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A Five-Square Theorem

By
Saburé UCHIYAMA*

Turdn Pal in memoriam

It is clear that for every even integer 2n>0 there is a natural

number s such that 2z is representable in the form
§ s

@)) 2n=>z; with the condition ) z,;=0,
i=1 i=1

where the x; (1={<s) are rational integers. We denote by s(2n) for
a given 217 the smallest possible value of such s. Of course, no repre-
sentations of that kind are possible for odd integers.

We have evidently 2<s(2r) <8 for all 2#>>0. The purpose of this

note is to prove the following

Theorem. We have
s(2n) <5 for all 2n>0
with the equality exclusively for the integers 2n of the form

(2) 4"(321+28) (k=0, [=0).

The problem of determining the value of

max s(2n)
n=1

has been (orally) communicated to the writer by Professor S. Hitotumatu
in Kyoto University, who was led to this problem in the course of his
study of ‘translatable complete [th power configurations.” Our result
gives a satisfactory solution for the problem proposed.

It should be noted, however, that a general problem on the solvability

of the system of Diophantine equations
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(3) 7Z==§:.Zf, ”1==§3-ri,
i=1

has been treated by G. Pall [5], who showed in particular that if s=4

equations (3) are solvable in integers x;, if and only if
n=m(mod 2), and 4n—m*=a sum of three squares,
whereas if s=5 the conditions

n=m (mod 2), 4n—m*=0

are necessary and sufficient for the solvability of (3) in integers x;.
(The case of s=4 is due substantially to A. L. Cauchy [2]. See also
[4].) Our theorem is an immediate consequence of these results; but,
this notwithstanding, we shall present here another simple and direct

proof of the theorem.

An analogue to (1) for the representation of an odd integer 2z-+1>0
will be

4) 2n+1=§]xiz with ixﬁl,
i=1 i=1

where the x; are again rational integers. If we denote by s(2z+1)
for a given 2z-+1 the smallest possible value of s in the representation

(4), then it can be shown that we have
s(2n+1)<4 for all 2n+1>0.

This result also is a special case of Pall’s [5].

1. In order to prove the theorem we require some auxiliary results

which we formulate in the following lemma (cf. e.g. [1]).

Lemma. Let m be a positive integer. The integer m can be

represented in the form
m=xt+v*+z*
with some integers x, y, z, if and only if m is not of the form

(5) 45 8I+7) (=0, 1=0);



A FIVE-SQUARE THEOREM 303

the integer m can be represented in the form
m=x"+y*+22°
with some integers x, v, z, if and only if m is not of the form

(6) 4*(161+14) (k=0,1=0).

As a matter of fact, the first part of the lemma is a classical theorem
proved by G. L. Dirichlet, and the second part is also a well-known
result which, as has been noted by L. E. Dickson [3], can be derived
easily from the first part.

Now, let there be given an even integer 22>>0. We shall first show
that every number 27 of the form (2) admits a representation of the
type (1) with s=5. In fact, it will obviously suffice to prove that an
even integer 21 of the form 32[+28(/=0) is representable in that form.

Since 16/+44 is not of the form (6), we have in virtue of the lemma
16l +4=2"+y*+2*
for some integers z, vy, 2z, and
2n=23214+28=2(161+4) +20
=(@+z+D+ (—z+z+1)°+ (y—2z+1)*
+(—y—z+1)*+ (—4)3,

as required.
Next, we shall show that if 2z has the form (2), then it cannot
be represented in the form (1) with s<<4. Indeed, if we had

4 4
2n=3 xz and Y x;=0,
i=1 i=1

then we would have
2n=x’+r’+x’+ (—x,—2,—25)°
=(z;+x,)* + (o4 23) 2+ (5 +2,) % 5

but, this is impossible in view of the lemma since 27 is an integer of
the form (5).
Finally, we prove that if 27 is not of the form (2), then it is



304 SABURO UCHIYAMA

representable in the form (1) with s<<4. We distinguish two cases ac-
cording as 7 is odd or even.

If » is odd, then by the lemma there are integers z, vy, £ such that
n=x*+v*+ 22°
and so
2n=(x+2)'+ (—x+2)'+ (@ —2)°+ (—y—2)".

If #n is even, (27)/4 is an integer which is not of the form (5) and,

again by the lemma, we have
2n=4(x*+y"+2") = (22)*+ (2y)*+ (22)*

for some integers x, v, 2z, whence, putting 2x=x,+x, 2v=x,+x;, 22

=x,-+x,, we obtain
2n= (2, +x,) 2+ (2, +23) * + (x4 +x,)?
=tz tx'+ (—x—x—x5) %

This completes the proof of our theorem.

A simple consequence of the theorem is that the positive quaternary

quadratic form
2 2 2
Xl xl+xd +xl 22, + 2Ty + 2%+ XX + T+ T,

represents all positive integers (and 0 trivially).

2. We have proved that s(27z) =5 if and only if the integer 2n
has the form (2). For the sake of completeness we should like to give
a description of the properties that characterize those integers 27z for
which we have s(2n) =2, 3 or 4. To this end, it will be convenient
to introduce the symbol g () for an integer m=>1 to denote m/e’, where
é® is the largest square divisor of the integer m. ¢(m) is thus squarefree

for all m.
We have:

s(2n) =2 if and only if ¢(2n) =2;

s(2n) =3 if and only if ¢(2n) is even, is greater than 2, and does
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not contain any prime factor p=5 (mod 6).

s(2%) =4 if and only if either ¢(217) is odd and 22 is not of the

form (2), or ¢(2n) is even and is divisible by somne prime number p=5

(mod 6).

Note that if ¢(2x) is an even integer then the integer 272 is not

of the form (2).
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