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Computational Complexity of Multitape Turing
Machines and Random Access Machines
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§1. Introduction

In recent years there has been an increasing interest in analyzing
the computational complexity of programs. The multitape Turing ma-
chine has become the standard model used for evaluating time and stor-
age complexity, even though such machines are not much like any exist-
ing computers. Some authors, however, implement their algorithms
not on Turing machines but on random access machines. In 1972
Cook introduced a formal model of a random access machine. This
model is closer to real computer, for real computers calculate the ad-
dress of desired storage cell within a short time before fetching its content.

Notation. Let N denote the set of natural numbers and let [fc]
= {0, l,...,/c-l} for each keN. Hence [0] = 0. We regard [k] as an
alphabet consisting of k symbols. Thus, a language is a subset of [Jc]*
for some keN.

Let / and O be sets. We denote by [/-»0] the set of all partial
functions from I to O.

Definition 1.1. A computing machine is a 3-tuple M = (L,./, t),
where

(i) L is a language,
(ii) «/ is a function from L to [/-»O], and
(iii) t is a function from L to [I-»JV] satisfying the following condi-

tion: for each PeL and xel,
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(3.1) S(P)(x) is defined iff t(P)(x) is defined.

The function «/ is called the interpretation of M and «/(P) is the

partial function realized by P under M. We say that t(P) is the time

complexity of P, and sometimes write t(P, x) instead of t(P)(x). The

set I is the input domain and O is the output domain.

Definition 1.2. Let M=(L, «/, t) and M' = (L',S'9t') be computing

machines with the same input domain / and output domain O. Let

/: N-»N be a function. Then M is said to be f(n)-translatable to M'

if and only if for each PEL, there exist P' e L' and constant c satisfying

the following conditions:

(1.2)

(1.3) for each xe/, if t(P, x) is defined, then t'(P', x)^c/(t(P, x)),

that is, if a program P in L takes time T(X) for its execution, then there

is a program P' in L7 which computes the same partial function as P

within time C/(T(X)). If f ( n ) = n, we say that M is linearly translatable

to M'. If / is a polynomial, then M is polynomially translatable to

M'.

In this paper, we consider the following types of computing ma-

chines :
RAM ••• the random access machine with indirect addressing,

RAMR--- the random access machine without indirect addressing,

SM ••• the step machine with indirect addressing,

SMR ••• the step machine without indirect addressing,

TM ••• the on-line multitape Turing machine.

We compare these models on the basis of their ability to reflect

the complexity of an algorithm. The results obtained in this paper are

summarized in Fig. 7.1. In [7], Cook has shown that the RAM is

n2-translatable to the TM. In Section 5, we show that this upper bound

cannot be improved, that is, we show that the RAM is not n2~£-

translatable to the TM for any e>0. This yields a negative answer in

the case of on-line model to an open problem suggested by Borodin
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[5] and Aho, Hopcroft and Ullman [2].

One of the purpose of this paper is to construct a good model to

use in the theory of computational complexity. We maintain that the

SM is a good model, since both RAM and TM (and hence, any re-

stricted type of these machines) are linearly translatable to SM.

§2. Random Access Machine

Definition 2.1. Let D be the set of functions d: N-+N. Each ele-

ment d of D is called a memory. For each z e AT, d(i) represents the

contents of register i. For each deD and i,jeN, let d(i*-j) be the

memory defined by

d(fc) if

j if fc = i.

For each neN, let

n if n^2
Logn=

[ 1 if n<2.

Definition 2.2. The RAM instructions, together with their meanings

TABLE 2.1 RAM Instructions and Execution Times

Instruction

1. LOADrc
2. SETCrz
3. STORE n
4. READ n
5. WRITE n
6. JZERO n
7. ADDn
8. SUB n
9. INCRw

10. DECRn
11. LOAD*n
12. STORE *n

next memory

d(0<-d(n))
d(0<-n)
d(n<-d(0))
d(0<-6 'input")
d
d
d(0«-d(0) + d(»)
d(0«-d(0)-d(ft))
d(0*-d(0) + l)
d(0<-d(0)-l)
d(0<-d(d(n)))
d(d(n)^-d(0))

execution time for RAM

Log n + Log d(n)
Logn
Logn + Logd(0)
Log n + Log ' 'input"
Log n + Log d(n)
Log ft
Log n 4- Log d(0) + Log d(ra)
Log n + Log d(0) + Log d(n)
Logd(O)
Logd(O)
Logn + Logd(n) +Logd(d(n))
Log n + Log d(n) + Log d(0)
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and execution times, are given in Table 1.1, where n is an element of

N and d represents a current memory.

Definition 2.3. (a) A RAM program is a finite sequence of RAM
instructions, (b) A RAMR program is a RAM program without the
instruction types LOAD #n and STORE *n. (c) A SM program is a

RAM program with neither ADD nor SUB. (d) A SMR program is a

RAM program without ADD, SUB, LOAD *n and STORE *w. Thus,
it is a SM program without LOAD *n and STOR *n.

Definition 2.4. An element (i, x, y,d) of N x JV* x N* x D is called
a configuration of random access machines. Let P = s1s2---s fc be a

program with s£ being instructions. Let |p be the relation over the con-

figurations defined as follows. We write

(i9x,y9d)\r(i',x',y'9d')

if and only if the following conditions are satisfied:

( i ) l^i^fe,

(ii) if st is JZEROn and d(0) = 0 then i' = n else i' = i + \,

(iii) if st is READn then x = a - x f for some aeJV else x' = x

(iv) if si is WRITE n then / = j>-d(n) else / = )>,
(v) d' is the next memory determined by Table 2.1.

Let | be the reflexive transitive closure of Ip. If a|f/? and there is

no y such that J?|py3 then we write a|Jj8.
Let d0 be the memory defined by

</0(i) = 0 for all ieN.

Let e/(P): AT*->]V* be the partial function defined by

) = y iff (1, x, A, d0)F(i, A, j;9 d')

for some z'eN and d'eD. J(P) is called the partial function realized

by P.

Definition 2.5. (a) Time complexity of RAM and RAMR: The

time complexity of a RAM program (or a RAMR program) P is the
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function tRAM(P): N*-+N such that tRAM(P)(x) is the sum of the execu-
tion time taken by each instruction executed on input x, where the time

required by each instruction is shown in Table 2.1.

(b) Time complexity of SM and SMR: The time complexity of a

SM program (or a SMR program) P is the function tSM(P): N*-*N

such that tSM(P)(x) is the number of instruction steps executed by P

on input x. That is, in these machine, each instruction requires one unit

of time.
Henceforth, the subscript M on tM is dropped whenever M is under-

stood.

Definition 2.6, Let x = xl •x2--xn be an element of JV* with each

xt being in N. The proper length of x, denoted by ln(x), is defined

by

ln(x)= X Logx£.
i=l

Let f:N-+N be a monotone increasing function and let P be a

program. Then P executes within time f (alternatively, P is said to be

f ( n ) time bounded) if and only if

t(P, x) £ /(In (x)) for all x e N*.

A language Lc=[/<]* is recognized by a program P if L = DomJr(P).

L is recognizable within time /, abbreviated f-recognizable, if there is

a program P recognizing L which executes within time /.

Definition 2.1. Let / be a partial function from N* to N*. Then

/ is said to be of rank k if

Dom/c[/c]* and Im/c[fc]*.

A program P is said to be of rank k if the partial function realized by

P is of rank k. In this paper, unless stated otherwise, any program is

supposed to be of finite rank.

Remark. Note that any partial function realized by a Turing ma-

chine is of finite rank. Now we show that the condition of Definition
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2.7 is not too severe, that is, we show that any RAM program of infi-

nite rank can be simulated within an nlogn factor by a RAM program

of finite rank. Let ,4 = (1(0 U 1)*2 U 02)*. Let f : N*^>A and v: ̂ ->JV*

be the functions defined by

where x,- is the binary representation of the integer xt.

Then, by the proof of Theorem 4.1 in Section 4, it follows that for

any RAM program P, there exist a constant c and a RAM program P

of rank 3 such that

, and

§38 Relationship between the RAM and the SM

Theorem 3.1. Le£ P be a SM program. Then there exists a

constant c such that

W^, *)^-tSM(P, x)logtSM(P, x).

Proo/. Let g be the largest constant appearing as the argument of

SETC instruction in P. Let P be of rank k. Then, a number appear-

ing in any register during the computation is less than q + k + tSM(P, x).

Hence one instruction costs at most 0(logtSM(P, *)) time under the loga-

rithmic cost criterion.

Corollary 3,L The SM is nlogn translatable to the RAM. The

SMR is nlogn translatable to the RAMR.

Notation. Let L0 be the language defined by

L0 = {w2w*2|we{Q, 1}*}

where WR denotes the reversal of word w.
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Lemma 3.1. L0 is recognizable by a SM program which executes

within time f ( n ) = cn for some constant c.

Proof. Evident.

From Theorem 3.1 and Lemma 3.1, we have the following:

Corollary 3.2. L0 is recognizable by a RAM program which exe-

cutes within time f(ri) = cnlogn for some constant c.

The SMR can be views as a Neuman-type model realization for

counter machines [10, 11]. The following lemma is an immediate con-

sequence of the result obtained by Fischer, Meyer and Rosenberg [11].

Lemma 3.2. // L0 is recognizable by a SMR program which exe-

cutes within time f ( n ) , then f(n)^cn for some constant c>l and for

all n.

Combining Lemmas 3.1 and 3.2, we have the following result.

Corollary 3.3. The SM is not polynomially translatable to the

SMR.

Lemma 3.3. // L0 is recognizable by a RAMR program P

which executes within time /(/?), then f(n)^cn2 for some constant c

and for all n.

Proof. Let q be the largest constant appearing as the argument

of a SETC instruction in P. First we show that if m is the largest

number appearing in any register after a computation of duration T,

then

(3.1)

The proof will proceed by induction on the length of a computa-

tion. It is trivially true for computations of length 0, since a computa-

tion begins with all registers set to zero. Assuming that it is true for a

computation
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(1, w, A, 4)1(7, v, A, d),

consider the next move of this computation. We may assume that the

ith instruction of P is of the form ADD p. Since

T^(Log2max{d(0), d(p)} -Log2 q) ,

it follows that

T + Log d(O) + Log d(p) + Log p

^ (Log2 max{d(0), </(/>)} -Log2 q) +Log rf(0) +Log </(/>)

^ - (Log2 (</(0) + d(p)) - Log2 0) .

Therefore (3.1) holds for all computations.

Let / be the length of P and let k be the number of registers

used in P. Let m be the largest number appearing in any register after

reading a word of length ^-. Then, for two distinct binary word t*

and v of length ^—, if

(I,u2u*2,d0)%(i9u*29l9d) and

(1, v2uR2,d0)\%(i',uR2,l9d'),

then either i^i' or d^d'. Hence we have

(3.2)

From (3.1) and (3.2), it follows that

for some constant c>0.

Corollary 3.4 // the SM is f ( n ) translatable to the RAMR,

then
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s u p/W_>0.
JJ-»00 ft

If the RAM is f ( n ) translatable to RAMR5 then

Since the language L0 can be recognizable in real time by a Turing

machine, we have the following result.

Corollary 3.5. // the TM is f ( n ) translatable to RAMR, then

H->So /r

§4. Linear Simulation of the RAM by the SM

In this section, we show that the RAM is linearly translatable to

the SM. Since the SM programs to do this are intolerably long, it

will be convenient to describe them in a higher-level language called

SM-ALGOL, instead of the "machine language"' given in Section 2.

Definition 4.1. A SM-ALGOL program can contain one-dimen-

sional infinite arrays.

(a) An atomic statement is one of the folio wings

read v write v goto label

where c is a constant and v and w are either simple variables x or

subscripted variables of the forms

a[x] a[x + c] a{x — c].

(b) A condition is one of the fallowings

v=c

where c is a constant and v is a simple variable or a subscripted vari-

able,
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(c) A SM-ALGOL program is a statement of one of the following

types.

(1) atomic statement

(2) If condition then statement else statement

(3) if condition then statement

(4) while condition do statement

(5) repeat statement until condition

(6) label: statement

(7) begin statement:-"', statement end

(8) procedure name (/isf o/ parameters'): statement

(9) procedure-name (arguments)

(d) Recursive procedures are not allowed in SM-ALGOL programs, and

any procedure statement of type (9) should be previously defined by a

procedure declaration of type (8).

The time complexity of a SM-ALGOL program P is the function

t(P): N*-*N: such that t(P)(x) is the number of executions of atomic

statements and conditions executed by P on input x.

Lemma 4.1. Every SM-ALGOL program is linearly translatable

to a SM program.

Outline of proof. Let P be a SM-ALGOL program. Without loss

of generality we may assume that P contains no procedure call. To

prove the lemma, it suffices to show that there exist a SM-ALGOL

program P with exactly one array and constant c such that

for all inputs x.

Let the arrays used in P be A09 Al9...9 Ak,l9 and let simple vari-

ables used in P be Xl9...9Xt. The program P uses a single array A

and simple variables Xl9,..9 Xt, X'l9..., X't. The program P computes

values v and 2kv simultaneously whenever P computes the value v9 that

is, the program P can be constructed such that the following relations

are satisfied during execution:

X'—Ik-X,
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A[2ki + j] = Aj[i]

To do this, for example, the statement X^Xj + c in P is translated into

begin Xt +-Xj + c; X\ <- X'j + 2kc end,

the statement Aj[_X^*-Xt is translated into

begin A\_X\ +;'] <- Xt ; A\_X\ +j + k] <- X't end,

and the statement Xt*-Aj[Xi~] is translated into

begin Xt <- A[X\ + j] ; JT, «- 4[XJ + j + fc] end.

It should be evident that the program P can simulate P faithfully within
a constant factor.

Definition 4.2. Let m be a positive integer, and let m0, m l s..., mr

be elements of {0, 1} such that

w r=l, m= 2 Wf2 j.
»=o

In this paper, the binary representation for m means the word m0m^"

mt2. The binary representation for zero is the word consisting a single
letter 2.

Theorem 4.1. The RAM is linearly translatable to the SM.

Outline of proof. Let P be a RAM program. We now construct
a SM- ALGOL program P which linearly simulates P. The program

P uses arrays ACC, TEMP, INDEX, DATA and CONSm for each

constant m appearing as argument of instructions in P. Initially, for

each constant m appearing in P, the binary representation m^m^-'m^L

for m is stored in the array CONSm [0],..., CONSm [* + !].

The array ACC represents the register 0. The binary representation
a0a1-~au+1 for the contents a of register x is stored in DATA in a

contiguous set of subscripted variables
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DATA|>] = fl0, DATA[e+l] = fl1,...,

The integer e. is called the en try corresponding to x. If a register x

has been used thus far in the computation then the entry e correspond-

ing to x can be found by means of the array INDEX and the binary

representation x0xl"-xv+1 for x, that is, the integers e0e1"-ev+l can be

found such that

INDEX [x0] = *o

INDEX |>0 + *i] = *i

INDEX [ev + xv+l] = ev+l = e.

0
X0

l ==e

ITOP-+ DTOP-*

Fig. 4.1.

The procedure FIND(X, e) finds the entry e corresponding to X.

The procedure LOAD(^, e) brings the binary representation «oflr"flii+i

to the array X. Precisely, these programs are not SM-ALGOL programs,

since they contain the statement of the form e<-e + X\_j~]. This type of

statement, however, can be easily translated into a SM-ALGOL program,

since X\_j~\^2 holds whenever this statement is executed. Clearly, the

time complexity of FIND(Z, e) is 0(v)9 and hence O(Logx). The time

complexity of LOAD(Z, e) is O(u), and hence O(Logfl).
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procedure FIND (AT, e):

begin

e<-0 ; 7 ̂ -O;

repeat

begin

If INDEX [e] = 0 then goto notused;

*<-INDEX|>];

end

until *L/-1
goto return;

notused: e<-0;

end

Fig. 4.2. Procedure FIND

procedure LOADpf,

begin

y<-o;
If e 7^0 then

repeat

begin

end

until

end

Fig. 4.3. Procedure LOAD

To complete the proof, it suffices to illustrate the simulation of in-

direct addressing. The statements LOAD *ra and STORE *m are simu-

lated by the following SM-ALGOL statements. Now, it should be clear
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that these statements simulate faithfully within a constants factor.

begin

FIND(CONSw, e);

if

end

Fig.

e^Q then

begin

LOAD (TEMP, e)\

FIND (TEMP, e);

if e^Q then LOAD(ACC, e)

end

4.4. Simulation of LOAD *m by SM

begin

FIND(CONSm, e)

if e^Q then

begin

LOAD (TEMP, *);

£<-TEMP[0]; ;<-!;

if e = 2 goto return;

repeat

begin

if INDEX M = 0 then goto notused;

e 4- INDEX 0] +TEMP [ j] ;

end

until TEMP[j-l] = 2;

goto store ;

notused: repeat

begin

INDEX [>]<-ITOP;

ITOP<-ITOP + 3;

7*-J + l
end
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until
store: INDEX [e] <- DTOP ; 7 < - 0 ;

repeat
begin

DATA [DTOP] <- ACC [7] ;
DTOP«-DTOP+1; 7<- j

end
until ACC [j-1] = 2

end
return :

end

Fig. 4.5. Simulation of STORE *ra by SM

§5. Relationship between the TM and the SM

In this section we show that the SM is not n2~E translatable to the

TM for any s>0.

Definition 5.1. Let 17 be the subset of [4]* defined recursively as

follows :

(5.1) 3 6 17,

(5.2) If a is in 17, then Oa and la are both in U,

(5.3) If a and 0 are in [7, then 2a]8 is in 17.

For each a e 17, let 9(0) be the language over {0, 1} defined as fol-

lows:

(5.4)

(5.5)

(5.6)

where a and /? are elements of [7.

Lemma 5.1. Let V be any nonempty subset of {0, I}1. Then there
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exists an element a in U such that

V=<p(a) and |a

Proof. The proof will proceed by induction on i. It is trivially

true for i = 0, since (p(3) = A = {0, 1}°. Suppose that the lemma is true

for all j<i, i>0. Let VQ = {v\QveV} and V^WlveV}. Then, Vkc

{0, I}*"1 for fc = 0, 1. Thus, by the induction hypothesis there exist a

and ft in 17 such that

Hence

F= OF0 U 1 Vl =

and

Therefore the lemma holds for all i.

Definition 5.2. Let L1 be the language over [5] defined by L1

= 17(4(0 U 1)*)*4. Let g: [5]*-»[2]* be the partial function such that

(5.7) g(y) is defined if and only if yeL l s

(5.8) g(aAxl4.--4xjfi = blb2.-.bk9

0 if Xj€(p(a)

1 if x

where a 6 17, Xje[2]*.

Theorem 5.1. The partial function g can be realized by a SM

program in linear time.

Proof. Consider the program MAKETREE in Fig. 5.1. The pro-

gram MAKETREE terminates if and only if the input a is in 17. If

the program terminates, then the following condition is satisfied at the
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completion of the program execution:

(5.9) a string b0b1-"bk9 bte{Q, 1}, is in (p(a) if and only if there exist

integers e0, e l9..., ek such that

TREE[efc] = l

The program MAKETREE uses two stacks TREE and STAK with

pointers TRTOP and TOP. It should be clear that the time complexity

of MAKETREE is O(|oc|). In this program, loop means "dead-end,"

that is, loop is an abbreviation of while 0 = 0 do.

procedure MAKETREE:

begin
TRTOP 4- 2; TOP<-1;

while TOP/0 do

begin

read x;

if x = 0 v x = l then
begin

TREE [TRTOP + x] <- TRTOP + 2 ;

TREE [TRTOP + |x-l|] «-0;

TRTOP «- TRTOP + 2

end

else

if x = 2 then

begin
TREE [TRTOP] 4- TRTOP + 2;

STAK [TOP] <r- TRTOP + 1 ;

TRTOP <- TRTOP + 2;

TOP +- TOP +1
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end
else

if x = 3 then
begin

TREE[TRTOP]«-1;

TOP*- TOP- 1;

if TOP^O then
begin

temp ^STAK [TOP];

TREE \_temp] <- TRTOP+ 1 ;

TRTOP«-TRTOP + 1;

end

end
else loop;

end
read x;
if x 7M then loop;

end

Fig. 5.1. Procedure MAKETREE

The procedure TEST tests whether a given input x} is in cp(a) or

not, that is, writes 0 on the output tape if Xj is in 9(0), and writes 1

if Xj is not in <p(a). The time complexity of TEST is 0(1x^1). Now it

should be clear that the desired function g can be realized by a SM

program within time O(ri)9 where n is the length of an input string.

procedure TEST:

begin

*«-2;
repeat
read x;
if x = 0vx = l then

begin

if e = 0ve = l then write 1
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end

else

if x = 4 then

if TREE [>] = 1 then write 0

else write 1

else loop

until x = 4v e = Qv e=l

end

Fig. 5.2. Procedure TEST

Now we show that any Turing machine realizing the partial function

g requires at least n2/logn steps. The Turing machine which we shall

use is an ordinary on-line deterministic machine with a one-way read

only input tape, a one-way write only output tape and a finite number

of two-way, read and write working tapes of unbounded length.

A configuration of a m-tape Turing machine P is a 4-tuple

(q, x, y, d) ,

where q is a state, x is a input tape, y is a output tape and de(Nx

AT*)m. A pair (q, d) is called tape configuration. We denote by \?

the relation over the configurations which represents one move of the

computation of P. For each ieN and configurations c and c', we

write c ^ c' if there exists a computation from c to c' of length i, that

is, if there exist configurations c0,..., ct such that

We write c|f c' iff c\^c' for some i, c^c ' iff c|f c' and c7 /j£c" for all c",

c^c' iff ci-c' and cpc'. The partial function ./(P): JV*->IV* realized

by a Turing machine F is defined by

S(P)(x) = y iff

(g0, x, A, dQ) ]9 (g, A, j;, d') for some g and d',

where g0 is the initial state of P and d0 = (0, A)m.

The time complexity of P is defined by t(P)(x) = i if and only if
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there exists a configuration c such that

(00, x, A, d0) |i" c.

Theorem 5.2. // a Turing machine P realizes the partial function g

within time f(ri), then

log n

for some c>0 and for all n.

Proof. Let P be an w-tape Turing machine which realizes g within

time f(n). Let At be the subset of U defined by

^ = {a|(p(a)c={0, 1}'}.

By Lemma 5.1,

(5.10) *^ = 22<-l,

where 9 A denotes the number of elements in A.

For each aeAi9 let Ca be the set of tape configurations defined by

-.-xz4, A, d0)

, A, fri-ft,, d), ^i ,»M

where 00 i§ ^e initial state of P and dQ = (Q, l)m. Now we show that

for a, /? e >4f?

(5.11) if a^A then C a nC^ = 0.

Assume, for contradiction, that C anC^^0. Let (q, J)eC anC^. Then

for each xe{0, 1}S

x e <p(a)

iff (09x, A, rf)|^(0', A, 0, d') for some 0' and d'

iff x e cp(j5) .

Therefore, (p(a) = <p(j5). By definition, it should be clear that
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if and only if a = /?. Hence, we have a = /?, contrary to assumption.

Let P have s states and at most k symbols per tape square. We

may assume that k^.2. Let

(5.12)v '
. . ,
2m log A; + logs

Let F be the set of all tape configurations (q, d) which satisfy the

following conditions:

(5.13) (g, d)eCa for some oieAi9 and

(5.14) for every ye {0,1}', there exist t^h(i) and a configuration c

such that

Next we show that

(5.15) there exists ^eAt such that C a nF = 0.

Assume, for contradiction, that C a nF^0 for all aeAe . The only infor-

mation in storage available to P in next t moves is the present state and

the tape information within t squares of the head. From this informa-

tion, at most sfe(2f+1)m configurations can be distinguished in t moves.

Hence, by (5.10) and (5.11) we have

This, however, contradicts (5.12).

Now, consider the following input for P:

(5.16) z = a4xx4- • -x/4,

where Ca n F = 0, I = [2*/Q and xl9...,Xi are in {0,1}*. Then, by Lemma

5.1,

(5.17)

Consider the following computation:
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^(#1? x^—xfl, 1, di)

(^2^24"-xl49 bl9 d2)

faj+i, A, bi'-bfr dl+1).

Since C a n F = 0, (qj9 dj) is not in F for each j. Hence we have

for some constant c0 and for all i. Hence

for some c± and for all z. Since /(n) is monotone increasing with n,

we get

Corollary 5.1. // the SM is f(ri) translatable to the TM then

Combining Corollary 3.1 and Corollary 5.1, we have the following

result.

Corollary 5.2. // the RAM is /(n) translatable to the TM ffcen

Remark. Since it is proved by Cook and Reckhow that the RAM

is n2 translatable to the TM we can assert that this bound is close to

best.
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§6. Simulation of the TM by the

In this section we show that the TM is n2 translatable to the

RAMR.

Definition 6.1. The tape complexity of a Turing machine P is the

function sTM(P): JV*->N such that §TM(P)(x) is the number of tape

squares used in the computation on input x.

Definition 6.2. A multi-pushdown tape machine is a Turing ma-

chine with a read only input tape, a write-only output tape and a finite

number of storage tapes with two storage tape symbols 0 (blank) and 1.

Whenever a head moves left on any one of its storage tape, a "blank"

is printed of that tape. Thus, each multi-pushdown tape machine can be

viewed as a finite sequence of the following statements (we call this a

MPDM program):

( j )

(ii) POP[f]

(iii) IF TOP[i] = fe THEN GOTO n

(iv) IF INPUT -c THEN GOTO n

(v) WRITE c

where /, n, ceN and foe{0, 1}.

The effect of most of the instructions should be evident. For ex-

ample, PUSHfe[z] causes to print the symbol b on top of the stack i.

The instruction POP[z] causes to remove the top symbol of the stack

z, that is, a "0" is printed on the tape cell scanned and then the head

is moved left one cell.

Lemma 6.1. Let P be a Turing machine. Then there exists a

multi-pushdown tape machine (a MPDM program) P such that
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for some constant c and for all x.

Proof. Evident.

Definition 6.3. Let top: [2]*-»{0, 1, A}, pop: [2]*-* [2]*, pushO: [2]*

-»[2]*, pushl: [2]*-»[2]* be functions defined as follows:

b if w = vb, fee[2], t;e[2]*

A if w = A,

t; if w = vb, fee [2], i?e[2]*

if vv = A5

Definition 6.4. For each we [2]*, let xw and yw be the integers

defined recursively as follows:

(i) *A = 0, y, = l

(ii) if w = i;0 then

(iii) if w = ul then

The following results are immediate consequences of the above defini-

tion.

Lemma 6,2. For each we[2]*5
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xw>yw iff top[w] = 0

ww = 0 iff w = A

0<xw<yw iff top[w] = l.

Lemma 6.3. // w = t;fo with be [2] and ue[2]*5 then

xy = if xw>yw then 2yw — xw else 2xw — yw

3;,= If xw>yw then xw-yw else yw-xw

Lemma 6.4. For every w e [2]*,

Theorem 6.1. For anj; Turing machine P, Z/?ere exists a RAMR

program P such that

9 x)sTM(F, x)

for some constant c and for all x.

Proof. By Lemma 6.1, we may assume that P is a MPDM. Let

P have m stacks. If the contents of ilh stack is w, then the integers

xw and yw are stored in registers 2i+l and 2z + 2. Let Xt denote the

contents of register i. The simulation of P proceeds as follows:

(i) PUSHO[i] is simulated by

(ii) PUSHl[i] is simulated by

i t-2

(iii) POP[i] is simulated by
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2X2i + 2 — X2i+l

else 2X2i+2-X2i+l

2i+2 then X2i+1—X2i+2

else X2i+2 — X2i+l

(iv) the condition TOP[f] is simulated by

X2i+1>X2i+2.

By Lemmas 6.2 and 6.3, it should be clear that the simulations above

work correctly. By Lemma 6.4, each simulation requires at most O(s(P,

x)) time. Hence the total time spend by P is

0(tTM(P5x)"STM(P,x)).

Corollary 6.1. The TM is n2 translatable to the RAMR.

Proof. The proof follows from the fact that

In [7], Cook and Reckhow show that for each RAM program P?

there exist a Turing mach P and a constant c>0 such that

sTM(P? x)gc-tRAM(P, x).

From this fact, we have the following result.

Corollary 6.28 The RAM is n3 translatable to the RAMR.

§7o Conclusion

In this section, we summarize the results obtained in this paper.

Notation. Let M and M' be computing machines. We write (i)
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M-^->M' if and only if M is nk+E translatable to M' for any s>0,

but not nk~B translatable to M' for any e>0, (ii) M -^U M' if and only

if M is linearly translatable to M' (iii) M (-̂ i M' if and only if M is

n3+B translatable to M' but not n2~B translatable to M' for any e>0,

(iv) M —?£-» M' if and only if M is not polynomially translatable to M'.

Remark. Since the gap between H fe+£ and nk~E is small, the rela-

tion —£-» is practically optimal. However the gap between n2 and n3

is still wide, and the relation (-̂ l must be improved.

Open problem. Can the upper bound 0(n3) or the lower bound

O(n2) on the time for the RAMR to simulate the RAM be improved?

Acknowledgements

The author wishes to express his gratitude to Professor Satoru

Takasu for his advice. The author is also indebted to Professor Shigeru

Igarashi and Mr. Takeshi Hayashi for their suggestions toward this paper.

References

[ 13 Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Time and tape complexity of
pushdown automaton languages. Information and Control, 13 (1968), 186-206.

[2] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The design and analysis of
computer algorithms, Addison-Wesley, 1974.

[ 3 ] Book, R. V., On languages accepted in polynomial time, SIAM J. Comput.,
1 (1972), 281-287.

[ 4 ] Book, R. V., Greibach, S. A., and Wegbreit, B., Time- and tape-bounded Tur-



496 TAKUMI KASAI

ing accepters and AFL's, /. Comput. System ScL, 4 (1970), 606-621.
[5] Borodin, A., Computational complexity: theory and practice. In "Currents

in the theory of computing" (Aho, ed.). Prentice-Hall, Englewood Cliffs, N. J.,
1973.

[ 6 ] Cook, S. A., Linear time simulation of deterministic two-way pushdown auto-
mata, Proc. IFIP Congress 71, TA-2. North-Holland, Amsterdam, (1971), 174-
179.

[ 7 ] Cook, S. A., and Reckhow, R., Time-bounded random access machines, /. Com-
put. System ScL, 1 (1973), 354-375.

[8] Fischer, P. C, Predecessor Machines, /. Comput. System Sci.} 8 (1974), 190-219.
[ 9 ] Miller, R. E., and Thatcher, J. W. (eds.), Complexity of Computer Computations,

Plenum Press.
[10] Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall, Engle-

wood Cliffs, N. J., 1967.
[11] Fischer, P. C., Meyer, A. R. and Rosenberg, A. L., Counter machines and

counter languages, Math. Systems Theory, 2 (1968), 265-283.


