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Global Existence and Asymptotics of the Solutions
of the Second-Order Quasilinear Hyperbolic
Equations with the First-Order Dissipation

By

Akitaka MATSUMURA*

Introduction

In this paper, we first consider the following Cauchy problem for

the quasilinear hyperbolic equations

(1)
i s J

where jceK", f>0, a>0, w/ = -, w, = and

ox/ di

Du = (u, ut, MI? w2 ? . . .5 wn).

Here the coefficients atj are smooth and satisfy

Z fl«X^ ^' 3^)C^^ flWLS, fl(0)>0

for all xeRn, teR1, yeRn+2,

Recently, we investigated the global existence and decay of the solu-

tions of the semilinear wave equations

(2) utt-Au + aut+b(Du) = Q x<=Rn, r>0, a>0
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with the small data in [2]. For the space dimension n = l9 Nishida [6]

showed that the quasilinear equations

(3) uu—~a(ux)+*ut = Q xeR\ t>09 oc>0

have the global smooth solutions for the small data. But his argument

is not applicable to the cases n>2. In §2 we establish the global ex-

istence and decay theorem of (1) for general cases n>l with small data

and boundedness of some coefficients (Theorem 2).
Next we consider the following initial-boundary value problem;

(1)' L(w) = e/(x, 0 xeQ, r>

u(x, 0) = 0(x)

where Q is a bounded open set in Rn with smooth boundary dQ and e

is a sufficiently small constant. For the semilinear equations

utt - Z fly (x)uu + aut = b(u) xeQ, * > 0, a > 0,

Sattinger [7] discussed the global existence and stability with small data.
In §3 we establish the global existence and decay theorem (Theorem 3)

even for general quasilinear equations (1)' under the assumptions stated
in Theorem 3.

Moreover, at the end of §3, we mention the results of the existence,
uniqueness and stability of the time periodic solutions for

(1)" L(u) = ef(x, f) xeQ, teR1

where Q is a bounded open set in Rn with smooth boundary dQ and s

is a sufficiently small constant. For the semilinear equations

utt— Z ^ij(x)uij + aut = ef(x9 t, Du) xeQ, teR1, a>0,
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Rabinowitz [8] showed existence and stability of the time periodic solu-

tions. Moreover he [9] showed existence only for the nonlinear equations

t = sf(x, t, Du, utt, utx9 uxx)

xe(a, &)(=«!, reft1, a>0.

Although our (1)" are quasilinear, we can establish not only existence

for more general space dimension n > 1 but also stability (Corollary of

Theorem 3).

Notations and Preliminaries

In this paper, all functions are real valued. Let Q be Rn or a

bounded open set in Rn with the C°°-boundary dQ. We denote by

Lp(Q) (l<p<oo) the space of measurable functions u on Q whose p-th

powers are integrable with the norm

||u|| M=ess. sup |u(x)|.
xeQ

If p = 2, we write ||-||. Let /(z) be a function of zeU r (r is some posi-

tive integer). Then D*/ (resp. Dk
zf) (k is some positive integer) represents

the vector which has

components,

(resp. U;/= {(̂ -) /} , 1 < | a | < k)

where a = (at, a2,..., ar) and |a| =

Especially, Dkf and Dk>mf represent
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Dkf and Dk'mf are similarly defined as Dkf. If /c = l for Dkf, we write

simply Dzf. Moreover Dkf-Dkg (resp. Dkf-Dkg) represents the usual

vector inner product for Dkf and Dkg (resp. Dkf and Dkg).

For some set G in Rr, C*(G) is the space of the real valued func-

tions on G that are fc-times continuously differentiate. C$(Q) denotes

the space of C°°(Q) functions with compact support in Q. Hk denotes

the space of functions all of whose derivatives of order <k belong to

L2(Q) and the norm of Hk is equal to | | />£-| | . The completion of the

space of CQ(Q) functions by the Hk norm is denoted by Hk.

Let X be a Banach space on Q. Then u(x, t) E ̂ (X) (resp. Lf(XJ)

(tQ^t^tt) means that u(-9 f) belongs to X for every fixed t and u is

k- times continuously differentiate (resp. bounded) with respect to t in

Jf -topology on f 0 ^*^*i-
We use GI as the constants, especially use c for the constants which

we need not distinguish and write ct(X) when we emphasize its depen-

dence on X. We denote by hfc) the continuous nonnegative and non-

decreasing functions on t>0.

We note the next Sobolev's inequalities.

Lemma 1 (Mizohata [3] Chapter 7)0 We suppose Q is as in the

above.

i) // we//[2>1+m(m>o), we have

ii) If ueH^+l+m (m>0), we have for m + l<|a|<m + H-f"-|-l

and

I*
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where

le I 'M-»±ill-o („.„„)
p L n n 2J

1 r | « l 2m+l 11 , ,,x
— 6 J—L — , — (ft = Oflfl J .
p L n n 2J

§1. Basic Estimates

In this section we show the estimates of atj(x, t, Du) and b(Du).

We list up the following assumptions (s= -y +2J.

Assumption 1.

i) au(x, t, y) E Cs+l(Rn xRlx Rn+2) for 1 < i, ; < n.

ii) aij = aji for l< f ,

iii) gfli/^^^W^flWZ^ «(0) = a0>0

for all xeRn,te R\ y e Hw+2, f e R»

where a(j;) e CQ(Rn+2).

iv) sup Z IDJ+1.^/x, r, j;)| < h0(\y\).
«nxiji f ,y

Assumption 2.

sup Z|^/x5r, y)|<|j?|/i0(M) for
J«"xl?i »,j J

where y = (Q, y2, y3,...9 yn+2).

Assumption 3.

i) b(y)eC*+\R»+2), ID

ii) D,6(0) = 0.

Assumption 4.
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ii)

iii) fr2GO£W2Ai(bl) for \y\<L

Remark. Throughout this paper s represents -y +2 and |-| denotes

the usual Euclidian norm.

By Assumption 19 we can choose the positive constants y0 and a1

(0<a1<a0) such that

(4) a(y)>a1>Q if \y\<y0.

Moreover, by Lemma 1, we can choose a positive constant e0 such that

(5) sup H/MOIL^yo if sup||DXOii<eo

where T is any positive constant. So we define the space of u(x, t),

, T\e\ for 0<e<e0 by

(6) ^(0? T\e) = {u(x, i)\Ds+1u(x, f) e ̂ ?(L2) (0 < t < T) and

sup \\Ds+1u(t)\\<e

Now we define Ev{u(t)} by

+ yS«u(^ ^ Dv)DsurD
sUjdx (0<A< 1),

Then we note the following under Assumption 1.

Lemma 2. // ueS(0, T\e\ Ev{u(t)} is equivalent to ||Ds+1w(OI|2 for

0<t<T, that is,

XOII2 far Q<t<T9

where cl and c2 depend only on eQ, c09 al9 h0 and A8

This lemma is easily verified by Assumption 1 and (4)~(6).

In order to estimate lXywij and ^? we note ^e following estimates
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of the composite functions.

Lemma 3.
i) Suppose that

f ( x , t, y) e Cs+l(R» xRlx Rn+2)

v(x, 0 e S\(H^~f) (0^ i<s + 1), w(x, f) e /{

Then it follows for l<fe<s that

\\D"{f(x, t, Dv(x, 0)w(x, »)}-/(*, f, D«<x, 0)£>fcw(x, Oil

(7)

(8)

where

/0=sup |Bs/(x, f, 0)1 .
R"XRl

ii) Suppose that

J"+2), 0(0) = 0

v(x, t) e /{(fl'+1-0 (0 < i ̂  s + 1) .

TTzen it follows for 0^fe<s

||D*fif(Di<*, 0)11

(7)' <c{00+(l|0s+

(8)' <:c(||D'+1t;|| + IID^^

w/iere
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Remark. We can get (7)~(8)' by using Lemma 1 and especially
Taylor's formula for (7), (7)' (refer to Chapter I and II in Dionne [1]).
In this paper, we use more precise forms (7), (7)' rather than (8), (8)'.

Now, defining sl by

£1= sup Z|Dsay(x, t, 0)|,
H"XB»

we have the following (we omit £ for simplicity)

Lemma 4. Suppose Assumption 1, then for u(x, () and v(x, i)e

we have the following:

where atj = a^x, t, Do), fc0 = A0(||D»|L),

ii) ||(ayD*u, • D*«,)y- fly0*«V • D*u,-flyD*H, • D"utJ}\ ,

iii) ||(flyD*«, • Dku)j - ai}D
ku{} • D

ku - atJD
kut •

^cdlD^rllho + Bi)!!^**1"!!2 l</c<s.

iii)' Suppose in addition Assumption 2. Then, left hand side of

iii)

iv) ||D*{fly(Dtt)-fly(Dl»)}«y||

v) Suppose in addition ve@(Q, T\e). Then,

\\D2
xu\\ ^c(e0, h0, a,, fl){||fly(D»)tiu|| + ||D>||} for

Lemma 5. Suppose Assumption 3, then for u(x, () and v(x, i)
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~0 (0<i<s+l) we have the following:

i) \\Dkb(Du)\\ <c\\Dk+lu\\ (||DS+1M|| + \\Dg+lu\\^)hl(\\Du\\J Q<k<s.

ii) ||D*fc(Z)iOII<c||^^^^

iii) \\D*{b(Du)-b(Du)}\\

<c\\Dk+1(u-v)\\ (\\Ds+iu\\ + \\Ds+1v\\)

x(l + ||D'+1ii||--2+||D-+1i;||--2)fc1(||Dii|L + ||Di;|L) 0<fc<s.

iv) Suppose in addition Assumption 4. Then,

\\b2(Du)\\<c\\Du\\2hMDu\\J.

Remarks. Lemmas 4 and 5 (except v) of Lemma 4) are given by

using Lemmas 1 and 3 (refer to the Chapter I and II in Dionne [1])

and v) of Lemma 4 is shown by the strong (uniform) ellipticity of

7 with ve&(09 T\e).

§2. Cauchy Problem

In this section, we consider the Cauchy problem

(1) L(w) = wrt-i;.«u(x'

, a>0

We put oe=l without loss of generality. We suppose

and put

By using the equation (1), we can determine

) (2<k<s
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successively beginning with $9 $ and it follows

(9) ||Ds+1M(0)||<6ft4(e)

where h4 depends only on h0 and h±. Then we have the following

Theorem 1 (local existence). We suppose Assumptions 1 and 3.

Moreover we suppose c/)eHs+1, ij/eHs and that Ds+1w(0) satisfies

where C3==('A^~) an^ Q<e<eQ. Then there exists a positive constant

t0 such that Cauchy problem for (1) has a unique solution

u(x,f)e&(0,t0\e).

Remark. This Theorem is due to the Theorem in Chapter V of

Dionne [1], although we modified the formulation. We only note the

following: If v E ̂ (0, tQ\e), the linear equation

is strictly hyperbolic on 0<f<? 0 so that we get the energy inequality

where c depends only on hQ and eQ. On the other hand, it follows from

, t0\e) that

\\Dsb(Dv(c))\\2<ce2 for

Choosing t0 sufficiently small in the above inequalities, we have

sup \\Ds+1u(f)\\<e for Ds+1u(0) as in the Theorem.
0£t£to

Therefore we can perform the iteration arguments. For more details,

refer to the Appendix.

In order to show the global existence, we establish the following

Lemma 6 (a priori estimate). We suppose Assumptions 1~4. More-
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over we suppose that (1) has the solution u e ̂ (0, T\e) (T is any

positive constant) for

sup

Then there exist the positive constants <50, $i(e) such that

we^(0, T\c3e) for

Here <50, d^ do not depend on T.

Proof. For u e^(0, T\e) n «f{(Hs+2-') (0<i<s + 2) and w

we first estimate the following

I = (Ds{Lv(u) + b(Du)} • Dsutdx = (osutt - Dsutdx

' Dsutdx + (osut - Dsutdx + {osb(Du) - Dsutdx

where

Lv(u) = utt-^atj(x9 t,

By Lemmas 4 and 5, we have

s
Ui • D^j-^a^Dv^Utj • D*ut

- Dsujtdx
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u) • Dsut + b(Du)utdx

u)]] \\D*ut\\-\\b2(Du-)\\ ||«t||

f u
where B(u) = \ b^vjdv. From the above estimates, we have

Jo

(10) I>^^\Dsut\^ + \^aij(Dv)DsuiD
suj+B(u}

+ \\D*ut\\
2-c{s1+(\\D*+h\\ + \\D*+^^^^

+ (||I)^iM|| + ||l)s+1
W||^1(||^||J}||^+1

M|!2.

Next we estimate

/' = (Ds{Lv(u) + b(Du)} - Dsudx = (Dsutt - D
sudx

ij Utj) ' Dsudx + \Dsut - D
sudx + \Dsb(Du) - Dsudx

We have

I'l = J-£)*u. D
sutdx - || Dsut ||

 2
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(Du)udx

Therefore we have

(11) r>-\±]D°u\

+ \\Ds+1u\\°

Choosing some positive number 0</l<4-, we get from (10) and (11)

(12) / + U'dx > Ev{u(
Jo L

where /i(e0) =

Now denote by u5(x, t) the function (</>a*u)(x, f) where <j>d* is

Friedrichs' mollifier with respect to x. Then we note that for the solu-

tion ue0(0, T|e) of (1), it follows

ud(x, Oe^(0, 7» n ̂ ;

Applying $»* to (1),
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where

From (12), it follows

o Jo

iHll +
o

Then we have

(13)

(14) P'+1U,(T)i| — » ||

(15) RD-CXr)!! - ^0

(16) IID-CXt)!!— »0

for every 0^r<f when S-+Q. In fact, (13)~(15) are easily verified and

for (16) refer to Chapter 6 of [3]. Therefore, taking §->0, we get

(17)

Choosing a small constant (50 which satisfies

c(l+^{si + (e + es)h(eQ)}<^mm^la^ for 0<e l J e<609

we have
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(18) [£jf<(T)}+Jll(tt(T))^

Since

(B(6)dx<(\(t)\ sup
J J M£|*

it follows from (18) and (9) that

(19) \\D^u(t)\\2<c-^E

< c~[ic2h4(s)s + c/i1(e)e3.

Therefore, choosing a constant dl so small that

right hand side of (19) < c\e2 for 0<e<<5 l 3

it follows consequently

He^(0, T|c3e) for 0<e, a!<^05 0<s<^1(e).

Q.E.D.

By Theorem 1 and Lemma 6, we have the following

Theorem 2. We suppose Assumptions 1~4, that is,

i) a,/x, *, jO e

ii) flj^a^.

iv)

for all x E Rn, t e J?1, y e Rn+2, £ e R"

where a(y) e C°(Rn+2).

sup

sup

v)



364 AKITAKA MATSUMURA

vi) D,6(0) = 0.

vii)

for \y\<L

Here s represents "T 1 + 2. Moreover we suppose 0 eHs+1, if/ <= Hs and

put

sup
H"XR1

Then there exists a positive constant eQ such that the Cauchy problem

for

has a unique solution M(x,f)e^(0, +oo|e0) /or 0<ve, Ve1<s0. Further-

more u satisfies

|| ii(OII 00+ Ii5sw(0ll - >0 as r - »+a ) .

Corollary 1. /n addition to the assumptions of Theorem 2, we

further suppose the following:

ii) I^GOI

iii) ZOyMy =

/;(0) =0,
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Then solution u that is obtained by the Theorem 2 satisfies

\\Du(t)\\2+(B(u(t))dx<ct-i.

Corollary 2. In addition to the assumptions of Theorem 2, we

further suppose the following:

i) &!(«) = 0.

ii) nDlfoW^ytf

>(0)=0,
*y c-t j

<l j>2 l / *o (b ' l ) .

the solution u that is obtained by Theorem 2 satisfies

\\Ds+iu(t)\\2<cr\

Proof of the Theorem 2. From (9) and Theorem 1, we can choose

a positive constant £2 as

for 0<ve<(52.

Now if we choose e0 = min(<525 ^i(^)), it follows by Lemma 6

i/£^(0, t0\c3e) for 0<ve, %<£().

By using Theorem 1 again with </> = w(f0), \l/ = ut(tQ), the solution

(20) MG0(0 ,2f 0 |<?)

exists foi 0<ve, V £ j < e 0 - By Lemma 6, (20) immediately implies
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u e ̂ (0, 2t0\c3e) .

Thus repeating the same arguments, we have the solution

we^(0, +oo|c3e)cz^(0, + oo|e0).

Next, by the same way as we got (18), we have

(21) ||!JI+XOII2 + Jj|0I+M*)P^

(21) and the following Nirenberg's inequality ([5])

(22) IMUrScPH-'Kll'IM1-", *=2&=i)

give

HDXOII+IKOL — >o as « — > + c o .
Q.E.D.

Proo/ o/ </ze Corollary 1. Define £j(0 by

where

Estimating

\L(u)utdx = Q

by using the assumptions, it follows that

,(OII2^0 (y>0) for

which implies

(23) BiCO^^iW for
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It follows by integrating (23) and using (21) that

<C

which gives

\\Du(t)\\2+(B(u(t})dx<crl.

Q.E.D.

Proof of the Corollary 2. For this case we can give a proof by
estimating

( Ds{L(u)} • £>% 4- ADs{L(w)} - Dsu dx = 0 (0 < A < 1)

similarly as in the previous arguments and using Nirenberg's inequality
(22). We omit the details. Q.E.D.

§3. Initial-Boundary Value Problem and Periodic Solutions

We consider the following initial-boundary value problem

(1)' L(ii) = fi2/(x, 0 xeQ, t>0, 0<e2<l

ii(0) = 0

where Q is a bounded open set in Rn with C°°-boundary dQ. For the
term f(x9 t\ we assume

Assumption 5.

i) /(x,
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ii) sup || Dsf(t) || < M < + oo .
teR1

Moreover we assume the following compatibility condition;

(24) uk-1eHs-k+2f}H8-k+l, ukeH'-k+l for l<k<s

where

' , o )

which are determined successively by (1)' beginning with $ and if/.

We note that if u e ̂ (0, 7>0) is the solution of (1)', it follows

(25) \\D^u\\<c(h09 hl9 e0, at, c0, M,

for \<k<s

by using the Lemmas 4 and 5 (especially v) of Lemma 4). We show the

local arguments to the simple case (fo = 0, /=0 and a = 0) at the Appendix.

We have the following

Theorem 3- We suppose Assumptions 1, 3 and 5, that is9

i) au(x9 t, y) e Cs+l(Rn xRlx Rn+2) .

ii) aij = aji.

iii) Xatfat.yKttjZaMXtl a(0)>0

for all xeR", teR1, yeRn+2,

where a(y) e C°(Rn+2) .

iv) sup

v)

vi) Dyb(0) = 0.

vii) f/(x, t)eC'(R"xRl)

sup||Ds/(OII<M<



SECOND-ORDER QUASILINEAR HYPERBOLIC EQUATIONS 369

[- -j 0

Here s represents y- 4-2. Moreover we suppose $eHs+lnHs and

\l/eHs satisfy the compatibility condition (24), and put

sup E|E'fly(;c, r, 0)1=8!.
Knxl?i

Then there exists a positive constant e0 such that the initial-boundary

value problem for

9 f)

ii(0) = 0

/las a unique solution u(x, t) which satisfies

u(x, f) e ^(0, + oo|e0) a«^ Ds
tu(x, t) e ^(H1) for 0 < ve, Vs l5

 Vs2 < e0.

Furthermore u satisfies

\\Ds+hi(t)\\ <c||Ds+1w(0)|| exp(-70 + ce2sup ||DS/(OH
fel?1

where y is some positive constant.

Corollary 3 (Periodic solutions). We suppose Assumptions 1, 3 and

5. Moreover we suppose that a^x, t, y) and f(x9 i) are co-time- periodic,

that is,

atj(x, t + o), y) = atj(x9 t, y), f(x9 t + co)=f(x, t)

for all x, t, y. Then there exists a positive constant e0 such that

(1)" L(u) = s 2 f ( x , t )

has a unique co-time-periodic solution u(x9 f) which satisfies

u(x, i) e &(- oo, + oo|e0) and Ds
tu(x, t) e £°(Hl) for
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Furthermore, for the time periodic solution u(x9 f) as we got above, any

solution v(x, 0 of (1)" which satisfies

v(x, r)e^(0, +oole0) and Ds
tv(x,

is asymptotic to u(x, t) exponentially as f-» + oo, that is,

for 0<ve, Vel5
 Ve2<fio-

Proof of Theorem 3. Recalling the arguments in §2, it is sufficient

only to show the apriori estimate for

u e

If we want to show the estimate for we^(0, +00 \e) and Df

we may use the mollifier with respect to t for this case. Then estimating

? (L(u)} • Ds
t ut dx + D*{L(u)} • Ds

tu dx

=e2(D
s
tf-D

s
tutdx+te2(D

s
tf.D

s
tu dx

by the same way as in Theorem 2, we get

(26) -

where

By Poincare's inequality
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(27) \\u\\ <c(Q)\\Dxu\\

and (25), it follows

Therefore choosing d small, (26) implies

(28) -

<ce2\\D
sf(t)\\2 for 0<e, els e2<6.

By Lemma 2 and (27), we get

* 2

so that by (28)

-{E(t)}+2yE(t)<c82\\D*f(t)\\

which implies

£(0<c£(0)exp(-2?0 + ce2 sup ||DS/(OII2.
reK*

Hence we get the estimate

which become apriori estimate. Q.E. D.

Proof of Corollary 3. We consider the following initial-boundary

value problem;

(29) L(u™) = 82f>»(x9 i) (m = 0, 1, 2,...)

where /m(x, t) satisfies the following conditions:
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i) fm(x, OeC-Cfl-xU1).

ii) sup ||Ds/m(OII <cM where c is independent of m.
teR1

Hi) ( fm(x, 0 EE/OC, r) for f > - m + 1,

1 Ds/m(x, 0 = 0 for t<-m.

Applying Theorem 3 to (29), we have the solution of (29) as

f um(x, f) e®(-m, + oo|e0) and Ds
tu

m(x9 f) e #°(Hl)
(30)

( sup \\Ds+1um(f)\\<cs2 for 0<e l9 62<3e0
t^-m

where we emphasize that c and e0 are independent of m. Putting um(x,

0 = 0 for t<—m we can extend wm(x, t) on — oo<f< + oo as

{ wm(x, t) e ^(- oo, + oo|e0) and Dfwm(x,

sup||Ds+1ww(OI|<cfi2 for 0<s1, 82<e0.
feR1

Then estimating

by using Lemmas 4, 5 and (27) as before, we have

(32) -{Eum(um+1 - um)} +2yEum(um+1 -um)<0

for 0<e1? s2<^£o and f > — m + l where y is some positive constant

independent of m and

+ y

From (32), we have

(33) ||Ds(uw+1-iim)(

for all * > T > — m + 1. Let T be any fixed finite number. Then we can
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suppose T>— m+1 by taking m large. So it follows from (31) and (33)

\\Ds(um+1-um)(T)\\<cQxp{-y(T+m-l)}.

This gives

(34) ||Ds(wm+1-wm)(T)|| - »0 as m - > +00.

Moreover we have from (33)

(35) || Ds(um+ l - wm) (0 1| < c || Ds(um+ ! - MM) (T) || exp { - y(t - T)} for t > T.

Therefore it follows from (34) and (35) that

(36) sup || Ds(um+ l - um) (0 1| - > 0 as m - > + oo
t^T

for any fixed finite number T. On the other hand, it is clear that

(37) sup || Ds(fm -/) (Oil - > 0 m - > + oo
r^r

tor any finite number T. Hence (31), (36) and (37) give the existence

of a solution of (1)" (refer to the last of Appendix for the regularity).

Now we will show the uniqueness. We suppose two solutions u and

v to (1)" exist. Then putting w = u — v, we have

(38) ||Dsw(OII<c||DswWllexp{-y(t-T)} for

by the same way as we got (33). Now if w^O, there exists some tQ

such that

(39) ||DX*o)ll*0.

From (38) we get

(40) PswOo)ll<cexp{-y(r0-T)} for all

If we choose T negatively large enough, (40) contradicts to (39) and this

implies the uniqueness. Therefore from the existence and uniqueness,

it is clear that if a^ and / are periodic, the solution is periodic. Finally

we can get the stability from (38). Q.E.D.
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Appendix

We consider the local solution of the following initial-boundary value
problem;

(41 ) utt - 2 %(X t, DU)UIJ = 0 x e Q

where Q is U" or a bounded open set in Rn with C°°-boundary 3O.
We assume $ and ^ satisfies the compatibility condition in the sense of
(24).

First we consider the following linear problem;

(42) Lv(u) = utt- 2>,/x, *, ^K*. 0)«y =/(*, 0 * e (2

Then we have the following

Proposition 1. We suppose Assumption 1. Moreover we suppose

that (j>eHs+1f]Hs and \l/eHs satisfy the compatibility condition and

that

f
(43)

(42) has a unique solution u(x, t) which satisfies

u(x, Oe^?(Hs+1nHs)n^(Hs+1-0

and the following inequality holds: For l<l<s
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(44) HD'

Corollary 4. In Proposition 1, we further suppose / = 0.

Then there exist the positive constants t0 and 6 (<1) such that for

\\Ds+lu(G)\\<de (42) has a unique solution

u(x, 0 e ^(0, tQ\e) n <?°(Hs+i n Hs) n <r;(£P+1~0 (1 < i<s + 1)

where t0 and 5 depend on e0 but not on e.

Proof of Proposition 1. Extending v on — 1<£<0 properly, we have

from Assumption 1 and (43) that

fly(*, t) = atj(x9 t, Dv(x,

for all xeO, <^e^ n and ^>— 1. Therefore, taking care of regularity

of aij9 we have from the arguments in [4] that if (freH2 n H1, \I/e Hl

and /e &t(L2) (42) has a unique solution u(x, t) which satisfies

(45) u(x, 0 e <f ?(H 2 n H1) n ̂ K^1) n * 2
t(L

2)

o

So let us show the regularity of the solution. Now we put

Then differentiating (42), we have

(46) Lv(w
k)=- £ flj</wj+/fc for Q<k<n

d dwhere a®ij = -~r-aip CL\J=^—atj (l<k<n) and /0=/r In order to solve

the (46) we make the sequences {wfc>m} (m>0) as follows; for m = 0
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for m>l

Using the assumptions, we have from (45) that

n H1) n ̂ K^1) n ̂ ?(L2) (m>0,

' Z II
ok=0

||D2w*.'»(OII2<cexp(cO{L ll
k=0 k=0

O k=0

From (47) we can get the solutions of (46). So (42) has a solution

u(x, 0 e <f ?(#3 n H2) n <f j+1(H2-'') (0< i<2) .

Furthermore (45) and (47) give

||DMOII2<cexp(co{||^^^

Similarly we can get the regularity up to the order s + 1 and the energy

inequality (44) step by step. Q.E. D.

Proof of Corollary 4. It follows from (44) that

(48) ||Ds+1M(OII2<cexp(cOI|D5+1M(0)||2

where c depends on e0, h0 and ai but not on e. Therefore choosing t0
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and d such that

exp(c*0)<2, 2c(52<l,

we have

sup ||Ds+1w(OII<e.
0<.t£t0

Q.E.D.

Under the above preparations, we have the following

Theorem 4. We suppose Assumption 1. Moreover we suppose that

cj)eHs+1(}Hs and \l/eHs satisfy the compatibility condition. Then

there exist the positive constants t0 and 5 (<1) such that if ||Ds+1w(0)||

<de(Q<e<e0), then the initial-boundary problem for (41) has a unique

solution u(x, f) which satisfies

u(x, Oe^(0, t0\e) and Dk>lu(x, t^e^H1) (Q<k + l<

Proof. We first note that we can construct some w(x, f)e ^\(

(0<i<s+l) satisfying

and d\\Ds+1w(f)\\

Then we construct the approximate sequence as follows;

(49)

Since Ds+1wm(0) = Ds+1w(0) for all m>0, it follows by Corollary 4 that

(50) um(x, i) E 0(0, t0\e) n ̂ (Hs+1 n Hs) n tfKH^-i)

for all m>0. From (49) we have
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Lum(um+ i - um) = Am(um - um~ 0

where Am(um-um~l)=^{aij(x, t, Du^-a^x, t, Du^^ufj. So from (44)

we have

(51)
o

On the other hand we have from iv) of Lemma 4

(52) ll^-M^w"1-^-1)!!2^^)!!^"1"-^-1)!!2.

Substituting (52) to (51), we have

(53) IID^+i-w^WP^crill)^-^-1)^)!!2^ for all m>l.

Therefore (50) and (53) give a solution of (41) satisfying

Ds+1u(x, i)eL?(L2) and Dk>lu(x,

Finally the uniqueness follows from the similar energy inequality as (53)

and the regularity Ds+1ue#°(L2) follows from

sup \\Ds+1((pd*u-(pd,*u)(t)\\-»Q, as 5, <5'-»0
O^t^to

where <pd* is the mollifier with respect to t and u is extended properly
on -8<t<t0 + s. Q.E.D.
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