(\sigma_i^{\ \beta} \frac{\partial}{\partial x^{\beta}} \sigma_j^{\ \alpha} \right) \left(X_{\delta}([s]^-(\delta)) \right).$$

Then $Z_1(s, \omega)$ is a bounded \mathcal{F}_s -adapted process with piecewise continuous sample paths. Next set

$$Z_{2}(s, \omega) = \sum_{\beta=1}^{d} \bigg[\sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}(s)) - \sigma_{i}^{\beta} \frac{\partial}{\partial x^{\beta}} \sigma_{j}^{\alpha} (X_{\delta}([s]^{-}(\delta))) \bigg].$$

Then, by (4.4), $Z_2(s, \omega)$ satisfies (3.10) in Lemma 3.4. Hence we can apply Lemma 3.3 and Lemma 3.4 to $I_s^{\alpha}(t; \delta)$ and $I_4^{\alpha}(t; \delta)$ respectively. Hence, using (4.4) and $\{B_{\delta_n}\} \in \mathcal{A}(B; \kappa, S)$, we obtain

(4.7)
$$E_0[\|X_{\delta_n}(t) - X(t)\|^2] \leq K_4 \int_0^t E_0[\|X_{\delta_n}(s) - X(s)\|^2] ds + \varepsilon_n,$$
 for $t \leq T$,

where K_4 is a positive constant depending only on σ , κ and T and $\{\varepsilon_n\}$ is a sequence of positive numbers with $\lim_{n\to\infty} \varepsilon_n = 0$ depending only on σ , κ and T. By (4.7), we have

$$E_0[\|X_{\delta_n}(t) - X(t)\|^2] \leq \varepsilon_n \exp(K_i t), \quad \text{for } t \leq T,$$

which implies (4.3).

References

- [1] Gaveau, M. B., Solutions fondamentales, représentations, et estimées sous-elliptiques pour les groupes nilpotents d'ordre 2, C. R. Acad. Sc. Paris, 282 (1976), 563-566.
- [2] Itô, K., Stochastic differentials, Appl. Math. Optimization, 1 (1975), 374-381.
- [3] Lévy, P., Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1948.
- [4] McShane, E. J., Stochastic differential equations and models of random processes, Proc. 6-th Berkeley Symp. on Math. Statist. and Prob., 3 (1970), 263-294.
- [5] Wong, E. and Zakai, M., On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560-1564.
- [6] Wong, E. and Zakai, M., Riemann-Stieltjes approximations of stochastic integrals, Z. Wahrscheinlichkeitstheorie verw. Geb., 12 (1969), 87-97.