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Remarks on the Limiting GIbbs States
on a (J+l)-Tree

By

Yasunari HIGUCHI*

§ 1. Introduction

In this paper we investigate limiting Gibbs states with nearest neigh-
bour ferromagnetic potentials on a (d+l)-tree. Preston [1] has got a
necessary and sufficient condition for the non-uniqueness of the Gibbs
states for a given interaction (i.e. the necessary and sufficient condition
for the phase transition to occur) in these models. The Gibbs states
on a countable tree are studied in [1] and [2]. Our aim is to obtain
several limiting Gibbs states by changing boundary conditions.

Spitzer [2] has shown that (i) every extremal Gibbs state invariant
under graph isomorphisms is a "Markov chain" in the sense of his
definition (see Definition 1), and (ii) there are at most three "Markov
chains" among the Gibbs states for any given nearest neighbour fer-
romagnetic potential. In section 4 we will prove that every "Markov
chain" which is Gibbsian for the given interaction is obtained as a
limiting Gibbs state for the same interaction with certain boundary con-
ditions.

In section 5 we will give examples of limiting Gibbs states such that
the number of up-spins appearing in the corresponding boundary con-
ditions is much smaller than that of down-spins on every boundary,
while the probability for the spin at the origin to be up is larger than
1/2.

In section 6 we will give several extremal Gibbs states using above
examples.
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Section 2 and 3 are devoted to the preliminary definitions and dis-

cussions.

§2. Definitions and Notations

Let T be a (W+l)-tree with a positive integer d^2. Two points

t, seT(t^s) are called to be neighbours if they are connected by one

bond. Each point of T has d+l neighbours. We fix an origin 0 of T.

We write t-*s if t^s and the path connecting 0 and s passes t. If t->s

and t, s are neighbours, we write t-+s. For any finite FcT, the bounda-

ry 8V of V is

dV={tET\Vi there exists a neighbour of t in V] .

For every FcT, let SV = { — 1, +\}v be the space of all possible spin

configurations on V. In particular we write I instead of ZT. We assign

the product topology to I. For every FcT, define the er-algebra &v

by

^V = the (T-algebra generated by {Xt, teV}9

where Xt(a) = a(f) for all t e T9 <r e £. In particular we write @l instead of

@T.

Let V be a finite subset of T, coeZ and aeZv. We define an inter-

action energy on V with the inner configuration a and the boundary

condition co by

(i) EK«)=

feF,S65F;f,s are neighbours

where H is a real number called the external magnetic field and J is a

positive number called the ferromagnetic nearest neighbour potential. A

finite Gibbs state P$ on Iv corresponding to Ef? is defined by

(2) P^(CJ) = [Zf]~l exp [ - £?(*)] <r e ZK5

where Z^= 2 e*p[ — JEf?(£)]. As usual, P$ can be considered as a
de^

probability measure on (Z, ^).
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For fixed H and J, if there is an increasing sequence of finite sub-

sets {FJ such that Vn/T as n-»oo and Pw = w-limPf? (the weak con-
«-»QO

vergence of measures) exists for suitably fixed coeZ, then Pw is called a

limiting Gibbs state with boundary condition CD for (H9 J). On the other

hand, a Gibbs state P for (H, J) is defined as a probability measure on

(2, &) such that for every A in ^F,

(3) P(^FC)(o>) = PFG4) fl.s. (P).

It is well known that the set &(H, J) of all Gibbs states for any fixed

(H, J) is a non-empty, compact convex set. A limiting Gibbs state is a

Gibbs state for the same (H, J). Conversely, every extremal point of

&(H, J) is a limiting Gibbs state with a suitable boundary condition for

the same (H9 J).

§3e Limiting Gibbs States

Let \t\ denote the distance between 0 and teT, i.e. \t\ = n if there

exists a chain ®-+ul-*u2-+---+un-.l-+t. From now on we only consider

the sequence of boxes FM = {*e T; |f|^n}, n^l . For every seT we define

Ts = {s}U {teT; s-*t} and Vn>s = Ts n Vn9 n^ 1. The members of

are numbered by 1, 2,. . . ,d+l. For every coer,seT\{0} and n^\

put

(4) ^00= Z exp [-£? (*)- JgCo(0], fi= ±
ffelKn,s;ff(s)=£

(5) *.»=W^+l)/^?./-l),

where f is the unique point such that t-^s. Then we get

(6) P

d+1
co) + e-^/Ce-'tf „» + ej] ,

f7) W°* (S) = CE^ T~l YeE^W°* (-$~l}-$-6~E^Wfa ( 1T1 s=~l~l
U;S-»M

and for n > m, rj e I"Fm,
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(8) PVn({a(s)=r,(s),SeVm»

n W
n w

$elvm sedVm-i

From the above equalities we obtain easily the following

Lemma 1. Let COE! be given. If there is N>Q such that RntS(co)

converges as n-»oo for every seT\VN, then P03 = w-limPyn exists.
H-+00

Now, let us consider a boundary condition co such that c(co) =

co(s) is independent of *6T/{0}. Then it is easy to see that Rn(o})
s; t-+s

1
= Rnti(co) is independent of i = 1, 2, . . . , d + 1 , and Rn>s(o)) = Rn- jsj + i(cu).

Hence we get

(9)

from (7), where Yn(co)=-2\ogRn(o)), and

(10) f ( x ) = th-Hth /-th x) =1 log

which is a concave increasing function on [0, oo) and f(—x)=—f(x)

for all x (see [1], [3]).

The following is obtained from (9) and FKG inequality.

Theorem (Preston [1]). For fixed (H, J), the following (i)~(iii)

are equivalent:

( i ) There exist two different Gibbs states (i. e. a phase transition

occurs).

(ii) The equation

(11) x = H+df(x)

has more than one solutions.

(in) 7>llog[!±l] and \H\^df(u)-u,

where u is the unique positive value such that f'(u)=l/d.



LIMITING GIBBS STATES 339

The equation (11) has at most three solutions, say ag/?:gy. Preston
[1] has shown that Ya(co+)\y and 7n(co~)/'a as n-»oo, where co+

9 co~eZ

are defined by

(12) o>+(0 = + 1, or(0 = - 1 for all t e T.

Since (9) implies that the asymptotic behavior of Yn(co) depends only

on Y±(co), we get

(13) Iim7w(co) =

a if H + Jc(co)<p,

(ft if H + Jc(co) = fi

y if H + Jc(co)>p.

Combining Lemma 1 and (13), we have

( Pw+ if H + Jc(a>)>p9
P<° =

(P°>- if

In general, ct(co)= ]£ w(s) depends on *eT\{0}, but from FKG ine-
s;f-»s

quality we have

Proposition 1. For a general CD el,

f P * > + if H + Jct(co)>P for all teT\{Q}s
Pw =

[Pw' if H + Jct(co)<P for all teT\{Q}.

%4. Markov Chains

In this section we construct the third "Markov chain".

Definition 1 (Spitzer [2]). A probability measure P on (I1, ^) is

called a "Markov chain" if there is a 2x2 positive stochastic matrix
Q with its invariant probability measure n (nQ = n) such that for any

connected finite subset V of T and for any e e ZF?

U Q(s(t), e(r')),
t,t'eV
*rr

where f0 is the point such that t0eFand tQ-+t for every tEV\{tQ}.
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We remark that the above definition does not depend on the choice

of the origin because (Q9 n) is reversible.

Let ^ be the set of all "Markov chains"

Theorem (Spitzer [2]). (i) // P is an extremal point of &(H, J)

and invariant under graph isomorphisms (i.e. bijections of T preserving

the relation of neighbouring), then Pe^f.

(ii) There are at most three elements in Jt n ̂ (H, J) for every

Obviously P*0* and P^~ are "Markov chains" from the above theo-

rem (i). As for the third element of ^ n &(H, J), at first we consider

the case when H=Q (then /? = 0) and d is even. In this case, putting co°

to satisfy ct(co°) = Q for all *eT\{0}, we have HmRntt(coQ) = l for all te
n-*oo

T\{0}. Hence from Lemma 1 and (6), we have the existence of P"0

different from Pw+ and P03' when J>ylog[(d + l)/(W-l)]. In general,

we have

Theorem 1. Let a^jSfgy be the possible solutions of (11). Then

we have the following s:

(i) If three sequences {dn}, {an}9 {an} of real numbers satisfy

(14-a) l<^dn^d, dn is an integer,

for every n^l, then lim an = lim an = f$.
n-*oo w-*oo

(ii) Let us take the initial conditions;

d1=min{k; k is an integer and H+(2k—d)J^fl}9

Then a triple of sequences {dn}, {an}, {an} can be defined inductively to

satisfy (14). Moreover, there is a configuration co°eZ such that Yn>s(o}°)

= an_N + 1 or an_,5| + 1 for every seT\{0}, where
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(15) YB>) = ̂ logKBi-(o>).

(Hi) The limiting Gibbs state P"0 exists and Jt n &(H, J) = {Pco+
?

Pw~, Pw°} for all H and J.

Proof, (i) From (14) and the property of /(x), we have Q<an — an

=/(fl.-i)-/(a.-i)^2/((all.1-flJl.1)/2). Since /(*)£* for x^O and the
equality holds if and only if x = 0, we get lim (an — an) = 0, which implies

(ii) The first part is easy to verify. To construct co°, we define

co°, d>°eIaFnt lUO} inductively. Let 5F1>1\{0} = {s1,..., sd}. We define coj

and co? on dVl ^{0} as Z G>?(5V) = 2^1-^, and £ <S?(sv) = 2^-^-2.
l ^v^d v=l

Let TV be a shift operator from TSv to I\ such that ^(5^=16^ for

every l^vrgd. Then we can define cojj and c5° on 5Fn>1\{0} by

i/ ^TSvnSFw,

Now put co°(r) = 0)^(0 for tedVn)l\{Q}9 n^l and extend it to be invariant
under the rotations around the origin. Then it is easy to see that co°

is a required configuration.

(iii) Since Yns(co°) converges as n-*co for every seT\{0}, Lemma 1

implies that Pw° exists. As for the "Markov chain" property, we will

only give here the transition matrix Q and its invariant probability

measure n.

\ g2(/f-/)

+ 1 -1

Now we will prove the equality J! n &(H, J) = {PCO+, P01", Pw°} for all
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H and J. At first, assume that J^ylog [(d+l)/(d--l)]9 then from

Preston's theorem in § 3, &(H9 J) consists of a single point. Hence

PW+=PCO"=P0)0. Thus in this case,

JK n ^(H, J)={P0)+, P°>-9 PCO°}(

Let us fix J>~-log[(d + l)/(d-l)] arbitrarily. If \H\>df(u)-u9

where u is the positive solution of f'(u) = l/d, then from the same reason

as above, Jl n &(H, J) = {P<°\ P<°~9 P
£0°}(={Pf0+}). If \H\<df(u)-u9

then the equation (11) has exactly three solutions a</?<y, so P£0+, P00",

P"0 are distinct. From Spitzer's theorem Jt n &(H3 J) has at most three

elements, hence JK n 9(H, J) = {P(0+, P0*', P"0}. If H=df(u)-u, then
i.e. pca^po>o=pco-i If H=u-df(u), then a^^=y? i.e. P"*

. Anyway, if |H| = d/(ti)-M, {P03^, P40", P£0°} = {P0)+, P0)"} =
the two point set. But we must note that Spitzer has shown in his

paper [2] that the number of elements of J[ n &(H9 J) is equal to the

number of f-solutions in [0, 1] of the equation

with x = e~2J, y = e~2H. When H varies monotonously from — oo to oos

only the value of y in (*) changes and it changes from 0 to oo monoto-

nously. Hence the number of solutions of (*) changes l-»2->3-»2->! as

H increases from — oo to oo. This means that the number of elements

of uTn^(ff , J) is equal to 2 if |J?| = d/(u)-n. Thus we have ^n&(H9

J) = {P«>+,P°>-,P<»0} for all H and J. Q.E.D.

Remark. Spitzer [2] has claimed that a "Markov chain" is an ex-

tremal Gibbs state, but it is not true. In fact T. Kamae [4] has shown

that if lf = 0, then ^ = A @Vc is not trivial with respect to P"0.
Fjf inite

We will briefly quote it here. Put fn(ff)= £ ff(f). Then fn(a) is &Y%>
tedVn

-measurable and ||/.||i.(,. = £»0[/2]^(d + l)d^±fd(2p- !)>]*, </n><<)o

=E«°°(/n)=0, </n,Z0>rao = £-°[/nZ0] = (d+l)d«-1(2p-l)», where p

= fi(+l, +1) = G(-1, -!) = «"[«"+ 1]-1. Hence if d(2p-l)3>l,

(**) </^ll/J3^o,^o>,o^C(d,i>)>0 f o r a l l n ^ l ,
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where C(d, p) is a positive constant depending only on d and p. But

(**) implies that

«-*oo f;&vo-m'ble
\\f\\2, n°Zl

which means that 3$^ is non-trivial with respect to P"0.

§5. Small Order Perturbations

Let us fix k, l^k^d — 1, and a connected subgraph Tc:T such that
(i) f^Vl and (ii) every fef\{0} has exactly fc+1 neighbours in T.

Then it is easy to see that lim#(f n 5Fn)/tt(3Fw) = 0. Define cofcel by
n-*oo

+ 1 if teT,

-1 if

Lemma 28 P«k = w-limP^ exists.
«-*oo

Proof. Note that

1>-)) + H
for every l^ igd+1 and n^2, where /(x) and ^^(co) are defined by
(10) and (15) respectively. Moreover, we have

y.-,.l + !.!("*) if seT\{Q},

_w + 1(or) i/ ser\f.

Combining Lemma 1 and (16), we have only to show that 7Bil(co*)
converges as n->oo.

Let us define a function F?(x) by

Since 7w(or)/'a as n->oo, for any given e>0 there is ne>Q such that

(17) F?a(7n_ltl(cofc))> Yn l(cok)>FS(X(Yn_i i(cokj)-s

for all n^n8. The equation F%(x) = x has at least one and at most
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three solutions. We will only consider here the case when the equation

F¥x(x) = x has three solutions, say 81<82<83. (In other cases, the proof

will be easier.) Choose e>0 so small that the equation F?a(x) — s = x

has also three solutions 5\<5E
2<5\. Note that 5\ /dl9 S^\829 Sl/'S3

as e-»0. We will prove that (i) if ]imYnil(cok)<d2 then lim Yntl(cok) = 8l9

(ii) if HmYnil(cok)>62 then lim Yn>l(a)k) = S3. Assume first that lim 7H.i(cafc)
«-»-oo ' »->oo ' n->oo

<62. Then there exists n>nE such that Yn}1(cok)<82. Using (17) we get

5\^ lim yn>1(<y*) glim Yntl(a)k)^8^ Letting e\0 we obtain (i). Next,
n->oo ' _ n-»oo

we assume lim Yn}l(cok)>82 + 0 for some 0>0. Choosing e>0 so small
n-*oo ' _

that <5f<(52 + 0, we can conclude from (17) that (5|g lim FM ((«*)<; lim Yntl(cok)

^83. This means (ii). W^°° n"*°°Q.E.D.

Theorem 2. // # = 0, k>d/2+l and if the equation

(18) W) = x

has more than one solutions, then

Remark. If J ̂  - then ^(</) ~ (d " fe)/ ~ J°

for all x, we have F°dJ(J)>kf(J)-(d-k)J^J. This implies that (17)

has three solutions.

Proof of Theorem 2. Let a</?<y be the solutions of (11) as before.

Since H = Q we have /? = 0 and a = — 7 . Noting y = df(y)<dJ, we have

F°Oc)>Fi/(x) for all x e ( — oo, oo). Hence the assumption of the theo-

rem implies that the equation F°(x) = x has three solutions <51<<52<^3.

Since d3<y and F°y(x)<kf(x)-(d-k)f(x) = (2k-d)f(x) for Q<x<y, the

equation (2k — d)f(x) = x has three solutions a' </?'</, and 63<y' =

(2k-d)f(yf)<(2k-d)J=Yiil(cok).

On the other hand we have

for all n^2 from (17) and 7B.1(o}-)^ -dJ. From Lemma 2, lim 7M(a>fe)
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exists and is a solution of the equation F®(x) = x. But from (19) and

Y l f l(a>k)>S3 we have ^2<^^limYMjl(co f e)^^35 where d'^d^d'^ are the
n-nx>

solutions of the equation (18). Hence limyn>1(o)fc) = 53>0. From this
n-*oo

and (6), we obtain the conclusion of the theorem. Q.E.D.

§6. Extremal Gibbs States

In this section, we will give several extremal points of &(H9 J)

as the limiting Gibbs states. In order to do so, we need the following

theorem which is stated under a more general framework in [5].

Theorem (Miyamoto [5]). Let Pe&(H,J), then P is an extremal

point of &(H, J) iff

(20) Pco = w-limP^M = P a.s. (P)
n-»oo

Lemma 3. The condition (20) for Pe^(H9 J) is equivalent to

(21) lim£n>) = rs a.s. (P)

for each seT with \s\^N for some N>0, where rs is a constant depend-

ing only on s.

Proof. Assume (20). Then for every pair t, seT with t-+s, we have

limPf?>(5)= +1KO= + l) = P((i(s)= +1KO= + 1) a.s. (P).
n-»oo

On the other hand we have

P9n(a(s) = + 1 KO = + 1) = e2JRniS(co)/(e2JRntS(co) + 1) .

Hence we get (21) for all seT\{0}. Conversely assuming (21) we get

(20) from (7), (8) and (3). Q.E.D.

Corollary, // PE&(H, J), then the limit rs(co) = ]imRnfS(a}) exists
n-*o>

almost surely with respect to P for every seT\{0}.

Theorem 3, Under the assumptions of Theorem 2, Pa)k is an ex-

tremal point of ^(0, J).
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Proof. 1°) For any seT\T and t with t-^s, we have P(°k(A\a(t)

= &) = P<°-(A\(?(i) = e) for all Ae&Ts, where e= + l or -1. Hence we

get

= - l)P»'(lim #„» = e2«|<7(0 = - 1)
n-»oo

= 1.

2°) Defining G(x) by G(x)=(l + e2Jx)/(e2'; + x), we have from (7)

and 1°),

(22) rXo))

almost surely with respect to Pa)k, for all «ef\{0}. (Note that ru((o)

<^ru(oj+} = e2'1 for all coel, we T\{0}.) Hence we have

(23) yt(a>) = lim yn» =

almost surely with respect to Pojk, and

(24) yt(oS)^(2k-d)m=F»(y} a.s.

for every *e?\{0}. Using (23) and (24) we get

^a))^fc/(/^(y))-(d-fc)/(y) = F?(P?(y)) a. 5.

and inductively,

for every £6jT\{0} and n^.1. This implies

(25) ylW£d3 a.s.
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for every f^T\{0} because <53<y, where e>3 is the largest solution of

F?(X) = JC.
3°) Define At = {coEl', yt(ai)<52} for fef\{0}. If t,t'ef are such

that t-+t', (23) and (24) imply At.aAt. Hence ^c^l. if i-*teT. Since

= + 1 1 r\ @vc
n) (o) = lim P?n (0(0) = + 1)

"

d+1 d+1

we have

which means P°lr(^l) = 0 and so Prok(>4t) = 0, i.e. lim l?Bft(a>) = e2**
n->oo

a.s. (Pwk) for all teT. Combining this with 1°), Lemma 3 proves

the theorem. Q. E. D.

Let us fix any rc^l and write the points of 8Vn by ul9 u2,...9 um(n)

where m(ri) = (l + d)dn. Then we have

Theorem 4. Assume that for some n^l , PW1
? P

602,..., P«»«(») are

extremal points of &(H9 J). If we define a new boundary condition

co by

S(0 = co/0 if teTUj l^j^m(n)

fhew P& is a/so an extremal point of &(H, J).

Proof. Using the analogous argument as in the proof of the preceed-

ing theorem, we obtain that if Uj-+t then rt(a)) = rt(cOj) a.s. (P&). Hence

from Lemma 3, we get the conclusion. Q.E.D.
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