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Introduction

The main objective of the present paper is to clarify a close rela-

tionship between Gentzen-type sequential formulation of formal systems

(especially of modal calculi) and Kripke-type semantics. Though the

investigations by Schiitte [31], Maehara [20], Fitting [3], Prawitz [27],

etc. have suggested this relationship either explicitly or implicitly, the

usefulness of Gentzen systems for the semantical studies of modal calculi

seems to be less recognized than it deserves. In this paper, we wish

to establish its usefulness in a decisive way. We now proceed to explain

the background motivation for our study.

When an interpretation, or semantics, of a formal system is given,

we are always interested in the question: "Is it complete?" Indeed,

the completeness of the semantics is essential so that it is really useful

for the study of the formal system in question. The naturalness of

the semantics is fundamental as well. For instance, in the case of modal

calculi, we know such semantics as algebraic, topological and Kripke-

type. (See Cresswell [2], Lemmon [18], Rasiowa [28], Rasiowa-Sikorski

[29], Segerberg [34] etc.) Among these, Kripke-type semantics introduced

by Kripke [15, 16] has proved to be most successful.

On the other hand, the method of formulating a formal system

is not unique. Formulations such as Hilbert-type, natural deduction,

Gentzen's sequent system and Smullyan's analytic tableau are well-known.

And each formulation has its own merits for both syntactical and se-

mantical study of formal systems. (See, e.g., Kreisel [13, 14], Prawitz

[25, 26], Zucker [39], Takeuti [38] and Smullyan [35].) In this paper,

however, we take the standpoint of regarding that Gentzen-type sequential

formulation is best fitted for the Kripke-type semantical study of formal

systems. We have slightly modified the notion of a sequent in order

to establish the natural correspondence between Gentzen systems and

Kripke models. I.e., we define a sequent as a pair of two (possibly
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infinite) sets of well formed formulas.

Though our method is general enough to admit applications to, for

example, intermediate logics and other modal calculi, we will, in this

paper, only concentrate on three modal systems KT3, KT4 and KT5

of knowledge as introduced by McCarthy [21, 22]. However, since

these systems are generalizations of bi-modal logics S4-T, S4-S4 and

S5-S5, which in turn are generalizations of T, S4 and S5, our results

apply directly to these modal calculi. In fact, we have so designed the

languages that our argument will always be relative to a particular

choice of the language, and that by a suitable choice of the language

we will be able to obtain the specific result for any one of these logics.

We leave applications of our method to other logics to the interested
reader.

There are many known proof-techniques of completeness results. See,

e.g., Godel [6], Henkin [10], Takahashi [37], Fitting [3], Smullyan

[35], Kripke [15, 16], Lemmon-Scott [18], Segerberg [34], Schutte [31]

and Maehara [20]. In the present paper, we prove the completeness

theorem in two different ways. The first one is the so-called Henkin-

style proof. However, our proof is new in that it is relative to a set Q

of wffs which is closed under subformulas, so that we can at the same

time prove compactness by letting Q to be the whole set of wffs and
decidability by letting Q to be the set of subformulas of a certain formu-

la. Our second proof is based on cut-free formulations of the systems.

Especially, a cut-free system for S5 is obtained by a close inspection of

the first proof. The cut-elimination theorem of these systems yields our

second proof of the decidability of KT3, KT4 and S5. For KT3 and
KT4, it also gives a proof of the disjunction property of these logics.

As we mentioned above, in our first proof of the completeness theo-

rem, we construct a model U(Q\ called the universal model over Q,

for any Q which is closed under subformulas. By means of this funda-

mental model, we will define a category JT(Q) of Kripke-type models

over Q. In this category, U(Q) will be characterized as "the" terminal
object of the category. The classification problem of models will also

be conveniently treated in this category. For the modal logic S5, we

can obtain a complete classification of models. This result easily shows

the normal form theorem for S5, and the structure of Lindenbaum
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algebra of S5 will also be determined.

We now briefly sketch the content of each chapter.

In Chapter 1, we first define the languages upon which our formal

systems will be built. The main reason for introducing many languages

rather than a single language is that we can explain the difference be-

tween certain logics (such as S4 and S4-T) as the mere difference of

languages. We then define Hilbert-type axiomatizations of the three

modal systems KT3, KT4 and KT5. Corresponding to these, three

equivalent Gentzen-type sequential systems GTS, GT4 and GTS will be

defined. Though our notion of a sequent admits an infinite set of wffs

both in the antecedent and in the succedent, a theorem to the effect

that this generalization is superficial will be proved. Nevertheless, the

importance of the generalization will be fully exhibited in the subsequent
chapters.

In Chapter 2, we introduce a topology, which is homeomorphic to

Scott's Pco topology, on 2Wff, where Wff is the set of wffs. Several

syntactic notions concerning deducibility will be expressed in topological
terminology.

In Chapters, we define the Kripke-type semantics for KTi (i = 39

4, 5). Two completeness proofs will be given there. Compactness,

decidability and cut-elimination theorem will be proved as by-products.

The first completeness proof furnishes us with a basis for subsequent

studies, while the importance of the second proof lies in giving cut-free
systems as by-products.

Chapter 4 is devoted to the category theory of Kripke models. In

contrast to the notion of p-morphism due to Segerberg [34], which is

defined by referring to the relational structure of models, our notion of

homomorphism is defined without any explicit reference to the relational

structure of models. Roughly speaking, we define an (Q-) homomorphism

as a mapping which preserves the semantics in U(Q) of a model. Thus

for each Q, we obtain a distinct category Jf(Q). In case Q is equal to
Wff, our notion of homomorphism contains the notion of p-morphism.

In Chapter 5, we study the modal calculus S5 as an application of

the results obtained in Chapter 4. A complete classification of S5 models

under a certain equivalence relation on models will be given. Our

method gives another proof of normal form theorems by Itoh [12] and



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 385

the result of Bass [1] which determines the Lindenbaum algebra of S5

with finite generators.
The final chapter, Chapter 6, is devoted to the study of two well-

known puzzles, the puzzle of wise men and the puzzle of unfaithful wives.

It was McCarthy [21] who first attacked these puzzles in a formal man-

ner. The second puzzle, however, remained almost untouched. The

difficulties which arise in the formal presentation of the puzzle are two-

fold. Firstly, the puzzle involves the self-referential statements. Secondly,

the totality of one's knowledge is difficult to characterize. We will present

a solution which we think successfully gets over these difficulties. The

notion of knowledge set and knowledge base to be defined in this chapter

will play an important role in characterizing the totality of one's knowl-

edge. A model-theoretic solution of the puzzle of wise men will also be

given there.

Chapter 1

The Formal Systems

1.1. Basic Language

The basic language L is a triple (Pr, Sp, N+), where

are denumerable sequences of distinct symbols. N+ is the set of numer-

als denoting the corresponding positive integers. But, for simplicity, we

will identify n with the integer n. S0eSp will also be denoted by O

and will be called "FOOL."

1.2. Languages

A language L is a triple (Pr, Sp, T) where
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Sp^Sp;

T <=N+.

Elements in Pr, Sp and T denote propositional variables, persons and

time, respectively. Our arguments henceforth will, unless stated other-

wise, always be relative to a language L. So the reader may choose any

language he likes and read the following by fixing his favorite language.

For example, if he is only interested in the classical propositional cal-

culus, he should take L = (Pr, 0, 0). When an explicit mention of

the language L to be considered is necessary, we will express it by

explicitly writing L somewhere as a suffix etc.

1.3. Well Formed Formulas

The set of well formed formulas is defined to be the least set Wff

such that:

(Wl) ±e Wff;
(W2) PrcWff;

(W3) a, 0 E Wff implies ID a£ 6 Wff;

(W4) S e Sp, t E T, a e Wff implies Sta e Wff.

The symbols 1 and ID denote "false" and "implication", respectively.

We will make use of the following abbreviations:

a =>/?=:=> a/? read "a implies /?"

—ia = a:Dj_ read "not a"

T = ~"i-L read "true"
av£=-ia=>£ read "a or j8"

aAjg=-i(a=D-ijS) read "a and j3"

read "S knows a at time t"

a read "a is possible for S at time t"

{Sf}a=[Sf]av[Sf]-ia read "S knows whether a at time t"

Remark. If L is the simplest language (0,0,0), the conditions

(W2) and (W4) in the definition of Wff become vacuous, so that we have

Wff={l, J-iD-L, 13(1 =>!),(!ID!)=>!,...}. We will not repeat this
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sort of remarks in the sequel. However, the reader should always be

alert and notice that the definitions or proofs may become simpler for

a particular choice of L. We also remark that the cardinality of Wff

is CD irrespective of L.

For any aeWff, we define Sub (a) e Wff inductively as follows:

(51) ocePrU{l}=>Sub(a) = {a};

(52) a = j8=Dy=>Sub(a) = {a} U Sub(j8) U Sub(y);

(53) a = [Sf] $ => Sub (a) = {a} U Sub (jS) .

We say /? is a subformula of a if /?eSub(a).

1.4. Hilbert-type Systems

We now define three modal systems KT3, KT4 and KT5 of knowl-

edge due to McCarthy [22]. We begin with the definition of KT3.

The axiom schemata for KT3 are:

(Al)

(A2)

(A3)

(A4)

(A5)

(A6) [St](a=3j8)iD([SM]ai3[Sw]^)J where

In (A1)-(A6), a, j3, y denote arbitrary wffs, S denotes arbitrary ele-

ment in Sp, and t, u denote arbitrary elements in T.

The notion of a proof in KT3 is defined by:

Definition 1.1. Let aeWif. A finite sequence of wffs alv.., an

(n>l) is a proof of a in KT3 if an = a and for each i one of the follow-

ing three conditions holds:

( i ) af is an instance of (A1)-(A6)

(ii) there exist j, k<i such that afc = 07=30^ (In this case, we say o^ is

obtained from a,- and a,-^^ by modus ponens.)

1) < denotes the usual ordering of natural numbers.
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(iii) there exists j<i such that o^—^St]^ for some SeSp and teT

(In this case, we say [S(]a/ is obtained from a,- by ([S*]-) necessita-

tion.)

We write h-a if there exists a proof of a. When we wish to empha-

size that it is a proof in KT3, we write h-a (in KT3). Furthermore, for

any rsWff we write Th-a if H^G^O--^^^)-")) for some pl9...,

pmer.
It is easy to show the following

Lemma 1.2. Let KT3* be the logical system obtained from KT3

by replacing (A6) by the following two axiom schemata :

(*) [S^]a=>[5w]a, where t<u

(**) [Sf]a A [Sf] (a => 0)

Tfeen KT3 an^ KT3* are equivalent. I.e., for any aeWff,

h-a (in KT3) ij" h-a (in KT3*),

t/ie notion of a proof in KT3* is defined similarly as in Defini-

tion 1.1.

Now, KT4 is defined to be the system obtained from KT3 by adding

the following

(A7) [SOa=[Sf][Sf]a

This axiom will be referred to as the positive introspective axiom,

KT5 is obtained by adjoining the following

(A8)

This axiom will be called the negative introspective axiom.

Remarks.

(1) Axioms (A1)-(A3) give an axiomatization of classical prepositional

calculus. (See, e.g., Lyndon [19].) Axioms (A4)-(A6) may be intuitively

understood as follows.

(A4): What is known is true.
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(A5): What FOOL knows at time t, FOOL knows at time t that

everyone knows it at time t.

(A6): The meaning of (A6) is better explained in terms of (*) and

(**) in Lemma 1.2.

(*): What is known remains to be known.

(**): Everybody can do modus ponens.

(2) If Sp contains 0, the condition (iii) of Definition 1.1 may be re-

stricted to: Infer [0f]a from a.

(3) The relation of the systems KTi to the other modal systems may be

illustrated as below. We do not include Hintikka's knowledge system

[11] in the following figure. However, we note that it is a special case

of K4 with the language so restricted as not to contain O in Sp. For

any set S, \S\ will denote its cardinality.

KT5

S5-S5

KT4

S4-S4

KT3

S4-T

\Sp\~2

ISp!=l Sp3O

Sp = 0 \T\ = l \T\ = l

\T\=l

Fig. 1.1. Relation of KTi to other modal logics

In the above diagram, K3, K4 and K5 are the systems in McCarthy

[21], Sato [30], and PC denotes the classical prepositional calculus.

The restrictions imposed on the language to obtain a desired logical sys-

tem is shown below the name of the system. Furthermore, an arrow
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A-*B indicates that A is a subsystem of B. For example, the modal

system S4 is obtained from KT4 by restricting Sp and T to be singleton

sets. The systems on the same vertical line are arranged according to
their deductive power. Thus, for example, anything provable in S4
is provable in S5.

(4) Hayashi [8] has pointed out that KT3 + (A8) is already equivalent to
KT5 ( = KT3 + (A7) + (A8)).

1.5. Gentzen-type Systems

We now define Gentzen-type systems GTz (i = 3, 4, 5)2) which are

equivalent to KTj. By a sequent we will mean an element in the set
2Wffx2Wff. Namely, it is a pair of (possibly infinite) sets of wffs.
Note that our notion of a sequent differs from the original one due to
Gentzen [4] at least in the following points. Gentzen defines a sequent

as a finite figure of the form al5..., am-*f!l9...9 fin while we define a se-
quent more abstractly and admits infinite sets of wffs.

In order to match with Gentzen's notation, we will denote a sequent
by F-*A rather than by (F, A), where F, JeWff. Like this, subsets of

Wff will be denoted by Greek capitals. Furthermore, we will employ the
abbreviations such as:

a,F,j3-»={a}UFu{£}->0.

Thus, for example, a, /?-»?, <5, y, /?, a-»<5, 5, y and a, a, /?, /?-»y, 8 denote
the same sequent ({a, /?}, {y, <5}).

We will also use the following notation:

(1) F0-+A0^F->A iff F0^F and A0^A. (In this case, we say

FQ-+AQ is a restriction of F-*A, or F-*A is an extension of

(2) r0 CT iff r0£F and T0 is finite.

(3) ro-> A0 € F-+A iff r0 € F and ^0 €

2) Our definitions of GTz are motivated by Ohnishi-Matsumoto [24].
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Now, we give the definition of GTS.

Axioms: a -> a

Rules: T-*A
(extension)

n, r-» j, i

F-*A, a a, II-+Z

r, n-+ A,

*A, a £,1

(cut)

, where

In the above, the rules ([St]-*) and (-»w, [Sr])3 are rule schemata,

where S is an arbitrary element in Sp and t, u are arbitrary elements in

T. One may apply the rule (->w, [St])3 only when u<t. Also in the

above for any r^Wff,SeSp and teT, [Sf]r denotes the set {[Sr]a|

aeF}. The notion of a pr00/ in GTS is defined similarly as in Gentzen's

LK [4]. Note, however, that we allow the sequent J_-* as a beginning

sequent. We write \~r~*A (in GTS) if it is provable in GTS.

The following inference rules are easily seen to be admissible in GTS:

(thinning^)
a, F-+A

(-^thinning)
r-*A9 a
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a, a, F-+A
(contraction ->)

(-^contraction)

(interchange-*)

1, «, P, 2
(-^interchange)

T-»J, a
(-1-*)

-i a,

a,

For example, the following proof figure shows that (v ->) is admissible

in GTS:

a, F-»^
(extension)

a, r-*4, 1 (->=>)
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This means that, in spite of the difference in the definition of a sequent,

every proof figure in (propositional) LK may itself be considered as one

in GT3.

Now, GT4 is obtained from GT3 by replacing the rule (->

by the following:

, where u<t
\_Su\r, [On] II ->[,»] a

GTS is obtained from GT4 by changing the rule (-*w, [Sf])4 to:

[Ou']II-+J[Ou]Z9 [Su]A, a

[OM]r, \_SU~\A, \_st\ a

where, u < £

1.6. Some Metatheorems

Let us call a sequent F-+A finite if both F and A are finite. Then

the following lemma is easily obtained.

Lemma O. // a finite sequent F-+A is provable (in GTi) then

each sequent occurring in any proof of F-+A is finite.

Theorem 1.4. If t-F-+A (in KTi) then there exist some F0(&F

and A0(&A such that KT0-»2l0 (in KTi).

Proof. By induction on the number n of sequents occurring in the

proof of F-*A.

(n = l): Since F-+A is a beginning sequent, F-+A itself is finite.

(n>l): We consider the case that the last (i.e., downmost) inference is

(=>->). The proof then is of the form:

, a
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By induction hypothesis, we have finite U0, r0» ^o» ^o such

(extension) and

(extension)

Then we construct the following proof figure.

II -»r, a

We see that a ID/?, U0, (t>0 — f}-»Z0 — (x9 *P0 serves as the desired sequent.

Other cases may be dealt with similarly.

Theorem 1.5. For any aeWff, h-a (in KTi) if and only if I—»a

(HI GTO-

Proof. We only prove the case x = 5.

Proof of only if part: Left to the reader.

Proof of if part: We prove that if a finite sequent F-*A is provable in

GTS then j Aai A •" Aam:=:)^i v ••• v^nv 1 is provable in KT5, where

aj,..., am (/?!,..., jSn) is any enumeration of T(^, resp.) with possible repe-

titions. First note that (j AO^ A ••• ̂ ^m^Pi v ••• v/?nv JL)=D(T Aai A°" A

aj,=>j8iv- vjS'€vl) is provable in KT5 if {alf..., aw} = {ai,..., a'p} and

{jSi,..., jSM} = {j8i9..., j8'€}. The proof is carried out by induction on the

construction of the proof. We only deal with the rules ([Sf]-0

and (-»M, [Sf])5. Suppose [Sf]<x, alv.., am->jSl5..., j8M is obtained from

a, a l9..,, am-*j81?..,, jSn by an application of ([Sf]->). Then by induc-

tion hypothesis, h-(j A a A ai A • • • A O^ (j^i v • • • v /?„ v J_) (in KT5). Since
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, we have |-(T A [SOaAoq A ••• Aam):z>(T A a A a t A ••• Aam).

Hence, h-(T A [St]a A at A • • • A am) => (/?! v • • • v f$n v J_). Next, suppose

[S0«i,.-., [S0ocm, [007i,..., [00y,->[005i,..., [00*,, [S00i,»., [SO/».,[Sn]a

is obtained from [S0alf...f [Sr]ocm9 [OOVi,-, [OOy^[OO«i,..-, [00«f,

[SOPi,-.., [SOj5B, a by an application of (-»w, [Sr])5. By induction

hypothesis,

(1) HT A Wl*! A ••' A [SOo,, A [OOVi A - A

([00«i v - v [00«, v [SOj&i v ... v [SOP. v 1)

Noting that

and

h-[SO^i A ". A [SOofc^SOfri A •" Acrfe)

we have from (1), by necessitation and above,

h-T A [SO [S0«i A — A [SO [S0am A [SO [00? i A ." A

[so [00y, A [so-i[oo«i A ... A [so-i[oo«f A

[so-n[so/»i A .- A

Since

and

we have

h-T A [S0at A ... A [S0«w A [OOVi A ... A



396 MASAHIKO SATO

\0f\di v ... v [Of]Sq v [SilPi v ... v [Si]pm v [Sf]a v 1,

which was to be proved.

Corollary 1.6. Let FcWff am/ aeWff. Then Th-a (HI KTi)

// and only if h-F->a (w GTf).

Proof. Only if part: By definition, F\-a implies the existence of

some p±,...,pner such that [-^^(^^•..(jS^a).-.). Hence h-j81?...,^

-»a. By (extension) we have |-F-»a.

If part: By Lemma 1.4, there exist some ^15...,^M such that h-/?!,.--., /?n

-»oe. Hence I — > p ̂  (ft 2i3~ •(/]„=> a)--). By Theorem 1.5, H?i=>(jff2 '"
z> (/?„=> a)--). This means F|-a.

For any TcWff, we let -ir = {-ia|aeF}. The following lemma is

easy to ascertain.

Lemma 1.7e

h-r -> j (w GTO

!# h--^^l, IF (in GTi)

iff h--i^, T-> (j/i GTi).

Chapter 2

Topology on 2Wff

Scott [33] has introduced Pco as a model for type-free lamda cal-

culus. It is also designed as a universal domain of computation. In

this chapter we introduce a topology on 2wff which is homeomorphic

to Pco topology. We then show that several syntactical properties of

our logical systems may be conveniently expressed in terms of topological

languages. The result in this chapter tells us the naturalness of consider-

ing infinite sequents. This chapter is independent of the remaining

chapters.
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2.1. Definition of Topology

We now define a topology on 2Wff. For any finite F^Wff, we

put Ur = {A<=2mf\r^A}. {Ur\r: finite} forms a basis of open sets.

I.e., X^2mf is, by definition, open if and only if it may be written as

a union of some I7r's. Since Wff is a denumerable set it is clear that

under this topology 2Wff is homeomorphic to Scott's Pa>. Following

Scott, we write f for Wff and J_ for the empty set 0, since these are

top and bottom elements of the Boolean lattice 2Wff (under the inclu-

sionship (c) ordering). We define several functions on 2Wff as follows.

(1) not:2wff - »2W f f

is defined by:

not(F)=-iF.

(2) inconsistent,3) : 2Wff - > 2wff

is defined by:

T (if ri-l (in KTi))
isinconsistentj(F) =

J_ (otherwise) ,

where i = 3, 4, 5.

(3) istheorem^ : 2Wf f - » 2Wf f

is defined by:

(if h-#i v ••• voc,, (in KTi) for some {al5...,

1 (otherwise)

(4) DQ : 2Wff - > 2wff (deductive closure)

is defined by:

(r) = r={a|n-a (in KTi)}.

3) We will abbreviate this to isincons,.
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(5) isprovable,: 2Wff x 2wff » 2Wff

is defined by:

T (if GTi h-r -> A)
isprovable^r -> A)= ^

_L (otherwise)

(6) Ieft:2wffx2wff - > 2Wff

is defined by:

(7) right : 2wf f x 2Wf f - > 2Wf f

is defined by:

2,2. Topological Characterization of Syntactical Properties

2wff, with the above topology, is a continuous lattice in the sense

of Scott [32], and so is 2Wffx2wff with product topology. Then the

functions defined in 2.1 are all continuous functions. More precisely,

we have the following:

Theorem 2.1. The following diagrams are commutative in the

category of continuous lattices with continuous maps.

2Wff

2Wff
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2Wff

2Wff

Proof. Commutativity follows from results in 1.6. Continuity is

also immediate. For example,

isprovablef(r -> A) = W{isprovablef(F0 -> A)\r0 € F}

F -> AQ)\A0 € A}

by Lemma 1.4. Then by definition in Scott [33], we see isprovablef

is continuous.

The following result is also straightforward. For the definition of

retracts and the least fixed point operator Y9 we refer to Scott [33].

Theorem 2.2.
(1) istheorenij, isinconsistent^, and DQ are retracts.

(2) 7(DQ) is equal to the set of theorems in KTL

Remark. Theorem 1.4 is equivalent to the continuity of isprovable^.
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Chapter 3

Kripke-type Semantics

3.1. Definition of Kripke-type Models

Let W be any nonvoid set (of possible worlds). A model M on W

is a triple

<W; r,v>9

where

r: SpxT > 2W*W

and

t;:PrU{l} > 2W.

Given any model M, we define a relation k=^Wx. Wff as follows:

(El) If aePr U {1} then w f = a iff weu(a)

(E2) If a = j3:i>y then \v|=a iff not w|=/? or w|=y

(E3) If a = [Sf]j8 then w|=a iff for all w'e W such that (w, w')er(S?

0, w 'Na

We will write "w|=a (in M)" if we wish to make M explicit. An

informal meaning of (E3) is that [Sr]a is true in w if and only if a

is true in any world accessible to S at time t from w. A formula a

is said to be valid in M, denoted by M|=a9 if w|=a for all weM. (By

w e M, we of course mean w e FF.) We will write w -5L> w' instead of

(w, w;) e r(S, 0 when r is understood. Furthermore, we will employ

the following notations:

w\=T (read "w realizes r") iff w ha for all aeF

w =| a iff not w |= a

iff w=|a for all aeF

-» J (read "w realizes r-> J") iff w|=T and

-^ J iff not
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M\=T-+A iff w^F-^A for all weM

A model M is a KT3~model if

(Ml) r(l) = 0

(M2) r(0, t)^r(S9 t) for any SeSp and teT

(M3) r(S, w)^r(S, t) for any SeSp and u,teT such that w<f

(M4) r(S, 0 is a reflexive relation for any SeSp and * e T

(M5) r(0, 0 is a transitive relation for any t E T

A model M is a KT4-model if it satisfies (M1)-(M3) and

(M6) r(S, f) is a reflexive and transitive relation for any SeSp and

teT

A model M is a KT5-model if it satisfies (M1)-(M3) and

(M7) r(S, t) is an equivalence relation for any SeSp and t e T

3.2. Soundness of KTI-models

We now wish to show that each formula provable in KTi is valid

in any KTi-model. First we prepare some terminology. We say T-*A

is i-provable (i-consistent, resp.) if it is provable (unprovable, resp.) in

GT?. We say F-*A is i-realizable if there exists some KTi-model M

and weM such that w=\F-+A. F-^A is said to be i-valid if it is not

i-realizable.

Theorem 3.1 (Soundness Theorem). Any i-provable sequent is

i-valid.

Proof. The proof is by induction on the construction of a proof

of the given sequent. That any beginning sequent is i-valid is immediate

from the definition. As for the inference rules, we only treat (->w,

[Sr])5 of GTS, since other cases are either similar or easier. So, con-

sider :

[0s/]I5 \_Su~\A, a
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where u < t.

By induction hypothesis, the upper sequent is 5-valid. Suppose, for the

sake of contradiction, that the lower sequent is not 5-valid. Then there

exist some KT5-model M and weM such that

9 [Su]A,

This implies w =| [Sf]a. Hence, for some w' such that w ~^-> w',

(1) w'Hoc

holds. Since u<t, we have

(2) w -*L> w'

by (M3). Then, we have

(3) w -£H+ w'

by (M2). Let j3 e T and take any w" such that w' -^ w". Since r(S, u)

is transitive by (M7), we have w -̂ -» w'7. Since w |= [Sw]j8, we have

w"t=:^. This means w'\=[Su]fi by (E3). Hence

(4) w'KSiOr.

Next, take any jS in /d. Then, since wH[5M]j5 there exists some w'"

such that

(5) w -^ w'",

Since r(S9 u) is an equivalence relation we have w' -^> ww from (2) and

(5). Hence, w'=j[Sw]j8 by (E3), so that

(6)

From (3) we obtain, similarly as above,

(7)

(8)

(1), (4), (6), (7) and (8) means
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w'=|[Sw]r, [Qu]II -> [Ow]I, [Sw]J, a.

This is a contradiction.

Corollary 3.2. // h-a (in KTf) //ten M|=a /or any KTi-model M.

Corollary 3.3 (Consistency of KTi and GTi). The empty sequent -»

is not provable in GTi.

3.3. Completeness of KTi-models

We begin by a syntactical result, which is a kind of Lindenbaum's

Lemma.

Lemma 3.4. Let be that W-*4 (in GTi) and Q^FuA. Then

there exist F, A such that

(i) W -* J (in GTi)
(ii) r-»A=>F-+A
(Hi) F ( J A = $

Proof. Let a: IY+-»<P be a surjection. We write at for a(i). We

define rn-*An (n>0) as follows:

[ an+1> Fn -> An (otherwise)

We show by induction that ^Fn-*An (n>Q). The case n = 0 is verified

by the assumption of the lemma. Consider the case n = m + l, and sup-

pose \-rm+1-*Am+1. Then, by the definition of rm+1->Jm+1, we have

KTm-»Jm, am+1 and Hxm+1, Fm^Am. From these we obtain \-Fm-+Am

by (cut), which contradicts the induction hypothesis.

Now we put F-*A= \j Fn-> \j An. Then we have F-+A^F-+A

and FuA = <l>. What remains to be shown is that F-+A is i-consistent.

Suppose the contrary. Then by Lemma 1.4, we have F'-»Af (£F-»J

such that \-F'->Af. Now, let JV = max{n(^)|j8er/ U A'}, where n(f$)
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= min{i|j8 = aj. Then we have Ff [j A'^FN(jAN. We prove

Suppose a feF' and ai^FN. Then we have a feF and (x.ieAN^A. But

FnA=0. This proves F'^FN. Similarly, A'^AN. Since h-F'-»/d',

we have t-FN-+AN, which is a contradiction.

A set Q of wffs is said to be closed under subformulas if JLeO
and Sub(a)<=Q for all aeO. Now take any such Q and fix it. We

say a sequent F-+A is O, i-complete if F-+A is i-consistent and F()A=Q.

We denote by Ct(Q) the set of all Q, i-complete sequents. I.e.,

Ci(Q) = {F->A\r\jA=Q, F-+A is i-consistent} .

We observe that FnA = 0 since F-+A is i-consistent. For any F^Wff,

SeSp and JeT, we put rSt = {a\[Si]aeF}. We now define the universal

model U(Q) = <U; R, V> over Q as follows. (Since our definition will

depend on the logical system KTi, we will call U(Q) the Q, i-universal

model when necessary, and will denote it as Ut(Q).)

(1) l/ =

(2) F(a) = {F -> A e I7|a e T}, where a e Pr U {1}

(3) Let w = F-»Jel7, w'=F' -»^'e 17.

(i = 3): (w, w')e^(S, 0 iff FSu^rf and r0acr^tt for any u<t.

(i = 4): (w, w')e^(S, 0 iff FSu^F'Su and rOMcr^M for any u<t.

(i = 5): (w, w')eR(S, t) iff r5u=riM and F0u=Ff
0u for any w<^.

Lemma 3.5. Ut(Q) is a KJi-model.

Proof. First, since _ L e f i and *K->JL (Corollary 3.3), Lemma 3.4

assures us that l/ = Q(O)^0.

0 = 3):
(Ml) Suppose w = r-»JeF(J_). Then leT. Since h-J_-», we have

h-r->2d, which is a contradiction. Hence F(J_) = 0.

(M2), (M3) are immediate from the definition of JR.

(M4) Let w = F-»Jel7. Suppose u<t and take any aeFSM. Since

[Sw]aer and O is closed under subformulas, we have asFlM. Suppose

aeJ. Then, since h-[SM]a->a, we have \-F-+A, which is a contradic-

tion. Hence aeF. This proves FSM^F. Since F0u^F0u, we see
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is reflexive.
(M5) Let (JT->J, r-+A'\ (F'-»J', r"-*A")eR(O, f). Suppose u<t. Then

since r0u^r0u^r'ou9 we have F0u<^r"0u. We can prove r"0u^r" as in

the proof of (M4), whence r0u^r". Thus we see R(09 f) is transitive.

The cases (1 = 4) and (1 = 5) are now easily seen.

The following theorem will play a key role in the subsequent studies.

Theorem 3.6 (Fundamental Theorem of Universal Model). For

any aeO and w = F-*A e U(Q), wt=a (in U(Q)) if aeF and w=)a (in

17(0)) i /aeJ.

Proof. By induction on the construction of formulas.

(1) aePr U {J-}: Immediate from the definition of R.

(2) a = /?iDy: Suppose aeF. We must show that w=|jS or why.

Suppose, by way of contradiction, that wNjS and w=(y. Then, by induc-

tion hypothesis, we have fieF and ye A. Since I— j8, /?=>y-*y (in GTz),

we have h- F->J (in GTi), a contradiction. Suppose now aeJ. We

can prove wt=f$ and wHy, similarly.
(3) oc = [Sr]j3: Suppose aeF and take any w' = F'-»,4' such that w -$*-*

wr. We show jSeF'. First, we consider the case i = 3. Since [$ErSt^rf

we have jSeF'. Next, we treat the case i = 4, 5. We have rst^rr
st^r

(see the proof of (M4) in Lemma 3.5). Hence /?eF'. Thus we see

Now suppose

0 = 3): The sequent {[Su]yer\u£t}9 {[Ou]yer\u£t}-+[Si]p is 3-

consistent, since it is a restriction of F-*A. By (->w, [^0)3, we see

{y|[Sw]yeF, w<0, {[Ow]yeF]w<0->j5 is also 3-consistent. Since Q is

closed under subformulas, we can extend this sequent to an Q9 3-com-

plete sequent w' = F'-»/d', by Lemma 3.4. Then for any u<t, we have

FSMcr and r0u^r0u. Therefore, we have w' -̂ -» w'. Since jSe^', by

induction hypothesis, we have w'=\f}. Hence

(i = 4): Similar to the case (i = 3).

(i = 5): Since {[Sw]y eF|w<r}5 {[Ow]y e
{[Sw]ye J|M<0, [Sf]j8 is 5-consistent as a restriction of F-»J, we see

y 6 J|w<f}, {[Sw]y 6 J|ii^t}, ft is
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also 5-consistent. Take an Q, 5-complete extension wr = Ff-+Ar of this

sequent. Clearly, for any u<t, we have rSucrr
Stt, ASu^A'Su9 r0u^r0u

and A0u^A'0u. We have rSu=rSu because rSu^rSu = QSu-A'SucQSu-

ASu = rSu. Similarly, we have r0u=Ff
0u. By virtue of the definition of

R, we have w -^Uw'. Since fieA', we have by induction hypothesis

w'^/?, which proves w==|[S(]/?=a.

From this theorem we at once have the following results.

Theorem 3.7 (Generalized Completeness Theorem). Any i-consistent

sequent is i-realizable.

Proof. Let an i-consistent sequent F-»</l be given. We put Q

= {1} U U{Sub(a)|a e F U A}. We construct the Q, i-universal model

Ut(Q). Then by Lemma 3.4 and Theorem 3.6, there exists w e 17 such

that w=\F-+A.

Corollary 3.8. (Compactness Theorem). Let FsWff. Then, r is

i-realizable if and only if any F0€F is i-realizable.

Theorem 3.9. (Completeness and Decidability Theorem). For any

aeWff, a is a theorem of KTi if and only if a is valid in all KTi-

models whose cardinality <2n, where n is the cardinality of the finite

set Sub(a)U{l}.

Proof. Let O = Sub(a) U {i.}. Then the result easily follows from
Lemma 3.4 and Theorem 3.6.

Remark. Our definition of universal models differs from that of

canonical models due to Lemmon-Scott [18], in the following points.

Firstly, we define models relative to O, while canonical models are de-

fined only for O = Wff. So that we need not use filtration method due

to Segerberg [34] to secure decidability of the systems. Secondly, rela-

tional structures are defined differently. The naturalness of universal

models will become clear in the next chapter.
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3.4. Cot-free System for S5

In this and next §§, we give our second proof of completeness. It

is based on cut-free formulations of the systems, and in this section we

first formulate a cut-free system GS5 which is equivalent to GTS with

the language restricted to \Sp\ = \T\ = i. Hence GS5 is a cut-free system

for the modal calculus S5. In GS5, a sequent is defined to be an ele-

ment of the set 2wff x 2wff x 2wff x 2wff. Thus a sequent is of the

form (r, 17, I, A). However we denote this as F; I7-»£; A. Further we

will denote F; -»; A ( = (T, 0, 0, AJ) simply as F-+A. A sequent of this

form will be called proper. Other sequents will be called improper.

The idea of considering this kind of sequents is due to Sonobe [36].

Since our language is subject to the condition |Sp| = |T| = l, we will

denote [Srjoc as Da- GS5 is defined as follows:

Axioms: a -» a

Rules: F-+A
(extension: out)

F; II-+Z ;A
(extension: in)

r-*A, a a, II-+Z
(cut)

(->exit)
r;-* ;Da, A

r, n*;n^Z;
(enter-*)

"; Da, A
(-Center)

r,n-*Z, Da; A
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r-> J, a, ft 0, *->y, a a, /J, S

a=>0, F,

a, r-»4, /?

(=>-»: out)

(-> ID : out)

T; n^I, x,P;A r-9p, <P-»<F9 a; J T; a, ̂ 5 S^A; A

/";

(D -»: out)
Da, r-> J

(->Q: out)

(=>-+ : in)

• : in)

The following lemma shows the equivalence of GS5 with GTS (over

the language restricted as above).

Lemma 3.10. Let &-+W be a proper sequent. Then

(in GTS) if and only if h-<f>->^ (in GS5).

Proof. Only if part: We have only to prove that the rule (=>-»)

in GTS is admissible in GS5. To see this we construct the following

proof figure:

— — (:D->: out)

If part: Suppose that h-$-»!F (in GS5). We note that Lemmas 1.3

and 1.4 hold also for GS5. Then, by Lemma 1.4, there exists $0-»!F0

C^-^^ such that \-$Q-**PQ (in GS5). Let F be a proof figure of $0

-»*F0- Then by Lemma 1.3, any sequent occurring in F is finite, where

F; II->Z; A is finite if so are F, 17, T, A. We convert F to a proof
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figure in GTS whose end-sequent is <P0^>W0. Let F; U-»I; A be any

improper sequent occurring in F. We replace this sequent by the proper

sequent r-+A, Da, where a = (y AH^ A ••• ̂ nm)^>(al v ••• vcrwv 1) (U = {7T1,

..., 7im}, r={(71,..., crj). We do this replacement for all improper se-

quents in F. By this replacement, for example, an application of the

rule

F, na',n-*Z;A
(enter -») -

will become

(*)

where 71 = 7 A 71^ A ••• /\nm (17 = {7rl5..., nm}) and a = al v ••• vcrw v _L (I"={cr1,

..., crn}). We change (#) to the following:

, Da A

F, Qa-^/d, DO=>0-) ^Da, D (Da ATT ID <r)

We must also consider the rules other than (enter-»). But they can

be treated similarly. Therefore we can obtain a proof of $0-*W0 in

GTS. From this we obtain a proof of <P-*W in GTS by (extension).

We say a sequent is strictly provable (in GS5) if it is provable in

GS5 without using (cut). A sequent is weakly consistent if it is not

strictly provable. By Lemma 3.10 and Theorem 3.1, we have
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Theorem 3.11. // a proper sequent is provable (in GS5) then

it is 5-valid.

We now construct a KT5-model M=<W;r,v> which realizes any

proper weakly consistent sequent. For any oceWff we put Subn(a)

= {D$|Dj8eSub(a)}. For any finite sequent r-*A, we say F-»A is

saturated if:

( i ) F -» A is weakly consistent

(ii) / f z j y e r u - d implies {/?, y}^

(iii) D£eT implies fieF

(iv) nfieA implies

Lemma 3.12. Let a finite sequent F-^A be weakly consistent.

Then there exists F-+A such that F-*A^F-*A and F-+A is saturated.

Proof. Let O=U{Sub(a)[aeru A}. This is a finite set. Let €

= {II-*Z\n-+Z is weakly consistent and U(jI^Q}. C is also finite.

We construct a sequence {rB->JB}B2>0 in C as follows. We put F0-*^0

= F-+A. By assumption, we have JT0->/d0eC. Suppose that Fn-*An

C has been defined. If Fn-*An is saturated, we put Fn+l^>An+l = Fn-+An.

Suppose otherwise. Then one of (ii)-(iv) in the above definition of a

sequent being saturated fails.

(1) Suppose there exists some P^yeFn()An such that {/?, y}$Fw U An.

Suppose P=>yeFn. Then by (:D-»: out) we have that one of Fn-+An,

ft, y, y, Fn-+An9 ft or P,y,Fn-»An is weakly consistent. We define Fn+1

-^An+1 as the first weakly consistent sequent among these three sequents.

In case ) J=>ye JB, we put Fn+i-+An+1=/], Fn-+An, y.

(2) Suppose that there exists some D^e^n
 such that f$£Fn. We put

Fn+i-*An+1=l3,rn-^An. By (D->: out), we have Fn+i-»An+i e€.

(3) Suppose that there exists some Dj8e^n such that Subn(j3) $ Fn U An.

Let D y be an element of the set Subn(j3) — (FnU An) with maximal degree,

where the degree of a formula is defined to be the number of logical

connectives (i.e., => and Q) occurring in it. Let D<5 be an element of

F W U ^ W such that Dye Sub (§) and with minimal degree. The existence

of such D<5 is guaranteed by the fact that Dye Sub (/f) and

Then we have two cases.
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D<5eF,,: Since FK-»Zln=n<55 Fn-*An is weakly consistent, so is <5, Fn-»An

by (D-»: out). Then using (=)-»: out), (->=3: out) and (extension:
out), we see, by reductio ad absurdum, that either Dy, Fn-+An or Fn-*An,

Dy is weakly consistent. So, we define Fn+l-+An+i as the first weakly

consistent sequent of the two.

n<5eJn : Since rn-*An = Fn-+An, D<5 is weakly consistent, so is Fn; -»5;
An by (->exit). Then by (=>-»: in), (-»=>: in) and (extension: in), we see

either Fn; Dy-»; ^« or ^ ~*Dy; ̂ « is weakly consistent. Since the argu-
ment goes similarly, we suppose the first case. Then by (enter-*),
F,,, Oy-*An is weakly consistent. In this case we put FM + 1-*zfH+1=Fw,

Dy-Mr
In any of the above three cases, we have Fn+1-+An+i e€ and

\Fn U An\<\rn+i U An+1\. Therefore, since C is finite, we obtain a satu-
rated Fn-*An for some n. Putting r-*A=rn-*An we have the desired

result.

We now define a model M=<W;r,v>. Let W={r->A\r~*A

is saturated}. W is nonempty since -»JLeW. Let w = F->A9 w' = F'

-*A'eW. We define (w, w')er iff rn = rQ. (Since |SpxT| = l, we may
consider r: Spx T-*2W*W as an element of 2W*W. Fn denotes the set

{oc|n«er}.) v: Pro {l}->2^ is defined by that w = F->Jet;(a) iff aeF.
The following lemma is proved similarly as Lemma 3.5.

Lemma 3.13. M is a KTS-model.

Just like l/(O), M has the following important property:

Theorem 3.14. Let w = F->JeM and a e F U J. T/ien w|=a (j/i M)
if OLEF and w=)a ff aezl.

Proof. By induction on the construction of formulas. We only

consider the case that a = D/?e^? since other cases may be handled

similarly as in the proof of Theorem 3.6. Now, F0->^0 = {Dy|Dy eF}

-^{D^in^e^}, D/? is weakly consistent since it is a restriction of F-+A.

By (-»D: out), we see F^A^iOy^yeF}-^{n^|D^eA}9 ft is also
weakly consistent. By Lemma 3.12, we can extend this sequent to a

saturated sequent w' = F'-*A'eWr By this construction, it is clear that
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Suppose aeFfo — Tn. Then by inspecting the construction meth-

od in Lemma 3.12, we see that no"eSubn(y1) for some y1eF1\jAl.

Hence, Q <r e Suba(y0) for some y0 6 T0 u A 0 — ̂  U A . (If y t = ft then let

otherwise let y0 = Ji.) Since F-»J is saturated, we have

Since a<=£F^ we have Q^eA Hence we have OveF'nA'.

This contradicts the consistency of F'-+A'. Thus we see Fn = F[j, so that

(w, w')er. Now since /?eJ', we have w'HjS by induction hypothesis.

Hence we have w=|DjS.

It is now easy to establish:

Theorem 3.15 (Cut-elimination Theorem). // a proper sequent is

provable in GS5 then it is strictly provable in GS5.

Proof. By Lemma 1.4 it suffices to consider only finite sequents.

We prove the contraposition. Suppose that a finite sequent F-*A is not

strictly provable. F-*A has a saturated extension F-»zF by Lemma 3.12.

Then F-*S is 5-realizable by Theorem 3.14. Then F->zf is not provable

by Theorem 3.11. Hence T-+A is not provable.

3.5. Cut-elimination Theorem for GT3 and GT4

In this section we consider only KT3 and KT4, so that when we

refer to KTf or GTf, i is always 3 or 4. If a sequent F-+A is provable

in GTf without cut, we say F-+A is strictly provable. We wish to

establish this:

Theorem 3.16 (Cut-elimination Theorem). // a sequent is provable

(in GTf) then it is strictly provable.

We prove this by an argument similar to that in 3.3. Let £c=

be closed under subformulas. Let us call a sequent F-*A Q, i-maximal

if it is maximal in the set {II-*Z\n-*Z is z-weakly consistent and U U I

^Q}, where a sequent is i-weakly consistent if it is not strictly provable

in GTf. We can show that if a sequent is f-weakly consistent and

F(]A^Q then it has a maximal extension F->zTe PFf(O) = {JI-»J|17->r

is Q, f-maximal}, by means of Zorn's Lemma and Theorem 1.4. Now,



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 413

we define a model Mt(Q) = < Wt(Q) ; r, v > , where r and v are defined

just as in the definition of Ut(Q). That Mt(Q) is a KTi-model is proved
similarly as in Lemma 3.5. We now have the following lemma.

Lemma 3.17. Let w = F-+AeMi(Q) and aeFlM. Then

(in Mj(Q)) if aeF and w=ja (*/i Af,(0)) i/ oce J.

Proof. By induction on the construction of formulas. The base

step of aePr U {_L} is trivial.

oc = j5=>y: Suppose aeF. Then F-+A, ft or y, F->J is i-weakly consist-

ent. By the maximality of F->zi, we have F-*A, f$ = F-j>A or y, F->J

= F-»/d. In any case, we have w|=a by induction hypothesis and defini-

tion of |=. The case OLE A is similar.

a=[Sf]/7: If aeF, then the result follows similarly as in Theorem 3.6.
Suppose aezl.

(i = 3): {[Sw]yeF|w<f}, {[Ow]yeF|w<0^[S*]£ is i-weakly consist-
ent as a restriction of F-+A. Hence {y\\_Su]y er,u<t}, {\Ou\yeF\u <i]

->/? is also /-weakly consistent. Extend this sequent to w' = F'->Ar in

Mt(Q). It is clear that w -^-> w'. Since ^eJ' we have vv'=|/J by induc-

tion hypothesis. Hence w=\a.

(/ = 4): Similar to the case (/ = 3).

Now we can complete the proof of Theorem 3.16. Suppose F-+A

is i-weakly consistent. Let O={_L} U W{Sub(oc)|oceF U A}. Let F-+A

eMi(Q) be an extension of F-+A. Then by Lemma 3.17, Mi(Q)=^r^>A.

Hence by the Soundness Theorem 3.1, F-*A is not provable.

Remarks.

(1) Our method does not work for GTS, because, except for the obvious

fact that GTS is not cut-free,4) if we construct a model M5(Q) it does

not always give w' such that w — ̂ -> w' and w' =| ft for w such that w

=|[Sr]^. However, as a partial result, we gave a cut-free system for

S5 in 3.4.

(2) By Theorem 3.16, we observe that Mt(Q) is identical with U^Q) (for

i = 3,4).

4) For example, the sequent —>/?, [St]~~l[St]p (where p^Pr} is not provable without
cut.



414 MASAHIKO SATO

The following theorem will have some significance in Chapter 6.

Theorem 3.18 (Disjunction property of KT3 and KT4)5). Suppose

\-[S1t1'](xiv~-v[Sntn]an (in KTi) (n>l). Then for somej(\<j<ri)

we have h-CS-^ja,. (in KTi), where z = 3 or 4.

Proof. Consider a cut-free proof of -^[S^]^,..., [S%]an. Let

N = \{[.S1tl]al,...,[Sntn]Kn}\. If N=l then we see that I — '[S1^]^.

Let N>1. Then the last inference rule must be (extension). Further-

more we may assume without losing generality that the cardinality

\A\ of the upper sequent -*A of the last inference is less than N. Hence

the result follows by induction hypothesis.

In this and the last §, we have seen that GS5, GTS and GT4 are

cut-free. Using this fact, we obtain our second proof of the decidability

of these systems as follows.

Theorem 3.19. KT3, KT4 and S5 are decidable.

Proof. Since the proof goes similarly, we only prove the theorem

for S5. We first note that any proof figure may be represented as a

pair (F, /), where F=(P, <F) is a tree partially ordered by <F and /

is a function /: P-*2wff x2wff x2wff x2Wff . More precisely, 1) P is an

abstract set such that |P| is equal to the number of sequents occurring

in the proof figure, 2) for any node peP,f(p) denotes the sequent at-

tached to p, and 3) p<Pq iff p = q or f ( q ) is above (in the sense of

Gentzen [4, 5]) f(p) in the proof figure. Suppose a formula aeWflf

is given. Let O = Sub(a) and \Q\ = n. Suppose a is provable. Then it

has a cut-free proof (F, /). Then we have

(1) Image (/) c 2n x 2Q x 2Q x 2°.

(Subformula property of a cut-free proof!) Furthermore, we may assume

without losing generality that f ( p ) ^ f ( q ) if p<Pq> (For, otherwise, we

can obtain a smaller proof figure with the same end-sequent -»a.) Thus

5) Using the completeness of KT3, 4-models, Hayashi [9] obtained a model theoretic
proof of this theorem by a method due to Kripke [15].
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we see that any linearly ordered subset Q of P has cardinality less than

or equal to 22"'2n'2n'2n = m. Since the number of the upper sequents of

each inference rule is at most 3, it follows that

(2) |P|<3-.

By (1) and (2), we can construct an algorithm which determines the prov-

ability of a.

Chapter 4

Categories of Krlpke Models6)

4.1. Definition of

Let Q be closed under subformulas. Let us take any i(3</<5)

and fix it. We define the category JT^Q) of Kit-models over Q as

follows :

(1) Objects Of) are KTz-models.

(2) Let M, JVe,//, then Hom(M, JV) = [Af->JV] consists of homo-

morphisms (from M to N) as defined below.

(3) Composition of homomorphisms is defined by the usual function

composition, i.e., (f°g)(x) is defined by f(g(x)).

For any M e ̂ , we define its characteristic function

XM:M—*U(Q)

by #M(w) = F-»2d, where r = {aeQ\w\=a} and A = {aeQ\w=\%}. It is clear

that F-»J is iQ-complete and hence %M is well-defined. (U(Q) means

Ut(Q) and O-complete means O, f-complete.) A mapping

ft: M - >N

is a homomorphism (from M to N) if the diagram below commutes:

6) Elementary terminology of category theory in this chapter mostly follows Mitchell
[23].
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U(Q)

Informally speaking, for w e M, XM(W) denotes the scene (restricted to Q)

as seen from w. Thus a homomorphism is a mapping which preserves

scenes. It is an easy task to verify that ^t(Q) defined above is indeed
a category. As an example, consider the simplest case of Q = {!.}. Then
any mapping /: M->JV is a homomorphism.

4.2. Properties of tf^S)

First of all, by the Fundamental Theorem of Universal Model, we
see that %um: U(Q)-+U(Q) is the identity mapping lum. Hence, for

any M e ̂  , by the following commutative diagram we observe that %M

itself is a homomorphism.

On the other hand, let he\_M->U(Q)]. Then since the diagram below
commutes, we have h = %M.

M ^ U(Q)

U(Q)

Thus we obtain:
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Theorem 4.1. U(Q) is a terminal object1) of JT(O).

We now list up several basic properties of Jf*(O).

Lemma 4.2. // /e [M-*JV] is a monomorphism then f is an injec-

tion.

Proof. We prove the contraposition. Let x9 y e M be such that

and f(x)=f(y). Define g: M->N by:

g(z)=

x if z = y

y if z = x

z otherwise

Then we have:

if z =

otherwise

Hence, 0e[M-»AT]. Now, clearly fog=folM> but 0^1M. This means /

is not a monomorphism.

Lemma 4.3. // /e [M->N] is an epimorphism then f is a surjec-

tion.

Proof. We prove the contraposition. Let N= <W ; r, t;>. Let

xeJV be such that x^ Image (/). Take y such that y<£N. We define

a model JV=<$ r ; r , £> such that W=W\j{y} as follows: Let g: W

-+ W be defined by :

{ x if z = y

z otherwise

We define f by (w, w') e f(S, f) iff (0(w), 0(w')) 6 r(S, 0- We define g by

7) Mitchell [23] uses the term null object instead of terminal object.
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wei;(jp) iff g(w)ev(p). It is easy to verify that N is a KTz-model. We

can prove, by induction, that for any weW and a e WfT,

w |= a (in N) iff g(w) |= a (in AT).

I.e., #epV-»AT]. Let h: N-*N be the inclusion map, and let h':N-+N

be defined by:

if z = x

otherwise

We have g°h = goh' = lN.

M ^ N

XN
" X.\

U(Q)

Then we have

so that he[N-+N]. Similarly, fc'e [AT->JV]. Now, clearly, h°f=h'°f

but /z^ft ' . This means ft is not an epimorphism.

Remark. The reader familiar with the notion of p-morphism might

have noticed that the homomorphism g in the above proof is a p-

morphism. By the p-morphism theorem [34], every p-morphism is a

homomorphism (for any 0), but the converse is not valid. In this sense

our notion of homomorphism is more general than that of p-morphism.

Note also that we defined homomorphisms without referring to the rela-

tional structure of models.

Lemma 4A J//e[M-»JV] is an epimorphism, f is a retraction,

Proof. By Lemma 4.2, / is onto. Let g : N-+M be any mapping
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such that f°g = lN. Let xeN. Then

= %N(x), i.e., XM°g = %N. Hence ge[JV-»M], This means / is a retrac-

tion.

We cite the following easy lemma from Mitchell [23].

Lemma 4.5. // /e [M-»AT| is a retraction and also a monomor-

phism, then it is an isomorphism.

By Lemmas 4.4 and 4.5, we have

Theorem 4.6. Jf(O) is balanced, i.e., every homomorphism which

is both a monomorphism and an epimorphism is also an isomorphism.

Lemma 4.7. Let Me^. Then the following conditions are

equivalent:

( O XM is a monomorphism
( i i ) For any Ne^, |[AT-»M]|<1

(iii) End(M) = {lM}

(ii;) Aut(M) = {lM}

where End(M) denotes the endomorphism semigroup of M and Aut(M)

denotes the automorphism group of M.

Proof. The implications (i)=>(ii)=>(m)=>(iv) are trivial. To show

(iv)=>(i), we prove the contraposition. Suppose #M is not a monomor-

phism. Then there exist Ne^ and /, #e[IV->M] such that f^g and

XM°/=XM00- Take xeJV such that f(x)=£g(x). We put w=/(x), v = g(x).

We define h: M-+M by:

f v if z = u

h(z)= u if z = v

z otherwise

It is easy to see that /ieAut(M)9 so that |Aut(M)|>l.

A model ME^ is said to be reduced if XM ^ a nionomorphism.
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4.3. Structure of J

Theorem 4.8. Let M=<W',r,v> be any model in ^, and sup-

pose (x, y) 6 r(S, f). Then (%M(x), xM(yJ) E R(S, f).

Proof. (i = 3): Let %M(x)=r-+A and XMGO = r'-»J'. Suppose, by

way of contradiction, that (%M(x), %M(y))£R(S> 0- Then, by thedefini
tion of jR, for some u<t, we have FSu$r' or r0u^r'0u. Suppose
FSu$F'. Then there exists an a such that [Sw]aeT and a<£F'. Then

by the Fundamental Theorem of Universal Model, we have XM(X}^=

[Swjoc and #^00 Ha- Hence, by the definition of #M, we have x\=
[Sw]a and y=\u. Since (x, y)er(S, t)^r(S, w), this is a contradiction.
Next, suppose r0u^r'0u. Then, similarly as above, for some a we have

x (= [Ow]a and y =j [Ow]a. Since (x, y) e r(O, u) and r(0, M) is transitive,

we have a contradiction.
The cases (i = 4) and (i = 5) may be treated likewise.

Let M,Ne^. We write M = JV(modO) if Image (%M) = Image (/N).

(We should write x^ (or x^) in place of XM (or XN) if we wi§n to empha-
size the dependence of i on (3.) We say M is equivalent (modulo Q)

to N if M = N (mod O). Among the models equivalent to M, we will be

interested in finding the simplest one. Let M=<W',r, v>e^. We

define its relational closure M=<W'9r,v> by letting (w, w') e f (S, r)

iff (%M(W)J XM(W/)) e (̂S1* 0- % tne above theorem we see r^r (, i.e.,
r(S, r)^r(5, t) for any S, r.) We can prove by induction that lw: M-*M

is an isomorphism. Thus, r is the largest among the relations r' on W

such that <PF; r', t;> is equivalent to M. We say Me^ is relationally

closed if M=M. Now, let M=<PF;r , *;> be relationally closed. An

equivalence ~ on W is called a congruence if w~w' implies #M(w)

= /M(w;). In this case, we can naturally define its quotient model M/~
= <W; r, v> by:

(1) w=WI~={t\v']\wEW}

(2) ([w], [w']) e f(S, 0 iff (w, wO e r(S, 0

(3) Let pePrU{J_}. I f p e O then [w]ei;(p) iff wet;(p), otherwise
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v(p) is arbitrary

where [w] denotes the equivalence class containing w. It is easy to see

that M/~ is well-defined (up to the arbitrariness of v(p) for p<£Q) and

M = M/~. (The canonical map [] :M->M/~ is a p-morphism if Q

= Wff, and it is a homomorphism in any case.)

Suppose M, N are relationally closed, and let /e [M-»iV] be an epi-

morphism. Then, ~ c = M x M defined by w~w' iff /(w)=/(w') is a con-

gruence, and we see M/~ is isomorphic to N. We write this as M/f

Let Me^. By definition of XM>XM( = XM) induces the largest con-
gruence among the congruences on M. Hence we have:

Theorem 4.9. For any Me^, there uniquely (up to isomor-

phism) exists a reduced Ne*J? such that M = N. Namely, N is given

by N-

Schematically, we have the following diagram:

_ _ inclusion

M -î » M -*^> M/XM map > U(O)

Our argument in this chapter has been relative to Q. We end this

chapter by giving a definition which does not depend on Q. Let M

= <PF;r , v> and M'= <W'\ r', t/> be two KTz-models. We say M

and M' are strongly isomorphic if there is a bijection /: M->M' which

preserves the model structure, i. e., / is a bijection such that

(1) For any x, y e W, (/(*), /GO) e r '(S, f) iff (x, y) e r(S, 0-

(2) For any pePrV {1} and weW, wev(p) iff r(w) e i/QO-

Chapter 5

S5 Model Theory

In this chapter we give a complete classification of S5 models under

the equivalence = (mod Wff ). First, we need some general discussions.
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5.1. Lindenbaum Algebra of WTi

Let us define a relation <*£WffxWff by a<*£ iff Hx->jS (in

GTi). (As usual, we discuss by fixing a logical system KTf.) Further-

more, define ~£WffxWff by a~£ iff a<*£ and £<*a. <* is reflexive

since |-a-»a. <* is transitive since h-oc-»/? and I— /?-»y implies Ha-»/L

Hence ~ is an equivalence relation. We may regard Wff as an algebra

<Wff; A, v, -i, =>, {[SfJlSeSp, feT}>. By the following lemma, we

see that ~ is a congruence on the algebra Wff. (For the definition of

algebra and congruence, we refer to Gratzer [7].)

Lemma 5.1. Suppose a~a' and j8~/?'. Then,

( i) aAjS~a'AjS'

(ii) av£~a'vj3'

(in) -ia~-ia'

(it;) a^j^-a'iD^

( t; ) [S*]a - [5r]a' (/or

Proof. Left to the reader.

By this lemma, one can define the quotient algebra B=<B; A, v,

-i, ID, { l S f ] \ S e S p , teT}>, where B=Wff/~. We will call this algebra

the Lindenbaum algebra of KTi. Let I ] : Wff-*B denote the canonical

homomorphism. We put l=lTl and 0=[JL].

Theorem 5.2. <JB; A, v, -i, 0, 1> is a Boolean algebra.

Proof. Left to the reader.

Let <B^BxB denote the partial ordering induced by the Boolean

structure of B, i.e., a<Bb if and only if a = a^b. Then we can easily

verify that for any a, jSeWff, a<*j8 if and only if [[a] <Blj3].

We will use the term theory as a synonym for a subset of Wff.

Let T be any theory. We say F is consistent (or inconsistent) if so is

the sequent F-». If F = F=DC(r), we say F is (deductively) closed.

Let C denote the set of all closed theories, i.e.s
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C is the set of fixed points of the retract DC: 2wff-»2wff. C is par-

tially ordered by the set inclusionship relation <=. We define a mapping

<£: Wff-»C by $(a) = {a}. We say F is finitely axiomatizable if F = $(a)

for some oeeWff.

Lemma 5.3. [a] <BI$] i/ and only if 0(a)2<Kjft).

Proof. Only if part: By the assumption we have oc<*j3. Hence

h-oc-»/?. Take any TTG <£(/?) = {/?}. Then \-f}-*n. Hence h-a-»7r, so that
ah-TT. This means 7ce</>(a).

If part: Suppose $(a) 2 <£(/?). Since /? e $(/?) ̂  0(a), we have ah-/?, i.e.,
H%->£. Hence |aI<B[j5].

From this lemma we see that there uniquely exists an anti-order

preserving injection c:B-*C such that the diagram below commutes:

Wff

We note that c is onto iff <£ is onto. We give a sufficient condition for
i to be an anti-order isomorphism.

Lemma 5.4. // B satisfies the descending chain condition, then t

is an anti-order isomorphism.

Proof. Let F be any element in C. Let al9 a2,... be an enumera-

tion of F. Let Pn=oci A ••• Aaw . Let Tie$(/?„). Then we have h-j8n-»7c.
Since h-F-»af ( f= i , 2,..., n), we have h-F->/?w. Hence h-F-»7r. This

means 7reF = F. Therefore,
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Let nef. Then n = an for some n. Since h-/?n-»an, we have n = an

). Hence, together with (1), we have

(2) T= vj
n=l

Since f-/?„+!-»/?„ f°r anY w» we see Wil^sl^l^B"'• Since B satisfies
descending chain condition, there exists an m such that [/?m] <B[/y]

for any n. Then, by Lemma 5.3, we have $(/?w) 2 $(/?„) for any n.

Thus, by (1) and (2),

This establishes the surjectivity of c. Thus we see that e is an anti-

order isomorphism.

5.2. S5 Model Theory

For any n>l, we let the language Ln = (Pr(ri), Sp, T) be defined by:

(1)

(2) Sp = {0},
(3) T={1}.

Let us take any Ln and fix it. In this section, we study KT5 over the

language Ln, which is none other than the modal calculus S5 as we have

seen in Fig. 1.1. Hence a KT5-model over Ln will be called an S5-

model. Our aim is to determine the structure of the Universal Model

l7=l/(n) = l/5(Wff). We employ the more conventional notation Qa

(Oa) in place of [01]a(<01>a, resp.).

Let {±}n denote the n-fold cartesian product of the doubleton set

{ + , -}. For any aeWff and <5e{±} = { + , -}, we put

if S= +

if (5=-.

We define a mapping

»Wff



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 425

by n(s) = pl1 A ••• Ap*", where e = e1---en (ef e{±}). We put 17 = Image (it).

For any £(^0)c{ + }«, we define an S5-model M(E)=<WE;rE,vE>

as follows:

(1) WE=Ex{E}9

(2) r£(0, l) = 2"**"*,

(3) For any (e, E) e WE, (e, E) e v(pt) iff £;=+, where s = s1 •••£„, and

Since rE(O, 1) is an equivalence relation, M(E) is an S5-model. We call

this model the fragment model on E. We define its characteristic

formula i(E) by:

%(E) = A On(s) A A -i On(s)V
eeE se{±}n-E

For any (e, E)eM(£), we define its characteristic formula x(e, E) by:

Now, let (MA)A6/1 be an indexed family of S5-models, where MA

\ rA, t;A>. We define their swm

M=<W; r, t» = S MA

by:

(1) W= X WA (disjoint union),
Ae/l

(2) (w, w') e r(0, 1) iff both w and w' are in WA for some A and

(w, w')erA(0, 1),

(3)

An S5-model M=<W\r, v> is said to be connected if r(<9, 1)

= 2W*W. It is easy to see that any S5-model M may be expressed as

a sum 2 MA of their connected components (MA)Ae/1.
Aeyl

Let S be the sum of the family of all fragment models, i.e.,

S= S M(E).

8) For a finite set A of wffs, we define A a by a r 1 A-- -A« n , where alf..., arn is any
oS4

enumeration of >4.
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We will show that S is strongly isomorphic to U.

Lemma 585. Let an S5-model M=<W;r.,v> be connected and

reduced (in the category jT(Wff)). Then M is strongly isomorphic to

some fragment model M(E).

Proof. Let E = {se{±}n\w\=n(s) (in M) for some weM}. Since

for any w e W there uniquely exists an s e E such that w |= n(s), we can

define $: PF-»E by $(w) = e. Suppose 0(w) = 0(w') = £. We show by

induction that for any a e Wff, w |= a iff w' (= a. The case aePrU{J-}

is easily ascertained since 0(w) = 0(w'). The case a = J?^y is trivial by

the definition of t= and by induction hypothesis. Finally, we consider

the case a=Dj8. Then, since M is connected we see wND/? iff w'[=nj8.

Hence, it follows that #M(w) = %M(W')- Since M is reduced, we have w =
w', by Lemma 4.2. Thus we have proved that 0 is a bijection. Since

both M and M(E) are connected and vE((/)(pJ) = v(p) for any pePrU{J-},

we see that M and M(E) are strongly isomorphic.

Corollary 5.6. Let the assumptions be as in Lemma 5.5. Then

the strong isomorphism 0: M->M(JE) is unique.

Proof. Since M is reduced, we have Aut(M) = {lM}, by Lemma

4.7. Since a strong automorphism is an automorphism, we see that 0

is unique.

Theorem 5.7. Let M be connected and reduced. Suppose wN#CE)
for some weM. Then M is strongly isomorphic to M(E).

Proof. By Lemma 5.5, we have only to prove: "If E^E' then

(e, E)=\x(E') for any (e, E)eM(£)." Suppose E^E' and (e, E)\=i(E')

for some (s, E)eM(E). Then we can take a d such that SeE—E' or

E. Suppose dzE-E'. Then (e, E) N O<<5). But, since (s, E)

and /(E')|--iOrc(<5), we have a contradiction. The case deE' — E

may be treated similarly.

Now, let the Universal Model U be expressed as the sum S ^A
Ae/l

of its connected components. Then each MA is reduced because Xu^^u-
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By Lemma 5.5, MA is strongly isomorphic to M(£A) for a suitable EA.

Let $A: MA-»M(jEA) be the unique strong isomorphism. Define $: 17

by 0(w) = $A(w) where A is the unique index such that w e MA.
Aevl

Since 0 is a strong isomorphism, we have the following commutative

diagram :

Hence, %M is also a strong isomorphism. Suppose E^ = Etl for some A

T^. Then it is clear that Aut(IM(£A))ig{l}. But, by Lemma 4.7,

it is contrary to the fact that %M is a monomorphism. Thus we have:

E^EU if

Now, take any £(^0)^{±}w. By Theorem 4.8, we see Image (7M(£))

is connected. Hence it is contained in some MA, i.e., Image (%M(£)) £ MA.
Take any (e, E) e M(£). Then,

By the definition of

(in I/).

Hence,

%M(£)fe £) |= x(£) (in MA) .

By applying 0, we have

(inM(£A)).

Therefore by Theorem 5.7, we have E = E^ Thus we have proved the
following

Theorem 5.8. 17 is strongly isomorphic to S.
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Similarly, we have

Theorem 5.9. Let M be reduced. Then M is strongly isomorphic

to %M(E) for some E^
EeE

Proof. Let M= Z MA, where MA(/L6/l) are reduced and connected.
Ae/l

Since M is reduced we have that MA and MM are nonisomorphic if

l^fjL by considering the automorphism group of M. Hence by Lemma

5.5 we have the desired result.

Corollary 5.10. An isomorphism $: M-+N between reduced models

M and N is an strong isomorphism.

On the other hand, it is clear that £ M(E) is reduced for any
EeE

Hence we have

Corollary 5.11. There are 22""1 nonisomorphic reduced S5-models.

Theorem 5.9 gives a complete classification of reduced models up

to (strong) isomorphism. We will further proceed to define for any

model M its characteristic function X(M).

Let w = r-+AEU. By the isomorphism 0: U -»S established in Theo-

rem 5.9, we will identify w with 0(w). Hence w may be written as

w = F-»J=(£, £). We define a mapping

Xv: U - >Wff

by Xv(w) = x(s, E)> where w = (s, E). Furthermore, for any model M,
we define

XM:M - >Wff

by XM(w) = ̂ [/(XM(W))> where %M is the characteristic function

Then the following theorem enables us to replace the semantical relation

N by the syntactical one K

Theorem 5.12. Let M be any S5-model. Then for any weM
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and aeWff we have:

w f = « (in M) if and only if XM(w) h-a.

Proof. Since w|=a iff xM(w)t=a, (in ^)> anc^ since %M — XV°%M> it
suffices to prove the case M=U. So, let w = F-»zl=(e, £). We prove
by induction on the construction of a that

(a) if w f= a then ^(w) h-a

and

(b) if w=ja then ^(w)!-— la.

aePrll{-L}: The case a = JL is trivial. So, suppose a = piePr.

(a): Since (&,E)\=pt, we have ef= + . Hence n(e)\-piy so that

= #(e, £) = 7i(e) A %(E) \-pt ( = a). The proof of (b) is similar.

(a): Since w |=/?=>y, it follows that w=j/? or why . Suppose
Then by induction hypothesis, we have Xv(w)\-—(p. Since

we have Xt/(w)|-a. The case w\=y may be treated similarly.

(b): Since wH^^y , it follows that w|=/? and w=jy . By induction
hypothesis, we have Xv(w)\- ft and Xv(w)\--iy. Hence, Xv(w)\-p/\ ~iy.

Since j3 A — i y h- — i (jS ID -y), we have

(a): Since (e, £)Nn^, we have for any 6eE, (6, E)N/?. By induc-
tion hypothesis, n(d)f\i(E)\-j$ for any c)e£. Hence, we have:

(1) f -V7i(c5
deE

Now, since I — > V TC(^) and h-x(£)-^~i7i(^) for any d^E, we have
8e{±}n

(2)

Hence, from (1) and (2) we obtain

From this, by (->~i) and (->D), we have 7CE)l-n/? as desired.
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(b) Since (e, E)=\\3P, we have, for some deE, (d, £)=!/*. By induc-

tion hypothesis, we have

(4) Mu($), *(£)->-!/?

Let %(E) = O Tufai) A • • • A O n(st) A -i O ftfe + j) A • • • A -i O T^S,-). Then from (4)

we can construct the following proof figure, which proves (b).

P, <<5),
(D-)

(extension)

In the above proof a double line (=) means that several trivial appli-

cations of rules are omitted.

Now it is clear that (b) implies that if w=|a then XV(W)^QC. This

completes the proof of the theorem.

Corollary 5.13, Let Xv\ U-*B be defined by Xv(w) = pr^w)].

Then Xv is injective.

Proof. Take any w = (e, E) and w/ = (e/, E') in U. Suppose Xv(w)

= Xv(w'). Then, by Theorem 5.12, (e, JS)t=<e') A/(£'). Hence, clearly,

s = e/. By Theorem 5.7, we have E=E'. Therefore w = w', which means

Xv is injective.

In the above proof we have also proved

Corollary 5,14. Let w9 w' e 17. Then

(1) w^X^w') z/ and only if w = w'.

(2) X^w) \-Xv(w
f) if and only if w = w'



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 431

We extend Xv: l/->Wff to

XV:2V - >Wff

as follows. Let P^WV. Then XV(P) is defined by:

XV(P)= V Xv(w).
weP

We note that newly defined Xv may be regarded as an extension of the

old one by identifying w with {w}. Now, for any aeWff we can define

its normal form norm (a) by

where Pa= {w e C7|w |= a (in I/)} .

Theorem 5.15. For any a e Wff, norm (a) ~ a.

Proof. Let wePa. Then by Theorem 5.12, \—Xv(w)-*ct. Hence

we have f— V Xv(w)-^^ i.e., h-norm(a)-»a. We prove h-a-»norm (a)
wePa

by means of the Completeness Theorem. Consider any S5-model M

and weM such that w|=a (in M). Let w' = 7M(w). Then w'ha (in 17),

i.e., w'ePa. Since w't=Xv(w')9 we have w' = #M(w)|=norm(a). Hence, by

the definition of %M, wt=norm(a). By the Completeness Theorem, we

have h-a-*norm(a). Thus, we have proved norm (a) ~ a.

We are now ready to study the mapping

h:2v - >fi

defined by h(P)=lXv(P)1. First, we define

rj : 2
U - > 2U

by DP={w6l/|(w, w')er(O, l)=>w'eP}. Then 2U may be considered

as an algebra 2u=<2Wu; n, U , n > . Furthermore, we consider B

as an algebra B=<B'9 A, v, D>.

Theorem 5.16, h:2u-+B is an isomorphism.

Proof. Take any fa] eB and let P« = {we C7|wNa}. Then by Theo-
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rem 5.15, we have /?(Pa) = [norm (a)] = [a]. Hence h is surjeetive. Next,
take any P, Q^U and suppose P^Q. We can take w such that we
P— Q or weQ — P. Suppose weP — Q. Then clearly,

(1) Xv(w)^Xv(P).

Suppose Xv(w) \-Xv(Q). Then by Theorem 5.12, we have w\=Xv(Q).

Hence for some w'eg we have w\=Xv(w'). Then by Corollary 5.14,
we see w = w'. This is a contradiction since w&Q and w'eQ. Thus,

we see

(2)

By (1) and (2), we have ^(P^Z^S), i.e.,

Thus, we see h is injective.

Now, let P9QE2U.

(i ) Since X^P fl S) HX^P) and ^(P n Q) I-X^Q), we have

(3) ^XU(P^\Q)-^XU(P)^XU(Q)

On the other hand, suppose w (= XV(P) A ̂ i/(0, where w e L7. Then, by a
method similar as above, we can prove w e P n Q . Hence

Thus we see

(4) ±-Xu(P) A XV(Q) -» X^P n Q) .

By (3) and (4), we have h(P f] Q) = h(P)*h(Q).

(ii) That h(P() Q) = h(P) vh(Q) is proved similarly.

(iii) First, take any we U such that w t=Xv([3P)> Then weD^, so that
for any (w, w')er(O,l) we have w'eP. Hence w'\=Xv(P). Thus, we

have w|=D-XV(P). Therefore, we have

(5) K^(DP)->D^(P).

Next, take any we U such that w\=OXv(P). Let w' be such that (w, w')

er(O, 1). Then we have w' t= XV(P). Hence w'eP. Then by the defini-

tion of D-P? we have weQ^P- Hence wt^Z^D^). Thus, we have
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(6)
By (5) and (6), we have

Theorems 5.8 and 5.16 determines the structure of the Lindenbaum

algebra of S5. Since the cardinality of 17 ( = S) is easily calculated as

2" /9«\

i^i = Zi-n)=2" '2 »i=i \ i /
the cardinality of B is given by

As an example, we illustrate the structure of U for n = 2.

1 0 1 0 0
E2 E3 E4

£3 S2 S3 £2 £3 S2

E8

Sl SQ

Ej Eg

S3

SQ SQ £t

EH E12 E13

Fig. 5.1. Graphic representation of £/(2)9)

9) Define a relation ^0 by that (eis Ek) RQ (e^ Ek) iff the two points (si9 Ek) and
(QJ, Ek) are connected by a line in this figure. Then the reflexive and transitive
closure of this relation gives the accessible relation of U.
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In the above figure, we have put £0
 = "1Pi A ~^P2> £i=Pi A ~~ IP2> £2 =

Ap2 and £3 = ̂ 1 Ap2.

Finally, since B is finite, from Lemma 5.4, we have

Theorem 5.17. t:B-+C is an anti-order isomorphism.

Corollary 5.18. Every theory of S5 (over the language Ln) is

finitely axiomatizable.

Chapter 6

Applications

In this chapter we study two puzzles, namely, the puzzle of three

wise men and the puzzle of unfaithful wives, by applying the results we

have obtained in the preceding chapters.

6.1. The Wise Men Puzzle

In this section, as an application of the Completeness Theorem, we

give a model theoretic solution to the well-known puzzle of three wise

men. We will work on the language L = (Pr, Sp, T\ where

Since T is a singleton set we will write, for example, [S]a in place of

[Sl]a. Now, the puzzle has been modified as follows by McCarthy [21,

22] so that it may be modelled in his knowledge system:

Let Sj-(f = l, 2, 3) denote the 3 wise men, and let pt be the sentence

asserting that St has a white spot on his forehead. The following are

given as assumptions.

(Al) Pi Ap2 Aj?3 =-- All spots are white.

(A2) [0] (P! v p2 v p3) -— They all know that there is at least one white
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spot.

(A3) [0]({SJp2A{S1}p3A{S2}p1A{S2}p3A{S3}p1A{S3}p2)»- They all

know that each can see the spots of the others.

(A4) [S3][S2]"i[Sr
1]p1 — S3 knows that S2 knows that S1 doesn't

know the color of his spot.

(A5) [S3]-i[S2]i?2 •"" S3 knows that S2 doesn't know the color of his

spot.

The problem is to deduce [S3]p3 (S3 knows that he has a white spot)

from these assumptions.

Let a = (Al)A(A2)A(A3)A(A4)A(A5) and 7c = azD[S3]p3. We will

show that \-n (in K3) by means of the completeness of K3-models.

Namely, we show that n is valid in all K3-models. So, by way of con-

tradiction, suppose that there is a counter-model M=<W;r, v> for n

such that M =\ n. This means that there is a world w0 e W such that

(1)

and

(2)

(2) tells the existence of a world wl such that

(3) w0 -£i* Wl

and

(4) W i = N p 3 .

Since w0 N (A4) A (AS), we have, by (3),

(5)

and

(6)

From (3) we have, by the definition of r,

(7) w0 -2-+ Wl.
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Hence we have from (1)

(8) WiN{S2}j>3,

that is, w1N[S2]p3 or w1 NDS2]~~~ip3. This, together with (4), implies

(9) WiN[S2]-iP3.

By (6) we see that there is a world w2 such that

(10) wt -?i> w2

and

(11) wa=)j>2-

From (5), (9) and (10) we have

(12)

and

(13)

By (10), since r(S2, l)£r(<9, 1), we have

(14) Wi -^ w2.

From (7) and (14), using the transitivity of r(O3 1), we have

(15) W0-^w2.

Since w0t=(A3), we have

(16) W2t={Si}p2A{Si}p*.

From (11), (13) and (16) we have

(17)

and

(18)

Now, (12) implies the existence of w3 6 W such that
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(19) w2 -** w3

and

(20) w3=H>i.

From (17), (18) and (19) we have

(21)

and

(22)

We have

(23) w0-^w3

from (15) and (19). Then, since w0t=(A2), we have

(24)

But, this is contradictory to (20)-(22). Thus, we have proved that n is

valid.

Note that we did not use the assumptions (Al) and [P']({S2}pi
A (S^Pi A {^3)^2)- We illustrate the above inference in the following
figure.

WQ - ^O - >Wi - 52,0 - ^ - Sj^O - ̂ ^

-1P3

Pi v |?2 v p3

Fig. 6.1. Proof of the validity of n

For the sake of comparison, we give a formal proof of n in GTS.

It may be observed that these two proofs are essentially along the same
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line.

6.2. The Pezzle of Unfaithful Wives

We begin by explaining the notions of knowledge base and knowl-

edge set, which are fundamental for our formalization of the puzzle of

unfaithful wives.

6.2.1. Knowledge Set and Knowledge Base

Let L be any language. We consider in KT4 and KT5 over L.

We will make the notion of the totality of one's knowledge explicit by

the following definitions.

Definition 6.1. K^Wff is a knowledge set for St if K satisfies the

following conditions:

(KS1) K is consistent.

(KS2) K = [Si]K.

(KS3) If K h-[S*>i v — v [S(K then K h-o^ for some i (1 < i < ri).

Definition 6.2. BsWff is a knowledge base for St if B satisfies

the following conditions:

(KB1) B is consistent.
(KB2) £c[Sf]5.

(KB3) If B h- [£*]«! v — v [Sf]aB then B h-a, for some i (l<i< n).

By (KS2) (or (KB2)) we see that any element in K (or B, resp.)

has the form [Sfjoc. It is easy to see that if B is a knowledge base for

St then [Sf]5 is a knowledge set for St. We also note that the above

definitions are relative to the logics KT4 and KT5.
Let r^Wff be consistent. We compare the following three condi-

tions.

(1) If r>-a then Fh— i[Sf]a.
(2) If rh-[Sf]a! v - - - v[S(]aw then F|~a£ for some i (l<i<ri).

(3) If rh-{Sf}a then Fh-a or
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First, we consider in KT4.

Lemma 6.3. In KT4, we have (1)=>(2)=>(3) but

Proof. (1)=>(2): Suppose F [-[Sfla! v ••• v [St]an and Fl^ for any

i. Then by (1), we have Fh--i[Sf]af for any i. Then we can prove

F|--L, which is contradictory to the consistency of F.

(2)=>(3): Trivial.

(2)A(1): Since the disjunction property holds in KT4 (Theorem 3.12),

the empty set 0 is a knowledge base for any St. Let F = 0. Then

F satisfies (2). Let pePr.10) Then neither p nor "~i[Sf]p is provable

in KT4. Hence, F does not satisfy (1).

In KT5, we have the following

Lemma 6.4. In KT5, (1), (2), and (3) are equivalent.

Proof. (1)=>(2)=>(3) are proved similarly as in Lemma 6.3.

(3)=>(1): We prove the contraposition of (1) assuming (3). Suppose

r>*-i[Sf]a. Since H[Sf][Sf]av[SQ-i[Sf]a in KT5, we have from (3),

/V[Sf]a. Hence Fh-a.

Note that 0 is not a knowledge base in KT5. We now study the

semantical characterization of knowledge sets. Let M=<W;r,v> be

any model (adequate for the logical system we have in mind). For any

we W and (S, t)eSp*T, we define Xw(St)sWflF by:

Since, as we will see below, Kw(Sf) is a knowledge set for St9 we call

it the knowledge set for St at w.

Lemma 6.5. Kw(Sf) is a knowledge set for St.

Proof. We only prove (KS2). Let [Sf]aeXw(Sf) = X. Then, we

have XHx, i.e., oceK. Hence [S*]ae[S*]K. Let [Sf]aie[Si]K. Then

10) We need to assume that Pr is non-empty. In fact, if Pr=0, we have Lemma
6.4 in place of this lemma, since in this case KT4 is equivalent to KT5.



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 441

, i.e., Xh-a. Since any element in K is of the form [_St](}9 and the

logical system is KT4 or KT5, we have j£[-[Sf]a. Since wN&, we

have w(=[Sf]a, so that [Sf]oceK.

Let K be a knowledge set for St. We say weM characterizes K

if K = Kw(Sf).

Theorem 6.6. Any knowledge set is characterizable.

Proof. Let K be a knowledge set. Let /d=Wff— KSt. We show

that the sequent K-+[St]A is consistent. Suppose otherwise, so that
\-K-»[St"]A. Then for some finite set {alv.., ajcj we have, \-K->

[Sf]alv.., [5t]an. Here, we have n>l since K is consistent by (KS1).

Hence, by (KS3), there exists an i(l<i<n) such that h-i£-»ae. By

(KS2), we have [Sfjo^eK. This is a contradiction. Thus, X-»[Sr]J

is consistent. So, by the Generalized Completeness Theorem, we can

take a model M=<PF;r , v> such that w^K^St^A, for some weW.

Then, clearly, we have K = Kw(Sf).

6.2.2. Informal Presentation of the Puzzle

The puzzle of unfaithful wives is usually stated like this:

There was a country in which one million married couples inhabited.

Among these one million wives, 40 wives were unfaithful. The situation

was that each husband knew whether other men's wives are unfaithful

but he did not know whether his wife is unfaithful. One day (call it

the 1st day), the King of the country publicized the following decree:

(i) There is at least one unfaithful wife.

(ii) Each husband knows whether other men's wives are unfaithful

or not.

(iii) Every night (from tonight) each man must do his deduction,

based on his knowledge so far, and try to prove whether his

wife is unfaithful or not.

(iv) Each man, who has succeeded in proving that his wife is un-

faithful, must chop off his wife's head next morning.

(v) Every morning each man must see whether somebody chops
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off his wife's head.

(vi) Each man's knowledge before this decree is publicized consists

only of the knowledge about other men's wive's unfaithfulness.

The problem is "what will happen under this situation?" The

answer is that on the 41st day 40 unfaithful wives will be chopped off

their heads. We will treat this puzzle in a formal manner.

6.2.3. Formal Ttreatment of the Puzzle

We will treat this puzzle by assuming that there are /c(>i) married

couples in the country. Then the language L = (Pr, Sp, T) adequate for

this puzzle will be:

where St denotes ith husband, pt means that S£'s wife is unfaithful and

teT denotes tth day. We employ KT5 over L as our logical system.

(Our argument henceforth can be carried out similarly in KT4 except

for one point, where an essential use of Lemma 6.4 is necessary. This

fact seems to suggest us that the negative introspective character of KT5

is essential for the solution of the puzzle.)

As in § 5.2, we define

n: {±}k - »Wff

k k
by 7r(e1"-efc)= A pf*. We put II = Image (n) and J70 = I7— { A pt}9 where

i=l i=l
Pi=~~\Pi- We also use n to denote arbitrary element in 17. Now, let F
denote the decree publicized by the King on the 1st day, and Bn(Stri)

(i =],..., k) denote a knowledge base for Stn under the circumstance

n = n(si'"Bk)eIJ0. Let us put

[T if *«(S,
T Bn(S,n) h-a 1 =

-L otherwise
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and

T if Bn(Stn)^(x,

1 otherwise,

where aeWff. Then, as a formalization of the puzzle, we postulate the

following identities:

SJ« + l]B.(S,n)U {[S^fi

U {[S^ + lJ-iCSjB^IB^Sjn^pj,;"!,..., k] ~-Eq(n,

V p,} U {[01]{S,l}/»7|7Vi, / = !,..-, k,j=l,..., k}
=l

>( r BK(Stn) \-pi 1 =3 [On +

U {[01] (*=>( f ^(Sjn)^^ 1 rD [On + l]-i [S^]pf))|7u 6 170,

U {[01] ( T Bn(Stri) ha n ID [01] (TT=> [S^a))!^ e U0?

; = !,.. . , f c , a e W f f }

The informal meanings of the above equations are as follows:

Eq(n, /, 1): Knowledge base for 5^1 under n consists of the knowl-

edge about what the King says on the 1st day and the knowledge about

whether other men's wives are unfaithful.

Eq(n, /, w + 1): If S/ could prove PJ in the nth night, then S£

knows on the n + lst morning that [_Sjri]pj, since S{ sees that Sj chops

off his wife's head in the n + lst morning. If Sj could not prove p-}

in the nth night, then Sj knows in the n + lst morning that ~~i [S^lpy,

since Sj sees that Sj does not chop off his wife's head in the n + lst

morning.



444 MASAHIKO SATO

Eq(*): The meaning of the Ist line of Eq(*) should be clear. The

2nd and 3rd lines mean that FOOL will know every morning whether
anybody could prove the unfaithfulness of his wife in the previous night.
The last line is an indirect definition of Bn(Stn).

Since the meta-notions such as knowledge base and provability (h-)

cannot be expressed directly in our language, we were forced to inter-

pret the King's order into F in a somewhat indirect fashion.

Now, if we read Eq(*) as the definition of F, then we find that the
definition is circular, since in order that F may be definable by (*) it

is necessary that Bn(Stn) are already defined, whereas Bn(Stn) are de-
fined in terms of F in Eqs(n, i, ri). So, we will treat these equations as

a system $ = {Eq(n, i, ri)\nen0, i = !,..., k, ne T} U {£#(*)} of equations

with the unknowns {BK(Stn)\n€lI09 i = l9...9k9neT} and F. We will
solve $ under the following conditions:

( # ) For any n e /70, F U {n} is consistent.
(Itlf) For any n e 7I0 and Stn9 Bn(Stri) is a knowledge base for Sfn.

We think these conditions are natural in view of the intended meanings

of F and B^n).

For the sake of notational convenience, we consider £ = { + }fe as a
/c-fold direct product of the vector space GF(2) = { + (=1), -( = 0)} with

addition ©. Thus, {et= ------ 1 ------ |i = l,..., k} forms a basis of E.

We define a norm on E by ||fi|| = |{i|ef= +}|, where e = s1---efc.
11) For

any £ = 81---e f ce£ and i = l,..., k, we put

e(~~ 0 = el '

and for any 7c = 7i(e)e/I, we put

We also put E0 = E-{Q} = E-{ }.

11) For any eeE, we will employ the convention of denoting the ith coordinate
of e by £j.
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Now, let us suppose that «Bn(Siri)\nen0, i = l,..., k, ne T>, F>

is a solution of $ under the conditions (#) and (##). Then the follow-
ing lemma holds.

Lemma 6.7. Let n = n(B)eII and neT. Then we have:

(0 //n>||e(+i)|

S«(-,)(Si»)Hft (if

00 //n<| |8(+OII

and hence

and

Proof. We first show that 5JE(+0(Sin) = Bje(_0(Sin) implies
and ^(^(S^-KJiv Suppose B^+^S^h-p,. Then B^.

Hence [Ol] «- i)=>(T => [On+ 1] [5fn]pf) e r. So,

(1)

On the other hand,

(2)

From (1) and (2), we have

(3) n(-i\T\-L.

This is contradictory to the condition (#). Therefore we have Bn(+i)(Stn)

t. B^-i^Sirij^pi is proved similarly.

We now prove the lemma by induction on n.
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Proof of (i). Suppose |[e(+ 011 = 1- Then, since

_ k
,...,pfc, V^PI -+pi9

CMO

and

we have 5w( + 0(5fl)|-/?£. The rest of (i) is vacuously true, since n( — i)

eJI0.
Proof of (ii). Suppose \\e(+t)\\>L Then, BW(+I)(SI1) = B,(.I)(SI1)

follows directly from Eq(n(+i), i, 1) and Eq(n(—i), i, 1).

Proof of (i). First we show B7c( + 0(Sfn)h-p£ from the assumption that

n=| |e (+OII- Since n>l , we can take j^i such that £,•=+. Then ft(+0
= 7i( + 0(+j) and ||s(+0(+j)|| = n>n — 1. By induction hypothesis, we

therefore get Bn( + i)(Sjn—l)^pj. Hence,

(4) [S^] i [Sjn - llpj e Bn( + t)(Sjri) .

On the other hand, since n(— i) = n( — 0(+j) and \\s(—i)(+j)\\=n — l,

we have by induction hypothesis, Bn(-i}(Sjn — I)l-Pj. Hence, by Eq(*)

(5) [01] (n( - 0 = (T => [Ow] [S^ - 1]̂ )) e F .

From (4), (5) and Eq(n(+i), i, n\ we have Bie(+0(SJn)l--i7r(— 0- Since

B, (+0(S*l)Kw(+Ov7r(-0 and 57c( + 0(S,n)3[Sin]...[S£2]57E(+0(5il), we have

B7C( + i)(5iw) h-7r( + 0 v TU( — 0- Hence we have B7E( + 0(S^n) h-7i( + 0- There-
fore, BK(+0(5fn)l-^.

We next show that J^(_0(Sfn)h-jpf from the assumption that n =

||s(+OI|. We can take j&i such that 8^=+. Then ||e(-0(+j)ll = «-l-
By induction hypothesis, Bn(_^(Sjn — l)^-pj. Hence,

(6)

Since ||s(+0(+j)ll =n> w^ have by induction hypothesis,
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Hence,

(7) [01] (TE( + 0 => (T =? [On] -i [S,n - 1]̂ )) e F.

From (6) and (7), by an argument similar as above, we conclude that

The case n>||e(H-i)|| is now easy, since we have

for any m.

Proof of (ii). We next consider the case n<||e( + i)||. By induction

hypothesis, BK(+i)(Sin-l) = Bn(_i)(Sin-l). Since j|e(+i)(+j)il > K-0(+j)ll
> n — 1 for any j, we have by induction hypothesis,

and

Hence Bw(+0(Sj-w — l)T^py and B^^^Sjn—l^pj. Thus, we have

= jBw(_0(SiW) by £^«+0, i, w) and Eq(n(-~i\ z, n).

Summarizing this lemma, we have:

Corollary 6.8. 5^(5^) h-pt- if and on/j; if e£= + and n>||e||.

We next prove the following lemma.

Lemma 6.9. For any 7r = 7r(g)eU0, {n} U F is complete. I.e., for

any aeWff, either

I- TT, F -> a

or

h-a, TC, F-».

Proof. By induction on the construction of a. First we note that3

by condition (#), it is impossible that both n9 f->a and a, TT, F-^ are

provable.
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ocePrll {!}:

If a=pi then we have Tih-pf*. Hence, clearly, \-n, F-»a or h-a, n,

F->. If a=-L then we have h-J-, n, F-».

<x=P^y:

Suppose h-TT, F-»y. Then we have I-TT, F-»a by the following proof

figure:

P, K,

Suppose h-^, TT, F-». Then we have H-TT, F-»a, similarly.

By induction hypothesis, we see that the remaining case is \-n,

and h-y, TT, F-*. Then, we have H-jS^y, TC, F-> by (=>->).

Suppose h-j5, 7i, F->. Then we can construct the following proof:

85 TT, F-

tn-jP, n, F->

Suppose h-Tc, F->jS.

(A) We first consider the case n>||e(+z)ll-

(Al) The case 7u = 7c(+0-

In this case, noting that [OlKTiC+O^CT^COn + l] [Sfn]pf))eF by

Lemma 6.7, we first construct the following proof figure.

(1) -L-*

[01]
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Let yV*. Then, since [Ol] {S;l}pj e F, we have the following proof

figure.

(2) py^py

P]J->PjJ

From (1) and (2) we have

(3)

(A2) The case n = n(-i):

We treat the critical case of n=||e(+i)||. Then we see ||e(-i)
= n — 1>1, since n(— i) = nen0. So, we can take j^i such that 6^= +

Then, since \\e( + i)(+j)\\=n and \\e(-i)(+j)\\=n-l, we have

and

[01] (<- 0 = (T => [On] [S^ - l]Pj.) e r.

Hence we obtain the following proof figure.

From the above proof, for any n;>||e(+i)ll, it follows that

(4) H«(-0,r-*[S(nK-0.

Since 7t=7i(+i) or 7c = 7r(— i), we have from (3) and (4),
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(5) h-^r-^Knbr.

Using (5), we obtain the desired proof figure:

(5) [_Sin-]n,

TT, F->rS;«l7c

(B) We next consider the case n<||e( + OI|.
Let s' = e®et. Then, by induction hypothesis, we have the following

two caseSo

(Bl) McCe'Xr-^jS:

The following proof figure takes care of this case.

n(s)9

TC, F-> [S ]̂ (7c(e) v 7c(e')) [•£>»] (rc(e) v 7r(e'))9

(B2) H
We first show that

(6)

Suppose n = n(+i). Then, by Lemma 6.7, we have ^(Sjn)^^. Since

Bn(Stri) is a knowledge base by condition (tJ), we have Bn(Stri)\-

"n[S£n]p£ by Lemma 6.4. (Note that we are considering in KT5, Here

we remark that this is the only point where we use the assumption that

our logical system is KT5.) Then by Eq(*)9 we see that

[01] (j:

Hence we have
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(7) h-Ti, jT-v <Sin>-}pi.

Now, for any cr, T e Wff we have

(8) h- < Stn > <7, [Sfn]r -> < Sfw > (a A T)

as can be seen from the following proof figure.

er, T-><7 AT

"l(cr A T), T-»~icr

T) , [S>] T -> [S>] "I (7

in>((r AT)

Now we can obtain (6) from (2), (7) and (8) (where we put 0=-\pi

and T= A pjj). The case 7i = 7i( — i) may be treated similarly.

We can then construct the following proof figure:

P, *(<a

(6)

, TC,

If h-j!, 7i, r->, then we have h-[Orc]& TC, F-» by ([On]-*). So? sup-
pose I-TT, r->)?. Then we have the following two cases (C) and (D).

(C) The case n>max{||e(+OII |i = l,.», fe}.
As in (A2) it is sufficient to prove the critical case of n = max{||e(+OII I

i = l,..., fe}. Let us put I(e) = {i\ei=+}.

(Cl) The case /(e)^{l, 2,..., fc}:

In this case, we have n = ||e|| + l. Consider any i such that s~+.

Then we have n = n( + i), and since n — l>||e|| = | |e(+OII» we have Bn(Stn
— l)\~Pi by Lemma 6.7. Hence we have

[01] (n =» (T => [On
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So, we have

(9) KTT, T^ [On] [5^-1] .̂ (if st=+)

and hence

(10) h-rc, F-»[On]# (if e f =+) .

Let £ = {<5e{±}fe|/(e)c/((5)}. Then, by (10) we have

(11) h-7i, F-»[On] v n(S).
deD

Now, take any <5eD — {e}. Then we have \\d\\ >||e||=n — 1. Since n(s)

eJT0, we can take an i such that st=+. Then we have <5 = <5(+i).

Since ||<5||>n — 1, we have j^^n — l)!̂ , by Lemma 6.7. Hence, we

have

[01] (7r(<5) => (T => [On] -i [S,n - 1] j>,)) e r.

From this, together with (9), we have the following proof figure.

(12) . - .
(9) -. : .-

TT, r-^ [o«] [Sj/i
TT, r->[On]([5'ln~ I]/?, A 7i

From (11) and (12), we have

(13) h-7T,r^[On]7r.

(C2) The case /(«) = {!, 2,..., fc}:

In this case, we have e=H ----- h and n=||e|| (=fc). Let

We can find an i such that 6t=+. Then we have n-l> ||

Hence, by Lemma 6.7, we have B^^n — I)h-Pj. Hence, we have

(14) [01] «<5) =. (T => [On] [S(n - 1]̂ -)) 6 r.

On the other hand, since n — l<||e|| = ||e(+i)||, applying Lemma 6.7, we

get B^Sin — l^pi. So, we have
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[01] (7T=>(T

Hence, we have

(15) HT^r

From (14) and (15), similarly as in (12), we obtain

(16) (-TC, F-»[0n]-i7i((5) (if c5e£0-{e}).

By (16), together with the fact that h-F-»[0H] V n(6), we have
SeEo

(17) HTT, F -> [0n]7r.

Now, by the results of (Cl) and (C2), we can construct the follow-

ing proof figure:

(13) or (17) [0«]7r,

[On\n [On] n,

(D) The case n<max{||fi(+0|| I * = !,..., fe}.

Let /) = {5e£0l'«<max{||5( + O I | | i = l,..., fe}}. Take any <5e£0-D
and choose an i such that <5~+. Then since k>n by assumption, we

have n>max{||(5( + O I I M = l,..., k}> \\d\\ = \\d( + i)\\. Hence, we have

so that

(18) [01] (n(8) ^ (T

On the other hand, we have

regardless of n = n(+i) or 7r = 7r(— 0> so tnat

(19) [01] (TI ̂ (T = [On]-i Kn -
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From (18) and (19), we have

(20) I-TC, r-»[0n]-i7c(5) (if 5eE0-D).

From this, we have

(21) H-TT, F->[0n] V7r(<5).
deD

Next, let d e D. Then we can find y *, . . . , ym e D such that y1 = e,

ym = <5 and ||yl©7i+1|| = l (i = l,..., m-1). Now, take any i such that

l<i<m — 1. Let <y f©y i+1 = ej-. Then we have yi = yi(+j) or y* =
?'(-./). Suppose, first, yf = y*(+/). Then yi+1 = yi®ej = yi(-j). Since

y l+1eD, we have n<max{||y* +1(+OII |I = l,.-9 fc} = llv l +1(+j)ll- Then we
can apply (6) and obtain

(22) H-7r(f ), JT -» < 5,-n > <yi+1) .

We can obtain (22) similarly for the case yi = yi(—j). From (22), we

get

(23) h-7r(yO, r-><On> n(yi

From (23) we obtain the following proof:

n(y2),

), r-+<On>n(y3)

Namely, we have
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(24) I-TC, F ->< On > 7t((5) (if d e D).

(Though the above proof applies only for m>l , (24) clearly holds even

if m = l (i.e., s = (5).)

Now, by induction hypothesis of the lemma, we have the following

two cases.

(Dl) \-n(5\ F -> ft for any d e D:

Let D be enumerated as D = {<51,,.., dd}. Then we have the follow-

ing proof:

(25) ... . . .

(21) V 7r(<5),

/i] V n(S) ^ [Qn\ V
deD deD

(D2) h-)5, 7r(5), F-> for some (5eD:

In this case, we have the following proof figure:

(26) - . . .

(24)

7i, r->
[o«]/j, w, r-*

This completes the proof of Lemma 6.9.

Suggested by this lemma, we construct a KT5-model M=<E0 ;

r, v> as follows:
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(i) (e,<5)er(Si5 n) i f f

(a) s = 5

or

(b) 8®S = eg and n<\\s(+i)\\

(ii) (e, <5)er(0, n) iff

(c) e=c5

or

(d) n<max{||fi(+OI| |i = l,...,fc} and

(iii) sev(pt) iff st=+.

(iv)

As an example, we illustrate M for k =

s3i
- 01

02 "02

Ol

02

Ol
531

^ 01

Ol

Fig. 6.3. Structure of M for A:=3

The following lemma shows that M is a model of JT.

Lemma 6.10. Let seE0 and aeWff. Then we have \-n(s)9 F-»a

if and only if e^a (/« M).

Proof. The proof is obtained by faithfully tracing the proof of

Lemma 6.9. We prove that (a) eNa implies h-7i(e), T->a and (b) e=ia

implies h-a, 7u(e), F-», by induction on the construction of a, How-
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ever, we only prove the case a = [On]j8 since other cases may be dealt

with similarly by referring to the proof of Lemma 6.9.

Proof of (a).

Suppose et=[On]j5. We have two cases.

(A) The case n>max{||e(+i)|| | i = l,..., k}:

Since 8(=jS, we have

by induction hypothesis. Together with (13) or (17) in Lemma 6.9, we

have:

(13) or (17) n(s),r-*p

7r(e), r->[0«]£

(B) The case n<max{||e(+OII M = l,..., k}:
Let DH = {SeEQ\n<m3x{\\6(+i)\\\i = l,...,k}}. By the definition of

we have s-^-^d for any 5eDn. Then we have (5N/?, since

Hence, by induction hypothesis, we have

for all 6eDn. Then we have

by (25) in Lemma 6.9.

Proof of (b).

Suppose e=|[Ow]j8. We have some d such that (M/? and e-

(C) The case n>max{||e( + f)|| I i = l,.~, k}:
In this case, by the definition of r, we have 5 = s. So, we have

by induction hypothesis. Hence we have
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(D) The case n<max{||e(+OII M=l,.. .? k}:
By the definition of r, we have 5eDn. Then, by (26) in Lemma

6.9, we have

Lemma 6.11. Let ee£0 and oceWff. T7ien we have Bre(

z/ and only if e|=[S^]a.

Proof. Only if part : Suppose Bn^(Sin) I— a. Then we have

Bn(Ey(Siri) h-[Sfn]a. Hence, we have

[(91] (T => [01] (7i(e)=D [S,n]a)) e F.

From this we see that

), F -> [S4n]a.

Hence, by the above lemma, we have

If part: We have two cases.

(A) n>| |e(+OI|: Since [S«w] Kn-l]-^!]^ eB^Sfl) for any
and ^(e/S^rc) I-/?*' (Lemma 6.7), we have

Since ef=[Sin]a, we have

h-7i(e), r

by Lemma 6.10. Thus we obtain the following proof figure:

n(s)9

(extension)
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(B) n<||e( + OI | : Let 5 = 6©^. Since c -^ g, we have <5t=[SjH>-

Hence we have the following proof figure:

Combining the above two lemmas, we have

Corollary 6.12. Let ee£0
 fl/l^ aeWff. T/iew we have 5ff(e)(jSfn) h-a

// a/id on/j // h-7r(e)3 r->[5^i]a.

Let us recall here that we have been arguing by assuming that

«Bn(Sin)>,r> is a solution of $ satisfying (S) and (*jf). By

inspecting Eq(*)y we see that F is uniquely determined by Lemma 6.11

(provided that < < BK(Stn) > , F > is in fact a solution of $ under (J)

and (*J)). So, let f cWff be defined by:

U {[01](7c=>CP(7t, i, n,

1 = 1,..-, fe? n

U {[01](7c=>(P(7c, i, n, p

f = l,..., fc, n

U {[01](P(7C, i, M, Qc)

f = l,..., fr, ? t eT ,aeWff}

where P and JP are defined by

T if
, /, n, a=

otherwise
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and

T if e=)[S,n]a
P(TT(S), i, n, a)=<

_L otherwise.

Using this F, we define Sw(Sfn) inductively by means of equations:

U {[S,l]pj'l7Vi', 7 = 1,-., fc},

U

U

where n = n(e).

In order to show that thus defined «57C(Sin)>, F> is the unique

solution of $ under (#) and (##), we prepare several lemmas.

Lemma 6.13- F satisfies ($), i.e., /or 0nj> se£0, {7r(X)}uF is con-

sistent

Proof. It suffices to prove that s |= {n(e)} U F (in M). It is clear that

et=7c(s). It remains to show that et=f. However, we only prove (a)

£ 1= [01] (TT =3 (P(7r, i, n, p£) ̂  [On + 1] [S,n]ft)) and (b) B h [Ol] (n => (P(TT, i, H,

Pi):D[^w+l]~-i[5£n]]7f)), and leave the verification of remaining parts to

the reader.

Proof of (a).

Take any 5 e £0 such that s -£!» 5 and suppose that d \= n and

S\=P(n, i, n, PI). Then we have n = n(6) and <5 N [S^n]] .̂ Suppose, by

way of contradiction, that there is a y e E0
 sucn tnat ^ Qw+1 > 7 and y =[

[Sfn]p£. Then we have y^d and hence n + l<max{p(+/)ll I / = !,-. -, fe}.

Hence, n<||5(+OI|. But, since (5 1= [Sfn]pf, we have n>\\S(+i)\\, which is

a contradiction.

Proo/ o/ (b).

Take any § such that e -̂ -» (5 and suppose that 5\=n and 5 N P(TC, i,

n, pj). Then we have n = n(5) and 5 =| [S^n]^. Suppose further that

there is a y e £0
 such tnat <5 -2n±l_> y and y \= [5fn]p£. Then we have

and hence n + l<max{||y( + O I I I /=!,.•., fe}. Hence, n< | |y(+OII- But,
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since y \= [S^n]^, we have n> | | y (+OI I - This is a contradiction. Thus, we
see

Parallel to Lemma 6.9, we have the following lemma.

Lemma 6.14. Let ee£0 and n = n(s). Then, for any aeWff, we

have either \—n, f-»a or h- a, n, f-».

Proof. By a slight modification, the proof goes exactly parallel to

that of Lemma 6.9. For example, in place of (6) in Lemma 6.9, we

obtain

(6) h-7r, f -> <Sjn>7c(e')

by the following reasoning: Suppose n = n(+i). Then, since w<| |e(+i) l l»

we have e^S^n]— i[SfH]Pi (by the definition of M). Then, by the defini-
tion of f , we see that

[01] (T => [01] (n ID [S,ii] -i [S,n]ft)) e f .

Now the proof of (6) goes completely parallel to the proof of (6) in

Lemma 6.9.

The following lemma may also be proved parallel to Lemma 6.10.

Lemma 6.15. Let seE0 and aeWff. Then we have \~ n(s), F-^a

if and only if e|=a.

We next prove the analogue of Lemma 6.11.

Lemma 6.16. Let ee£0 and aeWff. Then we have 5ff(e)(S£w) h-a
if and only if

Proof. We prove the following three propositions by induction on

n.

(A) B*to(Sin) f-a implies e N [S£n]a.

(BH) n>\\s( + i) || implies Bn( + ̂ Sp) \-pt and Bn( _ 0(S,n) Kp, (if TC( - 0 e /70) .

(Q eN[S4n]a implies B^S^) h-a.
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We first remark that to prove (An) it is sufficient to prove:

(A'H) eN-SUton).

For, suppose eNB7E(£)(Sin) and 5Jt(e)(Siw) h-a. Then we have

->a, and hence \-Bn(E)(Siri)-+[_Siri](x, (by (->n, [S^n])). Since e

we have e|=[S^]a by the Soundness Theorem.

Proo/ o/ (Ai). g |= Sw(8)(Sjl) is easily verified since s\=F and h-jS
for any fieF.

Proof of (B}). This is proved just as in Lemma 6.7.

Proof of (Cj). This is proved similarly as in Lemma 6.11 by means of

(B]) in place of Lemma 6.7 and Lemma 6.15 in place of Lemma 6.10.

n>l :
Proof of (A'n). That e|=[Sjn]5B(e)(S,n-l) easily follows from (A^).

Next, suppose that Bn(E)(Sjn — l)\-pj. By (/4w_i) we have

(1)

Hence, by the definition of M, we have S\=PJ and

(2) n

Suppose s=l[Sj/7] [Sj^ — ljpj. Then, for some 5 such that e -^> 6, we

have

(3)

From (1) and (3)5 we see that s^<5, and hence n<| |e (+OII- This means

n-K||c||,

which contradicts (2). Thus we have shown that

Suppose now Bn(E)(Sjn — 1)^^-. Then we have

(4) e=l[S,ii-l]p,

by (Cn-i). By (4) and by the definition of M, we have



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 463

(5) n~-K\\s(+j)\\.

By way of contradiction, let us suppose s=\ [S^n] -i [SyH — l]p/. Then,

for some 6 such that s -^» <5, we have

(6)

By (4) and (6), we have d = s®et. By (6) we see that

(7)

By (5) and (7), we have ||e(+j)||>||5(+j)l|. Hence we see that i^j

and e(+i) = e. Now, since £^d and s -^> <5, we have

(8) n

On the other hand, from (6) we have n — 1> ||<5(+j)||. Hence

which contradicts (8). Therefore we see that e N [S^n] ~i [S^n — I]j77- if

o/ (Bn). First we show that 57t(+i)(Sin)h-pi from the assumption

that n=| |e(+OII- Since n>l, we can take a jVi such that £7-=+.

Then | |e(+i)(+7)ll=w>'»-l. Hence we have e( + fH [S^-ljpj. So,

by (A-i)> we nave Bn(+i}(Sjn-l^pj. Hence,

(9) [Sjn]-! [SjW- r\Pj e

Since \\s(-i)(+j)\\=n-l, we have eC-ONCSjW-llpj. Hence, by (Cn^\

we have B^^Sfi — l)\-pj- Hence, we have P(n(— i)5 j, n — 1, PJ) = T?

so that

(10) [OllW-O^CT^COnlCS^-ll^ef.

From (9) and (10), we have Sw( + 0(Sin)h--i7c(-0- Since S1t(+0(SI.n)

|-7r( + 0v7c(-0, we see, 5w(+0(Sjii)l-7c( + 0. Hence B^+^S^f-^.
The proof of 57c(_i)(S

r
iw)|--pi from the assumption that n= |K+OII

is obtained similarly by modifying the corresponding proof of Lemma 6.7.

The case n>||e(+OII is now easy.
Proof of (Cn). Similar to the proof of (C^.
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Corollary 6.17.

P(n, i, n, a) = j if and only if Bn(Siri) |-a.

By Lemma 6.5, we also have the following corollary.

Corollary 6.18. 5^(5^) is a knowledge base for Stn.

By Corollary 6.17, we see that «B7t(Siri)>, F> is indeed a solu-

tion of $. Furthermore, by Lemma 6.13 and Corollary 6.18, we see

that «Bn(Siri)>,r> satisfies (tt) and (*#). Since we already know

that $ has at most one solution under (#) and (##), we have thus es-

tablished the following theorem.

Theorem 6.19. Under the conditions ($) and (##), $ has the

unique solution «Bn(Sin)>.> F>.

Thus we have seen that F may be regarded as the formal counter-

part of the King's order in our formal system. The puzzle is then re-

duced to the problem of showing that:

(Px) If ||e||=n and e,= +, then SnM(Sin)^pi and BKM(

We note that we can moreover prove the following:

(P2) If ||e||=n and e,= -, then Bn(e)(Stn + 1) \-pt and 5,(£)

Though Lemma 6.16 gives us a solution to the problems (Px) and (P2),

we show below a sample proof for the case /c = 3 and e= + + — :

We put n = n(s) = pl^p2^pl- Noting that [S^] ~i [S21] p2 e B^S^)

since S^rTK^, and [Ol]«- + -)zD(T^[O2][S2l]p2))ef since

57t(_ + _)(S2l)h- p2, we can construct a proof of

as follows. (See Fig. 6.4.)

The model M=<E0;r,v> has played a crucial role for the solu-

tion of $. We wish to point out that M may be considered as essential-

ly the unique and hence the inherent model of f . Let us consider any

KT5-model N=<WN; rN, VN> such that w0|=f (in N) for some w0EWN.



KRIPKE-TYPE MODELS FOR SOME MODAL LOGICS 465

«
t

co

CO

" «!

tS
sx<

r~~i
f-H

es
CO
I— J

t
fS

PX<
I 1

fS
co(

«s
GH
n

«s
CO
i — i

t*2
r— i

csa

t
H

CS
a,
i — iT— H

CS

CO
i — i

T
?Si — i

T-H

fS
CO
1 — 1
I— 1

sa

i-
T

cs
sx,

I— 1
T-H

rq

211 '
t

CS
P^

1 — 1
i— 1

<S

J2
PTa
n
h-

T
+
i

X̂T
+
i
v

M
5=^

r~~i
•»— (

rs
CO
i i

X
"*M
PX

r~~i
T-H

£
r~~i
CN
o
L±J

n
h;

7T
/— s

1
4_i

1
i-j
F»

T
+
i
¥

d
ex,

1 — 1
(N

CO
1— _I

X
<N

cx<
1 — 1
T-̂ H

csa
f7a
n

7̂T
T
+
i

s^, s
K^^-x'

I—I
1— 1
0
1 — 1

T
+
i
v

t
*2

r— i
T— *

CSa
r

<N
SXn

I — 1

cs
CO
1 — I

r
£i — i

T— I
CS

CO
1 — 1

r
f7
co"

N
sxi — i

T— (

ts
CO
U_J

i
es 1

PXi
1 — 1
T— i

CS
PX«

I — I
T— H

f^
Tjf*.

&1

^
/^

1

4.i

P̂:

fS

5 a
^7 T
co "-
i i 1 — 11 1 ,

t ~J co
«kn i I
1 — 1 I — 1

""i ^
co" GO"
L_J U-J

^ ^
1 I

4- 4-1 1

JL ^LK ^

co co

X
r7
co"

.̂ B

11
+

V̂

sS

X
CN̂

co"
'*+-*'

l^
/^

11

+

^̂

sS
t
K

E*4t
0?

&
K

icq

tT

sS

X
r?

«̂T
/^

1
+

J^
V
>
K

1 «*>la.
<

cs

^
t

R
Tjf\Q

ICQ*

1

i «la,
<
fS

PX,

<

liS

IS
<

CS

CX,

<
^H

RH

XCN"

Q&
Joq

^— s
11

+

^Pi

>

Pi

t

f?

Q
K

ieq

T-l

PX<

X
rT

co^
«?<K^

.co
i «f I

CNf

to
I

I

W)

E



466 MASAHIKO SATO

Let W0 = {we WN\(w0, w)erjv(0, 1)}. Then by restricting rN and % to W09

we obtain a model JV0= < WQ
m, rQ, VQ> and still have w0\=F (in N0).

Let NQ = NQ/XNQ (where we take relational closure and characteristic func-

tion in the category jT5(Wff)). Then by Theorem 4.9, we have that N0

is reduced and w 0N=f (in JV0). We also have r0(O9 l)=W0xWQ. Hence

we have w|=f (in $0) for all weWQ. We will prove that JV0 is strongly

isomorphic to M.

First, we define a function

h: W0 >E0

by letting /i(w) be the unique ee£0 such that w\=n(s) (in N0). Since

w |= f and [01] V pt e F, we see that h is well-defined. Let weW0 and

e = /i(w). Take any formula a. Suppose e|=a (in M). Then we have

\—n(s), JT-»a by Lemma 6.15. From this, since w|=r and w(=7i(e),

we have w|=a. Thus, we see that h is a homomorphism (in JT5(Wff)).

Let 8 be any element in JE0. Take any w 6 W0. Since h-f ->

<Ol>n(s), we have w|= <Ol>7r(e). Then there is a w'ePFo such that

w'(=7c(e). Hence we have h(w') = s. Thus we see that h is onto.

Since N0 is reduced, %NQ = XM°h i§ an injection by Lemmas 4.2 and
4.7. Hence h is also an injection.

Take any SeSp and n e T. Let w, w' e J^0. Suppose w -^ wf.

Then w N < Sn > 7r(fc(w')) (in N0). Hence ft(w) N= < Sn > 7c(A(w')) (in M).
This means /i(w) -̂ -» /i(w'). Next, suppose /i(w) -^» h(w'). Then ft(w)

1= < Sn > n(h(w')) (in M). Since h'1 is a homomorphism, we have w

1= < Sn > n(h(w'J) (in A^0). Hence there is some w" such that w-^-»w"

and w"\=n(h(w')). So, we have h(w") = h(w'). Since h is injective, we

have w" = w'9 so that w-^-»w'.

Thus we have proved that JV0 is strongly isomorphic to M.

Remark. We can analyze the wise men puzzle furthermore by a

method similar to the one we used in this §. We wish to discuss it in

a paper to be published jointly with McCarthy et al.
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