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A New Class of Domains of Holomorphy (I)

(The concepts of boundary resolutions and L-manifolds)

By

Osamu SUZUKI*

§ 1. Introduction

The present paper is the first part of our study of a class of do-

mains of holomorphy which includes certain complex manifolds with non-

Stein algebras, i.e., the algebra of holomorphic functions on the com-

plex manifold is not a Stein algebra.

Following H. Kerner [7], we can define the concept of domains of

holomorphy for holomorphically separable manifolds. In what follows

X is assumed to be a holomorphically separable manifold which is a

domain of holomorphy (see Definition (2.5)). If X admits a fibre dis-

crete holomorphic mapping with empty branched locus 0: X-+Cn
9

then the classical fundamental Oka Theorem states that X is a Stein

manifold. Unfortunately X does not always have such a fibre discrete

mapping. In this situation we encounter with tremendous difficulties.

For example, there exists a non-pseudoconvex domain with a non-Stein

algebra (for the definition of pseudoconvex domains, see Definition

(2.8)).

Then we have the following problems: What are the necessary con-

ditions of domains of holomorphy? and what are the good sufficient con-

ditions of domains of holomorphy?

The purpose of the present paper is to give a class of domains of

holomorphy including (1) non-holomorphically convex manifolds, (2)

non-pseudoconvex domains and (3) manifolds with non-Stein algebras.
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In order to discuss these problems, we consider general complex

manifolds at first. Let X be a complex manifold and let 0(X) denote
the algebra of the holomorphic functions on X. Following H. Grauert

[3], we introduce an equivalence relation on X as follows: For any

pair of two points p and q in X, p ~ qof(p) =/(#) for any fe&(X).

Then the quotient space W thus obtained has a structure of a ringed

space, which is denoted by Spec0(Z) (see Definition (2.2)). The

natural projection is denoted by w: X-+Sp&c&(X). Note that Spec^pf)

does not always admit the structure of a complex space. By F we

denote the smallest closed set such that Spec^pQ — F admits the struc-

ture of a complex space. A complex manifold X is called a resolution

manifold if X — m~1(F)^Spec(P(Z)-~F holds. Now we introduce the

notion of B-resolution (or boundary-resolution) of a holomorphically

separable manifold X as follows: A resolution manifold X is called

a B-resolution of X if Spec0(Z)-F^X When X is a Stein manifold,

we see that Spec0(Jf) = X, i.e., F = 0. So every Stein manifold X

has a trivial B-resolution X = X. As will be shown, it may be interesting

to consider a complex manifold X which has a B-resolution X with non-

empty F.

In what follows we assume

(A-l) A B-resolution X of X is given,

(A-2) Each fibre of w is connected.

By using the notion of B-resolutions, we can give a class of holo-

morphically separable complex manifolds, which are called L-manifolds

(see Definition (3.11)) and prove the following theorems:

Theorem I. Every L-manifold is a domain of holomorphy.

Theorem II. Every Stein manifold is an L-manifold and there

exist L-manifolds "which are neither holomorphically convex nor pseudo-

convex with respect to any representation (see Definition (2.4)). More-

over, there exist L-manifolds with non-Stein algebras.

Finally we are concerned with several examples due to H. Grauert
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[3] and M. Otuki [10] respectively and some discussions will be given.

In the second part of our study, we will construct B-resolutions

for certain domains of holomorphy on a certain 3-dimensional Stein

space with an isolated singular point and will prove that they are L-

manifolds. By using this construction, we can systematically make ex-

amples of L-manifolds.
The author would like to express his hearty thanks to Professors

S. Nakano, S. litaka and H. Fujimoto and Mr. T. Sasaki, Mr. H. Omoto

and Mr. M. Otuki during the preparation of the present paper.

§2. Basic Properties of Spec 0(X) and Generalities on

K-Complete Manifolds

Let X be a complex manifold. As in § 1 we consider the equiva-

lence relation and denote the quotient space by W. Following H.

Grauert [3], we define a structure of a ringed space as follows: Let

U be an open set in W and consider a continuous function / on U

which has the following expression:

(2.D ro*/= Z ailti2t_im'f(^f^'f^9
ii, 12 ..... im

where /i,/2>.-.j//n are holomorphic functions on X. Convergence means
compact convergence on U ~w~l(U). Then {/} make a certain sub-

algebra of continuous functions on U and from this we get a sheaf j&

as usual. Thus we obtain a ringed space (W, jtf).

Definition (2.2). The ringed space (W, $£} is written Spec0(X)

for simplicity. <&(W) denotes the algebra of global sections of jaf .

Here we state several basic properties of Spec0pQ (see H. Grauert

[3]):

Theorem 1. Let Ax = w~l(w(x)) for xeX. Then (1) Ar = {xeX:

dimxAx^.r} is an analytic set in X for each r. Therefore A = {xeX:

rk w > rkx w} is also an analytic set, where ikx w — codim Ax and rkw

= suprkxtn. (2) Suppose that rkxow is locally constant on some small
xeX
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neighborhood of XQ. Then there exist neighborhoods U of x0 and U

of w(x0) such that (i) (U, $0\^) is isomorphic to some complex space

and (if) w: U-*U is a holomorphic mapping with respect to the induced

structure in (i). (3) &(X)^jtf(W). (4) W is ^-separable, i.e., for any

pair of two points x and y in W with x^y, there exists an

such that f

Remark. By (2) in Theorem 1, (W— A, ^\W-A) *s isomorphic to
some complex space. Hence G7~1(F) is contained in A (for the defini-

tion of F, see Introduction). This implies that w~l(F) is a thin set in X.

In what follows we write X=W—F, Ox = ̂ \x-

As for the complex structure we have the following

Proposition (2.3). // w~1(w(x0)) is compact for x09 then there

exists a neighborhood of w(x0) in W which admits a complex structure.

Proof. By definition, we have

w-i(m(x0)) = A {

Then for any point peAXQ, there exist a neighborhood 17 and a finite

number of holomorphic functions /i,/2?..-?/r satisfying

By the compactness of AXQ, there exist a finite covering {Uj} of a small

neighborhood of AXQ and finite number of basis of the defining equations

/}1),/52),».,/Jr') 0 = 1, 2,.., k) of A^nVj satisfying

5=1
AXQ n Uj = A {x:

Hence we have

J=l S=l

Thus we have a holomorphic mapping $: X-+CN, <l> = (f{1\...9 f^^,
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/21)»---»/k r i e )) satisfying <l>~l(Q) = AXQ. Therefore $ is a proper mapping

on VE9 where VE = ^~1(DE) for a small polydisk De with center OeC*.

We find that because of the compactness of <P~1(^(p))1 the connected

component of <P~1(0(p)) containing w~1(w(p)) is nothing but w~1(w(p)).

By using (A-2) and adding more functions, we may assume

for PEVe.

By the Stein factorization theorem, we have a complex structure (UE, 0)

on l/e, where UE = $>(VE). Referring to (2.1) and taking account that

every element of $ is a holomorphic function on X, we see that (FE,

•a^sKl/., 0), where VB = w(VE).

In the rest of this section, we assemble notations on K-complete

manifolds. The definition of K-complete manifolds is given as follows:

Definition (2.4). X is called a K-complete manifold if there exists

a system of holomorphic functions f i , f 2 , ' - - , f n > where n = dimX such that

<J> = (f1,f2,...9fn):X-*Cn is a fibre discrete mapping. ® is called a

representation.

It is well known that every holomorphically separable manifold is

K-complete (see R. Iwahashi [5]).

Following H. Kerner [7], we can define the concept of domains of

holomorphy for K-complete manifolds as follows:

Theorem 2. Let X be a K-complete complex space. Then there

exists one and only one complex space X* such that (I) there exists

a fibre discrete mapping y: X-+X* such that for any holomorphic func-

tion f e & ( X ) there exists a holomorphic function f*e@(X*) satisfying

f=f*°y, (2) for any Y satisfying (1) with respect to y':X-»Y there

exists a fibre discrete mapping i\ Y-+X* such that (i) y = t°y' and (ii)

for any /ed?(7) there exists an JeO(X*) satisfying f=f°y and (3)

X* is a K-complete space.

Definition (2.5). X* is called the K-convex hull of X. If X^X*9

X is called a domain of holomorphy.



502 OSAMU SUZUKI

We fix a representation W: X-*Cn and describe the definitions of

boundary points of (X, W) and pseudoconvex domains. Following H.

Grauert and R. Remmert [4], we make

Definition (2.6). Let (X9 W) be a representation of X. A filter r

of open sets in X is called a boundary point if the following conditions

are satisfied: (1) r has no cluster sets in X, (2) (W(U), Uer} deter-

mines one and only one point r in Cn and (3) for any neighborhood

U of r, one of connected components of U=W~i(U) is contained in r

and moreover, r is equivalent to a filter generated by such open sets.

The set of all boundary points {r} is called the boundary of (X, W)9

which is denoted by dX.

We write %_ = X\)dX and introduce a topology on ^ as follows:

A neighborhood Wr of redX is a union of W0er and all the boundary

points determined by filters containing at least one open set WaW0

as an element. With respect to this topology, X_ is a Hausdorff space

and has countable basis at infinity. Set W(r)=r for redX and $(x)

= W(x) for xeX9 we have a continuous extension of W. We infer that

every boundary point is accessible.

Definition (2.7). Let D = {weC: |w|gl} and l = {t eR: O^rgl}.

Then (1) er:Dx !-»..£ is called a continuous family of disks if a is

a non-constant continuous mapping and W°G(W, tQ) is a holomorphic

mapping of w for fixed *o(P = *o = l)> (2) « continuous family of disks
is called an Oka family if {o"(w, t): |w|^l}c=X for Q^t<l and {cr(w,

0: |w| = l}c^

Definition (2.8). redX is called a pseudoconvex boundary point

if there exists a neighborhood U(r)<=:^ such that for any Oka family

crciU(r)9 {<7(w, 0: M^l and 0^t^l}cX holds. (X9 W) is called a

pseudoconvex domain if every boundary point is pseudoconvex.

Remark. The definition of (pseudoconvex) boundary points depends

on the choice of the representation.

Here we prepare two propositions which will be used later:



NEW CLASS OF DOMAINS OF HOLOMORPHY (I) 503

Proposition (2.9). Let X be a holomorphically separable mani-

fold. X is a domain of hoJomorphy if for any representation W:

X-*Cn and for any boundary point r of (X, W) there exists a se-

quence {qk} with gfc-»r(k-»oo) and a holomorphic function f e O ( X )

such that |/(gfc)|-*oo (fc-»oo).

The proof is easy.

Proposition (2.10). Let X be a E-resolution of X. Assume that

F is non-empty and that (9(X — w~l(r))^0(X). Then for any repre-

sentation lf/ = (fi, /2, ••-,/«), we have (1) every point of F can be regarded

as a boundary point of (X9 W), (2) if codim^4^2, then every boundary

point in F is not pseudoconvex and (3) X is not holomorphically con-

vex.

Proof. (1) First we note that in view of

f. (j = i, 2,..., n) can be considered as an element of jzf(W). Choosing

an arbitrary point p0 e F, we consider an open neighborhood U of pQ

in Spec^pf) in the following form:

U, = {pESpec0(X): \fj(p)-fj(p0)\<sj = l9 2,,.., n} .

The connected component of UE containing j?0 is denoted by _[)E. Set

V B = U e f t X . Then {_FJ generates a filter which satisfies the conditions

(1)~(3) in Definition (2.6). So {VE} determines one and only one

point redX. Proof of (2). Put t?j-1(FE)=Fe. Then VE is a neighbor-

hood of Ap0 = w~1(p0). First we construct an Oka family in VE. Take

a point p0 in AEo and a small neighborhood C/([/cF£) of p0. We fix

a certain system of local coordinates on 17. Then there exists a linear

space L through p0 in U satisfying (1) Ar\L={p0} in U and (2) codimyl

= dimL. Note that L-{pQ}c:X-w~'i(r), where A^AIo. By assump-

tion dimL^2. So there exists an Oka family such that {cr(ws t): |w|gl

and Q£t<l}cX-w-1(r),{<r(w,i):Q<\w\£l and t = l}cX-w-1(r) and

a(0, l^X-w'^r). Pulling er(w, i) down on Spec0(X) and identifying

pQ with r, we obtain an Oka family £ in X satisfying o;(0, l) = r, which

implies that r is not pseudoconvex. Proof of (3). Fix a point reF.

Choose a point peAJ. = w~1(r) and a local coordinate neighborhood U
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of p. Then there exists a linear subspace L through p as in (2). For

a small e we choose a polydisk D £ CL with center p and a compact

set K which contains the Silov boundary of D£ and which does not inter-

sect with ^nDg. By assumption every holomorphic function f E 0 ( X )

can be extended to fe@(X). So the holomorphically convex hull of K,

K must intersect with A, which implies that K

§3. Two Classes of Homorphically Separable Manifolds Which
Are Domains of Holomorphy

Let X be a holomorphically separable manifold and let X be a

B-resolution of X satisfying (A-l) and (A-2). We shall give two kinds

of holomorphically separable manifolds which are domains of holomorphy.

Manifolds in the former class are called H-manifolds, which are exten-

sions of holomorphically convex manifolds (see Definition (3.3)). Mani-

folds in the latter class are called L-manifolds, which are certain weakly

1-complete manifolds (see Definition (3.11)) with special kinds of posi-

tive line bundles.

First we fix notations. Let S be an analytic set of X of codiml.

Let S=\jSj be the irreducible decomposition of S. With some open
767

covering { U ^ } , S j r \ U ^ are defined by the minimal defining equation

as follows:

Take a set m of positive integers m7- for je/ and define a complex

line bundle [S]m as follows: On 17 A where SnU^09 there exists a

finite number of irreducible components Sjl9 SJ2,..., SJJL on l/A. Put

/PA on U, where Snt/^0,
"1

on l/A where Sn l/A = 0,

and

fjLt = <ftl<ft on UiHVr

Then {/A^} defines a complex line bundle, which is denoted by [S]m.
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The dual line bundle of [S]m is denned by {/}[•}} and is denoted by

[S]~m. Also for a positive integer r, a complex line bundle defined by

{/!£} is denoted by [S]-rm.
Consider a general complex line bundle E which is represented as

{eXu} with respect to some open covering {l/A}. A system of positive

C°°-functions {aA} on E7A is called a metric of E if

an=\e^\2ai on l / A nC/ M

are satisfied. Particularly when £ = [S]~m, a metric {aA} of [S]~m induces

a C°°-function on X:

(3.1) fc = flI1l0Tl2-

A line bundle E is called positive if there exists a metric {aA} such that

|yA§ajil defined by

- 83 log a ̂ = £ VA.tfdzJAdzJ
«, 0=1

is positive definite on each l/A. 0(E) denotes the sheaf of germs of

holomorphic sections of E. For a section cp e H°(X9 @(E)\ the follow-

ing is a global C°°-funetion on X:

where <p=={^A}. We write also

Definition (3.2). Jf is called [S]~m-convex except I if

(1) I is an analytic set in X,

(2) There exists a divisor S and a complex line bundle [S]~m such

that for any compact set K there exists a closed set K satisfying (i)

K — Z is relatively compact in X and (ii) for any point peX — ( K \ j Z )

and for any pair of two positive numbers e and I there exists a section

(peH°(X,&(tS~]-mJ) satisfying

\\K<s and

Remark. The definition does not depend on the choices of metrics.
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Suppose that X is [S] "'"-convex except Z and that I' is an analytic

set of X with ZaZ'. Then X is also [S]~m-convex except I'. In what

follows, we assume that S is contained in Z.

Definition (3.3)0 X is called an H-manifold if there exists a di-

visor S on the E-resolution manifold X such that X is {S~\~m-convex

except Z.

Theorem 3. // X is an H-manifold, then X is a domain of

holomorphy.

Proof. It is sufficient to verify the condition in Proposition (2.9).

Fix a representation W: X-»Cn. Choose a boundary point r and a

sequence {qn},qneX with qn-*r. Then we have a sequence {qn} in

X — w~1(F) where qn = w~1(qn). Now we replace the sequence {qn} by

{q*} satisfying the following three conditions: (1) {g*} is a divergent

sequence in X, (2) m(q*)-^r (n-*oo) and (3) {q*} is not contained in

m'^jT) U Z. By Proposition (2.3) we see that w'^r) is non-compact.

So the replacement can be always done. Then in order to prove the

theorem, it suffices to show the following

Lemma (3.4). Let {qn} be a divergent sequence in X with {qn}

c:X~Z. Then there exists a subsequence {qnj} and a holomorphic func-

tion feO(X) satisfying

Proof. Fix a compact exhausion {Kj} in the following manner:

Take a compact set K1 and an element q^eK^ of the sequence where

K denotes the open kernel of K. Choose K2 satisfying Kl—ZcK2

and an element qfl2GK2 — K1. Repeating this process we have {Kj} and

{qnj}9 where qn.eKj+l-Kj and KjdKj+l. We denote the {qnj} by

{qj} simply. By assumption we have ScZ. So we get the following

two sequences:

^fcQ?,)1'2

0 = 1,2,.. .)-
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For an arbitrary positive sequence {fij} there exists a sequence of sec-

tions {q>j}, (pjGH°(X, 0([S]-?n)) satisfying

(3.5)
\\\<Pj<qJ

Set

(3.6) /= Z <Pj,*<t>'L where cpj = {(p^} .
j=i

Then f^O(X}. In fact, on arbitrary fixed K^f can be expressed as

follows :

(3.7) /= S <Pj.di+ Z <Pj.dl
j<fi+i j^n

Referring to

(3.8) I^A^l^l^J2^!1!^!^!!!^-!!!2^

the second term of (3.7) converges uniformly on K^ by (3.5), which

proves the assertion. Now choosing {/?/} inductively, we may assume

(3.9) \f(qj+l)\*j 0= 1,2,3, . . . )-

In fact, we note that

\f\^\9»,dl\- Z K^ll- Z \<P}.di\-
J<H J>H

By using (3.5) and (3.8), we have

When / z= l , we have |/0?2)l^/?2 — 2. So we prove (3.9) in this case.

Assume that (3.9) holds for fc=l, 2,..., u-l. We note that Z I ^ / A ^ 2 l
J<P

depends only on Pl9 P2,---> P*-i> which is denoted by $„(#!, P2,.-., P^-i).
Then we find that l/^+i)!^/^ — ̂  — 2. Choosing /?M sufficiently large,

we get (3.9) for fc = ju. This completes the proof of (3.9).

Here we define L-manifolds. The following is due to S. Nakano [8]:
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Definition (3.10). X is called a weakly 1-complete manifold if

there exists a complete pseudoconvex function ^ on X of C°°-class,

where \jf is called a complete function if Xc = {il/<c} is relatively

compact in X for each c.

Definition (3.11). X is called an L-manifold if the E-resolution

X of X satisfies the following conditions: (1) X is a weakly l-com-

plete manifold and (2) there exists a complex line bundle [S]~m such

that (i) [S]~m is positive and (ii) [S]~rm®X^1 is also positive with some

r, where Kx denotes the canonical line bundle of X.

In this section the following theorems are essential, which are due

to S. Nakano [8] and H. Kazama [6] respectively:

Theorem 4. Let X be a weakly {-complete manifold. For a

positive line bundle B, we have

(1) H*(X, 0(B®K)) = 0 for q^l,

(2) Fix Xc for a constant c. Then for any compact set E in Xc and

for any positive constant e, we have the following: For any section

<peH°(Xc,0(B®K))9 there exists a section cp EH°(X, 0(B®K)) satisfy-

ing \\\cp-cp\\\E<e.

For simple proofs, see O. Suzuki [12]*.

Now we prove the following

Theorem 5. // X is an L-manifold, then X is an H-manifold.

Proof. We prove that X is [S]~m-convex except S. First note that

in view of the positivity of [S]~m, \l/ may be assumed to be s-pseudo-

convex on X — S by replacing i/r by \l/ + h. For the proof of Theorem

4, it suffices to show that for any compact set K, the holomorphically

convex hull K of K satisfies

* Theorem 2 in O. Suzuki [12] must be replaced by the statement (2). This correc-
tion is due to Professor S. Nakano. The author thanks him for his correction.
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(3.12) K-Sc:XCJ where c =
peK

Choose a point peX — (XCUS). Let \l/(p) = cf. Then we see that c'>c.

Take c'" with c'>c'">c and set E = XC»>. Since Jfc, is s-pseudoconvex

at p, there exist a neighborhood 17 and a continuous family of divisors

{Lt} (c'^t^c") in (7 with the following properties: (1) For any J,

Ltr\Xc, = 0, (2)L rna^ = 0 for r^c' and Lc,fiaZc, = {p} (3) Lt = {ft =

0}, where /r is a continuous function of t. For the proof, see R.

Narasimhan [9, Lemma, p. 357]. Making c" near c', we may assume

that Lt is a divisor on Xc» for each f. Let U = {L/A} be a covering of

Xcn which contains 17 as an element. We may assume that every ele-

ment [7A satisfying U^nE^0 has no common points with U. In the

following we denote U by U0. Consider a J-cocycle {<p$} which is
defined by

where f IIft on U0(p(t)— J
[0 on Ui

Then there exists a C°°-cochain {rj[t}} which is a continuous function

of t on C/A satisfying

Then

gives a Dolbault form corresponding to {<p$}, which is continuous
with respect to t.

Here we prepare a lemma. For a [S]~w-valued form / and a convex

increasing function #, we set

11/112 =

where * denotes the usual star operation and <Fc» = l/(l-!/f/c"). By

&%tq(Xc>., [S]~m, x) we denote the Hilbert space with respect to the
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above norm. Then we have the following lemma:

Lemma (3.13). For any convex increasing function #, we have the

following: For any f, there exists a C^-section n ( f ) of [S]~m such that

(1) SuW = gM and (2) \\u™-u<c">\\x - »0 (t - »c ' ) .

Proof. Let C be the minimum of the eigenvalues of the curvature

form of the positive metric of [S]""1®^1 on Xc». Then C is a posi-

tive constant. Consider

&t,q(Xc", isrm, x) i=± ̂ |.,+iCre., [5]--», 7) d± js« ,„(*,., [s-]-", x),
bx bx

where 5 denotes the extension of the usual 5-operation in the sense

distribution and bx denotes the adjoint operator of 5 in the theory

of Hilbert spaces. Then by O. Suzuki [12], we have

IIJ) for

where

Let Dx be the Laplaee-Beltrami operator. Then for any g

[S]~w, /) there exists a unique /z 6 D(5) n D(bx) satisfying

So we write h = Gx(g). By Andreotti-Vesentini [2, p. 96], we find

(3.14)

Now we apply the above formula to our g(t). Then owing to the

closedness of g(t\ we obtain

gM = dbxh«\ where hW = Gx(gW).

So setting
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we see that du(t) = g(t). Moreover by the construction of g(t\ we see

that ||0<o_0<0||2-+o(f->c'). Here by (3.14) we have \\u^~u^^\2^
(f-»0). So we prove our lemma.

By this lemma we shall prove the assertion of Theorem 5. We set

Then by the constructions of {rj^} and u(t) and by using the Cauchy

inequality, we find a positive constant C0 and tQ such that

HI (^ HI g Co on E and \$P(p)\£C0 for t^t0.

Now we set

Then {$1J)} gives a meromorphic section of [S]~m on Xc«. We infer

that

on

on

Hence we can find a positive constant Cl which does not depend on t

satisfying

sup Ill^lllgC, for t£t0.
K

Now take a pair of positive constants e and /. Multiplying

by a suitable constant, we may assume

fi_5 for t£t0,
K

where 5 is a sufficiently small positive constant. Choosing a

sufficiently near c', we have

Taking c*, c*/(c*/>c*>O such that Zc,, n {/r* = 0} = 0. We apply

Kazama's Theorem to 0(f#) on 3fc,/. Then we can find a section <^>

of [S]~m on Z such that
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III* -̂ "'Ib..̂ ,

which proves the assertion.

Here we consider 0(X) for the resolution X of an L-manifold X.

Definition (3.15). An algebra &# is called a Stein algebra if there

exists a Stein space Y satisfying £/ =

Theorem 6. Assume that X is an L-manifold. Then the follow-

ing hold: (1) In the case where F is empty, Q(X)^(9(X). So &(X)

is a Stein algebra. (I) If there exist an irreducible component A of

w~1(p) for a point peSpecd?(X) and a divisor D in X satisfying the

following three conditions: (i) AaS, (ii) A fl D^0, A$.D and (Hi)

[^]~1^0> then 0(X) is a non-Stein algebra.

Proof of (1). By the definition of the resolution manifold, we see

that X^X. So X is a K-complete and weakly 1-complete manifold.

Then by the theorem of A. Andreotti and R. Narasimhan [1], we see
that X is a Stein manifold.

Proof of (2). In the remainder of this section, we write F(X, 6>)

= &(X). For the proof of (2), we prepare a Lemma:

Lemma (3.16). Let J denote the ideal sheaf of A. By F(X, ,/w)
we denote the sections of the sheaf Jm. If there exists an integer m

(m g: 1) satisfying

(3.17)

then 0(X) is not a Stein algebra.

Proof of Lemma (3.16). Assume that F(X, (9) is a Stein algebra.
Then by the theorem of H. Grauert [3], the character ideal I(p) for

must be finitely generated over F(X , 0\ where I(p) = { f e T ( X , 0):
0). In the following we consider I(p) for a certain peA. The

generators of I(p) are denoted by /1,/a, •••>/ , - • By the choice of ^4,
we see that
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(3.18) f j e T ( X 9 S ) 0 = 1, 2,..., r)

and that

(3.19) dimcF(X, 0)1 F(X, ./) = !.

So (3.17) implies the existence of k satisfying

(3.20) dimc F(X, 0)/F(X9

and

(3.21) dimcr(X, 0)1 F(X,

Therefore we see that

(3.22) dimcr(^, J?k)/F(X,

Let nk:F(X, 0)->F(X, 0)/F(X9 J?k+1) and let nk(I(p)) = Ik(p). Then Ik(p)

is also finitely generated over F(X9 0)/F(X9 Jk+l) and every element

of /e/fe(p) can be expressed as follows:

(3.23) /= ±
J = l

where fj = nk(fj) and yjeT(X9 0)1 F(X,

In view of I(p) = F(X9 >), we see that

So (3.22) implies that

(3 . 24) dimc Ik(p) = oo .

Now consider the following exact sequence of C- vector spaces:

0 - > F(X, Sk)/F(X, Sk+1) - > F(X9 0)jF(X9

We denote the C-basis of F(X9 J?k)/F(X9 J?k+1) and F(X9 0)1 F(X, J?k)

by {ht} and [gn] respectively. By (3.20), {gn} is finite. Then y} in (3.23)
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is expressed as

where a^} and /^n) are constants.

Referring to (3.18), we see that

which implies that dimc/fc(p)<oo. This contradicts (3.24).

Now we prove (2) in Theorem 6. For this we shall prove the ex-

istence of m which satisfies the assumption of Lemma (3.16). Fix an

arbitrary point p0eDnA and consider the monoidal transform at p0.

The manifold obtained is denoted by X* and the projection is denoted

by Q: X*-*X. The following are well known: (M-l) Let Kx* denote

the canonical line bundle of X*. Then KX* = Q*(KX)®[N]»-1, (M-2)

N = Q-l(p0) is isomorphic to Pn~l and [ATlj^O, (M-3) if X is a weakly

1-complete manifold, then X* is also a weakly 1 -complete manifold and

(M-4) for any complex line bundle E on X, HQ(X9 0(E))s H°(X*9

First we consider metrics of [AT].

Proposition (3.25). (1) There exists relatively compact open neigh-

bor hoods V and U of N with V <g U and a metric {a^} of [JV] such

that dBloga^ is positive definite on V and ddloga^ = Q on X—U. (2)

Let E be a complex line bundle with E>0 and E®Kxl>0. Then there

exists a positive integer r0 such that

are positive on X* for r^r0.

Proof. We fix a covering of X as follows: For any point aeN

there is a neighborhood Up of p satisfying JVnl/p={0 = 0} with some

holomorphic function on Up. We cover JV by a finite open sets {Uj}

with this property on each Uj. We may assume that C70= U Uj is rela-

tively compact in X. Choose open neighborhoods U' and U of N with
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U'dUdUQ. Then we have a covering [Uj}0(X—U) of X, which is

denoted by {£/A}. By (M-2), we have a metric {aA} of [N] which is

negative on some small neighborhood V of N with V € 17. Define a

C°°-function cr(p) on X as follows:

0 on V

log a, on 17, = X- C7.

Then the metric defined by aAe~flr(p) on 17 A gives a desired one. Owing

to (M-l) and the construction of the metric {aA}, we can find r0 in (2).

We set

> ) for r^l and fc^l.

Consider

0 _> 0(£*t®[tf ]-i) — * Wk) — W*U) — * 0.

By Proposition (3.25) and Definition (3.11), E*k®Kxl®N~l is positive

for r^r0 and fc^l. Thus by using (M-3) and Theorem 4, we have

flrl(Jf*^(£**®[^"1) = 0 for r^r0 and fc^l.

Referring to H°(N, &(E?Qtk\N))^HQ(N, (9\ we see that for any non-

zero section <p< k > eH°(N9 0(E*0tk\N))9 there exists an extension $(k> e

H°(X*, 0(£*0ik)) for any fc^l. By (M-4) we have a section <p(k)e

H°(X, 0([S]-poI"®[D]-*)) with (p(fc)(p)^0 for any fc(fe^l). Multiplying

the defining equations of S and D, we have

where t / A nS = {^>A=0} and t/A nD = {??A=0}. Referring to

and by the assumptions (i) and (ii) in Theorem 6, we see that there
exists an integer m0 such that

Thus we obtain an infinite dimensional vector space {/(fe)} in F(X, 0)1

F(X9 c/mo+1)s which implies (3.17) for m = m0. So we complete the proof
of Theorem 6.
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§4. Examples

In this section we are concerned with several examples due to H.

Grauert [3] and M. Otuki [10] respectively. First we fix notations.

Let R be a compact Riemann surface of genus g (g ̂  1) and let F be

a topological trivial line bundle on R, which is expressed as {fAfi} with

respect to some open covering {FA}. nr:F-^R denotes the natural

projection and CA denotes the fibre coordinate on FA. By a well known

lemma, we may assume that |/A/J = 1 on FAnF^. So f=\^\2 is a global

function on F and Fe = {/<s} gives a fundamental neighborhood system

of the zero section. F is called of finite order if there exists a positive

integer k such that Fk is analytically trivial. Otherwise, it is called of

infinite order. Also we consider a negative line bundle G on R. With

respect to the same covering {FA}, G is expressed as {g^} whose fibre

coordinate on FA is denoted by *7A. By the negativity of G, there exists

a metric {aA} such that 3dlogaA>0. By this we get a pseudoconvex

function g = a^\rjji\
2 on G which is s-pseudoconvex except the zero sec-

tion. The following Lemma due to H. Grauert [3] is essential in this

section :

Lemma (4.1). In the case of finite order, there exists a proper and

fibre connected holomorphic mapping *F: FE-»D where D is the unit

disk such that 0(FE)^0(D). In the case of infinite order,

For the proof of Lemma (4.1), see H. Grauert [3] (or O. Suzuki

en]).
Example 1 (M. Otuki). Let F=F©G. n denotes the natural projec-

tion n: V-+R. In a natural manner the fibre coordinates of F and G

are regarded as fibre coordinates of F. Also / and g are considered as

functions on F. 0?A = 0} or {CA = 0} determines a divisor on F which is

denoted by D or S respectively. We set <p=f+g and Vc = {<p<c}. Then

we have the following

Proposition (4.2). For any c we have (1) [S]"1 is positive on Vc,

(2) [Sr]~m®^v;i is also positive for m^m0 with some m0, (3) [D]"1
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is positive semi-definite on Vc and (4) Vc is a weakly l-complete mani-

fold.

Proof. With natural identification, {0A} can be considered as a

metric of [S]. So define a metric {af} of [S] by af = a^. Then
we have a negative metric. Choosing a metric of the canonical line
bundle Kv and restricting to Vc, we get a metric of KVc. So we can

find m0 as in (2). [D] is expressed {/AjJ. So as a metric of [D], {1}
can be chosen, which proves (3). Set \l/ = l/(l — (p/c). Then ^ is a com-

plete pseudoconvex function on Vc.

Corollary. In the case of infinite case, 0(V^ is not a Stein

algebra.

This follows from Theorem 6 and the following

Proposition (4.3). (i) In the case of infinite order, (1) 0(VC-S)

= @(VC), (2) Every holomorphic function is constant on S and (3)
Vc— S is holomorphically separable, (ii) In the case of finite order,

w~l(w(p)) is always a compact set, where w: Fc->Spec0(7c).

Proof. n~l(V^ n (VC-S) is a circular domain. So feO(Vc-S)

is expressed as follows:

/=f i: alj=0 fc=-oo

where {<$•*>} e H°(R,

When k is negative, F~j®G~k is negative. Thus ap» fc )=0 for k with

fc<0, which implies (1) in (i). (2) in (i) is a direct consequence of
Lemma (4.1). By Proposition (4.2) and Theorem 4, we prove (3) in (i)

and (ii). Now consider Specd?(Fc). By Theorem 4 local coordinate

parameters on a small neighborhood of peFc-S can be chosen as global
holomorphic functions on Vc which vanish on S of high order. So by

the definition of j/ (see H. Grauert [3, p. 390]) we see that VC-S^

Spee0(Fc) — w(S). Now we prove the following

Proposition (4.4). In the case of infinite order, w(S) does not
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admit any complex structure.

Proof. Assume that w(S) would admit a complex structure, i. e.5
N

there exists an analytic set H in an e-ball DE = {(zl9 z2,..., ZN): ZlzJ2<e}
k = l

and a neighborhood U of w(S) such that (U, j&\g)^(H9 0#), where 0H

= 0(De)/./(JEO and ./(#) is the ideal sheaf of H. Note that 0(H) is a

Stein algebra. With natural identification, we may assume that mi U-+H

is a holomorphic mapping, where U = m~l(U). Put tn*(zJ-)=/J-. Then

/j 6 &(U) for each j. We define

fj.= l/(l-fj/e), where ^

and

Then 17 is a weakly 1-complete manifold with respect to $ = q>c + iiE.

So by Theorem 6, 0(C7) is a non-Stein algebra. Moreover, [7-S^F-{0}

and 0(I/-S)S0(C/). This implies that 0(U)^0(H), which is a con-

tradiction.

Therefore we see that Vc is a B-resolution of Ifc = Spec0(Fc) — f,

where F=w(S). By Proposition (4.2) and its Corollary, _FC is an L-

manifold and 0(KC) is a non-Stein algebra. Also by Proposition (2.10)

Vc is not holomorphically convex. In the case of finite order, w: Vc

->Spec0(Fc) is a proper mapping. So by Proposition (2.3), Spec0(Fc)

is a complex analytic space and by the theorem of A. Andreotti and

R. Narasimhan [1], it is a Stein space.

Example 2. Let G ( i >( f = l, 2) be negative line bundles on jR whose

fibre coordinates are denoted by r\(^ on 7A. Negative metrics are de-

noted by {#1°} respectively. We set g(i) = a[i)\rj[i}\2. Consider

T: V-+R denotes the natural projection. (£A, f/jj1*, ^2)) gives a system of

fibre coordinates on FA. Set (p = h + g(1^ + g(2) and define Fc = {<p<c}.

Then the following propositions which are analogous to Propositions

(4.2) and (4.3) can be proved:



NEW CLASS OF DOMAINS OF HOLOMORPHY (I) 519

Proposition (4.5), (i) Vc is a weakly \-complete manifold for each

c, (ii) [S^)]-1 is positive, where S^ = {?/i°=0} for i = l, 2, (iii)
[S(»')]-m(g)j£-i }s aiso positive for m^m 0 with some m0 for i = l, 2

and (iv) /e* D = {£A = 0}. T/ze/z [D]"1 is positive semi definite.

Proofs are almost the same as ones in Propositions (4.2) and (4.3).

In the case where F is of infinite order, Vc is a B-resoIution of

Fc = Spec0(Fc)-r, where F = w(E) and £ = S^>nS< 2 >. So we see that

_F"C is an L-manifold. In this case, codim£ = 2. So by Proposition

(2.10), Vc can never be a pseudoconvex domain for any representation.

By Theorem 6 we see that &(VC) is not a Stein algebra. These examples

show the following

Theorem 7. There exist L-manifolds which are neither holo-

morphically convex nor pseudoconvex for any representation. Moreover,

there exist ^-manifolds which have non-Stein algebras.

Example 3 (H. Grauert [3, p. 383]). We use the notations of H.

Grauert

Proposition (4.6). As for T={peF:h<l}, where h = \\p\\9 the fol-

lowing hold: (J) $(T-MUO)^0(T), (2) Every holomorphic function

is constant on M U O, (3) T — M u O is holomorphically separable, (4)

[M]"1®^]"1" is positive for m^m0 and [M]""®[D]~/7m®Kr1 is posi-

tive for n^.n0 and m^m0 , where ra0 and n0 are positive integers,

(5) [O]~1^0 and (6) T is a weakly 1-complete manifold.

Corollarjo (9{T) is not a Stein algebra.

Proof. Except (4), (5) and (6), proofs are given in [3] and (6) is

obvious. First we prove (5). By 7c*(F"1) = [O]"1, we see that (5) holds.

We express the metric of F as {q^} with respect to a certain covering

of X. Next we prove (4). Put ax = a^-Qh, where ax = n*(a^. Then {aA}

is a positive semi definite metric of [O]"1 which is positive on F — M.

Owing to [5]~1lo>05
 we have a metric of [S]"1 which is positive near

fi. Pulling up this metric by n and multiplying eh, we obtain a metric

of [M]~1 = 7i*([5]~1) which is positive near M. So choosing m0 suffi-
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ciently large we get a positive metric of [&~]~m®M~l on T for

The latter part of (4) is obvious and is omitted.
By this Proposition, we see that T is a B-resolution of r=Spec0(T)

— tn(MuC) and that T is an L-manifold.

Example 4. Finally we remark that for a holomorphically separable
manifold X, the B-resolution can not always be determined uniquely.
Let F and G be line bundles given in Example 1. Set H = F®G~l

and F'=/f©G, where F is of infinite order. Then we have

Proposition (4.7). Let S' = {^ = 0}, where r\'x denotes the fibre

coordinate of G. Then (1) [ST^O and (2)

The proof is similar to the one in Proposition (4.3).

We define <f>: F'-»Fby

where ((i, 7/9 denotes the fibre coordinates of V. By 4>, we see that
F'-S'^F-S. Referring to 0(V -S')^(9(Vr) and 0(F-S)^0(F), we

see that Spec0(V')-m'(S') = SpGC&(V)-m(S), where w'\ K'-> Spec 0(7').

Remark. Let F'C = ^~1(FC)5 then F'c can never be an L-manifold

for any c. In fact, <P~1(R) = S' is an s-pseudoconcave manifold. So

complete pseudoconvex functions can never be admitted.
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