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Global Existence and Asymptotics of the Solutions
of the Second-Order Quasilinear Hyperbolic
Equations with the First-Order Dissipation

By

Akitaka MATSUMURA¥*

Introduction

In this paper, we first consider the following Cauchy problem for
the quasilinear hyperbolic equations

(1) Lw)=u,— ¥ a;(x, 1, Du)u;;+ o, +b(Du)=0
ij=1 "
u(x, 0)=d(x)
ut(xs 0)= lp(")
where xeR", >0, >0 u-=~(?~u— u =6_u and
= P oxT Tt ot

Du=(u, u,, ug, ty,..., ).
Here the coeflicients a;; are smooth and satisfy
2 ay(x, t, )& ;za(nE e, a(0)>0
,J i

for all xeR", teR', ye R"*2, (e R".
Recently, we investigated the global existence and decay of the solu-

tions of the semilinear wave equations

(2) u, — Au+au,+ b(Du)=0 xeR", t>0, a>0
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with the small data in [2]. For the space dimension n=1, Nishida [6]
showed that the quasilinear equations

3) u,,——a%a(ux)+cxu,=0 xeR", >0, a>0

have the global smooth solutions for the small data. But his argument
is not applicable to the cases n>2. In §2 we establish the global ex-
istence and decay theorem of (1) for general cases n>1 with small data
and boundedness of some coefficients (Theorem 2).

Next we consider the following initial-boundary value problem;

1y Lw)=¢f(x,f) xeQ, t>0
u(x, 0)=¢(x)
u(x, 0)=y(x)
L t]s=0

where Q is a bounded open set in R* with smooth boundary 0Q and e
is a sufficiently small constant. For the semilinear equations

Up— 2 A (XU + oau, = b(u) xeQ, t=0, a>0,
i,J
Sattinger [7] discussed the global existence and stability with small data.
In §3 we establish the global existence and decay theorem (Theorem 3)
even for general quasilinear equations (1)’ under the assumptions stated
in Theorem 3.

Moreover, at the end of §3, we mention the results of the existence,
uniqueness and stability of the time periodic solutions for

a)” Lu)=¢f(x, 1) xeQ, teR!
U|,0=0

where Q2 is a bounded open set in R* with smooth boundary 0Q and e
is a sufficiently small constant. For the semilinear equations

Up— 2 a;(X)u;;+ou,=ef (x, t, Du) xeQ, teR!, a>0,
g
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Rabinowitz [8] showed existence and stability of the time periodic solu-

tions. Moreover he [9] showed existence only for the nonlinear equations
utt—uxx+aut=8f(xa t, Du, uy, u,, Uyy)
x€(a, b)cR!, teR!, a>0.

Although our (1)” are quasilinear, we can establish not only existence
for more general space dimension n>1 but also stability (Corollary of
Theorem 3).

Notations and Preliminaries

In this paper, all functions are real valued. Let @ be R" or a
bounded open set in R* with the C®-boundary 0Q2. We denote by
Lr(Q) (1<p<o0) the space of measurable functions u on Q whose p-th
powers are integrable with the norm

1

Jull =({luCotedx ), - Jull=ess.supluc).

If p=2, we write ||-|. Let f(z) be a function of zeR" (r is some posi-

tive integer). Then D%f (resp. D%f) (k is some positive integer) represents
the vector which has

(k+r)!
k!r! <

components,
DEf= {(%)f} 0< ol <k
<resp. Dt f= {<—66Z—>af}, 1< o] sk)

r
where a=(xy, ay,..., %) and |o|= X ;.
i=1

Especially, D*f and D*™f represent

pr-EE G oz
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Dkmf— {(%)(‘%)f} 0< |a| <k, 0<i<m.

D*f and D*mf are similarly defined as Dtf. If k=1 for D%f, we write
simply D,f. Moreover D:f.Dkg (resp. D%f-D%g) represents the usual
vector inner product for DXf and D%g (resp. Dtf and Dkg).

For some set G in R", C¥(G) is the space of the real valued func-
tions on G that are k-times continuously differentiable. Cg(Q2) denotes
the space of C®(Q) functions with compact support in Q. H* denotes
the space of functions all of whose derivatives of order <k belong to
L?(Q) and the norm of H* is equal to ||D%-||. The completion of the
space of CZ(Q2) functions by the H* norm is denoted by HE,

Let X be a Banach space on Q. Then u(x, f)e £¥(X) (resp. L?(X))
(to<t<t;) means that u(-, f) belongs to X for every fixed ¢t and u is
k-times continuously differentiable (resp. bounded) with respect to ¢ in
X-topology on t,<t<t,.

We use ¢; as the constants, especially use c¢ for the constants which
we need not distinguish and write ¢,(X) when we emphasize its depen-
dence on X. We denote by hy(r) the continuous nonnegative and non-

decreasing functions on 7>0.
We note the next Sobolev’s inequalities.

Lemma 1 (Mizohata [3] Chapter 7). We suppose Q is as in the

above.

i If ue glaltiem (m>0), we have

IDmul o <co(m, n, Q)DL my) .

i) If ueH[%]““" (m>0), we have for m+1gla|£m+1+[—2n—:l

<—367)au eLr

and

]+1+mu”

|5

< CO(P, m, n, &, Q)”D;!::%
14
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where
(L[]l _m+1 L]_ =
J » EI: " P 0 (n=even)
1 _tla] _2m+1 _1_:1 _
lP e‘_——n ) (n=o0dd).

§1. Basic Estimates

In this section we show the estimates of a;{(x, t, Du) and b(Du).
We list up the following assumptions <s=[%]+2>.

Assumption 1.

i) a;(x,t, y)e CTY(R" x R! x R**2) for 1<i,j<n.
ii) a;=ay; for 1<i,j<n.
iii) .Z, a(x, 1, Y)EL; 2 a(y) 2 ¢ a(0)=a,>0

for all xeR" teR!, yeR"?, (ecR"
where a(y) e CO(R"*2),

iv) sup 3 D33 aix, 1, < ho(ly]) -

R"xR1i,j
Assumption 2.

Sup, ZJ ID.ai(x, t, Y)I<IFlho(lyl) ~ for [§|<1
where 5=(0, ¥3, V3s-e» Vyt2)-
Assumption 3.
i) b(y)eCHH(R™?), [DFFb(y)|<hy(IyD).
ii) D,b(0)=0.
Assumption 4.

i) b(Du)=b,(w)+b,(Du).
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i) b,(uw)u>0.
i) b,(M<ZIFPhy(lyD  for [I<L.

Remark. Throughout this paper s represents [%]+2 and |-| denotes

the usual Euclidian norm.

By Assumption 1, we can choose the positive constants y, and a,
(0<a; <a,) such that

@ a(y)>a;>0 if |y|<y,.
Moreover, by Lemma 1, we can choose a positive constant e, such that

&) sup [Du(®) <7, if sup [Du(®)|<eo
o<t<T 0<t<T

where T is any positive constant. So we define the space of u(x, ¢),
2(0, Tle), for 0<e<e, by

6) 2(0, T)e)={u(x, H)|Ds u(x, 1) e £Y(L?) (0<t<T) and

sup [|[Dstlu(f)|<e (0<e<eyp)}.
0<I<T

Now we define E {u(f)} by

E,{u(®)} =S—'21—|Dsu|2+leu-Dsu,+—;—|Dsu,l2

+2%ay(x, 1, Do) Douy-Dougdx  (0<A<1).

Then we note the following under Assumption 1.

Lemma 2. If ve 2(0, Tle), E {u(t)} is equivalent to |Ds*'u(t)||> for
0<Lt<T, that is,

I u@II?<E{u(} <c,[|ID*u(n)|*>  for 0<Zt<T,
where ¢, and c, depend only on ey, ¢y, a,, hy and A.

This lemma is easily verified by Assumption 1 and (4)~(6).
In order to estimate 3 a;u;; and b, we note the following estimates
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of the composite functions.

Lemma 3.
i) Suppose that

[fCe 1, )€ CHIR xR x R
Sup D74, f(x, 1, I <hy(IyD)

v(x, ) e CHHI7Y) (0<i<s+1), w(x, t)e £i(H17Y)

0O<igs-1).
Then it follows for 1<k<s that

ID*{f(x, t, Du(x, D)w(x, O} —f (%, t, Dv(x, H)D*w(x, D

™ <c{fo+(ID* o] + || D5+ o[|$)hy(| Dol o)} | DF~ 2w
3 <c(1+ | Dstt||5)|| D~ tw| hy(| Dol )
where

fo= sup |D*f(x, t, 0)|.
RPXR1
ii) Suppose that
g(y) e Cs*1(R"*2), g(0)=0
[D5*g(») < hs(Iy])
v(x, )e £(HTY) (0<Li<s+1).
Then it follows for 0<k<s that

[ D*g(Du(x, D)

@’ <c{go+([D**v]| + [ D** o=~ )h3(|| Dv] ,)} | D¥* o]
8)’ <c([|D5* o] + | D o] ) h;([| Dol o)
where

go=1D,g(0)|.
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Remark. We can get (7)~(8) by using Lemma 1 and especially
Taylor’s formula for (7), (7)' (refer to Chapter I and II in Dionne [1]).
In this paper, we use more precise forms (7), (7)’ rather than (8), (8)".

Now, defining ¢, by

81= sup Zlﬁsaij(xy t: 0)' ’
R"XR!
we have the following (we omit Y. for simplicity)

Lemma 4. Suppose Assumption 1, then for u(x,t) and v(x, t)e
EYH1") (0<i<s+1) we have the following:

i) [D¥(a;ju;j)— a;;DFuy|
< c(ID*0]lho + | D10 ho +24) | D<+u]
where a;;=a;{(x, t, Dv), ho=ho([| Dv| ), 1<k<s.
ii) |/(a;;D*u;- D*u,);—a;;D*u;;- D*u,— a;;D*u; - D*u,;|),

+ “%(aijDkui-D"uj),—a,-jD"u,--Dkujt

1
<c(ID***vllho+e,) [D**ul?  1<k<s.

iii) "(aijDku,- * Dku)j_ a,-jDkuij N Dku —dijDku,- . DkuJ” 1
<e(|D*1]ho+e,) [DF w2 1<k<s.

iii)) Suppose in addition Assumption 2. Then, left hand side of
iii) <c|Ds*1o| |D=*'ull | D***ul hy.

iv) ||D¥{a;(Du)—a;(Dv)}u;|
<c||D¥ (u—v)|| [D*1ull (1+ | D+ ul|s~2+ | D5 1o]|s72)
X ho(|Dull o+ |1 Dv]l)  0<k<s—1.
v) Suppose in addition ve 2(0, Tle). Then,
|DZull < c(eq, o, a1, Q) {lla;(Do)u;;| +|Diull}  for 0<Lt<T.

Lemma 5. Suppose Assumption 3, then for u(x,t) and v(x,1t)
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€ CYH* 17 (0<i<s+1) we have the following:
) ID*b(Dw)|| <c|D¥*1u|l (| D°* tul| + | D**u| ")k, (| Dull,) 0<k<s.
i) [D°b(Duw)|| <c|D**'ull [D** ull (1+ [ D**ul*=2)h, (| Dull,,) -
iif) | D*{b(Du)— b(Dv)} |
<c||D¥*Hu—v)l| (1D 'ul| + | D*10])
X (14 |Dstlu|s=2+ | Ds*v||572)h (| Dull + | Dv|l,) O0<k<s.

iv) Suppose in addition Assumption 4. Then,

[b2(Du)ll < c[| Du|*hy (| Du ) -

Remarks. Lemmas 4 and 5 (except v) of Lemma 4) are given by
using Lemmas 1 and 3 (refer to the Chapter I and II in Dionne [1])
and v) of Lemma 4 is shown by the strong (uniform) ellipticity of
2a;(Dv)u;; with ve 2(0, Tle).

§2. Cauchy Problem
In this section, we consider the Cauchy problem

1) Lu)=u,,— Y a;/(x, t, Du)u;;+ou,+ b(Du)=0
L, J

xeR", t>0, a>0

u(x, 0)=(x)
ulx, 0)=y(x).

We put a=1 without loss of generality. We suppose ¢eH**!, e H®
and put

ID5" ol + 1 D3y || =e.

By using the equation (1), we can determine

(—aaT)ku(x, 0) (@<k<s+1)
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successively beginning with ¢, ¢ and it follows
® ID**u(0)|| <ehy(e)
where h, depends only on hy and h,. Then we have the following

Theorem 1 (local existence). We suppose Assumptions 1 and 3.
Moreover we suppose ¢ € H*1, e H and that Dst'u(0) satisfies

D" 1u(0)]| <cse
_%.
where c3=<%> and O0<e<e,. Then there exists a positive constant
2
to such that Cauchy problem for (1) has a unique solution
u(x, ) e 2(0, tyle).

Remark. This Theorem is due to the Theorem in Chapter V of
Dionne [1], although we modified the formulation. We only note the
following: If ve 2(0, tyle), the linear equation

Uy — >.a;i(x, t, Dv)u;j+u,= — b(Dv)

is strictly hyperbolic on 0<t<t, so that we get the energy inequality
ID*1u@12< exp () {21 D@17+ | Db(Do) |2dc}
1 0

where ¢ depends only on h, and e,. On the other hand, it follows from
ve 2(0, tyle) that

| Dsb(Du(z))||2 < ce? for 0<7<t,.
Choosing 1, sufficiently small in the above inequalities, we have

sup ||Dsttu(f)] <e for Dst1y(0) as in the Theorem.
0<t<to

Therefore we can perform the iteration arguments. For more details,
refer to the Appendix.
In order to show the global existence, we establish the following

Lemma 6 (a priori estimate). We suppose Assumptions 1~4. More-
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over we suppose that (1) has the solution ue2(0, Tle) (T is any
positive constant) for

D516 + D3yl =2
sup X [D*1a;i(x, t, 0)|=¢;.
R"xR!
Then there exist the positive constants &y, 0,(e) such that
ue 20, Tlcze) for 0<e, ;<0 0<e<dy(e).
Here 6y, 6, do not depend on T.

Proof. For ue2(0, Tle)n &(H**?"%) (0<i<s+2) and ve2(0, Tle)
we first estimate the following

I= SDS{Lv(u) + b(Du)} - Dsu,dx= SDsut, - Dsu,dx

- SDSZaU(Dv)uU - Dsudx + SD’u, - Dsu,dx+ SD’b(Du) - Dsu,dx
=Il—Iz+I3+I4
where
L(w)=u,—3a;i(x, t, Dv)u;; +u,.

By Lemmas 4 and 5, we have

I= %ng‘u,lzdx

N —

—12=% —gt— SZaij(Dv)Dsui-Dsujdx + SZ {D%(a;ju;;)—a;;D*u;;} - Dou,dx
- S—é— Y (a;;(Dv) Dsu;-Dou ), + S, (Dv) Dy Do dlx

+

e

2.(a;(Dv)Deu; - D*u,);— 3. a;(Dv)Duy; - Du,
— X a;(Dv)Dsu;- Du ;,dx

2—% —gt_ Szaij(Dv)Dsui'Dsuidx
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—c{[[D**1v]| ho(| Dvl ) + | D=+ 10l|*ho (| Doll )+, } | D**1ur ]2

15 = | D, | dx= [ Dou, |2
I,= gﬁsb(Du) - Dsu,+ b(Du)u,dx
> Sb 1Wu,dx—||D*b(Du)| | D*u,| — | bo(Du)]| |lu,|
Z% XB(u)dx— c(L+ || DsHuf==1) | D=*tu| | D=+ ul| Ay (|| Du o)
where B(u)= S:bl(v)d v. From the above estimates, we have

(10) 12—2’7{% | Dou, |2+ S a;,(Dv) DouyDou; + B(u)dx}

+ 11 D%u||* — c{e; + (| D** o]l + | DS 1o|)ho([| Dvll )
+(ID** tull + | D+ tul|Yhy (| Dull o)} | D=+ u]|.

Next we estimate
r= SDs{L,,(u) +b(Du)} - Doudx = SDsu,,  Doudx
- SDS(Z a;;u;;) - Dsudx + SD‘u, -Dsudx + SDsb(Du) - Dsudx
=1} —-I,+13+1,.
We have

d

hi=-gr

gDsu-D‘u,dx — | D*u, |2
"‘I’z =SZaijDsui . Dsujdx

+ SZaUDSuU - Dsu—D%(X a;ju;;) - DSudx

+ SZ(aUDsui . DSM)J - ZaijDsui . Dqu - Za”‘Dsuij © Dsudx
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= a; X || Dsuy||> — c{ey + | D> ull ho(l| Dol ) + | D** o] ho([l Dol )

+ D=+ 1vl[*ho([| Dol )} (Il D** tul|? + [ D*+1v]|?)

I %%SIDSuIde

= Sﬁsb(Du) . Du+ b, (u)u+ b,(Duudx
> — | Dsb(Du)| || Dsul| — [|b,(Du)]| [|u]]
> —c(||D** tu| + | D 1u||®) | Ds*1u | 2h (|| Du ) -

Therefore we have

) 1’2%(% | Do |2+ Dsu«Dsu,dx>+aIZI|D‘uiHZ— | Dsu, |12

— cfey + {hy(IDull )+ ho(I Dol )} (1D=* tu] + | D=+ 1]
+ D=+ tu s+ [ D=+ 0)] (| D=+ 2+ | D+ o).

Choosing some positive number O<A<%, we get from (10) and (11)
t I— j t
(12) SOI +Al'dez| Efu@)} + SB(u('c))dx I :

+ [ D @I+, D12

—c(1+2) {e; +(e+e)h(eo)} {| D**u(D)||>+ | D**'u(2) | *}dv

where  h(ey)=ho(ceo) + hy(cep).

Now denote by u4x,t) the function (¢s*u)(x,t) where ¢zx is
Friedrichs’ mollifier with respect to x. Then we note that for the solu-
tion ue 2(0, Tle) of (1), it follows

uyx, )€ 2(0, Tle) n £i(H**?"))  (0<Li<Ls+2).
Applying ¢, to (1),

L,(u5)+b(Dus)=Csu+ Csu
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where

Cu=%[o¢s *{aij(Du)uij} - aij(D“)uaij]
“u=Db(Duz)— ¢z4b(Du).
From (12), it follows
o Lyps, iz s, |12
[ 2@} +{Bas@)ax |||+ 10wl + 20, 1Dl
—c(1+2) {e; +(e+eh(eo)} (I D=+ u|| 2 + || Ds*1u, | 2)de
<. (ID=Cyull -+ 1DCul) (1D + 21D ).

Then we have

(1) Eu®) — Eu@)  (Bus@x— (Bumdx

(14) 1D+ tus(D)] — [D**1u(@)]
(15) I1D*Ciu(z)]| — 0
(16) ID*Cou(z)| — O

for every 0<t<t when 6—0. In fact, (13)~(15) are easily verified and
for (16) refer to Chapter 6 of [3]. Therefore, taking 6—0, we get

an | Efu@)} + (Bu)ax ||
+{ DU @I+ 20, S D) I
0
—c(14 1) {g; +(e+e%)h(ey)} | D+ 1u(z)||2d7 <O.
Choosing a small constant d, which satisfies

c(l+2){e;+(e+eh(ey)} g%min(%, Aa1> for O<egy, e<éy,

we have
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(18) l:E,,{u(t)} +SB(u(z))dx]|;+%min(%, lal)g;llﬁs“u(‘c) |2dz <0.
Since
SB(qb)dxgSI(}SIIUSIlSlPM]bl(v)ldecs3h1(e),
it follows from (18) and (9) that
19 ID*tu())|? < 1 E{u(D)}
< E (O} + o7 | B(g)dx
<cileha(e)e+ch,(e)ed.
Therefore, choosing a constant §, so small that
right hand side of (19) < c3e*  for 0<e<é,,
it follows consequently
ue 90, Tlcse) for O<e, g,<0dy, O<e<d(e).
Q.E.D.
By Theorem 1 and Lemma 6, we have the following

Theorem 2. We suppose Assumptions 1~4, that is,
i) ax,t, y)e C*Y(R"x R x R"*2).
ii) aij=a".

Ji
i) Ya;x, t, &EE;=a()Xe, a(0)>0
for all xeR" teR!, ye R"*?, (cR"
where a(y) e CO(R"*2).
iv) [ sup 21D ,ai(x, 1, Y <ho(¥])
Sup ZIDaii(x, t, MIL|Flho(ly))  for [FI<1.

v) b(y)e C*(R*2), |DSFb(y)<hy(1y]).
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vi) D,b(0)=0.
vii) b(Du)=b;(u)+ b,(Du),
[ b,(w)u=>0

b MI<IF1*h(lyD)  for [JI<1.

Here s represents [%}+2. Moreover we suppose ¢ e HSt', ye HS and
put

[ Dol + | D5yl =e
sup X |Dsa;(x, t, 0)|=¢;.
R"XR!
Then there exists a positive constant &, such that the Cauchy problem
for

Uy — 2. a;4(x, t, Du)u;;+u,+ b(Du)=0

{ u(0)=¢

u(0)=y

has a unique solution u(x, f)e 2(0, + woley) for 0<Ve, Ye,<e,. Further-

more u satisfies

lu(®)ll o+ I D*u(t)] — 0 as t— +oo.

Corollary 1. In addition to the assumptions of Theorem 2, we

further suppose the following:
i) B(u)= S:bl(v)dUSubl(u)hs(lul).

i) bM<yl 7RIy
i)  Xa;u;=>aii(Dwu;+ X {fi(u)}

£ =0, £-7i©)=0

a .,
%, | 55| < 12l ho(17]).

k#2
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Then solution u that is obtained by the Theorem 2 satisfies

I D)2+ SB(u(t))dx <cr 1.

Corollary 2. In addition to the assumptions of Theorem 2, we
further suppose the following:

i) by(u)=0.

i) [ [D5,b(NI<1y2l2hy (D)

| |55 at A1y D).

lll) Za" "_Zalj(Du)l‘rj+ Z{f(ul)}l

[fi<0)=o,

1 % |- a0 <yalho(iyD.

k#21

Then the solution u that is obtained by Theorem 2 satisfies

ID=*tu(h)]? < ct™,

le@loserr  (1=4657)-

Proof of the Theorem 2. From (9) and Theorem 1, we can choose
a positive constant d, as

ue 2(0, tyle), 0<e<d, for 0<Ve<s,.
Now if we choose ¢,=min(J,, d,(e)), it follows by Lemma 6
ue 200, tolcze)  for 0<VYe, Ve <e,.
By using Theorem 1 again with ¢=u(t,), Yy =u/t,), the solution
(20) ue 20, 2tyle)

exists for 0<VYe, Y¢; <g,. By Lemma 6, (20) immediately implies
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ue 20, 2tylcse).
Thus repeating the same arguments, we have the solution
ue 20, + o|c;e)=2(0, + x©|ep) .

Next, by the same way as we got (18), we have

1) 1D+ ul+ {1571 u(@ 12+ {bru@mdxde<c.
(21) and the following Nirenberg’s inequality ([5])

(22) lulo<el Dy ullult=, a=35"7y

give

I Dsu(®)| + |u()]l, —> 0 as t—> +c0.

Proof of the Corollary 1. Define E(t) by
B ={Jut+ JEay; Ouu;+ TP w) + Bwdx
where
Fi(u)= So Fi()do.
Estimating
SL(u)u,dx:O
by using the assumptions, it follows that
4 EO+1lu®P<0 3>0)  for 0<Ve<e

which implies

23) E(H)<E,(v) for t>r.

Q.E.D.
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It follows by integrating (23) and using (21) that
tEl(t)SStEl(r)dr
0

Sg;c||ﬁu('r)||2+ gcbl(u(r))u('c)dxdt

IN

¢
which gives

| Du(e)|2 + SB(u(t))dx <et L,
Q.E.D.

Proof of the Corollary 2. For this case we can give a proof by
estimating

SD‘{L(u)} - Du,+AD*{L(u)} - Doudx=0  (0<Ai<1)
similarly as in the previous arguments and using Nirenberg’s inequality
(22). We omit the details. Q.E.D.
§3. Initial-Boundary Value Problem and Periodic Solutions
We consider the following initial-boundary value problem
@y’ Lu)=e,f(x,t) xeQ, t>0, 0<s,<1
u(0)=¢
u(0)=y
[ uloe=0

where Q is a bounded open set in R» with C®-boundary 0Q. For the
term f(x, t), we assume

Assumption 5.

i) f(x,)eC(R"xRY).



368 AKITAKA MATSUMURA

i) §2£1||Dsf(t)|| <M<+ .
Moreover we assume the following compatibility condition;
(24) uk—1g Hs-k+2 ) Hs—k+1 yk g fsk+1 for 1<k<s

where

uk= (—:l,lt—>k u(x, 0)

which are determined successively by (1)° beginning with ¢ and .
We note that if ue 2(0, T|e,) is the solution of (1), it follows

(25) |ID¥*1u| <c(hg, hy, eq, ay, o, M, Q) (|| D¥*1ul| + || DY-*u|| +&,|| D f])
for 1<k<s

by using the Lemmas 4 and 5 (especially v) of Lemma 4). We show the
local arguments to the simple case (b=0, f=0 and «=0) at the Appendix.
We have the following

Theorem 3. We suppose Assumptions 1, 3 and 5, that is,
i) a;x,t, y)eCs*(R"x R x R"*2),
ii) aij=aji.

i) Yax, t, y)&&;2a()XEE,  a(0)>0

for all xeR" teRl, yeR"*?2, (cR"
where a(y) e CO(R"*2).

iv) sup ¥ID$H a;i(x, t, YI<ho(I¥]).
R"xR!

v) b(y)e CHY(R™2), |D5b(y) < hy(I¥])-

vi) D,b(0)=0.

vii) [ f(x, t) e CS(R"x RY)
sup D ()] M <+ oo.
teR!
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Here s represents L2]+2 Moreover we suppose ¢e Hs! nHs and
tﬁeHs satisfy the compatibility condition (24), and put

{ IDE 1| + |1 D3| =¢
sup Zlﬁsaij(x: t, 0)l=¢;.
R"xR!

Then there exists a positive constant ¢, such that the initial-boundary
value problem for

Uy — Zaij(xa t Du)“ij+ut+b(Du)=82f(x’ t)

u(0)=¢
u(0)=y
u|0=0

has a unique solution u(x, t) which satisfies
u(x, )€ 2(0, +ooleg) and Diu(x, ) e UHY) for 0<VYe, Ve, Ve, <e,.
Furthermore u satisfies

1D ()l < e[l D u(0)] exp (—y1)+ ce, sup | DF (D]
where y is some positive constant.

Corollary 3 (Periodic solutions). We suppose Assumptions 1, 3 and

5. Moreover we suppose that a;(x,t, y) and f(x,t) are w-time-periodic,
that is,

a;i(x, t+w, y)=a;i(x, t, ¥), f(x, t+w)=f(x, t)
for all x,t,y. Then there exists a positive constant &, such that
n” L(u)=e,f(x, 1) xeQ, teR!
u]og=0
has a unique w-time-periodic solution u(x, t) which satisfies
u(x, f)e D(— oo, +ole)) and Diu(x, )e EXHY)  for

Ve V¥
O0<Ve,, Yey3<e.
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Furthermore, for the time periodic solution u(x, t) as we got above, any
solution v(x, t) of (1)" which satisfies

[ u(x, )€ D(0, + ole,) and Div(x, 1) e £(HY)
[D=*10(0)*[| =

is asymptotic to u(x, t) exponentially as t— + oo, that is,
ID5(u—v) (@Dl <cexp(—yH)  (y>0)
for 0<Ve, Ve, Ve, <e,.

Proof of Theorem 3. Recalling the arguments in §2, it is sufficient
only to show the apriori estimate for

ue 2(0, +wle) n EL(HY) n E2(H").

If we want to show the estimate for ue 2(0, +oole) and Dfue:a"?(ﬁl),
we may use the mollifier with respect to ¢ for this case. Then estimating

SDf{L(u)} - Dsu,dx +/ISD§{L(u)} - Diu dx
=82SD§f- Diu,dx +/182SD§f- Diudx
by the same way as in Theorem 2, we get
@)  -Z{EO} + 51D 1w >+ Aay | Dou () |2

—c(1+2) {e+&;+(e+e)h(eo)} 1 D" u()|* < cex(1+4) [ DIf ()2

where

E@® =5 Du|>+ADju- Dju,+ | Diu, |2
+4 %a,,(x, t, Du) Dsuy- Diu,dx (o</1<%).

By Poincaré’s inequality
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e4)) lull <e(@) Dl
and (25), it follows
IDs*'ulf <c(ID§* ull + | D**ull +&, | D*f1) -

Therefore choosing § small, (26) implies
d 1 Ds+1 2 A Di.s 2
(28) A {E@} +5 1D u@® |+ 5 a | D ou@)|

<ce, | D5 f(1)||? for O<e, &, £,<0.
By Lemma 2 and (27), we get
E(0) <c{ID7* 'u()|? + | D**u(t)]|?}

so that by (28)

A {EW} +29E) <co| DYOI> (7>0)
which implies

E(t)<cE(0)exp (—2yt)+ce, rsgae | D= A%
Hence we get the estimate

ID= ()l < el D u(0)] exp (= y1)+ ce, sup | D/ (D)

which become apriori estimate. Q.E.D.

Proof of Corollary 3. We consider the following initial-boundary
value problem;

29 Lum)=e,fm(x,f) (m=0,1,2,.)
[ um™(x, —m)=0
un(x, —m)=0
} u™|s0=0

where f™(x, t) satisfies the following conditions:
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i) fm(x, f)e Cx(R"x RY).
ii) sup |Dsf™(t)| <cM where c is independent of m.
teR?

iii) [ fr(x, )=f(x, f) for t>—m+1,

Dsfm(x, )=0 for t<-—m.
Applying Theorem 3 to (29), we have the solution of (29) as

[ um(x, ) e D(—m, +wle;) and Dium(x, f)e £I(HY)
(30)

sup ||Dstlum(t)|| < ce, for O<egy, g,< 3,
t=—m

where we emphasize that ¢ and ¢, are independent of m. Putting u™(x,
=0 for t< —m we can extend u™(x,t) on —0<t<+00 as

a1 [ u™(x, t)e 2(— o0, +©leg) and Dsum(x, t)ea"‘,’(ﬁl)
1

2113 [|Dstium(f)|| < ce, for 0<egy, &,<s,.
Then estimating

gD?“{L(u’"“) — L™} - {Df (up™ —up) + AD (W™t —um)}dx =0
(t=—m+1)

by using Lemmas 4, 5 and (27) as before, we have
(32) L B4~ ™)} 427 Ey (4 — ) <O

for 0<e,;, e,<%, and t>-—m+1 where 7y is some positive constant
independent of m and

E,(u) =S% | D5 lu |2+ lDi’lu-Di‘lu,+%|D§~lu,|2
+%Zaij(x’ z, DU)Df_lui-Df_luj dx.
From (32), we have

(33) D™ —um) ()| < c[| D™+t —um) (7)] exp { —(t—1)}

for all t>t>—-m+1. Let T be any fixed finite number. Then we can
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suppose T> —m+1 by taking m large. So it follows from (31) and (33)
D™t —um) (T)| <cexp{—p(T+m—1)}.
This gives
(34) |Ds(umtt —um)(T)| — 0 as m —> +o0.
Moreover we have from (33)
(35) D™ —um) (@) <c| D™ —um)(T)| exp{—y(t—T)}  for t>T.
Therefore it follows from (34) and (35) that
(36) fgg |Ds(umtt—um) ()] — 0 as m— + o0
for any fixed finite number 7. On the other hand, it is clear that

(37) sup I1Ds(f"=HBO| —0 m— +0

tor any finite number T. Hence (31), (36) and (37) give the existence
of a solution of (1)” (refer to the last of Appendix for the regularity).

Now we will show the uniqueness. We suppose two solutions u and
v to (1)” exist. Then putting w=u—v, we have

(3%) ID*w(@®|| <c|D'w(D)|exp{—y(t—7)}  for 1>

by the same way as we got (33). Now if w#0, there exists some ¢,
such that

(39) IDsw(to)ll #0.
From (38) we get
(40) | Dsw(t) || < cexp { —y(to—1)} for all 1<t,.

If we choose 7 negatively large enough, (40) contradicts to (39) and this
implies the uniqueness. Therefore from the existence and uniqueness,
it is clear that if a;; and f are periodic, the solution is periodic. Finally
we can get the stability from (38). Q.E.D.
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Appendix

We consider the local solution of the following initial-boundary value

problem;
41) u,,—iéla”(x, t, Du)u;;=0 xeQ t>0
u(x, 0)=¢
ut(xa 0)=lll
L ulan=0

where @ is R® or a bounded open set in R* with C%-boundary 0Q.
We assume ¢ and y satisfies the compatibility condition in the sense of
(24).

First we consider the following linear problem;

42) L(w)=u,— .Z, a;i(x, t, Du(x, O)u;;=f(x, 1) xe t>0
[ u(x, 0)=¢
i u(x, )=y
t]ae=0.
Then we have the following

Proposition 1. We suppose Assumption 1. Moreover we suppose
that peH**'nH* and YeH* satisfy the compatibility condition and
that

ve2(0, +0le)
43)
feci(H")  (0<i<s).

Then (42) has a unique solution u(x, t) which satisfies
u(x, e SYH* N HY N SIH*)  (I<i<s+1)

and the following inequality holds: For 1<I<s
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t
(44) | D" u(@)||*< cexp(ct) {|ID**1u(0)|2 + | D f(0)[|1>+ SOIID’f(r)Ilzdt} .

Corollary 4. In Proposition 1, we further suppose f=0.
Then there exist the positive constants t, and & (<1) such that for
| Ds*1u(0)|| < e (42) has a unique solution

u(x, )€ 2(0, tole) N EXH*1 n Ho) n £i(H*1-H)  (1<i<s+1)
where ty and O depend on ey but not on e.

Proof of Proposition 1. Extending v on —1<t<0 properly, we have
from Assumption 1 and (43) that

dl'.l'(x’ t)Eaij(x’ t, DU(X, t))eé':'(Hs—i) (OSISS)
Ya;i(x, )L i>a, 282 a; >0
du(x, t)=dj,(x, t)

for all xeQ,£eR" and t>—1. Therefore, taking care of regularity
of 4d;;, we have from the arguments in [4] that if ¢eHzanl, weﬁl
and fe &}(L?) (42) has a unique solution u(x, t) which satisfies

45 u(x, e &XH2 0 HY) n eXHY) N EXL?)
1Dl < exp (e {ID3O)2+ 1 f@)12+ | 1D f@)IPd).
So let us show the regularity of the solution. Now we put
wo=u, wk=uy, (1<k<n).

Then differentiating (42), we have

(46) Lv(wk)=_i1§=1a§jw;+fk for 0<k<n

where a?j=%aﬁ, a’,g:(—a%aij (1<k<n) and fo=f,, In order to solve

the (46) we make the sequences {w*™} (m>0) as follows; for m=0

weozy, whozg,  (L<k<n),
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for m>1
Lowm== 3 atwpish 0<ksn
[ wom(0) =1 J wkm(0) =@,
{ wPm(0) = —Tad;(x, 0)¢;; +0){ whkm(0) =y,  (1<k<n)
{ wom| o=0, 1 wkm|,0=0.

Using the assumptions, we have from (45) that

whm(x, e €%H2n HYn NHY N EHLY)  (m>0,0<k<n),

3, 1wttt —whom 2 < e [ DI 3, aty(wtom—whon) (@) e
i,j=1

“ <cf! 3 Ipwm—whm o) 2ds,

3 ID2wem(o)]|2 < cexp (e {3, [D2wEmO)2+ D' SO

+ {12 e i@+ D2 @]} (m2D).
From (47) we can get the solutions of (46). So (42) has a solution
u(x, e &%H? n H) n €+ (H? )  (0<i<2).
Furthermore (45) and (47) give
IDu(OI? < cexp (O IDWOI2+ DO+ | D2/ (@)IPds}.

Similarly we can get the regularity up to the order s+1 and the energy
inequality (44) step by step. Q.E.D.

Proof of Corollary 4. 1t follows from (44) that
(48) 1D 1u(2)||? < cexp (ct) | D*+1u(0)|2

where ¢ depends on ey, iy and a; but not on e. Therefore choosing ¢,
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and J such that
exp(cty) <2, 2¢62<1,
we have
sup |Dstlu(d)|| <Le.
0<1<10

Q.E.D.

Under the above preparations, we have the following

Theorem 4. We suppose Assumption 1. Moreover we suppose that
peH*'nH* and xﬁefl‘ satisfy the compatibility condition. Then
there exist the positive constants t, and 6 (<1) such that if |Dstu(0)|
<de (0<e<e,), then the initial-boundary problem for (41) has a unique

solution u(x, t) which satisfies
u(x, )€ 2(0, tole) and DFlu(x, e XHY)  (0<k+I<s, k#s).

Proof. We first note that we can construct some w(x, t)e &i(HS*1%)
(0<i<s+1) satisfying

Dstiw(0)=Ds*1u(0) and o] Dstiw(r)| < | Ds*1w(0)| 0<1<1,).
Then we construct the approximate sequence as follows;
ud=w,

49 Lym-1(u™)=0  (m=1)

um(0)=¢

up(0)=y

U™ 30=0.
Since Dstium™(0)=Ds*'w(0) for all m>0, it follows by Corollary 4 that
(50)  um(x, )€ D0, tole) N EXH=1 N HY) N EYH*1Y)  (1<i<s+1)

for all m>0. From (49) we have
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L"m(um+1 _ um) — Am(um —ym- 1)
where Am(u™—um1)=3% {a;(x, t, Dum)—a,(x, t, Dum~)}u™. So from (44)

we have

6D I - O <] [Dmtanun - w @)
0
On the other hand we have from iv) of Lemma 4

(52) [Ds=1Am(um —um= )12 < c(eo) | D (u™ —um~ |12

Substituting (52) to (51), we have
(53) D™t —um)(®)||2< cgt | D3 (u™ —um=1) ()| 2d= for all m>1.
o]

Therefore (50) and (53) give a solution of (41) satisfying
Dstly(x, )e L®(L?) and D*'u(x, e L2(HY)  (0<k+I<s, k#5s).

Finally the uniqueness follows from the similar energy inequality as (53)
and the regularity Dstlue&?9(L?) follows from

sup [ D5 (@sku—@y*u)(t)| -0, as 6, 6'-0

0<t<tg

where ¢ + is the mollifier with respect to ¢ and u is extended properly
on —e<t<ity+e. Q.E.D.
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