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Asymptotic Wave Functions and Energy
Distributions for Symmetric Hyperbolic

Systems of First Order
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Kiyosi KITAHARA*

§ 1. Introduction

This paper studies from the view point of L2-theory the asymptotic
behavior for £-»oo of solutions (with finite energy) of symmetric hyper-
bolic systems of first order with constant coefficients. For each solution
of such systems the corresponding asymptotic wave function will be

constructed from the initial data. The asymptotic energy distributions
of the solutions will be investigated making use of the asymptotic wave

functions.
Wilcox [8] studied these problems for solutions of the wave equa-

tion

d2v d2v 62v
dt2 dx\ dx2 ~w

where teR, x = (x19..., xn)eRn and v = v(t, x) is a real valued function.
He constructed asymptotic wave functions and calculated using these
functions the asymptotic energy distributions of solutions for f-»oo in

subsets of Rn. Further he generalized these results to solutions of the
wave equation in exterior domains [9].

The purpose of this paper is to extend his results in Rn to sym-

metric hyperbolic systems of first order with constant coefficients which
satisfy the conditions stated below.

Consider the first order symmetric hyperbolic system
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(i.i)

with the initial condition

(1.2) V(Q9x) = h(x),

where / is the unit matrix of order N, the Aj are NxN constant her-
mitian matrices and V(t, x) and h(x) are vector-valued function whose

values lie in JV-dimensional complex space CN. Let P(A, ̂ ) be the char-

acteristic polynomial associated with the operator L;

(1.3) P(A,a = det(AI-S^j)
j=i

where £ and A denote the dual variables of x and t respectively. The
polynomial P has the factorization

(i.4) P(A, o=p0(A, ^°Pi(4 O*-PM(A, w*

where the factors P/A, <!;) are distinct homogeneous polynomials in (A, <!;)

and irreducible in the polynomial ring C[A, £19..., <!;„] of (n-j-1) variables
over the complex number field C. Since the coefficients of A^ in P(A9 ̂ )
is 1, the factors are unique, apart from their order, by requiring the

coefficients of the highest power of A in each P/A, £) be 1.

We recall that a homogeneous polynomial 2(A, £) is said to be
strictly hyperbolic (with respect to the vector (1,0,...9 0)) if for every real

£ejRn\{0} the roots of the equation Q(A9 0 = 0 *n ^ are real an(l dis-
tinct. Let Q(A, ̂ ) be a homogeneous hyperbolic polynomial of order #
and assume that Q(0, £)^0 for any ^eJ2II\{0}. Then ^ is even and the

roots of <2(A, 0 = 0 can be enumerated so that

(1.5) Am(a>->A1(0>0>A_1(0>->A_m(05 ii = 2m.

It is easy to verify that the Afc(£) are real analytic functions of £ in

JRW\{0} and positively homogeneous of degree 1. Further we have

(1.6) A_fc(0=-Afe(-a |fc| = l,2,...,m.

Now we state the conditions that we impose on the operator L,



SYMMETRIC HYPERBOLIC SYSTEMS 309

(L.I) In the factorization (1.4) of P(A, £), AA <D = A and the P/A, <J),

j = l,..., m are strictly hyperbolic polynomials such that P/0, £)=£0 for

any £efl»\{0};

(1.7) P/A, 0= A-*M«))> / = !,..., M,

where

(1.8) AJ,40>"->AA.1«)>0>A, j_1(0>--->A ;,_m/0.

From (L.I) it follows that the normal or slowness surface S = {s;
M

P(l, s) = 0} of the operator L consists of Zmj sheets Sjjfc = {s; Ajjfc(s) = l},
j=i

j = l,..., M, k=l,..., my- which are analytic closed hypersurfaces enclosing

the origin in I?". Then we assume

(L.2) The Gaussian curvature Kjik(s) of SM never vanishes anywhere

in Sj>k(j=l,...,M, fc=l,...,m;).

Remark. The condition (L.I) can be replaced by the following

weaker one. In fact one can discuss by Appendix Theorem 4.1 in the

same way as under the condition (L.I).

(L.I)7 The factorization into linear factors in A of P(A, ^) admits the

form

(1.9) P(A, 0 = A

where the aj(0^jg/) are constants and the A/^)(l^j^l) are real

valued analytic functions of £ in J£"\{0} which satisfy

(1.10) A/0^0 for l ^ j ^ J and A/£)f£Afc(£) for

To state our main theorem, we introduce the following notation.

We denote by 0 the unit sphere in Rn and by sjtk(6) the inverse of

Gauss map1": Sjtk->0 for each (j, fc) with Ig j^M and l^fcrgmj.

We define

"I" For the definition see for example Steinberg [6] or Matsumura [4].
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(1.11) A3=,t(x) = |x|/|gradAM(^(0))l, x = |x|06«-\{0}.

L2(Rn) denotes the Hilbert space of complex valued square integrable

functions v in Rn with norm

(1.12) N

A €N-valued function VeL\Rn) means that all the components of V

belong to L2(JR»).

Under the conditions (L.I) and (L.2), we have

Theorem 1.1. For every solution V(t, -)eL2(R») (t^O) of the

equation (1.1), there exists an asymptotic wave function V°°(t, -)eL2(Rn)

such that

(1.13) li
r-»co

where F0(x) is the static solution corresponding to the initial value

F(0, x) (if exists) and F°°(f, x) has the form

r ,x)=f f V?tk(t,j=i |fci=i

and

(1.15)

Gyfk(r, 0) 6 L2(JR x 0) wiH he defined in terms of the initial value

F(0, x) and called asymptotic wave profile^ If the Aj are real sym-

metric and the initial data 7(0, x) is a real valued function, V™(t9 x)

is also real valued.

This theorem is used to calculate the asymptotic distribution of the

energy of V(t, x) in bounded and unbounded subsets of Rn. In fact,

we have the following corollaries.

t As to the explicit formula, see (3.11) and (3.12).
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Corollary 1.2. For every bounded measurable subset K of Rn

we have

(1.16) lim f(V, K, i) = <f (F0, K, 0) ,
f-»oo

where £(V, K, f) denotes the energy of V(t, x) on K:

(1.17) £(V,K,t)=( \V(t,x)\2dx
JK

and if the static solution does not exist, we define £(V0, K, 0) = 0.

Corollary 1.3a For any measurable cone CaRn with its vertex

at the origin, the asymptotic energy distribution

(1.18) <f°°(F5 C) = \im£(V, C, f)
f-»oo

exists.

Corollary 1.4. For any measurable cone CcU" with its vertex

at the origin and for any point 5ceJRn the limit

(1.19) <f°°(F,C + x) = lim(f(F9 C + x, f)

exists and

(1.20) <f°°(F, C + 3c)-^°°(F, C) = ̂ (F0, C + x, 0)-^(F0? C, 0).

For a measurable cone C with its vertex at the origin, we denote
by CSjik the cone

{asj>k(6)ERn', oc>0, 9eCnO}.

Corollary 1.5. Let C be a measurable cone with the property

that

(1.21) C5,ifcn(-c5jij=0

for any (j, k) with l^j^M and l^fcrgm^.

Let heL2(Rn) be a function such that
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(1.22) £0(0«(0 = 0 ae.,

where E0(£) and Ejtk(£) is the orthogonal projections onto the eigen-
n

spaces of the matrix X £jAj corresponding to the eigenvalues 0 and

respectively, and h is the Fourier transform of h.

Then, the solution V(t, x) of (1.1) with the initial value F(0, x) = h(x)

is asymptotically focused in the cone x + C for any fixed xeRn in the

sense that

(1.23) <f°°(F, C + 5e) = <f(F; «», 0).

Moreover, if the Aj are real symmetric, then there exist real valued

initial data such that (1.23) holds.

The remainder of this paper is organized as follows. §2 is devoted to

basic studies on wave functions, wave profiles and asymptotic wave func-

tions. The proofs of the results stated in § 1 are given in §3. §4 is

an Appendix in which we give an algebraic theorem1" (see also S. Matu-

ura [5]).

The author would like to express his sincere gratitude to Professors

M. Matsumura, H. Suzuki and S. Wakabayashi for their kind advices.

§2. Asymptotic Behavior of Wave Functions
v±(t9x) for \x\ - > oo

Let A(£) be a real valued function on Rn satisfying the conditions;

(2.1) AeC°°(jR«\{0}),

(2.2) A(£)>0 for any £eJR"\{0} and

(2.3) A(a{)=aA(0 for any a>0 and any

Then the set

(2.4) S

We need this theorem in the proof of Corollary 1.3.
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forms an (n - l)-dimensional closed C°°-manifold embedded in Rn which

encloses the origin. Let us denote by K(s) the Gaussian curvature of

the hyper surf ace S at each point s. Throughout this section we assume

(2.5) K(s)^0 for any seS.

Consequently the Gauss map: S3s*-*6(s)e0 is a C°°-diffeomorphism of S

onto 0 where 0 is the unit sphere in Rn and 6(s) denotes the outward

unit normal to S at s. The inverse of the Gauss map is denoted by

s(0) (see for example Sternberg [6]).

Now consider the C°°-map s*:

(2.6) S a s i - > s*(s) = grad A(s) e Rn.

Then, it follows from the assumption (2.5) that

(2.7) S* = {s*(s);seS}

is an (n — l)-dimensional closed manifold (hypersurface) and the map s* is

a C°°-difreoinorphism from S to S*. We define the function A*(x) by

for x = |x|06fi»\{0},
(2.8) A*(x) =

[0 for x = 0.

A*(x) satisfies the conditions (2.1), (2.2) and (2.3), and we have

(2.9) S* = {s*eJ?«; A*(s*) = l}.

For each /z+ 6L2(Hn), we define the function v±(t, x) by

(2.10) v±(t, x) = ^-i[

where ^""^u]^) denotes the inverse Fourier transform of u and It the

Fourier transform of h. v±(t, •) is a L2(H")-valued solution satisfying

the evolution equation

(2.11) (d/8t±a(±Dx))v±(t, x) = 0

and the initial condition

(2.12) i'±(0,x) = fc±(x),
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where k(±Dx) is the operator defined by

(2.13)

According the fact that Sldt±il(±Dx) is a hyperbolic pseudo-differential

operator, we shall call the function v±(t, x) wave function.

For each H(r, ff) e L2(R x 0), we define the corresponding function

w?(t, x) by

(2.14) w£(f, x)

x = \x\0eR"\{0}.

Then we have

Proposition 2.2. The function w±(t, x) has the properties:

(2.15) w?0, OeL2(fl") for all teR.

(2.16) lim||w!?(f, 011=0.
t-»oo

(2.17) lim||w?(f, •
t-*oo

/or an>» measurable cone C<=R" with vertex at the origin where C0

= Cn0.

Proof. The definition (2.14) and Fubini's theorem imply (2.15) and

Co

Making the change of variables rA*(0) + 1 in the second member, we find

(2.18) HwS(f,x)||iJ(C, = rdp( \H(p,0)\*de,
J -ft J CQ

where d@ is the surface element on 0. Letting £-»oo in (2.18), we get

(2.16) if we take C=Rn, and (2.17) for general C. Q.E.D.

Definition. For each h±eL2(Rn) the corresponding wave profile

G±eL2(Ux<9) is defined by
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(2.19) G+(p, 0) = for p>0 and 9e09

/or p<0 <md 9e0.

(2.20) /or p>0 and 060,

[0 /or p<0 and 9e0,

where for H(r9 9) E L2(R x (9), H(p, 9) and H(p9 9) denote respectively

the partial Fourier transform and the inverse one of H(r, 9) with re-
I

spect to r, and (±02

The map

(2.21) RxS3(p,s) i - > (p, 0(s)) e H x 0

induces an isomorphism of L2(J? x S) onto L2(R x 0) and we have

(2.22) ( \H(p, 9)\2dpd0 = ( |H(p, 0(s))|2|

for any H e L2(R x 0) and for any measurable subset C0 of 09 where

dS is the surface element on S.

Proposition 2.3. Let C0 fee a measurable subset of 0. Then

(2.23) G+ and G_ are orthogonal in L2(RxC0).

(2.24) l|0±||L2(HxCo)=||fi±||L2(±Cs),

where Cs = (as(0) 6 Rn ; a > 0, 9 e C0} .

(2.25) // H+ = ft_5 G+ = G_.

Here, H+ and G+ denote the complex conjugates of h+ and G+ re-

spectively.

Proof. (2.23) is obvious since the supports of (j+(p, 9) and <j_(p, 9)
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= G_( — p, 9) are disjoint.

Using Parseval's formula, (2.19), (2.22) and A*(0(s)) = |gradA(s)|-1, we

have

\G+(p,

Js(Co)

In the last integral, let us make the change of variables:

(2.26) R+ x S3 (p, s) i - » £ = ps eRn\{Q} .

Since

we find

CS

The corresponding result for G_ follows by the same argument.

Finally, if h+ = h_, then fi+( — Q = /i_(^). Combining this relation,

(2.19) and (2.20), we obtain

= G-(-p,0) = G-(p,0) for p<0,

and

<S+(-p, 0) = 0 = G_(-p, 0) = 6_(p50) for p>0, 060.

From these relations it follows that G + = G _ . Q.E. D.

Definition, for the wave function v±(t, x) with v±(Q, x) = h±(x),
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we define the corresponding asymptotic wave function v±(t, x) by

(2.27) !?£(*, jc) = (A*(0))2G±(A*(x)- 1, B) |x|-<»-»/*,

x = \x\9eRn\{Q}.

This name can be justified by the following theorem.

Theorem 2.4. For h±eL2(Rn), let v±(t, x) be the solution of the

equations (2.11) and (2.12). Let v±(t, x) be the corresponding asymptotic

wave function defined by (2.27). Then

(2.28) lim||i>±(t,0-»?0, 011=0
f-»00

Proof. Since Q>(I?n\{0}) is dense in L2(Rn\ it is sufficient to prove

the theorem for functions h±eL2(Rn) such that h+ EC$(Rn\{0}). Thus

we may assume that

(2.29)

From (2.10) we have

v±(t, x) = (2n

Transforming to the polar coordinates (p, s) with respect to S (or
we get

(2.30) v±(t, x) = (2n)-»/

x ( /

Let us set

(2.31) (o±(x, p)=( n±(±ps)exp{±ipxs}\s*(s)\-ldS.
Js

Applying the method of stationary phase to this integral, we find
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(2.32) co±(x, p) = (

where the function g(x, p) satisfies

(2.33) \q(x, p)|^M|x|-<»+1>/2 for all jce«»\{0} and pe[«,

M being a positive constant independent of x and p e [a, 6], but de-

pendent on a and fo. For the method of stationary phase, see, for ex-

ample, Littman [2] or Matsumura [4] (Theorem 5.1). Substituting (2.32)

into (2.30) and using the relation A*( + 0) = |s*(s(±0))|-1, we obtain

(2.34) v±(t,x} = tt*(Q)l2n¥\x\-(»-

fbi(

+ (2n)-"!2(bq(x, p) p"-1 exp { + ipf}dp.
Ja

Now, we have

(2.35) xs(+9)=\x\0s(±0)

= \x\ (± grad l(s( ± 0)))s( + 0)/|s*(s( + fl))|

since s-gradA(s)=l(s)=l for seS. Consequently,

(2.36) »±(t, x) = (
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(x, p)p"~1 exp { + ipt}dp.

Since U± satisfies (2.29), the first term on the right in (2.36) is exactly

the asymptotic wave function v±(t9 x). Hence, in order to complete the

proof we only need to show that two remaining terms tend to zero in

L2(Rn) when t-+co. For the second term on the right in (2.36), it

follows from (2.16). Consider the third term. By (2.32) the function

q(x, p) has the order |x|"(w"1)/2 uniformly in /?£[0, b] and in 9e©

when |x|->0 and has the order |x|~(n+1)/2 by (2.33) when |x|-»oo.

Consequently there exists a function q+(x)eL2(Rn) such that

(2.37) \q(x9 p)\£q+(x) for any p e [a, 6] .

Then we have

(2.38)

If x is fixed, the third term on the right of (2.36) tends to zero when

*-»oo by Riemann-Lebesgue Theorem. Since (2.38) holds, it also con-

verges to zero in L2(Rn) when *-»oo by Lebesgue's Theorem of domi-

nated convergence. Q.E.D.

Let 01(r) and 62(t) be two real valued functions of *>0 that satisfy

(2.39) -t^91(f)^92(f) for all t>0.

Denote by B(t, O^i), 02(i)) the expanding spherical zone of the form

(2.40)

Then we have

Proposition 2.5.
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f02(O

(2.41) *(v±9 B(t, 0^), 02(0), 0=\ HG±(r,
J«i<0

w/zere o(l) denotes a function of t which tends to zero for f-*oo, uni-

formly in 0^0, 02(0-

Proof. Note that

(2.42) \\vRt, Olli2<j^M».*a<o>> = (f |G±(r,

and

(2.43) i \\v±(t, oiii^w-bsa oiiLwi^biO, -)-»ia, on
for any measurable subset B of Kn. Combining (2.42), (2.43) and (2.28),

we get (2.41). Q.E.D.

Corollary 2.6. Let 0X(0 and 02(f) saf/s/y r/ie conditions (2.39)

(2.44) Iim01(0=-oo, Iim02(0=oo.
r-*oo r-*oo

T/ien we have

(2.45) Iim^(i;±, «"\B(r, 0t(0, 02(0), 0 = 0
»->00

Proo/. Taking C0 = 0 in (2.24), we have

(2.46) HG±lb(«xS,= |lM = IIM.

On the other hand

(2.47) f(v±, R", 0=/(»±, R", 0)= P±P.

Combining (2.41), (2.46) and (2.47), we get

/(»±, «-\B(t, ^(0, fla(0), 0

= /(»±, R", 0-/(»±, 5(t, ^(0, 02(0), 0
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S0l ( f ) fQO

\\G+(r, OlllW+l ||G±(r, OlliW + ̂ l)-QO J02(0

= 0(1) t-*ao by hypotheses (2.44). Q.E.D.

Corollary 2.7. For any bounded measurable subset K of Rn

(2.48) lim£(v±,K, 0 = 0
f-»00

Corollary 2.8. For any e>0 there exist constants 91=91(h±9e),

Q2 = 92(h+, e) and £0 = £0(/i+, E) swc/i that

(2.49) *(i?±, H», 0)-e£*(t?±, B(t, 919 02), t)

n,Q) for all t^t0.

Proof. For any functions O^t) and 02(0
 wi^ tne property (2.39)

we have

(2.50) *(v±, R\ 0)-^(»±, B(r, OjCO, 02(0), 0

= T l|G±(r, Olli'wdr-A^, B(t, ^(0, ̂ (0), 0

( ( | |G±(r, Olli^aA-^^i, B(t, 9^, 02(0), 0

for all t>0. Now Proposition 2.5 implies that there exists a constant

t0 = t0(h±9 e), independent of O^t) and 02(0
 sucn that the last term in

(2.50) is less than e/2 for all t^t0. Moreover, there exist constants

Oi = 0i(h±9 e)<0 and 62 = 92(h+, s)>0 such that

l|G±(r,
0

Here we may assume that ^0^max( — 6l9 92). Therefore, putting

(0 for t<t0 TO for

0i(0= 5 02(0 =
[0! for t^t0 (92 for
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we get (2.49). Q.E.D.

Proposition 2.9, For any measurable cone C of Rn with vertex

at the origin, there exist

(2.51) *»(t>±,Qslim*(i;±, C, t),
r->oo

(2.52) f™(v++v-9 C) = lim<f(u++i?_, C, t)
f-»00

(2.53) *"(»±.C

(2.54) *"(»++»_, Q=*«(»+, Q+/«(i7_, C),

w/zere Cs={as(0)eJ?"; a>0, 0eC n 6>}.

Proo/. Note that

(2.55) IH»±(*,-)IUc)-|l»SO,-)liL»(ol

^Bf±ft •)-»?(', Oil,

(2.56) /(»?, C, 0=T ||G±(r, Ollii(c.A
J-t

(2.57) *(i?? + 1;?, C5 0 =

where C0 = Cn0. Combining (2.55), (2.56), (2.57) and (2.28) we get
(2.51) and (2.52). Letting *->oo in (2.55), (2.56) and (2.57), we find

(2.58) ^00(^±5C)=||G±i|i2(RxCo)

and

(2.59) **(!>+ +»-, C)=||G+ + G_||i2(RxCo).

Combining (2.58), (2.59), (2.23) and (2.24), we obtain (2.53) and (2.54).
Q.E.D.
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§3. Proof of Results on Symmetric Hyperbolic Systems

n
Consider the operator L = I(djdt)+ £ Aj(d/dXj) satisfying the con-

ditions (L.I) and (L.2) in §1. The roots 0 and A^), j = l?..., M9 \k\

= l,...5m j- of the equation P(l, £) = 0 in 1 are eigenvalues of the matrix

' Let us denote by E0(<D and £/,&(£) tne orthogonal projec-

tionsf onto the eigenspaces corresponding to the eigenvalues 0 and

respectively. As is well known, EQ(t;) an^ £/,&(£) can be represented
respectively in the form

(3.D

and

(3.2)

where T0(^) and rjik(£,) are positively oriented circles which encloses the

eigenvalues 0 and Aj-jfc(5), respectively, but no other different eigenvalues.

The matrix valued functions E0(£) an(i £;,*({) are measurable and posi-
tively homogeneous of degree zero. Further they have the following

properties which are valid for almost all

(3.3)

) = 0 and

jtf) = 0 if (;, fe) ̂  (/, fc') .

(3.4) £g(0=£0(0 and

M mj
n 51 F (F\4- V V^j.jj JL*O\S/ i 2^ 2-i

j=l \k\ =

For a solution F(f, -)6-L2(^") of the equations (1.1) and (1.2), we put

(3.6) P0(f, £)=

These projections can be defined for almost all
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(3.7) £oOD = £oOD&(£) and

Then we have

(3.8) n*,*) = *o('.*)+£
j=i

(3.9) ^a-(/,0=0, P0«

(3.10) -Jik(t,^

The asymptotic wave profile G7-jfc corresponding to each hjtk is defined by

for p>0 and 0e<9

S0 for p<0 and Oe0

and

(3.12)
for p>0 and

0 for p<0 and Oe&

Then the asymptotic wave function FjPk(f, x) corresponding to VJtk(t, x)

is defined by (1.15).

Proof of Theorem 1.1. If F°°(r, x) is the function defined by (1.14),

we have
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Applying Theorem 2.4 to Vjtk and F£fc, we get (1.13). If the matrices

AJ (j = l,..., n) are real symmetric and if h(x) is Revalued function,
then we have

(3.13) E0(-

Therefore,

(3.14) ^(rO=^o«) and £^=0 = ̂ . -*(«)•

Applying (2.25) of Proposition 2.3 to these functions, we see that V0(x)

and V*(t, x) are real valued. Q. E. D.

Proposition 3.1. LeZ O^i) and 02(i) be two real valued functions

of t>Q which satisfy (2.39) and (2.44). // we put

(3.15) BM(t)

(3.16)

we

(3.17) lim<f(F- FQ, UW\B(0, 0 = 0-
f-*00

Proof. There exist a constant a such that

(3.18) S(V-V0,R«\B(f), 0

^«f ^^.b JR-\B(0, 0-

On the other hand, we have

(3.19) £(Vjik> R«\B(t), 0
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Combining (3.18) and (3.19) and applying Corollary 2.6 to each #(Vjfk,

Rn\BJM(t), 0, we get (3.17). Q.E.D.

Proof of Corollary 1.2. From Proposition 3.1 it follows that the

right hand side of the inequality

; K, 0- J*(V09 K, 0| ̂  V^(F- FQ> ̂  0

tends to zero when *->oo for any bounded measurable subset K of U".

This means (1.16). Q.E.D.

Lemma 3.2. // feLP(Rn), g eL«(UW) (l/p+l/q = l,p>l,q>l) and if

Tl9 T2 and T± — T2 are non singular linear transformations in the

vector space Rn, we have

(3.20) lim (
Kl-^ooJii

and

(3.21) lim
ICl-^oo

Proof. Given e>0, we choose a compact subset K of Rn so that

Rn\K

If we put K(£) = K-T1£ for CeUB
? then there exist *0>0 such that

(3.22) KnK(Q = 0, that is, K(Qc:ll«\K

for all C with

Consider

( l/Otofo-TiOldf,
JlZ"

= ( / / + ( // + ( //
Jx JX(O Jj8"\(XUX(O

= /! + /2 + ̂ 3 respectively.
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By Holder's inequality,

h ^ I/O?) \'dnl

Similarly

and

Rn\K

where || • ||r denotes Lr(Rn) norm. Thus we get for any £ with |CI^*o

K Kiteto-T&dn ^edi/||,+2||^||,).
I Jl2n

This means (3.20). In order to show (3.21), let us make the change of

variables: ^^<^ = r2(^-Ti10. Then

Noting that fl(£)=f(T1T21£)eLP(Rn) and applying (3.20) to the integral

on the right, we obtain (3.21). Q.E.D.

Remark. We use this lemma only in one dimensional case ra = L

Proof of Corollary 1.3. Consider

r M ntj
(3.23) <?(F0 + V, C, 0 = J J F0 + ]£ ^Vf

= <?(V0, C, 0 +
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.* C'

where for £,zeCN,£-z denotes the inner product

shall show that

(3.24) tim(\Vftk(t,x)-Vftk.(t,x)\dx = 0, if (;,
f-+oojc

and

(3.25) Urn ( |K0(x) - FJ^, x)|dx = 0.
?-»ooJC

From (1.15) we have

(3.26) ( \Vftk(t9x)'Vf^v(t9x)\dx
j c

Co

GMwWr-t, S)-Gf^J.,]k.^r-t, ff)\dr

where C0 = C n ® . Since Gjtk and Gjt-k are orthogonal in L2(RxC0)

by (2.23) of Proposition 2.3, this quantity tends to 0 when *-»oo if j=jr

and k'=—k. For the cases where jV/, or j=jr and k'^±k,

(3.27) ^*|fei(0)^A*,|fc'|(0) for

If not, we have

on

since Ay§|k|(fl) and A*'f|fc'|(0) are analytic on 0. This implies S^t|fe|
= S*',|k'|, so S/f|fc| = Srj|fc,| by duality between S^^j and Sf f |k j . This

contradicts Theorem 4.1 which will be given in the Appendix. Thus we

have (3.27). Then, by (3.21) of Lemma 3.2,

(3.28) limp'
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for a.e. OE@. On the other hand, there exists a constant a such that

-t, 0)\dr

and

Consequently the integral (3.26) converges to zero as f->oo by Lebesgue's

Theorem of dominated convergence. Thus we get (3.24). (3.25) can also

be verified in a quite similar way. Letting £->oo in (3.23) and applying

Proposition 2.2 and (2.24) of Proposition 2.3, we get

(3.29) lim<f(F0 + F°°, C, t)
f->00

M mj

~~f-+oo °' ' j^l |*|^1 • / ' f t"L2< ( sgn k}Csj,\k\)'

Then we find by Theorem 1.1

n irn /p^fv c}—/?(v c (\\\ J • J\JJ & I r , \^ I — 0 I r A, V-/, \J I

Af my ^

+
 J?1 iJJ'^^^^^^^.IM)'

Q.E.D.

Proof of Corollary 1.4. If we introduce new functions

(3.31) V'(t,x)=V(t,x + x) and fc'(*) = *

we have

(3.32)

F'(0, x) = /z'(

Applying (3.30) to 7', we find
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(3.33) lim<f(F, C + x, i) = \\mg(V, C, t) = £™(Vr, C)
r-»oo r-»oo

M m.

°9 ' ' .Fl |fc

Now,

(3.34) «'(€

Hence,

n 35i &«(?}—i{J.JJJ v o v S y — J

This implies that Fo(x)=F0(x + x), and therefore

(3.36) <f(Fo, C, 0) = ̂ (F0, C + 3c, 0).

Moreover, from the relation

(3.37) fy.*«) = J

we have

Substituting (3.36) and (3.38) in (3.33), we get

(3.39) lim<f(F, C + 3c, t) = f(VQ, C + 3c, 0)

M mj

J = l

From (3.30) and (3.39) we find (1.20). Q.E.D.

Proof of Corollary 1.5. From (1.22) and (3.9), it follows that F0 = 0.

From (1.21), (1.22), (3.7) and (3.30), we have

= Z 2 (
j=l \k\ = lJRn

= E Z (
j = l |t| = lJ(sgn
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Combining this and (1.20), we find

^°°(F, C) = <f(F, Rn, 0).

Consider the case where the Aj are real symmetric. For each ( j9 k)

with l^ j^M and I^k^mj9 choose a C^- valued function gj>keL2(Rn)

such that supp §jik(£) c CSj h and define

Then we have

Put

M

Then the function heL2(Rn) satisfies (1.22). Moreover we have from

(3.13)

z ^,fe(-a^,fc(-1*1=1

= f Z Ej.-
J=l 1*1=1

this implies that h(x) is a real valued function. Q.E.D.

§ 4. Appendix

Theorem 4.1. Let P(A, £) fee a polynomial of (n + l)-variables

(/I, {15...., ^B) wiff t complex coefficients and let

(4.0
fc=0

be the factorization into irreducible polynomials in the polynomial ring



332 KlYOSI KlTAHARA

^> £] of (n + \)-variables over the complex number field. Let Q be a

domain in Rn and assume that the factorization into linear factors in

A of P(A, £) admits the form

(4.2) P(A, {)= no(A-AXO^ /or a// £eO,

w/zere £/ie /?,- are constant positive integers and the A/0 are analytic

functions on Q such that

(4.3)

we have

fc=0 j=0

For the proof we need the following

Lemma 4.2 (Hormander [1] Appendix). // a polynomial 2(A, <!;)

/zas no multiple factor, there exist a polynomial R(£,)9 not identically

zero, such that the zeros of Q(k, f) as a polynomial in A are all differ-

ent for every £ with

Proof of Theorem 4.1. Set

(4.5) eao=na&0.
fc=0

Then there exists, by the above lemma, a polynomial R(£) such that the

roots of the equation Q(A, 0 = 0 in A are all different for £ with

Put

and

Then, £20 and Oj are closed in £2 and have no interior points, so the

set Q\(Q0 U QI) is a non empty open set and we have
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I1(A - A/«) = Q(A, 0 for { e Q\(Q0 U Qj.

Since the A/£) and Q(A, £) are analytic functions of ^5 we have (4.4).

Q.E.D.
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