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A New Class of Domains of Holornorphy (II)

(Domains of holomorphy on a three dimensional
Stein space with an isolated singularity)

By

Osamu SUZUKI*

Introduction

The present paper is the continuation of O. Suzuki [10]. There we

defined the concept of L-manifolds (see Definition (3.11) in O. Suzuki

[10]) and showed that every L-manifold is a domain of holomorphy in

the sense of H. Kerner [7] (see Definition (2.5) in O. Suzuki [10]).

Moreover, we showed that there exist L-manifolds which are neither

holomorphically convex nor pseudoconvex manifolds and there exist L-

manifolds which admit non-Stein algebras (see Definition (3.15) in O.

Suzuki [10]). These results are summarized in Theorems I and II in

Introduction in O. Suzuki [10]. Unfortunately, only two examples are

given there.

In this paper we shall prove that under the condition (A) certain

domains of holomorphy (which will be called simple domains) on a cer-

tain three dimensional Stein space with an isolated singularity are in fact

L-manifolds. By this we can systematically construct many examples of

domains of holomorphy which are not Stein manifolds.

Let M be a Stein space with an isolated singularity p0. As will be

shown in §3, every domain of holomorphy A_ which does not contain

pQ as a boundary point is a Stein space. But in the case where p0

e dA_9 the situation is not simple. There we can find many domains of
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holomorphy which have the properties far from Stein spaces. In order

to make the points of difficulties clear, we have to restrict our consider-

ations to the M with the following condition (A) and special kinds of

domains of holomorphy on M. The condition (A) is stated as follows:

(A) There exists a resolution of the singularity M of M, ti M-*M

with the following properties: There exist a non-singular compact al-

gebraic curve A and two complex line bundles F and G such that M is

isomorphic to F@G and T~1(p0) is nothing but the zero section.

We write the natural projection n: F®G-*A. In the following we

fix a fine covering {FA} of A and ZA denotes the local coordinate parame-

ter on FA and £A (resp. rjx) denotes the fibre coordinate of F (resp. G).

Also by H and H, we denote the divisor which is defined by ^ = 0

and the analytic set i(H) in M respectively. For the description of de-

sired domains, we prepare the following definition:

Definition (0.1). (1) A function <P defined on U — A, where U is a

neighborhood of the zero section, is called a conoid function of type

(k, I) along A if it is expressed as

on

where {a^} is a C^-metric on U of n*(Fk®G~l) and {bj} (resp. {CA})

is a non-negative C^-section on U of 7T*(GS®GS) (resp. 7i*(Fr (g) Ff))

with the following condition, where F denotes the conjugate bundle of

F:

and cA =

and k, / are positive integers and s, t are non-negative integers with

(s, 0^(0* 0)- (2) A function 3> defined on U—p0, where U is a neigh-

borhood of p0, is called a conoid function at p0, if cp = T*<f> is a

conoid function along A.

By this we make the following definition:
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Definition (0.2). A^ is called a simple domain if there exists a

conoid function ^ at p0 such that for every small neighborhood U

of p0, (i) AnU={^<£} for some positive constant & and (ii) there

exists one and only one connected component & of A_ n U with p0

In §2, we will give several examples of simple domains which are

explicitly written on M. Although the definition of simple domains looks

artificial, it seems to the author that other domains of holomorphy

which are easily constructed may be Stein in a small neighborhood of

Po-
Now we state our Main Theorem:

Main Theorem. Under the condition (A), simple domains are do-

mains of holomorphy if and only if they are L-manifolds.

Here we describe the outline of the proof of Main Theorem. First

we show that simple domains of holomorphy are normal conoids (see

Theorem I in § 1). As for the definition of normal conoids, see Defini-

tion (1.6). We note that it is defined only by using the property of M.

From this, by using the resolution of the singularity of indeterminancy

of the characteristic function $* (see Definition (1.6)), we can con-

struct the B-resolution A* of A^ in the canonical manner. Secondly we

shall make a weakly 1-complete function on A* by using Lemma (3.5)

(see Theorem II, IV). Finally we discuss the algebra of holomorphic

functions on A* by using the results obtained in the previous paper (see

Theorem III in § 1).

The author would express his hearty thanks to Professors S. Nakano,

S. litaka and H. Fujimoto and Mr. T. Sasaki, Mr. H. Omoto and Mr.

M. Otuki for their encouragements during the preparation of this work.

§1. Statements of Main Results

Let r.M-+CN be the imbedding of M in CN and let

(1.1) CO = C*(Q}'), where Q}' = \zi\
2 + \z2\

2+ - + \zN\2.
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Then we have an s-pseudoconvex function co on M. Let

(1.2) Vd(Po) = {peM:co(p)<6}.

Then we have a neighborhood system of p0 on M. Let

(1-3)

In the following, a domain on a complex manifold is assumed to

be a relatively compact domain without mentioning it.

Definition (1.4)e Let Q be a domain on M. (1) Q is called a

simple domain along A of type (k, 1) if there exist a conoid function

(frkj °f tyPe (^ 0 and a positive constant s such that for every small

positive <5, we have (/)

and (ii) there exists one and only one connected component Q'd of

QnVd(A) satisfying AadQ'd.

(2) Q is called a simple conoid along A if there exist a conoid func-

tion such that (0 there exist e and d satisfying

and (ii) for any point p e Q n VS(A), there exists S0 (which may depend

on the choice of p) satisfying

where F • = {q e VS(A) : ̂ (q) = <^,(p)} and rj"« = rjn ^(A) and (in)

for every small 5, there exists one and only one connected component

Q'd of On Vd with AadQ'd.

We note that AadQ. In the following, a simple domain Q on M

is assumed to have a boundary of a real submanifold of C°°~class of

codimension one except A.

Here we define special kinds of conoid functions and conoid do-

mains which are determined only by the resolution manifold M: Let
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c,(F-')=/ and c1(G-1) = 0,

where c{(E) is the first chern class of a complex line bundle E on A.

Choosing a pair of natural numbers k0 and /0 by the condition that

fk0 = glQ and /c0 and /0 have no common multiple other than 1, we con-

sider a complex line bundle

Then we see that EM is a topologically trivial line bundle on A. By a

well known lemma, we can choose suitable fibre coordinates £A and J/A

of F and G respectively so that EM is expressed as {eA/J with |eAJ = l.

In the following we fix such coordinates. Then

(1.5) **=[«l*' / | i tf l ' '

is a pseudoconvex function on M — H.

Definition (1.6), (1) </>* is called the characteristic function of M.

(2) AciM — H is called a normal conoid if A is a simple conoid with

respect to the conoid function 0* and A_^M—H is called a normal

conoid if A=T1(A) is a normal conoid.

In what follows we assume that A_ is a simple domain which is a

domain of holomorphy.

Definition (1.7). (1) A domain Q on a complex manifold is called

a pseudoconvex domain if the following holds for any boundary point

pedQ: There exist a neighborhood U(p) of p and a pseudoconvex

function <p on U(p) such that Q(]U={<p<Q}. (2) Q is called a domain

of holomorphy on M if there exists a holomorphic function f which

cannot be continued analytically across the boundary of Q.

Remark. (1) If Q is a domain of holomorphy on M, then Q is a

pseudoconvex domain. But the converse is not true in general. (2) The

definition of domains of holomorphy on a complex manifold M is

independent of the one of domains of holomorphy given in Definition

(2.5) in O. Suzuki [10].
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As for pseudoconvex domains we state the following Proposition which

is due to T. Nishino [8]:

Proposition (1.8)8 Let Q be a domain on a complex manifold M

and let S be a divisor on M. If Q — S is a pseudoconvex domain, then

Q is also a pseudoconvex domain.

Because A^ is a domain of holomorphy, we see

Proposition (1,9). A=i~1(A) is a domain of holomorphy and so

is a pseudoconvex domain on M.

By using these notations we state our main results of this paper.

Theorem I. Suppose that M and H satisfy the condition (A).

If A^ is a simple domain which is a domain of holomorphy, then A is

a pseudoconvex normal conoid.

Theorem II. Let AcM — H be a pseudoconvex normal conoid.

Then there exists a proper modification of M, (M*, /i, M) with the fol-

lowing properties: (1) Let A% = (iT~l(AJ) . Then A* is a weakly 1-

complete manifold, where E denotes the closure of E and E° denotes

the open kernel of E. (2) Let Z = iTl(A). Then [I1]"" is positive for

some n.

As for the definition of weakly 1-complete manifolds and notations

on complex line bundles, see §3 in O. Suzuki [10].

Remark. Because A% is a relatively compact domain on M*, so we

may assume that [r]""®^^1* is also positive on A*, where XM* denotes

the canonical line bundle of M*.

Here we consider the algebra of holomorphic functions on A%. A

topological trivial line bundle E is called of finite order (resp. infinite

order) if £®£®---®£ (/c-times tensor product) is analytically trivial

(not analytically trivial) with some k(k^0) (resp. for any k

Theorem III. (1) // EM is of finite order, then &(A*) is a Stein

algebra. (2) // EM is of infinite order, then &(A%) is not a Stein
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algebra.

For the definition of Stein algebras, see Definition (3.15) in O.

Suzuki [10]. Finally we can prove the following theorem, which also

proves our Main Theorem.

Theorem IV. If A is a domain of holomorphy, then EM is of

infinite order. Moreover, 0(A) is not a Stein algebra.

Remark. In the case where EM is of finite order, for any <2>: M

-»C3, A is a domain of holomorphy in the sense of H. Grauert and
R. Remmert [5], i.e., the ^-hulle of A_ is identical with A^ (for the defi-

nition, see H. Kerner [7]). But A_ is not a domain of holomorphy in

the sense of H. Kerner [7].

§2. Normal Conoids Which Are Domains of Holomorphy

In this section we consider a Stein space M with the condition (A)

and an analytic set H in M which is defined in Introduction. More-

over, we assume that EM is of infinite order. The purposes of this sec-
tion are to give some characterizations of normal conoids which are
domains of holomorphy and to give their examples. Only in this sec-

tion, domains are assumed to have C°°-boundaries of real submanifolds
of codimension one except p0, or intersections of such a kind of do-

mains.
First we give some examples of normal conoids. By Theorem I we

see that simple domains which are domains of holomorphy are normal.

Definition (2.1). (1) K<=.A_ is called a ^-compact if K—Vd(pQ) is

relatively compact in A_ for any d. (2) As for two domains A^l9 A2

on M>Ai^^A2 means that A_± is ^-compact in A2, (3) A^M has a
00

^-compact exhaustion {Aj} (j = l, 2,...) if (i) Aj^*Aj+i and \J Aj
= A-

The following proposition is easy.

Proposition (2.2). (1) Suppose that A,- (j = l, 2,..., r) is normal,



530 OSAMU SUZUKI

r
then C\A: is also normal. (2) Let A be a domain which admits a

j=i~J ~
^-compact exhaustion {A_j}, where A_j is normal for each j, then A_ is

also normal.

Definition (2.3)- (1) We say fG^l}k, if there exists a holomorphic

section (p = {(p^(z^)} eH°(v4, @(F~l®GkJ) such that f=t*f is expressed

as f=<pi(Z))Qriik. (2) We say fe0*l}m, if there exists a positive semi-

definite metric {a^(z^} of F~l®Gm such that f=t*f is expressed as

We set JK = \j,J{lk and 0> = \j0>lm.
l,k ' l,m

Definition (2.4). For fi9f2,-->,fr£^ (or, &) and for positive con-

stants s1? e2, ...,£,., we define

(2.5)

= {peM: \/1\<B1, |/2|<c2f...f |/r|<fir}

(2.6) ^(/i,...,/r: fii,-.., cr) = -d(/1,...,/r: el9...9 sr) n Vd(pQ) .

In the following, for simplicity we write A(f: e) or Aj^f\ e) for (2.5)

or (2.6) respectively.

Proposition (2.7). For /i,/2,...,/reuf (or &),Ad(f:e) is a nor-

mal conoid for each s and 8.

Proof. By Proposition (2.2), we may prove only the following: For

(or «^z>), we set

A ( f : s ) = {f<s} and Ad(f: e) = A(f: B) n Vd(pQ).

Then A_d(f:&) is a normal conoid for every e and 6. We prove the

assertion only for /e^. We assume that fe<Jfkil. We write /=

9i(zX\nll> where J=t*f. Then by Proposition (4.1)? we see that

(2.8) kf^gl

Let ^>* be the characteristic function of M. Then we have
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and

We define p(p>0) by l = 10p. By (2.8) and by the choice of kQ and /0,

we find a non-negative constant h such that fk=fpkQ + hf. First we

consider the case /i>0. Making <5' smaller, we may assume

Then we see that

on

{(t>*<s'}(}Vd,(A)^Ad(f:e) where e' = & and J,(/: fi) = T-M,(/: c),

which implies (i) in Definition (1.4). Let p e A d ( J : & ) and let (])*(p) = G.

Choose a point q^Fd
p (see Definition (1.4)). Then

Making <50 smaller, we may assume that

on Vdo(A).

This implies that |/|2(^f)<e for qer*>do. This proves (ii). (iii) is easy.

Next we consider the remained case, i.e., /i = 0. Then we find that fk

— gl. Therefore, we can find m satisfying k = mk0 and I = ml0. Then

we see that {^>A(zA)} eH°(A, 0(F-*°®G'°)m). Because EM is of infinite
order, we see that (p^(z^) = Q everywhere. This implies that /=0. So

the assertion is trivial in this case.

Remark. For /e^, we can prove the assertion in the same manner

as in Proposition (2.7) when fo>0. When /i=0, we see that /=c(^*)m

with some positive constant c. So the assertion is also proved in this

case.

Corollary (2.9). If A admits a ^-compact exhaustion {A^j}, where

AJ is a polyhedron defined as in (2.6), then A is also a normal

conoid.
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Now we shall give some characterizations of normal conoids to be

domains of holomorphy.

Definition (2.10). AaM is called holomorphically *-convex if for

any compact set KciA, the convex hull of K, K is also ^-compact.

Definition (2.11). (1) A real valued function <p on J ls called

^-complete if A_c = {cp<c} is ^-compact for each c. (2) A_ is called

^-complete domain if there exists a ^-complete pseudoconvex function

of C^-class on A.

Now we consider a normal conoid A_ on M. We set A=r~1(A).

Let ju: M*-»M be the proper modification described in Theorem II.

Then A* is a B-resolution of A_ and that Z = w~1(F) holds where F
= {Po} (as for the definitions of B-resolutions and n and F, see §1 in

O. Suzuki [10] and also see Proposition (6.9)). Then we have the

following

Theorem (2.12). Suppose that A is a normal conoid. Then the

followings are equivalent:

(i) A^ is a domain of holomorphy.

(ii) A^ is a ^-complete domain.

(m) -4 *5 a holomorphically *-convex domain.

(iv) A^ is an H-manifold with respect to A%, [£]"" and Z (see

Definition (3.3) in O. Suzuki [10]).

(v) A_ is an L-manifold with respect to A* and [I1]"" (see Defi-

nition (3.11) in O. Suzuki [10]).

Proof. (v)=>(iv). This is a direct consequence of Theorem 5 in

O. Suzuki [10]. (iv)=>(iii). Setting ff = t;°u9 we see that cr(I) = p0. Let

K^ be a compact set in A. In view of A* — Z = A, K = a~i(K) is also

a compact set in A*. By 0(Itn}(A^) we denote the subalgebra of holo-

morphic functions which are obtained from holomorphic sections H°(A^

0([Z]~M)) by multiplying the defining equations of [I1]". The convex

hull of K with respect to this subalgebra is denoted by K(n). Then we

see that K(n)-Z<£A* (see (3.12) in O. Suzuki [10]). For fe(9(Itn)(A*\
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a-i*(/) e0(2l) and {<r **(/)} make a certain subalgebra of 0(4). The

convex hull of K with respect to this subalgebra is nothing but 0(K(n)),

which is ^-compact. Hence K is also *-compact. (iii)=>(ii). Let K

be a compact set in 4- For qeA^—K, there exists a holomorphic func-

tion fe(9(A) such that !/(<?)!> ll/lix . This holds on a small neighbor-
hood of q. Now fix an arbitrary constant d (<5>0). Then there exist

holomorphic functions /i,/2, ••.,/!. on 4_ satisfying the following condi-

tion : Let

Then we have

and |]//||K<1 and e,>l 0 = 1, 2,..., r).

Now take positive constants e and / and compact sets K and K. Then

we can find holomorphic functions gl9g2,...,gs so that

(2.13) 9=±tej\2

satisfies

(2.14) \\9\\K<z and (p(q)>l for qeK-A.

Let {<5V} be a sequence of positive numbers with <5V-»0 and let K± be

a compact set in A. We make an analytic polyhedron A± for (^19

Zdi(Po))' Let ^.i =^i— i^X^o) and l£t K2 be a compact set with A$d

K2. Next we make A_2 f°r C^2» ^2(^0))- By repeating this process
we have a compact exhaustion {JJ} of A. Choose e^ and /,- O'=l, 2,...)

with 2ej<°° and Jj- >oo (jf->oo). For each j we construct ^ as in (2.13)
which satisfies (2.14) for K = Kp K = AJ+1, B = ej and l = lp Then

is a He-complete pseudoconvex function on J. (ii)=>(i). By Theorems

II, III, IV, it is sufficient to show that A=t~1(A) is a pseudoconvex

domain. For any point qedA—A and for any sequence {qn} with gn-*g
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we see that T*<p(gw)-»oo. So A is pseudoconvex at dA—A. Now we
prove that A is pseudoconvex at every boundary point on A. Take a
point qeA. We assume that qeV^. By assumption, Af]H = 0. Choose
a small neighborhood U(q) and consider the following pseudoconvex
function

0 = l/|ijJ2 + T*9 on

Then we see that for any point p e U(q) n A and any sequence { pn} with
pneJ and pn-*p, we see that ^CpJ-^oo, which implies that J is pseudo-
convex at p. Finally we show that (i) implies (v). If A^ is a domain of
holomorphy, then A is pseudoconvex by Proposition (1.9). Then by
Theorems II, III, IV, we see that A_ is an L-manifold.

We finish this section with giving some examples of L-manifolds.
The first ones are as follows:

Proposition (2.15). Every Ad(f, e) is an L-manifold and is a do-
main of holomorphy for every pair of d and e.

Proof. By the construction of Ad(f, e), we see that it is a weakly
*-complete domain. Also by (2.7), it is a normal conoid. Then by
Theorem (2.12), we prove the assertion.

Secondly we are concerned with some examples of simple domains
which are explicitly expressed on M. For this we assume that M is
nothing but the Remmert reduction of M, i.e., M=Spec0(M). Then
T is expressed as follows:

where /,. = ̂ (zjXj'W 0 = 1,2 ..... N)

and HJ and nij are non-negative integers. We assume that n^O for
j'=l, 2,..., r. For a sufficiently large n, H is expressed as

H:{hj=0},

where hj = <ft\z JijJ (; = 1, 2,. . ., s) .

We define h} by A,-=T*^.). Let cp^x^ x2,...,xN) and (p2(yl} y2,..., ys)
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be two polynomials with positive coefficients satisfying the following

conditions: (1) (pL(Q, 0,,.., 0)=0 and (2) cp2 is a homogeneous poly-

nomial. Letting

^=(p1(\zl\\ |z2|
2,..., \zN\2}l(p2(\h^, \h2\\..., \hs\^,

we set

The following proposition shows that the concept of simple domains

contains many examples:

Proposition (2.16). // p0 e dA_dtE, A_dtE is a simple domain.

Proof is easy and may be omitted. Choosing suitable <p l s q>2, we

can construct simple domains which are domains of holomorphy.

Proposition (2B17). // T*((£>) = (P is a pseudoconvex function on M

— H, then A8iE is a domain of holomorphy if it is a normal conoid.

This follows from Theorem (2.12), (ii).

By using this proposition, we construct simple domains which are

domains of holomorphy with the explicit representations:

Proposition (2.18). Let d (resp. e) be the 1. c.m of n-} (resp. mj).

Set $=(P1/<P2 with

where <p\ and <p'[ are homogeneous polynomials of degree d and e

respectively and dj = d\nj and e~elmj. Then simple domains defined by

0 are domains of holomorphy for a sufficiently large m and k.

Proof. Let

T*9i = flJC3ld'a and TM = 6Ato2l"*.
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Then we get negative metrics {a^} and {b^} of [S]d and [H~]e respec-

tively, where S={£A = 0}. Then making m and k large, we see that

T*<|> is a pseudoconvex function on M — H. We can prove that A_djB

is a normal conoid as in the proof of Proposition (2.7).

§3. Lemmas on Pseudoconvex Domains on a Complex Manifold

In this section, M is assumed to be a Stein space with an isolated

singularity and the condition (A) is not assumed on M without men-

tioning it. Every domain A_ on M is assumed to be a domain of holo-

morphy. The main difficulties in the proofs of Theorems stated in § 1

lie in the proof of (1) in Theorem II. The purpose of this section is

to prepare a lemma (see Lemma (3.5)) which is an essential step in its

proof. First we state the following lemma concerning pseudoconvex

domains on a complex manifold, which is due to A. Takeuchi [11].

Lemma (3.1). Let M be a complex manifold with a real analytic

kahler metric and let D be a pseudoconvex domain on M. For two

points p and q, we denote the distance between p and q by d(p, q)

and we set

d(p)= inf d(p, q) and cp(p) = — log d(p) for peD.
qedD

Then cp(p) is a complete function and the infimum of the eigen values

of the Hessian of cp on D is bounded below by a real constant p,

where p is determined only by D.

The isolated singularity of M is denoted by j?0. Then we have the

following

Proposition (3.2). // p0^dA9 then A is Stein.

Proof. We consider only the case where p0<^A^. The proof for the

case where p0 e 2$ is similar. An imbedding of M in C^ is given, which

is denoted by e:M-*CN. Restricting the canonical kahler metric of CN

to M— {p0}, we get a real analytic kahler metric on M— {p0}> As (1.1)

we get an s-pseudoconvex function a> on M. Because A is an domain of
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holomorphy and p0^A_9 A_ is pseudoconvex. Then by Lemma (3.1) we

get (p. Choosing a suitable convex increasing function #, we see that

(p + %((D) becomes a complete s-pseudoconvex function on A. By Theo-

rem of A. Andreotti and R. Narasimhan [1], we see that A_ is Stein.

Corollary (3.3). If a domain of holomorphy A_ is not Stein, then

pQ must be contained in dA^.

Here we consider the A on M treated in §1. By Proposition (1.9),

A is a pseudoconvex domain. Because [S]"1 is positive, we can choose a

real analytic kahler metric on M. By using Lemma (3.1) we can prove

the following

Proposition (3.4). For any neighborhood V of S, there exists a

function cp on A such that (1) cp is of C^-class, (2) cp is s-pseudoconvex

on A — V and for any boundary point qedA — V and for any sequence

{qn}, qneA with qn-*q,

Here we remark on the analytic set H:

Remark. If A_ is contained in M—H, where H is a Cartier di-

visor in M through pQ9 then A_ is Stein.

The rest of this section is devoted to show the following lemma:

Lemma (3.5). Let M and S be a complex manifold with a real

analytic kahler metric and a divisor on M respectively. Let D be a

domain in M. Suppose that D satisfies the following three conditions.

Then we see that D is a weakly l-complete manifold.

(i) DnS^0 holds and [S]"1 is positive on M.

(ii) D is a pseudoconvex domain whose boundary is a real one

codimensional submanifold of C^-class except S D dD.

(iii) There exists an open set Q (Q^D) such that (1) D n S = G n S

and (2) there exist a pseudoconvex function q on Q and a

neighborhood V of SnD which satisfy the following: For

every point pedQnV and for any pn e Q n V with pn-»p, rj(pn)

->oo.



538 OSAMU SUZUKI

The proof of this lemma is very complicated. So we separate the

proof into four steps.

(The first step). We fix a local coordinate covering U = {U^} of M

and by £^ = 0 we denote the defining equation of S on l/A with U^nS

7^0. In terms of U, we denote the positive metric of [S]"1 by {aA}.

Then we obtain a pseudoconvex function on M which is an s-pseudo-

convex function on M— S and a neighborhood system of S in D:

VE where VE = {h<s}.

Then we have the following

Proposition (3.6). Let K be an arbitrary compact set in D.

Then there exists a domain A in D with the following properties: (1)

D and (2) A is a weakly l-complete manifold.

Proof. First we choose a positive constant R sufficiently large

so that Kc{rj<R}. Next making e so small that we may assume that

any connected component of {rj<R}nVE contains exactly one of the

connected components of {rj<R} n S and

If we choose e with e<e, the above condition is also satisfied for

e. For such a fixed e, we choose e' and e" with 0<e"<e'<e and choose

a C°°-funetion p£(0^p f i?gl) with the following property:

on M-V&,

on 7...

The function on D which is obtained by Lemma (3.1) is denoted by cp.

We set

We may assume that q>'E is a function of C°°-class. By Lemma (3.1)

there exists a real constant c such that the infimum of the eigen values
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of the hessian of tp'B on D[\{n<R} is bounded below by c. We write
this implication as W(<p'^c on Df}{rj<R}. So by choosing a suitable

convex increasing function % and referring to (p'E = Q on 7e», we may

assume that

(3.7) 9. = <P', + m

is pseudoconvex on Dn{/?<^} and s-pseudoconvex except S. We fix

such a x- We note that (3.7) is satisfied for f(0 with KO»X(0> where

K0»z(0 implies that *(0^x(0, f (0^x'(0 and f(f)g;%"(0. Because
D^Q, we see that 07 = /?} n dD^0 for a large R. Moreover, making

.R* sufficiently large, we have

(3.8) {(pB = R * } ( ] { r i = R}(]VE = 0.

This holds for $* with K*>R*. So choose R* with R*>J?*, where

) and define

Then (1) and (2) are satisfied for A and <p.

(The second step). We shall construct a special compact exhaustion

{Aj} of D, where Aj is of the form as constructed in the first step.

Take a compact set K±. As in Proposition (3.6) choosing e1? pl9 #1, jRA

and jRf, we make J^ Next we choose a compact set K2 with J1C^2-
In the same manner we have A2. Repeating this process we make Av

by choosing ev, pv, /v, j?v and j^*. We may assume that i?v<Ev+1 and

.RV-KX) (v->oo). In the following we write Fv, ^'v and <pv for Ffiv, ^v

and q>Ev respectively. We may assume that (1) ev>ev + 1 and ev->0 (v-»oo),

(2) Zv«Zv+i, (3) pv<Pv + i and (4) <pv«pv+1. We define orv+1 by

(3-9) ^+i =

+ Max[ sup {^Ui-^-i}, 0].
|76<4V-1

Also we may assume that KJ<J?*+1 and K*->oo (v~>oo) and

(3.10)
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We fix such an exhaustion in the following.

(The third step). We set

where 5v = {ri = Rv} n {cpv^R*} and d'v = {q>v = R*} n fa^JU- Let A(dv)

be open sets in M with dA(dv) n {^ = jRv} = ^v. By these domains we set

Also we set

(3.11) juv+1= sup <pv
peJy-i nJ2v-i

Then we have

Proposition (3.12). juv+1^^*_1 + o-v

Proof. In view of <pv = <p'v + Xv> (3-9) and (3.11), the assertion is

easily proved.

Now we prove the following

Proposition (3.13). For each v-hl , there exist positive convex in-

creasing functions IPjVi ana ^v2+i su°h that

^^
satisfies the following condition: Let

mv + 1= inf #v+1(p) and Mv+1= sup $v+1(p),
peAv+i~Av peAv-i

then we have

mv+1>Mv+1 .

Corollary (3.14). Let

Then
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This corollary is a direct consequence of Proposition (3.13).

Proof. We prove in the following steps:

( i ) First we choose 'F^)
1 such that

inf <£v+ i(p)> sup
pe{*i>Rv} pe^v - in

(ii) Next we choose ^^i sucn

inf <Pv+l(p)> sup <f>v+1(p).
pe{<pv>Rv*} peAv-i-Qv-i

(ni) Finally we prove mv + 1>Mv + 1 .

In what follows we set

l)) and

Proof of (i). We choose f^Vi with the following condition

(3.15) ?J1
+

)i(0 = l/(l-^?+i) for ^

In what follows ^PjVi i§ assumed to satisfy (3.15).
By using ^^(O^O, we have

(3.16) inf <
pe{tj>Rv}

On the other hand, we have

SUp <f>v + 15i SUp

Because ri(p)<Rv_l holds on Av,1r\Ov-i, so the second term can be

estimated as follows:

sup

By (3.11), we have

sup

where
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(3.17) JCv+1 = l/(l-Aiy+1//l*+1).

We note that Kv+1 does not depend on a choice of !Pi+V Then we

have

(3.18) sup <^+1
peAv-i f lOv-i

We choose a constant M^+i with

(3.19) M;

For the proof of (i), from (3.16), (3.18) and (3.19), it is sufficient to

choose ¥*$! such that

(3.20) 9$i(RJ > ̂ i^v- 1) + ̂ v+ 1 + 2M;+1.

This is always possible. Moreover, we can choose it with the following

additional condition:

We choose such ^^ and fix in the following.

Proof of (ii). Referring to W(
v
2^(rj)^Q, we see that

inf 0V+1^ inf
pe{(pv<R*v} pe{<pv>R*v}

Owing to (pv+ixpv, we have ^(v1
+

)i(<pv+i)>^(v+i(^v)- Because

inf
pe{q>v>Rl}

we have

(3.22) inf
pe{<pv>R*v}

On the other hand we see that

(3.23) sup d>v+1:g sup P&ifav+iH sup
/7eJv- i— J2v-i peJv-i~^v-i pedv- i~^v-i

Because rj(p)<Rv_l for peJy-! — D v_ l s the second term in the right-
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hand-side of (3.23) is bounded above by W^^R^j). Since <pv+1

= <Pv-i+Xv+i-Xv-i + <Pv+L-<Pv-i9 the first term in the right-hand side
of (3.23) is bounded above by ^ViOPv-i + ^v+i) on Av.l-Qv-l9 where
we use (3.9). Because sup (pv_1 = R*-l, we obtain from (3.23)

peAv

(3.24) sup *y+1
peJv-i-*2v-i

For the proof of (ii), from (3.22) and (3.24), it is sufficient to choose

such that

(3.25) P&iW-i + ff¥

From (3.21), it is sufficient to choose ^^ such that

(3.26)

This is always possible. Moreover, by Proposition (3.12) we can choose

it with the following additional condition:

(3.27) Kv+i<W^\(R^ + av+,)^Mf
v+l9

where we use (3.17) and (3.19). This completes the proof of (ii).

Proof of (iii). For this it is sufficient to show that $v+1 which

is chosen as above satisfies the following two conditions:

(3.28) inf <PV+1> sup <f>v+1
pe{<pv>R*v} p e J v - i f l f t v - i

and

(3.29) inf <2»v+1> sup *v+1.
pe{i}>Rv} peJy-i-f lv-i

First we show (3.28). By (3.22) and (3.18), it is sufficient to show that

Referring to (3.21), it is sufficient to show that

This follows from (3.26) and (3.27). Next we show (3.29). By (3.16)
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and (3.24) it is sufficient to show that

By (3.21) and (3.27), it is sufficient to show that

This follows from (3.20), which proves (iii). Thus we complete the proof

of Proposition (3.13).

(The fourth step). Finally we prove that D is a weakly 1 -complete

manifold. We choose n such that both line bundles [S]~n and [S]~w

MI are positive on D. We set for <p = {q>3L}eH°(D9

(3.30) \M\2(p) = a,\(p,\2 and ||<p|L = supH|(p) for
peA

where {a^} denotes the positive metric of [S]~n.

Let {Av} be a compact exhaustion of D which is constructed in the

third step.

Proposition (3.31). Let {<5V} and {lv} be two sequences of positive

numbers with Z^v< + °° and /v</v+i, /v->oo (v-»oo). Let {Qv} be a
compact exhaustion of D such that AV-±<^QV. If there exists a system

of functions {q>v} satisfying the following conditions (1) and (2), then

D is a weakly 1-complete manifold:

(1) (pv is a non-negative pseudoconvex function of C^-class on D,

(2) H<Pv+i lLv- i < 5 v and <pv+1(p)^Iv for

The proof is easy.

Now we construct such {cpv}. For this we prepare the following

Proposition (3.32). (1) For each v, Av is [S~]~n-convex except S

(see Definition (3.2) in 0. Suzuki [10]). (2) Let 2V denotes the convex-

hull of Av in Av+k(k^l) and let A* = AV-S. Then

A*^Av+k(m^k)9 where m(
v^k= sup <Pv+k.

pe^dv

This is a direct consequence of Theorem 5 in O. Suzuki [10].

Let {yv} and {cov} be two positive sequences such that
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Av+l(Mv+1+yv+1)£Av+1(mv+ 1-fi)v + 1)

Set

where

Then {Qv} satisfies the condition in Proposition (3.31). First we show

that for a fixed d the following holds: For a point peQ'v+l—Vd,t we

can find a holomorphic section cpv+ieH°(D9 (̂[S]"11)) such that

(3.33) IIPv+ilLv-^v+i/Co and ||9v

where C0 = sup/i and D^s\ = inf A.
*el) ' peG'v + l-V,

This can be proved as follows: By using Q'V+1{]AV-1 = 0 and by

Proposition (3.32), we can find a section <p'v+l eH°(Av+1, 0([S]~n)) for

a sufficiently small constant s such that

IIP'v+ilLv-^v+i/Co-e and llvW

By Corollary (3.14), we see that

Then by the Theorem of H. Kazama [6], for any ev+1 we can find cp'v+2

-«)) satisfying

By Corollary (3.14) again, we see that

Then by the Theorem of H. Kazama again, for any ev+2 we have a

section (p'v+3EH°(Av+3, 0([S]-»)) such that

II <P v+3 "" 9 v+2 II ̂ v + 3(mv + 3-cov + 3) < ev+2-

Repeating this process, we can find (pv+kEH°(Av+k, 0([S]~n)) such that
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l l ^ v + f c ~~ ^v+k- l l i Jv + k(mv + k-cov + k)<^ ev + fc-l (ft = 2, 3,...).

Choose {ev} with XX <e an£* set

Then we have a holomorphic section <pv+leH°(D, ^([S]"")) satisfying

Therefore (pv+i satisfies (3.33). Referring to (3.30), we see that

' - a i - v a n d | pi'+1)

where cpv+1 = {<?>lv+1)}.

Thus choosing sections of [S]"w on D, <p$Vi» 9v2+i^-^ 9v+\+i) an(i suffi-

ciently large m, we see that

Tv + l
A _ V I rn^1^ T" I 2m
9v+l~ 2- I ̂ v+1 bA I

1=1

satisfies

(3.34) ll^+ilU.^v and ^>v+1(p)^/v for PGO;+1-F5.

By using the construction of {Jv}, we can find a real analytic function

Ev+1(r) for a small d and for every v with the following properties:

-^v and Sv+1fo)Q>)^/v for

This can be proved as follows: Set

fym= inf ^ and iyM= sup ly.

By using ^v+1|s = l + ̂ t+)i(??) and noting that ^^ is a convex increas-

ing function and that Q'v+l n JV+1(MV+1) = 0, we see that r]m>rjM. So

choosing a real analytic convex increasing function Bv+1(t), we can

satisfy

3v+1(f)^lv for ^j,m and Sv+1(t)^dv for

Because ^v-iC={fy<^M}, we see that 3v+1(rj)^dv for peAv.l, Then
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making 5 smaller, we may assume that

for

Thus for this d we make $v+1 and set

*

Then {^J+J satisfy the conditions (1) and (2) in Proposition (3.31).

This proves that D is a weakly 1-complete manifold.

§4. Some Propositions Concerning Monoidal Transforms

In § 5 we will use monoidal transforms repeatedly to resolve singu-

larities of indeterminancy of characteristic functions (see § 1). There we

will consider the signs of certain kinds of line bundles in detail. For

this we have to fix local coordinates on a complex manifold which is

obtained by forming monoidal transforms.

Let M be a 3-dimensional complex manifold with the condition (A)

(see Introduction) and let S and H be non-singular divisors in M which

are defined by £={(^ = 0} and H={rj^ = Q} respectively. The condition

(A) is stated as follows:

(A)(0): Let CA=/A/M and ̂  = 0^. Then

/AM=/AM(ZM) and 9 JLH = 9 »,& J •

(B)(0): \S\\A and \ff\\ A are negative complex line bundles.

We write

)=/ and

Then / and g are positive integers. The following proposition is easy:

Proposition (4.1). (1) // and only if l-f^g holds, then [S

admits a positive semi-definite metric {aA} and
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(4.2) <?«,!=«A(^)iai2/i^i2

15 a pseudoconvex function on M — H. (2) // and only if f^.k-g holds,

[S]"1®^]^ admits a positive semi-definite metric {b^} and

(4.3) «»!.» = WzJIU'MI2

is a pseudoconvex function on M — H.

From this we make the following

Definition (4.4). (i) The smallest integer cr(cr^l) satisfying a-f

^g is called a ^-characteristic number of (S, H). The obtained pseudo-

convex function (4.2) is called a a-characteristic function. Moreover,

tf ^'f~9 holds, then (S, H) is called a a-complete pair. If not so, it

is called a a-incomplete pair, (ii) The largest integer T (ig;0) satisfy-

ing f^t-g is called -^-characteristic number of (S, H). The obtained

pseudoconvex function (4.3) is called a ^-characteristic function. Also

T-complete pairs and ^-incomplete pairs are defined.

In what follows we use the following notations:

For a complex line bundle E9 we write E>0 (resp. E<Q or £=0) if

cl(E)>0 (resp. cl(E)<Q or cl(E) = Q).

Now we form a monoidal transform <2(1): M(1)-»M with center A.

Let P be a rational curve and F(1) and F(2) be a canonical covering

of P whose inhomogeneous coordinates are denoted by ti(1) and w(2)

respectively. We define a negative line bundle T: JF-»P by ^1) = i/(2)-

^2\ where t-\V^) = {(u^\ {O): |{(0|< + 00} (i = l, 2). For each A9 we

prepare a copy of F, which is denoted by FA whose local coordinates

are denoted by u[\\, ^\ (i=l, 2). Then M(1) is identical with a

complex manifold which is obtained by the following identification bet-

ween {Vi\\}, where U^^-^V^x {\z,\<p} (i = l, 2):
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on
Mali = wSm"1

Q(1) is expressed as

( CA = «i|i , ,
(4.6) on t/lU and on U%\.
V ' A|1 A|1

Let I(1) = {^l|)i = 0}U{^lf1 = 0}. Then we see that Q^(A) = I(^ and

2(i >: M(1) — Z(1)-»M — ̂ 4 gives a biholomorphic mapping.

By using this expression, we consider resolutions of singularities of

indeterminancy of functions in the following form:

First we consider

(I) The resolution of singularities of indeterminancy of <pm>i-

We form the monoidal transform with center A, Q(i)'. M(1)-»M.

Choosing a local coordinate covering {l/ifj on M(1) as above, we see

that

6* (m \_/7* (n \ I .?(l)(m-l) I 21 I ,.(1) I 2 OT1 r7(l)
(l)V (f )m,l/ —^(1)WU I SA|1 I / I M A | 1 I °n ^A i l -

When m^25 there remain singularities of indeterminancy on A^9 where

^4(1) = {£(!{ = 0} n {wlji = 0}. We form monoidal transform with center

A(l) again, which is denoted by g(2): M(2)-»M(1). Replacing CA an(i *?A

by ^]{ and M^j^ respectively in the previous construction, we make

a local coordinate covering {C/lf2} of M(2). Local coordinates ZA, ^^2,
MiJ2 are determined so that Q(2) is expressed as ^l]i = ^i]2 and u[]\ =

£JtJ2MJtji on C/i]2. Then the identification rule is given in the similar

manner as (4.5). We see that

"" on U

where Q™ = Q(2fQ(l).

Repeating this process j-times, we obtain a complex manifold MU) and

a local coordinate covering {U^} of M(j-} whose local coordinates are

denoted by ZA, ̂ ^j, UA^ in the similar manner. The identification

rule is given as follows:
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(4.7) on tf n

on

Let G(J') = 2u)06(./--i)0'"02(i). Then we see that

on UW.

and

-J) 1 2/ 1 «i 1 2 on

Finally when j = m, we obtain

(4.8) e(m)*(<?>m,i)=e(m)*(^)l«liiL|-2 on Uifi,

which is a desired resolution.

Set

L0 = {ui]\=0},

Lj = {^}=0} U {Ml2i-+1=0} (.7 = 1,2 ..... m-1),

!(„) = !,! U £ 2 U - U L m .

Then 2(m)"'(^)=^(m)- Consider a complex line bundle [L7-_j] on L^
flLy-i, which is denoted by £,-_!• Then

(4.9) ^..^[H]-!®^]^.

Also we consider another complex line bundle [Ly] on LJ_1f\LJ, which

is denoted by Fj. Then

(4.10) FjXlS]-
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I(m} is expressed on Q(mr\n~l(p)} as follows, where peA and n: M-*A:

(2)

,(2) « k M?) f ,<2)

Ln

A|m-l

Figure 1

We have the following

Proposition (4.11). (i) // (S, H) is a a-complete pair, then (1)
if j^a + 2,Fj>0 and fi^.^0, (2) i/ j = (j+l, F, = 0 and B^.^0, (3)
J = <T, F7.<0 and ^--i^O awd (4) // jgcr-1, F^O and £,•_!>().

(ii) // (S, H) is a ^-incomplete pair, then (1) if j^cr+1, Fj>Q
and Ej.^Q, (2) if j = a,Fj<Q and EJ.1<0 and (3) if j^a-l, Fj<0
and Ej_1>Q.

(II) The resolution of singularities of indeterminancy of

Let Q(1): M(1)->M be a monoidal transform with center A. We choose a
local coordinate covering of M(1)5 {C/^J by (4.5). Then by (4.6),

-" 2

In the case /^2, there remain singularities on X(1) = {M^ = £^==0}.

Here we form Q(2): M(2)->M(1) with center A(1) again. Replacing (A

and r\K by M^{ and £(fi\ respectively, we choose local coordinates on

so that QW is expressed as u%\ = &}\ and t%\ = u[}\&]l on
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U[]l. Repeating this process /-times, we obtain QU): M(j)-*Mu_iy We

choose local coordinates ZA, £$J9 wifj on Ufy by the following con-

ditions :

on
«itH/2rtWtf

(4.12)

Then

C^^^LI) =GU)'(W I *ifl 1 2/ 1 Ci

where

Especially when ./' = /, 6(I)*(<Pifj) gives a desired resolution. Q(I)G4) on

is expressed as follows:

^A|3

ait-.

Figure 2

Set

£y = tfilHO} U [ul}}+1=0] („/ = !, 2,...s /-I),
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£a ) = Li U L 2 U • • • U Z , , .

Then we see that QW-\A)=Zm. Let [L fc]|Lft_1( lLfc = Ffc. Then by

(4.12) we see that

Let [Lfc-Jl^n^Efc-!. Then we have by (4.12)

We have the following

Proposition (4.13). (i) Let (S, H) be a r-complete pair with t^l .

Then (1) if fe^r + 2, £ f c_!<0 and Ffc>0, (2) if k = n + l9 Ek.1<0 and

Ffc = 0, (3) if fc = T,£ f c _ 1 = 0 and Ffe<0 and (4) fc<t, £ f e_i>0 and Ffe<0.
(ii) Le£ (S, H) be a ^-incomplete pair with T^l. Then (1) (f /c^T + 2,

fe>0, (2) i/ /c = T + l, £ fc_!<0 arcd ^fe<0 and (3) if fc^r,

In the same manner, as for the conoid function (plfl we have

Proposition (4.14). (i) Let (S, H) be a a-complete pair. Then (1)

// />2 and er^l, fftgn £/-i<0 and Fz>0, (2) //* / = 2 and <7>1, rten

JB^^O and Fj>0 and (3) i/ / = 2 and c r= l 5 ^_ 1 <0 anJ F, = 0. (ii)

Let (S, H) be a a-incomplete pair. Then (1) if a^.2 and 1^2, then

El_i<Q and Fz>0 and (2) z/ <r^

§5. Lemmas on Extension of Holomorphic Functions

The purpose of this section is to prove the following theorem, which

is a part of Theorem I:

Theorem (5.1). Suppose that M satisfies the conditions G4)(0) and

(jB)(0) (see the beginning of §4) and A is a simple domain along A

(see Definition (1.4)) which is a domain of holomorphy on M. Then

there exist e and 5 satisfying



554 OSAMU SUZUKI

where $* is the characteristic function of M (see Definition (1.6)).

Let A be a domain on M such that there exist a conoid function

cpk>l (see Definition (1.4)) and (5, e satisfying

(5.2) {% f I<e}nK^)ciJn7a(A).

Then (5.2) is also satisfied for a conoid function cp1}l for a sufficiently

large /, i.e.,

(C)(0): There exist a sufficiently large / and a conoid function such that

for some s and 5,

It is easily seen that if M satisfies the condition (^4) and A is a

simple domain along A (see Definition (1.4)), then M and A satisfy

G4)(o)» (#)((>) and (Q(0).

Lemma (5.3). Suppose that M satisfies G4)(0), (#)(0) flfld ^ satisfies

(C)(0). If A is a domain of holomorphy, then we have

(/) In the case where g^f, we have

(i) if (S, H) is a a-complete pair, then there exist s and 6 such that

where (pfftl is the ^-characteristic function of (S, H),

(if) if (S, JFf) is a a-incomplete pair and erg: 2, then there exist s and

5 such that

where (pff-iti is a conoid function.

(//) In the case where f^g, we have

(i) if (S, H) is a ^-complete pair9 then there exist e and 5 such that

where cp1>t is the ^-characteristic function,
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(ii) if (S, H) is a i-incomplete pair, then there exist s and d such that

where (pliT+i is a conoid function.

By taking account that the characteristic function <£* is identical

with the a-(resp. T-)characteristic function in the case where (S, H)

is a cr-(resp. incomplete pair (see (1.5)), we have

Corollary (5.4). In the case of (i) in (/) or (i) in (II), Theorem

(5.1) holds.

For the proof of Lemma (5.3), we prepare furthermore two lemmas:

Lemma (5.5). Let A be a compact Riemann surface and let F

and G be complex line bundles such that F<0 and G§;0. With re-

spect to a fine covering {FJ of A, the fibre coordinates of F and G are

denoted by £A and r\^ respectively. We set V=F@G and denote a di-

visor which is defined by {V/A = 0} by S. Let W be a small neighbor-

hood of the zero section of V and let Q be a neighborhood of (S — A)

n W. Then every holomorphic function on Q can be extended to a

holomorphic function on some neighborhood Q of the zero section.

Moreover, Q is determined only by Q.

Proof. Take metrics of F and G, [a^}9 {b^} respectively and set

hl = a^\^\2 and h2 = b^\ri^2. Then there exist fii, e2(e1<e2) and e3 such

that AE = {pE V: e 1<fc 1<e 2 and h2<e3} is contained in Q. Take a holo-

morphic function / on Q. Then fe&(Ab). Thus / is expressed on AE

as follows:

/= I Z ai'-'WCiifT,i=-oo m=0

where {a{1^} e H°(A, (9(F-l®G~n%

By assumption, F-'®G"m<0 for /<0. Therefore, {ai / f iw)}=0 for f<0.

Then / can be extended to Q\JAK, where AE = {pE V: h{<s2 and h2
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Lemma (5.6). Let M be a ^-dimensional complex manifold and

let LcM be a 2-dimensional compact complex submanifold which is

isomorphic to the compactification of a positive complex line bundle F

on a compact Riemann surface A. The zero section and the infinite

section are denoted by A0 and Ax respectively. Let A be a pseudo-

convex domain with

A0aA and dA

Then we have

Proof. Assume that dAnL^A^. In view of F>0, there exists a

strongly pseudoconcave neighborhood system {VE} such that VE = {p

EL — A0: h(p)>s}. Then letting sQ = mfh(p), we see that eQ>Q and
peA

VEQciA n L. Take a point p0 e d (A n L) (1 VEo. By assumption A fl L is

pseudoconvex and FEo is s-pseudoconcave at p0. Choose a Stein neigh-

borhood U of p0 in L. Then 17 n A is a Stein manifold. So there ex-

ists a holomorphic function /on 17 n A which cannot be continued across

p0. On the other hand, restricting / to U fl F£o, we see that / is con-

tinued across p0, which is a contradiction.

Proof of Lemma (5.3). We prove (i) in (I). For this we first prove

that

(5.7) if {(pitl<s}c:A9 then {(plti<s'}dA

on a small neighborhood of A. We may assume that /^2. Now we

consider the resolution of singularities of indeterminancy of <pltl, Q(l):

M(j)-»M. We choose a local coordinate covering of M^ as fixed in (II)

in §4. We set

Then (2(l) and (2(1) are drawn in Figure 2 in §4 respectively as follows:
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an

Figure 3

First we see that A(l) is a pseudoconvex domain by Proposition (1.8).

We prove that A(l} contains a neighborhood of L tn!-,_!. ^\-\ is nega-

tive by (i) in Proposition (4.14). Take a complex line bundle which is

defined by {w^) = 0} and restrict it to Lt fl {"1̂ 1 = 0}. Then we have a

positive line bundle. Considering the case j = l in (4.12), we see that

the line bundle defined by {^^) = 0} is negative on L tn{M^/=0}.

Hence by using Lemma (5.5), every holomorphic function on A(l} — I(l)

can be extended at least to {fj$ = 0}. If d^ ( l )nL, = 0, then Lir\Ll^i

^A(iy So for the proof of (5.7), we may assume that dAwnLl^0.

Then by Lemma (5.6) we see that dA(l} f] Lt = Lt f] ̂ -i- Next we con-

sider Ft. Then by (i) in Proposition (4.14) Fl is non-negative and Fl

is flat if and only if 1 = 2 and <j=l . Since A is a domain of holo-

morphy on M, J(0 must contain a neighborhood of L/nL^! by Lemma

(5.5). From this we see that every holomorphic function on A^ — I^

can be extended to L / U { M ^ j = 0}. In the case where 1 = 2, the asser-

tion (5.7) is hereby proved. Assume that l>2. In this case we see that

Fl is positive. By the same discussion as above, we find that Lt_2

nL i_ 1c= /d ( 0 . Repeating this process we can prove (5.7).

Next we prove that

(5.8) if {<plml<e}cA, then {(pa

on a small neighborhood of the zero section.
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We may assume that a ̂ 2. Let Q ( f f ) be the resolution of singu-

larities of <p f f f l . We choose a local coordinate covering of M(<T) as

expressed in (I) in §4. Set

^d) = (e((r)"1(^i,i<s/)0) and r ( f f ) =WL y .

Then O(ff) and O(1) are expressed in Figure 1 in §4 respectively as

follows:

Hill

Figure 4

We see that A(ff) is a pseudoconvex domain by Proposition (1.8). Since

(7^2, £0 is positive and F1 is negative by (4), (i) in Proposition (4.11).

So from Lemma (5.5), every holomorphic function on A(ff) — I(a) can be

extended to {£l^/ = 0}. As in the proof of (5.7), first we prove that

Lj n L2<^A(ay So we may assume that dA(ff)nL1^0. By Lemma (5.5)

we see that dA((r) fl L1=Li n L2. By (3) or (4) in Proposition (4.11),

F2 is negative and E± is non-negative and Ei is flat if and only if a = 2.

In the case where (7 = 2, the assertion is proved. If a>2, then EA is

positive. And by Proposition (4.11) F3 is negative. Then we see that

<3/d((r) n L2 = L2 n L3 by Lemma (5.6). So we see that A(a} contains a
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neighborhood of L2 n L3. Repeating this process, we prove the asser-

tion (5.8). Here we also prove that 0(J(ff) — Z"(ff))^0(d(ff)). So we
complete the proof of (i) in (I). Proofs in the other cases can be done

in the same manner by using (4.11) and (4.14). We omit them.

Remark. If (S, H) is a <7-complete pair, then the characteristic func-

tion 0* is identical with the ^-characteristic function cpff>l and

on a neighborhood of L(T^lnLa is a pseudoconvex function on M(ff)

-Mji=o}.

Proof of (II). We prove only (i) in (II). The proof of (ii) in (II)

is almost the same as that of (i) in (II) and is omitted.

By (C)(0) we see that

{$u<e'}c:J on a small neighborhood of A.

We may prove (i) only when />T. Consider the resolution of singu-

larities of indeterminancy of $u as (II) in §4, which is denoted by

M(0-»M. We set

and
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We see that A(l) is a pseudoconvex domain. Q(l) and O(T) are expressed

in Figure 2 respectively as in Figure 5.
By (1), (2) in (i) in Proposition (4.13), £,_! is negative for /^T+l .

Then the complex line bundle which is determined by {wl^ = 0} is posi-

tive on X,(2) = L,n{5i]i = 0} when i^r + 1. By Lemma (5.5) every holo-
morphic function on a neighborhood of A(

t
2) except {^i2} = 0} can be

extended to {£i2l = 0}. Then we see that dA(l) fl Lt^Lt n Lj_! by Lemma

(5.6). Also we see that F/ is non-negative when l = i + l by (1), (2) in

(i) in Proposition (4.13). Therefore we see that A(l} contains a neigh-

borhood of Ll_1(]Ll. If l = i+l, the assertion is hereby proved. In

the case where I> t+ l 5 we can prove the assertion by repeating the same

discussions as given in the proofs of (I). The details are omitted. Also

we see that

Remark. In the case (i), letting g(T)*(<£*) = 0> we see that (1)
<j> is a pseudoconvex function on M(r) — {u[]l = Q} and (2) 0 is expressed

as 4> = \u[2\l\2 near LT f l {i42* = 0}. Moreover, {4><s}c:A(l).

Proof of Theorem (5.1). We prove our Theorem only in the case

where g^f. The proof for the other case is similar. We express the

Euclidian algorithm of / and g as follows :

(5.9)

We prove it in the following cases successively:

(Case I)(1). The case where (S, H) is a <r-complete pair.

We see that a = pl and r1=0 (see Definition (4.4)). Thus by Corollary

(5.4) we prove the assertion.

(Case I)(2). (S5 H) is a cr-incomplete pair.

By the definition of a, we have g = (a—l)f+rl (see Definition (4.4)). So we
see that p1 = a— 1. First we restrict ourselves to the case where Pi — I.

By (ii) in (I) in Lemma (5.3), we see that {(pplii<s}<^A on some neigh-
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borhood of A. Let Q(1): M(1)-»M be the resolution of (ppl,i> We

choose a local coordinate covering of M(1) as (I) in §4. We set

Now we infer that EPI_L is positive by (3) in (ii) in Proposition

(4.11). Then by Lemma (5.6), we may assume that &d(1) n S(1) = v4(1).

So if A is a simple domain along A, then J(1) is also a simple domain

along ^4(i). Moreover, M(1), S^, H(1), y4(1) and J(1) satisfy the condi-

tions A(0), (J3)(0) and (C)(0) near A(1), which are denoted by G4)(1), (B)(1)

and (C)(1) respectively. Set

(5.10) A A 'P1 on l/l]^ and *" ^ on t/l|^ n C/^^.

We see that by (4.7)

rd)
on C/^lL n t/llL

and we have

})=f and

The T-characteristic number of (5(1), H(1)) is denoted by Tle Then

by Ci([S(1)']~1®[H(1)'])=f—rl9 we see that T^l. In the case where

p1=0, setting S(1) = S and H(1) = H, we find that the T-characteristic

number of (S(1), H(1)) is also greater than one in this case. Hence for

all P! we can choose the T-characteristic number of (S(1), H(1)) greater

than one.

(case II)(i). The case where (S(1), H(1)) is T-complete. We see that

f=p2'
ri>r2 = ® and T i=P2 by (5.11) and (4.6). Then we see that by

(i) in (II) in Lemma (5.3) {<p1>p2<e}c2d(1) on some neighborhood of

A^. The Tt -characteristic function is
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By (I) in §4, we see that

CA = ^A]PI
(5.11) on U^P1.

lA = filiMlJ.

By (5.11) we see that k0 = p1-p2 + l and /0 = P2» where kQ and /0 are

defined in (1.7). By this we obtain

which implies {(j)*<8}c:A near A. Thus we prove our Theorem in this

case.

(Case II)(2). The case where (S(1), #a)) is t-incomplete pair. By (ii)
in (II) in Lemma (5.3), we find that {^i>p2 + i<e}c:^(1) near A<1}. We

form monoidal transforms successively on M(1) p2-times, which is de-

noted by Q(2): M(2)-»M(1). The local coordinate covering of M(2) is

chosen as in (II) in §4. Then we have

By (4.12) we have

flli

(5.12) near Lpa n
w(2) = /-(l)a(l)-p2W(2)
"A|p2 y A/* J/AM W^|P2

Set

H(2, = «ifta = 0} and

By (5.12) and (5.9), we obtain

^rv and

Then we see that M(2), H(2), S(2), A(2y and J(2) satisfy the conditions

G4)(0), (B)(0) and (C)(0) near A(2), which are denoted by (A\2)9 (B)(2)

and (C)(2). We set
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r(2) _ u(2) f ( 2 ) _ f(i)/7(i)-p2
^•A ~~ M A|p 2 / AM """/AM »A/*

and

Then we see that by (5.12)

AJU

Here we note that r1>r2.

(Case III)(1). The case where (S(2), #(2)) is cr-complete. We see that

r3 = 0 in (5.9) and cr = p3. Then (i) in (I) in Lemma (5.3), we see that

{(pp3tl<8}aA(2). By using

We see that by (5.11)

Moreover, by (5.9) and (1.5), we obtain

and I0 =

Then we see that (6(2)°Q(1))*(<£*) = <PP3!i- Therefore we obtain (4

A.

(Case III)(2). The case where (S(2), H(2)) is cr-incomplete. As we de-

fined S(1) and H(1) from S and H9 we define S(3) and H(3) from S(2)

and H(2)> Then we see that

Now we consider general cases. From (Case I) we see that by

making Q(3): M(1)-»M,

^([Sd)]-1)^/ and c1(

and Q(1) is the Pi-times composition of monoidal transforms. From
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(Case II) we see that by making g(2): M(2)-»M(1)

]-1) = ri and c1([S(2)]-

and Q(2) is the p2-times monoidal transforms. From (Case III) by mak-

ing Q(3): M(3)-»M(2), we see that

Ci([S(3)]-
1) = r2 and c1([H(3)-

1]) = r3

and Q(3) is the p3-times composition of monoidal transform.

Hence repeating this process q + 1 times, we obtain a complex mani-

fold M(q+1) and divisors S(q+1) and H(q+1) on M(q+1) satisfying

= rq (or rfl+1) and c1([H(3+1)]-
1) = rg+1 (resp.

and Q(«+1>: M(4+1)->M(fl) is the composition of pg+1-times monoidal

transforms. In view of (5.9), we see that (S(€+1), H(q+1)) is now <7

(resp. -^-complete. Then as in (Case I)(1) or (Case III)(1), we can prove

the assertion. By this we complete the proof of Theorem (5.1).

Let \JL\ M*-+M be the resolution of the singularities of indeterminancy

of $* and let /i = /^*(0*). The exceptional divisor is denoted by I and

the divisor defined by {h = Q} is denoted by Z'. The exceptional baum

which is inserted in the final step is denoted by L* and we write A%

= r ;nL^. Finally we set /dHs=(ju~1(/d))°. Then we have the following

Proposition (5.13). (i) Let E* = [L*~\]L^r.

Then

(ii) 0(21* -20 = 0(^U) holds.

Proofs can be done in each step in the proof of Theorem (5.1).

§6. Proofs of Theorems I, II, III and IV

In this section we shall prove our Theorems stated in §1. We fix

notations. Let #, M*, ft, 2, 11, L#, A* and A* be as described at the

end of §5. Let V8(I) = iTl(Vd(A)) and Ve(I
f) = {h<s}. Then Vd(I) and

F£(I") give neighborhood systems of I and I' respectively.



NEW CLASS OF DOMAINS OF HOLOMORPHY (II) 565

Proof of Theorem I.

For the proof of Theorem I, we prepare a lemma. Let A be a

compact Riemann surface and let F be a topological trivial line bundle

on A. With respect to a fine covering {FA} of A, F is expressed as

{/AM}- We may assume that |/AJ = 1. Then hf = \^\2 and F£ = {/*'<e}
are a C°°-function on F and a neighborhood system of the zero section

respectively, where £A denotes the fibre coordinate on FA.

Lemma (6.1). Let A be a connected pseudoconvex domain on F.

Assume that (1) There exists a constant e such that {h'<s}aA and

(2) for a point peF with p = (z^(p), £i(p)) and for a real number 9,

we set PO = (ZA(P), Qie^(p))EF. Suppose that peA implies peEA for

any 9. Then there exist a constant c such that

Proof. For a point p in the zero section, we denote the Hartogs

radius at p by d(p). Then <p(p) = — log d(p) becomes a pseudoconvex

function on A. Then cp(p) is a constant function. By (2) we prove the
assertion.

We infer that there exists a weakly 1 -complete function rj on A,

i.e.,

Now we consider the resolution manifold T: M->M which is stated

in Introduction and the simple conoid A along A (see § 1). By Proposi-

tion (1.9) A is a domain of holomorphy on M. Then M, S, H, A and A

satisfy the conditions (A)(0), (#)(0) an^ (O(o) in § 4 and 5. So by Theo-
rem (5.1)

(6.2) {<!>*<8}(}V5(A)ciA(]Vd(A).

By (i) in Proposition (5.13), we see that [L*]^ is a topologically trivial

line bundle on A*. We choose a local coordinate covering of M* by

using (I) and (II) in § 4. The local coordinates near L* n I" are denoted

by ZA, wf and {J, where {(^* = 0}=L5|!. Set A* n L* = J*(L*). Then if

pe ^(L*), then peeJ*(LH.) for every 0 by Definition (0.1). Moreover,
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since A is a simple domain along A, A*(L%) is connected. Hence by the

choice of local coordinates, we see that the absolute value of the transi-
tion functions of [L^]^ is identical with one. So we find that h\L^

= h'. Therefore by Lemma (6.1)5 we see that

(6.3) A*(L*) = {h<c}

with some constant c. Let Qf = {(ZA, uf, £J): \uf\ < + oo, |£f | < + 00}
and O* = WOJ. Then Q* is the maximal domain which admits the fibre

structure on A* whose fibre is isomorphic to C2. The natural projec-

tion is denoted by p: Q*-*A*. We remark that
holds. Then we have

Lemma (6.4), A* n Q*a{h<c}.

Proof. By Definition (0.1) we see that if p = (

eA* n O*, then p^ = (zA(p), efa£f(p), e'M(p))e/l* n O*. This implies
that J* n Q* np~1(p) is a Reinhart domain. Assume that there exists a

point p0eA*{}Q* satisfying h(po) = c* with c*>c. By (6.2) we have

A* n o* n P

for a sufficiently small Q. Thus by Abel's theorem, we see that

where c** = |^f(p0)l2- Restricting this domain to L^, we have
dAj.(Lf)9 which leads a contradiction.

For the proof of Theorem I, it is sufficient to show (2) in (ii) in

Definition (1.4) (also see Definition (1.6)). By (6.2) we get VB(Z')cA*

with a sufficiently small e. By the construction of /^, we see that Z

f\(A# — Q*)ciZ' on a small neighborhood of I. So making § smaller,

we may assume that (A# — Q*){]Vd(Z)c:Ve(2') holds. Then for a point

pe7a(Z)n(4*-Q*), we obtain F*'5^, where F*-5^ e V8(S): h(p)
= h(q)}. Take a point pe^nO*. Then we see that h(p)<c by Lemma

(6.4). Then F*5 n L^cJ^L*). Thus making <50 smaller, we get
ciA. So we see that r 5 o c j .
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Proof of Theorem II.

For the proof of Theorem we prepare two Propositions:

Proposition (6.5). Suppose that M satisfies the condition (A\0y

Let Q: M(1)-*M be a monoidal transform with center A. Then we ob-

tain (/) if M satisfies the condition (B)(0) furthermore, then [L]<0,

where L = Q~1(A).

(ii) Suppose that a negative line bundle E is given on M. Let L

= Q~l(A). Then we can find a positive integer n0 such that

(6.6) g*(Efl)®[L]<0 for n^nQ on a small neighborhood of L.

Proof. Proof of (i). By the conditions (A)(0} and (jB)(0), we see

that L is an exceptional divisor on M(1) and L admits a neighborhood

which is isomorphic to a tubler neighborhood of the zero section of the

normal bundle. Then by H. Grauert [3, Satz 1, p. 341], we see that

Proof of (ii). Choosing metrics {aA} and {6A} of [S] and [H], we set

We choose a local coordinate covering of M(1) as (4.5). Set

* on tf, c^=a\u\2 + b on

Then {c^}} becomes a metric of [L]. Let {e^} be a negative metric of

E. Then we have a metric of <2*(En)®L, {e(^} by

For the proof of (ii), it is sufficient to show that the restriction of the

above line bundle to L is negative. We write

dd log eP^aftdzi A dzi + a&dzi A rffi ft

where e(^ = Q*(e^) on I/ft n L and

53 log 4i} = h{\\dzi A
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Here we note that

h(&=<*McW\-2 (I' = 1,2).

Since £<0, we can find positive constants 6 and C such that

0(i!i^<5, 4f,2^<5 and lA^.i lgC for i,j,k = l,

Moreover, from <2*(£)^0, we have

(6.7) if 4^ = 0, then 4f2 = 0 and 4^ = 0.

Then we see that na^2 + h(
2^2>0 for «^0. For a sufficiently large n

we have na(i\ + h[i^>Q. Hence for the proof of the assertion, it

is sufficient to show that the following determinant is positive definite for

a sufficiently large n:

We see that

S^ n2(a{\\ -4% - 4l?2 -4'A) + nd2 - nC(4% + a[?2 + 4!}i) - 2C2.

Take a positive constant s0. Then for any point p with a^GO^O, we

can satisfy S^s0 on some neighborhood of p. If 4%(p) = ^^ then by
(6.7) we get S^nd2 — 2C2 on some neighborhood of p. So making n

larger, we have S^eQ on a small neighborhood of L, which proves the
assertion.

Proposition (6.8). Suppose that A is normal. Let A% and O* be

as in Lemma (6.4). Then there exists a positive constant c such that

(i) A*nQ*c:{h<c} and (ii) A* (L,) = { h<c},

where c= sup h.

Proof. If (i) is not true, then there exists a point

such that h(p0) = c* with c*>c. By assumption, r^czzi^ for some <5.

This yields F*^ n L^c^L*), which contradicts the definition of c.

(ii) follows from the condition (iii) in Definition (1.4).
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First we show (2) in Theorem (II). Note that \i is the composition

of monoidal transforms, i.e., M = 2(m)°2(m-i)0<"°2(i)- Trien by G4)(0),
CB)(o) and (i) in Proposition (6.5), we see that [L] is a negative line

bundle, where L = Q^(A). By (ii) in the same proposition, 2*2)(Mni)
®[L(2)] is negative on M(2) for some nl9 where M(2) = 2(i1)(M(1)) and

L(2) = 2(~2
1)G4(i)). Repeating this process, we obtain a negative line

bundle [I1]" on M* (for implication, see §3 in O. Suzuki [10]). Next

we prove that A* is weakly 1-complete. For this we may prove that A*

satisfies (i), (ii) and (iii) in Lemma (3.5). (i) is satisfied by [£]". (ii)

is satisfied by Proposition (1.8). Now we will check (iii):

Fc = the connected component of F'c which contains [h = c}nL%.

Since A* is a relatively compact domain in M+, we can choose neighbor-

hoods Q1 and Q2 of Fc so that Ql£Q2 and h(p)<c for pG(Q2-Q1)

fl A*. For 6± and (52, we set

Udl = (A*t\Vdl(Ay)UQi and Ud2 = (A* n Vd2(A)) U C2.

We choose ^ and S2 so that l/5l C Ud2 holds. Choose a C°°-function

(O^a(p)^l) on M such that

l on Udl

«(!>) = 0 on

and set rj' = a-h. Then q'(p)<c holds for peA% and ?/' is a pseudo-
convex function on Udl. Set

where a>* = /i*oi*(a}/) (see (1.1)) and % is a convex increasing function.

Choosing a suitable #, we get a pseudoconvex function 77 on A% U C/J2.

Now replacing D, fi, S and F in Lemma (3.5) by </!*, J^ U (UC
82

— {h^c}),Z and l/5l respectively, we see that (iii) is satisfied. So we

find that A* is a weakly 1-complete manifold.

Proof of Theorem III.
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Proof of (i). Because £M = [S]-fc°®[/T]'0 is of finite order, there

exists a positive integer r such that r-times tensor product of EM is

analytically trivial. So

is a meromorphic function on M. Referring to |/|2 = 0*r,/*=jx*(/)

is a holomorphic function on A* and 0=/*L»(L*): 4#CL*)-*D is a
proper mapping, where D is the 1-dimensional disk. Every fibre of g

is connected. We see easily that for any pair of two fibres of g there

exists a holomorphic function on A* which separates their values at the

given fibres. Also by O. Suzuki [10] (see Theorem 5), A* is [Z1]"'1-

convex except I. So we see that each fibre of w: A*-+Spec@(A#) is

compact and connected. So by O. Suzuki [10] (see Proposition (2.3))

A * = Spec &(A*) admits the structure of complex space. Also we see

that A_* is a weakly 1 -complete manifold. Then by a well known Theo-

rem of A. Andreotti and R. Narasimhan [1], we see that A* is a Stein

space.

Proof of (ii). Consider 07: A^*-*Spec&(A^%). By (i) in Proposition

(5.13) every holomorphic function on A_* is constant on Z. Because

4* is [r]~"-eonvex except I (see Theorem 5 in O. Suzuki [10]), we

see that m~i(m(Z)) = Z. Let h=-gk\cj)l '|2, where $A denotes the minimal

defining equation of I'. Then [£']"" *s a non-negative complex line
bundle. In (2) in Theorem 6 in O. Suzuki [10], replacing D, 8 and A

by I' I and L*, we prove the assertion.

Proof of Theorem IV.

For the proof of Theorem IV, it is sufficient to show the following

Proposition (6.9). (i) If EM is of finite order, then A_* = Spec 0(A *)

is the K-convex hull of A_ (see Definition (2.5) in O. Suzuki [10]).

(ii) If EM is of infinite order, then A^ is an L-manifold.

Proof. Proof of (i). Let p = to^: A*-*A^. Then in view of 1 =

p~1(Jp0)5 ^* — £= A_. Take an arbitrary fibre discrete holomorphic map-

ping ^ = (/u/2»/3): ^-^-C3. Since A* — Z is holomorphically separable,
A = coop"1: A-»A# is injective. We infer that &(A)^&(A*) by (ii)
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in Proposition (5.13). So there exists a fibre discrete mapping $* =

C/?./?./?)-' :4*-*C3 such that f = f*oA. This implies that the K-

convex hull of A_ is contained in A^. Because A^ is a Stein space, we

prove the assertion. Proof of (ii). In the same manner as in the proof

of Proposition (4.4) in O. Suzuki [10], we see that T is nothing but

w(I), where F denotes the closed set which never admit the structure of

a complex space (see Introduction in O. Suzuki [10]). Then A* is a

B-resolution of A^ which proves that A_ is an L-manifold (see Introduc-

tion in O. Suzuki [10]).
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