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§ I. Introduction

Let B(t) = (B\t)i B2(t), • • - , Bd(t)} be a ^-dimensional Brownian mo-

tion and let {Bn(i) = (Bn
1(t),Bn\f),-~,Bn*(i))} be a sequence of ap-

proximations to B(t). We assume that the sample paths of Bn(t) are

continuous and piecewise smooth for each n and Bn(t) converges to B(t).

Let u(x) be a twice continuously differentiate function on Rd whose

partial derivatives of order <^2 are all bounded. In the one-dimensional

case E.Wong and M. Zakai [5] showed that I u(Bn(s))dBn(s) con-
Jo

verges to I u (B (s)) odB(s) where the symbol o denotes the symmetric
Jo

stochastic integral of Stratonovich (K. Ito [2]). They also dealt with

the convergence of the more general functional of Bn(-)9 ([6]). In

the two-dimensional case P. Levy [3] showed that S(t;n)= \ (B^(s)-
Jo

dBJ(s) — B»(s)dBJ(s))/2 converges to the stochastic integral S(t) =

(\Bl(s)°dff(s) -Bz(s}°dBl(s')}/2 if (Bn(t)} is a sequence of polygonal
Jo

approximations to B ( f ) . E. J. McShane [4], on the other hand, gave an

example of the sequence {Bn(t}} of approximations to B(t) such that

S(t;n} converges to S(f)-\-t/n.

In this paper we treat systematically a class of approximations of

Brownian motion including McShane's example. In Section 2 we state

the main results of the paper. We consider a sequence of Stieltjes inte-

grals of the form In(ii) — \ u(Bn(s))dBn
J(5). First we will give some

Jo

conditions under which In(u) converges in the quadratic-mean sense. It
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is then shown that the limit of In(ii) is expressed as the sum of the

symmetric stochastic integral I u(B(s)) odBJ (s) and a certain "correction
Jo

term\ (cf. Theorem 2. 1). In particular, we will give a criterion such

that S(t\n) converges to S(t), (cf. Corollary 2.1 in Section 2). We

will also give a couple of examples for Theorem 2. 1 in which the cor-

rection terms really appear. Section 3 is devoted to the proof of Theorem

2. 1. Finally Section 4 concerns the convergence of the solutions of the

ordinary differential equations determined by Bn(t) .

§ 2. Approximations of Stochastic Integral

Let J? be the space of continuous functions denned on [0, oo) with

values in Rd. The value of the function &)6=J2 at time t will be denoted

by B(t,a>) = (Bl(t,di), B2(t, to), - • - , Bd(t,u))). The argument o) may be

suppressed occasionally. 3 \ and 3 denote the smallest (T-algebras with

respect to which B(s,co>) are measurable for 0<Ss<^ and for Q<C5<f oo

respectively. The shift operator is denoted by 6t: that is B(s,6ta)^)

= B(s + t,(0), (5>0). Let (Q,<S,3t,B(t),6tyPx) bethel-dimensional

Brownian motion. In this paper the following class of the approximations

of the Brownian motion will be considered.

Definition 2. I. Let {B,(t, a)) = (B8
l(t, ®),Bf(t, a>), • • - , Bf(t, a))) ;

5^>Q} be a family of ^-valued stochastic processes denned on (J2, 3, P#)

and let 1C be a positive constant. We say {B0(t, a)) } e <Jl(B\ /c) if, for

each 5>0, B8(t,ti)) satisfies the following conditions:

(A.I) Bs(kS,a))=B(kd,a)^ for cdE^ti and k = Q, 1, •

(A. 2) B8(t + kd,cd)=B8(t,Ok8ci)), for o)^S and £ = 1,2,

(A. 3) B9(t,co + x)=Bd(t,ti))+x, for ajefi, ^>0 and

where to + ^ is the function defined by (o)-f.r) (0 =B(t, a))

(A. 4) B9(t,(d) is ffj-measurable for O^J^ff .

(A. 5) B8(t,o)) is continuous and piecewise smooth in £ for

(A. 6) Eoff f IB^WI^yi^ff8 , for z = l, 2, • • - , ^ r
j
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where B8*(s) =— B8
l(s), / = ], 2, • • - , d, and Ex\_-~\ denotes the expectation

95

with respect to the probability measure Px.

Let us consider a differential 1-form on Rd of the following form:

ai} = (xldx' - ddx*) /2 , (i,j = I,2*—9d),

and let Sij(t;d) be the integral of Ot{j along Cff[0, f\\ i.e.

St,(t',8)= f a,y,
JtfriM

where Q[0, £] is the curve denned by Q[0, t] = {JBtf(s, a)); 0<S

Then we have

(2. 1) StJ (t- 8) = f ' (fi,1 (5) ̂ / (j) - B8' (5) JSa* W ) /2 .
Jo

Setting

have

Proposition 2.1. Suppose {Bd(t}} ^^A(B; K) for some positive

constant 1C. Then there exists a sequence {Sn} of positive numbers such

thatlimdri=Q and for 1<X j^d the sequence {si}- (<?„)} has a finite
n->oo

limit as n-^oo.

Proof. Fix i and j. To complete the proof we need only to show

that { S i j ( d ) } is bounded. By (A. 6), we have

v6/ r / rs \ 6n\v 6\6n\
) J)

This estimate proves the proposition.

In the remainder of the paper let <S r=r(%), (If^z", j'^^), be a skew-

symmetric dX ^/-matrix and let {dn} be a sequence of positive numbers
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satisfying lim dn = 0. Now we will give a notation.

Definition 2. 2. Let (Bs(t)} ^Jl(B;ic). We say {B8n(f)}

K,S) if

lim Sij(8n} =Sij, for every 1<^*, j

Still some more notation is needed. Let M (Rd) be the space of

twice continuously differentiable functions on Rd whose partial derivatives

of order <2 are all bounded. Finally set

(2. 2) Sf, (0 - f ' (B* (s) odBj (s) - B* (s) «dBl (s) ) /2, t>0 ,
Jo

The result we want to show is the following:

Theorem 2.1. Suppose {B9(f)} £=nJl(B\K) for some positive con-

stant K. Let S=(stj) be a skew -symmetric dY.d-matrix. Then the

folio-wing four statements are equivalent.

(i) {B

(ii) lim E^S^t; <5J -5tf(0 -5^|«] =0,

/or !<;*', >^<

(iii) lim £,[ f ' SJ. (5) <?£/„ (j) - f 5s 0) o^3' (j) - Jwf 2 1 = 0 ,
7!^oo L J« JO 1 J

for l<z, j<d and t>0 .

(iv)

/or

The proof of Theorem 2. 1 will be given in the next section.

Now we will define a typical subclass of approximations in <_^(JB; yc, 5).
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Definition 2. 3. Let {BSn (t) } e JL (B- fC, S) . We say that {B8n (/) }

is symmetric if each component of S is equal to 0.

The following corollary is an immediate consequence of Theorem 2. 1.

Corollary 2. 1. Let {B3n ( f i } ( = J l ( B ; tc, S) . Then {BSn (t) } is sym-

metric if and only if

(2. 3) lim E0[|.SyO; <?„) -S,, (<)!'] =0 ,
7l-»oo

for I<^i, j<Ld and t>0.

Remark 2.1. Let B(f) = (Bl(t), B2(t)} be a two-dimensional

Brownian motion starting at 0 and let C5* = {(^(s) ; 0<^s<l£ + l} be the

closed curve in R2 defined by

s) (Bs* (0 , 5S
2 (0 ) , t<s<t + 1 .

As mentioned in the Introduction, P. Levy [3] proved (2. 3) in the

case that {B8n(t}} is a sequence of polygonal approximations to

In this case, we can write

= fJ<
a,

w.here a = (xldxz — xzdx1}/2. We may, therefore, consider S12(t) as a

stochastically defined area enclosed by a Brownian curve up to moment

t and its chord, (P. Levy [3], pp. 262-266).

Remark 2.2. Suppose {B,n(f}} ^Jl(B; K, 5). If {BSn(t)} is sym-

metric, then (Bl
Bn(t), Sjk(t\ 5n)), (l^f,j, k<^d), converges to the diffusion

process (Bi(f), 5^(0), (1 '̂, J, ̂ ^), in L2(J2, P0), (cf. M.B. Gaveau

[1]).

Finally we will give three examples. For this purpose we introduce

the following notations. 0 denotes the space of continuously differentiable

functions (f>(t) on [0, 1] such that

0(0)-0 and 0(1) =1.
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For 0<E0, set 0 = — 0. For <J>0 and k = Q, 1, • • • , set
dt

Example 2. 1. Let 0fce$, k = I, 2, • • - , rf. Set, for z = l, 2, • • - , d,

\ if

Then {Bs(t) = (B8
l(t), Bf(t)9 • • - , #/(*))} <=Jl(B; K) for some positive

constant K. In this case, since

%(#) =0, for every 5>0 and l<i, j

is symmetric. Hence if {S(y(^)} is a sequence of polygonal ap-

proximations to B(t), {B$(t)} is symmetric and Sy(£;5) converges to
Stj(t) in the quadratic-mean sense.

Example 2. 2e (EJ. McShane [4]). Let d=2 and let 0*e(P, z = l, 2.
For z = l, 2? we define

*f if AkB
lAk

(2. 4) £s* (0 = for kd<t<kd + 5 .

1 51 (W) + 03-£ ( (^ - W) /ff) J*S*, if J.S1 JfcJ52<0 ,

Then {Bs(t) = (Bs
l(t) ,Bs

2(t))} <=Jl(B\ K) for some positive constant /c.
By (2. 1) and (2. 4) we have

+ IB1 (0) J52 (5) - Bz (0) 51 (5) ] /2 .

Since £0[| AJ&A<>ff\~\ =28/7t, it follows that

5l2 (J) = f 1 - 2 P 01 (5) f (s) ds] /TT, for every

Example 2.3. Let 0/e$, (z = l, 2, ~-,d and j = l, 2). Set, for

Z -L, ^, " *, £*•,

'&(k8)+<ti((t-kS)/8)Ail&, if J.B'^O,

(2.5) J3,'(0='
*5', if

for kS<t<kd + d.
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Then {B8(t) = (B0
l(t), B f ( t ) 9 • • - , £/(*))} <=Jl(B; ic) for some positive

constant K. By (2.1) and (2.5), we have, for every (T>0 and i=£j,

if

, if

if

where Sff (3 ; 5) = 5V (ff ; 5) - [S* (0) 5y (5) - £>' (0) B* (5) ] /2. Hence

(2. 6) 5<y (ff) = - f ' (^' - 0f') (5) (0/ - 020 (,) J5/27T ,
Jo

for every $>0 and z=J=J.

Using (2.6) we can prove that for any skew-symmetric dx ^-matrix S,

there exists a sequence {B8n(f)} of approximations to B(t) such that

§ 3. Proof of Theorem 20 1

Before proceeding to the proof of Theorem 2. 1 we will prepare four

lemmas. Set

(3. 1) Cti (S) = £, Bs
{ (5) (B,' (ff) -S/ (5) ) ds

Lemma 3. 1. For 5>0,

(3. 2) Cli (5) = 1/2 , for l^i^d ,

(3. 3) cv (5) = % (5) , for l^i, ^

Proo/. By (3.1),

cv (^) + cyi (S)=

Since £0[JBi(5)JB'(5)]=W<.j, we have
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(3. 4) cti (ff) = 1/2 and C{J (d) = - Cji (<J) for i=£j .

Combining this with (3. 1) we can prove that if i=jf=j, then

= £„[ £ (B,1 (i) dBt* (s) -B,' (s) dBs< (s) )

This completes the proof of Lemma 3. 1.

Lemma 3. 2. jF0?~ a^ 5>0 and If^z", j^d,

Ex [ { JJ B,1 (5) (5S^ (tf) -B,'

(3. 5) = E, I" i f ' B,' (5) (B,' (5) - B/ (5) ) ds \ *] ,
L I Jo J J

for P=192 and

and

r /•(*+!)* .
(3. 6) Et[ J^ B,1 (5) (B,' (W + 8) - Bt' (s) ) ds/3k

for £ = 0,1, . • • .

Proof. (3. 5) follows from (A. 3) . Appealing to the Markov prop-

erty, we have

.
Bf ' (5) (B,' (W + 5) - B,' (5)

B,' (5, 0sso)) (B,' (d, 0Mw) -B,' (*,

(by (A. 2)),

[ JJ 5S
S (5) (B,' (5) - B,' (5) ) Js] .

Combining this with (3. 5) we can complete the proof of Lemma 3. 2.

For the sake of brevity, we introduce the following notations. For

8>0, set
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, for kS<s<(k + l)d, (4 = 0,1,2, -).

Setting s(r?) = [s] ~(d)/d, we have

Lemma 3. 3. Z,e£ Z: (5, a)) &£ <2 bounded ^ s- adapted process de-

fined on ($, 2% Pr) w/Y/z. piecewise continuous sample paths. If

{B9(i)}<=Jl(B\K), then

. 1 2-1
[B,'(5) (B,'(M + (ff)) -B,'(S)) -C0(0)]<fcj J

(8) S, for l<i, j<d and t>0 ,

•where K, = sup | Zt (s, a)) | .
S, in

Proof. Since

1
(5) (S/ (*ff + ff) - Bt> (5) ) - Cw (5) ] ds/ffM j = 0

from (3. 6) , it follows thai

r r rm-w
£„ Z, ( [5] - (?) ) [Bs

{ (5) (B,' ( H + (ff) ) - B,' (5) )

(3.7)

[ «(*)-! f f(* + l)ff .

2 Z, (^) 2 [B,« (5) (B/- (W + ff) - S8^ (5) )
fc = 0 ( JfciJ

Using Lemma 3. 2, we have

(3.8)

° B,' (*) (5/ (5) - B,' (5

On the other hand, by (A. 6) in Section 2,

(3.9) £„ [ ( f Ss
s (s) (B/ (ff) - B,' (s) ) ̂ 5

L\ Jo
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<£„[( (" |B,'(*) \dsY ( p \BS* (s) \dsY]
L \ J o / \ Jo / J

Combining (3.7), (3.8) and (3.9), we have

which completes the proof of Lemma 3. 3.

Lemma 3.4. Let Kz be a positive constant and let Z2(s, a)) be

a stochastic process defined on (J?, £?, P^) ze>z'£/z piece-wise continuous

sample paths satisfying the following condition:

.
(3.10) \Zt(s)\<Kt^ \ \Bs

m(u)\du, fors>0.
m=l JCsn-(5)

7^ {B8(t)}s=Jl(B;K), then

r f p ca-w . i 2 1
(3.11) ^ 0 ^j j o Z,(j)B,'(5)(B/(W + (ff))-S,^(5))&[ J

, /or l<z, j<rf and

Proof. By (3. 10),

rw~(<oI r 7 f \ ~ D i / \ f ~ D i f r ~ (I Zs% \S) Jj§ \s) \£j§ \ |_5j
Jo

< 'if f(fc+1)'z2(5)5s
i(5)(5/([5] + (5))-5s^(5))^

fc = 0 JkS

^K^T,1 f] f(fc+1)'|5s
m(5)|^5 f ( fc+1)*|£s

€OOI^ f(fc+1)" \Bi'(s) \ds.
fc=0 m = l Jkd Jkd Jkd

Hence by (A. 2), (A. 4) and (A. 6), the left-hand side of (3.11) is

bounded above by

13 E £ol~ f \Bs
m (s) \ds I*' |5s

fc(^) \ds
n=l k=l L Jo Jo

which completes the proof of Lemma 3. 4.
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We now turn to the proof of Theorem 2. 1.

Proof of Theorem 2. 1. The implication (iv) —»(iii) is trivial.

Since stj = — 5^, certainly (iii) implies (ii).

Proof of (ii) —> (i). Suppose (ii) holds. First we note that Su ((?)

= 0 for any d^>Q. Fix z and j such that i-=/=j. From (ii), S0[S#(1; ffn)]

converges to .%. Hence, using Bs(t) &<Jl(B; K), we can prove that

EQ\_Stj([Y\~ (ffn), dn)~] converges to s^. Consequently we have

r rM"(^n)

7l-»oo L JO

(3.12)

-(B^(s)-B^({_sY(>

On the other hand, by Lemma 3. 2, the left-hand side of (3. 12) is equal

to

lim
n)-l T f(fc + l)<?n

£o (ft.'W-
=0 L Jk8n

rc*+i)*n . I
(B,/ (5) - B,.' ( (* + 1) dn) ) B,.1 (*) ̂  /2

Jfc^7l J

i(*B)-i r rsn

lim S £« (B,/(J,,)-B..y(*))V(*)^
?l-*00 /fc=:0 L JO

( V (to -

Hence, by (3. 12) and Lemma 3. 1,

lim [l]-(J»)j< /(ffn)=5 fy,
n-^oo

and (i) follows.

Proof of (i)-»(iv). Suppose (i) holds. Set ut = - u for
dxl

M (Rd) and put cij = Sij + dilj/2. Since

f £ « (5 w ) o^' (,) = r « (5 (5) ) dB> (s} + 1 r «, (s (
Jo Jo 2 Jo
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we have

r u (B (5) ) odB' (*) + £ Sti r
Jo i=i Jo

(3.13)

'(i)+ S*« [ut(B(s))ds.
£=1 JO

By integration by parts, we obtain

r (fc+i)5
* OB,

JkS

/»(

J*» ds

= u (S, (W) ) (B,1 (k$ + 5) - B,' (kg) )
(3.14)

r u{ (B, (5)) Bs
f (s) (Bs> (to + S) -B s

j (s)) ds

= «(B (W) ) (B' (W + 5) - B1 (to))

, (5)) B,1 (5) (B,' (to + ff) - B,' (5)) ̂ 5

(by (A.I)).

Now we put

-s^ r
*=i Jm-

fW-(*)
.(»= Jo («(S(W

d f[«]-(5>
, (ff) = i: «« (B ( W - (5) ) ) [S5

{ (j) (Ss^ ( [5] + (5) ) - B,' (5) )
€ = 1 Jo

d pc«:-(j)
= E [«« (B, (*) ) - «, (B ( M - (<J) ) ) ] Ss* (5)

£ = 1 Jo

d f

= H
1=1 JO
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a, pm-o?)
/e (5) = H «« (B ( M - (5) ) ) ds (cti (ff) - Ci^

4 = 1 JO

Combining (3.13) with (3.14), we have

(" « OB, (*) ) dBt' (s)- { u(B (s) ) °dB> (s)
Jo Jo

(3.15)

- E*« r««(B(i))<fc = T]/,^).
i=l JO €=]

It is obvious that

(3. 16) limEon/,0?) +/s(0) +/5(o)}2] -0.
5-*0

Applying Lemmas 3. 3 and 3. 4 to 78((J) and Jt(r?) respectively, we have

(3. 17) Urn En [ {/3 (fi) + 7, (5) } 2] - 0 .
<y-*o

It is also clear that (i) implies

(3.18) li

Combining (3.15), (3.16), (3.17) and (3.18), we can see thai (iv)

follows from (i) .

§ 4* Stochastic Differential Equations and Related Ordinary

Differential Equations

Let <T(.r) = (0}a(.r)), (l^a,j<*d) be a Jx J-matrix valued function

defined on Rd. We assume that each component of 6(x) is a bounded

twice continuously differentiable function whose partial derivatives of or-

der <^2 are all bounded. We will consider a sequence {Bs(t)} of ap-

proximations to B(t^) such that {B8n(t)} GEc_^?(J3; to, S} for some skew-

symmetric rfxrf-matrix 5= (s,y). Let Jf,(0 = (X/(0 , Xs\t) , • • - , X/(-f))

be the unique solution of the following ordinary differential equation:

Let X(0 = (X1(i),X2(^), ••- , -X 8(^)) be the unique solution of the fol-

lowing stochastic differential equation:
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d

(42) J a d

, for

The result we want to show is the following:

Theorem 4.1. If {BSJ EEc^CB; £, S), then

(4 3) lim EQ[_\\XSn(t) -X(t) li2] -0 , for *>0 .
7i-»oo

Proof. The proof uses the same lemmas as in the proof of Theorem

2. 1. First we note that for every 5>0 and s>0,

(4 4) \\Xt(s) -Xa(M

where Ks is a positive constant depending only on 0". By integration

by parts, we have

d /•
^ f l(W-(«)-^a(o)= I]

y=i Jo

d fCQ-(^) ^
(4.5) + I] ^-?L(r/(X,

«,/.^=i Jo dz?

for a- 1,2, .~9d.

Now put cy = By H- <Jj,y/2. Then, by (4 2) ,

x«co -^(o) = s rv
y=i Jo

Combining this with (4 5), we have

(4.6) *,"(*) -*"(<)= £!/•(*y=i
where

d pC*]-(ff)

2
a (* ; « = S [ff y« (J^s ( [5]

/ = ! JO
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* rm-(<5) a
= £ ff/^ff/'

*,y.0=l Jo Qyf

& rm-
= E

«,/./?=] Jo

x J3,« (5) (S,' ( [5] + (5) ) - S8^ (5) ) ds ,

d /•:«:-
= I]*.y.u=i Jo

d ret:- w
/e t t(i;5)= 2] ff i*

*,/./s=i Jo

Now fix T>0. Set

Zl (S, a) = £ (ff/ -®- (T/) (X, ( [s]
0=1 \ dxr f

Then Z^ (s, a)) is a bounded Svadapted process with piecewise continuous

sample paths. Next set

r," (X,

Then, by (4.4), Z2(s, a)) satisfies (3.10) in Lemma 3.4. Hence we

can apply Lemma 3.3 and Lemma 3.4 to Iz
a(t;d) and I4

a(t',d) respec-

tively. Hence, using (4.4) and {B8n} e^?(J5; /c, /5), we obtain

(4.7)
o

for

where X4 is a positive constant depending only on ff, K and T and {£n}

is a sequence of positive numbers with lim^^O depending only on (T,
7l-»00

K and T. By (4. 7) , we have

, for

implies (4. 3) .
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