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A New Class of Domains of Holomorphy (II)

(Domains of holomorphy on a three dimensional
Stein space with an isolated singularity)

By

Osamu Suzukr*

Introduction

The present paper is the continuation of O. Suzuki [10]. There we
defined the concept of L-manifolds (see Definition (3.11) in O. Suvzuki
[10]) and showed that every L-manifold is a domain of holomorphy in
the sense of H. Kerner [7] (see Definition (2.5) in O. Suzuki [10]).
Moreover, we showed that there exist L-manifolds which are neither
holomorphically convex nor pseudoconvex manifolds and there exist L-
manifolds which admit non-Stein algebras (see Definition (3.15) in O.
Suzuki [10]). These results are summarized in Theorems I and II in
Introduction in O. Suzuki [10]. Unfortunately, only two examples are
given there.

In this paper we shall prove that under the condition (A) certain
domains of holomorphy (which will be called simple domains) on a cer-
tain three dimensional Stein space with an isolated singularity are in fact
L-manifolds. By this we can systematically construct many examples of
domains of holomorphy which are not Stein manifolds.

Let M be a Stein space with an isolated singularity p,. As will be
shown in §3, every domain of holomorphy 4 which does not contain
Po as a boundary point is a Stein space. But in the case where p,
€04, the situation is not simple. There we can find many domains of
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holomorphy which have the properties far from Stein spaces. In order
to make the points of difficulties clear, we have to restrict our consider-
ations to the M with the following condition (A) and special kinds of
domains of holomorphy on M. The condition (A) is stated as follows:

(A) There exists a resolution of the singularity M of M, 1: M—>M
with the following properties: There exist a non-singular compact al-
gebraic curve 4 and two complex line bundles F and G such that M is
isomorphic to F@®G and 77 !(p,) is nothing but the zero section.

We write the natural projection 7: F&®G—A. In the following we
fix a fine covering {V,;} of A and z, denotes the local coordinate parame-
ter on V, and {; (resp. n;) denotes the fibre coordinate of F (resp. G).
Also by H and H, we denote the divisor which is defined by #,=0
and the analytic set 7(H) in M respectively. For the description of de-
sired domains, we prepare the following definition:

Definition (0.1). (1) A function ® defined on U—A, where U is a
neighborhood of the zero section, is called a conoid function of type
(k, ) along A if it is expressed as

21k
o=a il bl e, G o DT,

where {a;} is a C®-metric on U of n*(FF®G™") and {b;} (resp. {c;})

is a non-negative C®-section on U of n*(G°®G) (resp. n*(F'® F"))

with the following condition, where F denotes the conjugate bundle of

F:

ai.=a}.(zl’ IC%'} l’“.lz), b).=bi.(zj.a IC%I, l”%l)
and  c;=cy(z;, |C3l, n3))

and k, | are positive integers and s,t are non-negative integers with
(s, )#(0,0). (2) A function @ defined on U—p,, where U is a neigh-
borhood of py, is called a conoid function at p,, if ®=1*P is a
conoid function along A.

By this we make the following definition:



New Crass oF DoMAINs oF HoLomorpHY (1) 525

Definition (0.2). 4 is called a simple domain if there exists a
conoid function @ at p, such that for every small neighborhood U
of po, () AnNU={®<e} for some positive constant ¢ and (ii) there
exists one and only one connected component A' of AnU with p,
€od’.

In §2, we will give several examples of simple domains which are
explicitly written on M. Although the definition of simple domains looks
artificial, it seems to the author that other domains of holomorphy
which are easily constructed may be Stein in a small neighborhood of
Do

Now we state our Main Theorem:

Main Theorem. Under the condition (A), simple domains are do-
mains of holomorphy if and only if they are L-manifolds.

Here we describe the outline of the proof of Main Theorem. First
we show that simple domains of holomorphy are normal conoids (see
Theorem I in §1). As for the definition of normal conoids, see Defini-
tion (1.6). We note that it is defined only by using the property of M.
From this, by using the resolution of the singularity of indeterminancy
of the characteristic function ¢* (see Definition (1.6)), we can con-
struct the B-resolution 4, of 4 in the canonical manner. Secondly we
shall make a weakly l-complete function on 4, by using Lemma (3.5)
(see Theorem II, IV). Finally we discuss the algebra of holomorphic
functions on 4, by using the results obtained in the previous paper (see
Theorem III in §1).

The author would express his hearty thanks to Professors S. Nakano,
S. litaka and H. Fujimoto and Mr. T. Sasaki, Mr. H. Omoto and Mr.
M. Otuki for their encouragements during the preparation of this work.

§1. Statements of Main Results
Let ::M—C¥ be the imbedding of M in C¥ and let

(1.1) w=c*(w"), where o' =|z,|2+]|z,)*+ - +]|zy/%
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Then we have an s-pseudoconvex function w on M. Let

(1.2) Vi(po)={pe M: w(p)<é}.

Then we have a neighborhood system of p, on M. Let

(1.3) Ve(A)=1"1(¥5(po)) -

In the following, a domain on a complex manifold is assumed to

be a relatively compact domain without mentioning it.

Definition (1.4). Let Q@ be a domain on M. (1) & is called a
simple domain along A of type (k, 1) if there exist a conoid function
owy of type (k, 1) and a positive constant € such that for every small
positive 8, we have (i)

Qn Vy(A)={dr,<e} n Vs(4)

and (ii) there exists one and only one connected component Q5 of
QN Vy(A) satisfying A<0Qj.
(2) Q is called a simple conoid along A if there exist a conoid func-

tion such that (i) there exist ¢ and 6 satisfying
{Pri<e} nV(A)=n Vy(A)

and (ii) for any point peQn Vs(A), there exists 6, (which may depend
on the choice of p) satisfying

[305cQ 0 Vy(4),

where T'j={qeVy(A): gy (D)=¢(p)} and TI}-°=IjnV;(A) and (iii)
for every small 0, there exists one and only one connected component
Q5 of QnV; with Ac<0Qs.

We note that A<dQ. In the following, a simple domain @ on M
is assumed to have a boundary of a real submanifold of C®-class of
codimension one except A.

Here we define special kinds of conoid functions and conoid do-
mains which are determined only by the resolution manifold M: Let
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¢(F)=f and ¢(G =g,

where ¢ (E) is the first chern class of a complex line bundle E on A.
Choosing a pair of natural numbers k, and I, by the condition that
fko=gl, and k, and I, have no common multiple other than 1, we con-
sider a complex line bundle

E]”=F—k°®Gl°.

Then we see that E, is a topologically trivial line bundle on A. By a
well known lemma, we can choose suitable fibre coordinates {; and 7,
of F and G respectively so that E, is expressed as {e,,} with [e;,[=1.
In the following we fix such coordinates. Then

(1.5) ¢*=[L3|*[[nz'

is a pseudoconvex function on M —H.

Definition (1.6). (1) ¢* is called the characteristic function of M.
(2) AcM—H is called a normal conoid if A is a simple conoid with
respect to the conoid function ¢* and AcM—H is called a normal
conoid if A=t"Y(4) is a normal conoid.

In what follows we assume that 4 is a simple domain which is a
domain of holomorphy.

Definition (1.7). (1) A domain Q on a complex manifold is called
a pseudoconvex domain if the following holds for any boundary point
pedQ: There exist a neighborhood U(p) of p and a pseudoconvex
function @ on U(p) such that QnU={p<0}. (2) Q is called a domain
of holomorphy on M if there exists a holomorphic function f which
cannot be continued analytically across the boundary of Q.

Remark. (1) If Q is a domain of holomorphy on M, then Q is a
pseudoconvex domain. But the converse is not true in general. (2) The
definition of domains of holomorphy on a complex manifold M is
independent of the one of domains of holomorphy given in Definition
(2.5) in O. Suzuki [10].
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As for pseudoconvex domains we state the following Proposition which
is due to T. Nishino [8]:

Proposition (1.8). Let Q be a domain on a complex manifold M
and let S be a divisor on M. If Q—S is a pseudoconvex domain, then

Q is also a pseudoconvex domain.
Because 4 is a domain of holomorphy, we see

Proposition (1.9). A=1"1(4) is a domain of holomorphy and so

is a pseudoconvex domain on M.
By using these notations we state our main results of this paper.

Theorem I. Suppose that M and H satisfy the condition (A).
If A is a simple domain which is a domain of holomorphy, then A4 is

a pseudoconvex normal conoid.

Theorem II. Let AcM—H be a pseudoconvex normal conoid.
Then there exists a proper modification of M, (M*, u, M) with the fol-
lowing properties: (1) Let A,=Q (4))°. Then A, is a weakly 1-
complete manifold, where E denotes the closure of E and E° denotes
the open kernel of E. (2) Let X=pu"'(A). Then [X]™" is positive for

some n.

As for the definition of weakly 1-complete manifolds and notations
on complex line bundles, see §3 in O. Suzuki [10].

Remark. Because 4, is a relatively compact domain on M*, so we
may assume that [Z] "®Kj3A is also positive on 4,, where K,. denotes
the canonical line bundle of M*.

Here we consider the algebra of holomorphic functions on 4,. A
topological trivial line bundle E is called of finite order (resp. infinite
order) if EQE®---®E (k-times tensor product) is analytically trivial
(not analytically trivial) with some k (k#0) (resp. for any k (k#0)).

Theorem III. (1) If E, is of finite order, then 0(4,) is a Stein
algebra. (2) If Ey is of infinite order, then 0(4,) is not a Stein



New Crass oF DomAINs oF HoLomMORPHY (II) 529

algebra.

For the definition of Stein algebras, see Definition (3.15) in O.
Suzuki [10]. Finally we can prove the following theorem, which also
proves our Main Theorem.

Theorem IV. If A is a domain of holomorphy, then E, is of
infinite order. Moreover, 0(4) is not a Stein algebra.

Remark. In the case where E, is of finite order, for any &: M
—C3,4 is a domain of holomorphy in the sense of H. Grauert and
R. Remmert [5], i.e., the ®-hulle of 4 is identical with 4 (for the defi-
nition, see H. Kerner [7]). But 4 is not a domain of holomorphy in
the sense of H. Kerner [7].

§2. Normal Conoids Which Are Domains of Holomorphy

In this section we consider a Stein space M with the condition (A)
and an analytic set H in M which is defined in Introduction. More-
over, we assume that~EM is of infinite order. The purposes of this sec-
tion are to give some characterizations of normal conoids which are
domains of holomorphy and to give their examples. Only in this sec-
tion, domains are assumed to have C¥®-boundaries of real submanifolds
of codimension one except p,, or intersections of such a kind of do-
mains.

First we give some examples of normal conoids. By Theorem I we
see that simple domains which are domains of holomorphy are normal.

Definition (2.1). (1) k<4 is called a =-compact if K—Vypo) is
relatively compact in A for any d. (2) As for two domains 4., 4,
on M, A, €.4, means that A, is #x-compact in A,, (3) AcM has a
x-compact exhaustion {4;} (j=1,2,..) if (i) 4;€44;+, and JQIAJ-
=4.

The following proposition is easy.

Proposition (2.2). (1) Suppose that A;(j=1,2,...,r) is normal,
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then fRA,- is also normal. (2) Let A be a domain which admits a
i=1
x-compact exhaustion {4;}, where A; is normal for each j, then A is

also normal.

Definition (2.3). (1) We say fe.#,,, if there exists a holomorphic
section @={9,(z))} e HY(A, O(F"'®G*)) such that f=1*f is expressed
as f=@(z)0nz*. () We say fe?,,, if there exists a positive semi-
definite metric {a,(z;)} of F'®G™ such that f=1*f is expressed as
f=a;z) G - I3l

We set 4=\ #,;, and =\U 2,,,.
1,k l,m
Definition (2.4). For fi, f5,...,fre.# (or, 2) and for positive con-
stants &, €;,..., &, we define
2.5) A(f1s S 2505 Sr: €15 €200y &)
={pE_M: l_._fll <Bl’ I_fll <£2""9 Ifrl <8r}

(2.6) A5(f1s-s Sri E1seens 8)=A(S15- s [r7 E150005 &) N V(Do) .

In the following, for simplicity we write A(f: &) or 4,(f:¢) for (2.5)
or (2.6) respectively.

Proposition (2.7). For fi, fs,....f,e M (or P), 4(f:¢) is a nor-
mal conoid for each ¢ and 9.

Proof. By Proposition (2.2), we may prove only the following: For
fe (or 2), we set

A(fe)={f<e} and A,(f:e)=4(S: )N Vspo)-

Then 44 f:¢e) is a normal conoid for every ¢ and . We prove the
assertion only for fe.#. We assume that fe.#,, We write f=
0,(z,)tkn7!, where f =1*f. Then by Proposition (4.1), we see that

(2.8) kf 2gl.

Let ¢* be the characteristic function of M. Then we have
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1712 =z )2IL31* - In3l™!

and

¢*=|L3I*Fo - n3]"e.

We define p(p>0) by I=I,p. By (2.8) and by the choice of k, and I,
we find a non-negative constant h such that fk=fpky,+hf. First we
consider the case h>0. Making §’ smaller, we may assume

sup lo,(z))I?IG31" <1 on V(4).
Then we see that
{p*<e'}nVy(A)cAd,(f: &) where s’=s% and Ay(f:e)=1"14,(f ¢),

which implies (i) in Definition (1.4). Let peds(f:¢e) and let ¢*(p)=o.
Choose a point geI'j (see Definition (1.4)). Then

IF1%(a)=loa(z,)- |3]"a*.

Making J, smaller, we may assume that
sup [¢;(z)| - |L31" <efo? on V;(4).

This implies that |f|%(q)<e for geIj%. This proves (ii). (iii) is easy.
Next we consider the remained case, i.e., h=0. Then we find that fk
=gl. Therefore, we can find m satisfying k=mk, and I=ml,. Then
we see that {¢,(z,)} e H(4, O(F *e®G'o)™). Because E,, is of infinite
order, we see that ¢,(z;)=0 everywhere. This implies that f=0. So
the assertion is trivial in this case.

Remark. For fe 2, we can prove the assertion in the same manner
as in Proposition (2.7) when h>0. When h=0, we see that f=c(¢p*)m
with some positive constant c¢. So the assertion is also proved in this
case.

Corollary (2.9). If A admits a %-compact exhaustion {4;}, where
4; is a polyhedron defined as in (2.6), then A is also a normal
conoid.
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Now we shall give some characterizations of normal conoids to be
domains of holomorphy.

Definition (2.10). A<M is called holomorphically s%-convex if for
any compact set K< A, the convex hull of K, K is also *-compact.

Definition (2.11). (1) A real valued function ¢ on A is called
x-complete if A,={p<c} is #%-compact for each c. (2) A is called
x-complete domain if there exists a =-complete pseudoconvex function
of C®-class on 4.

Now we consider a normal conoid 4 on M. We set d=1"1(4).
Let u: M*-»M be the proper modification described in Theorem II.
Then A4, is a B-resolution of 4 and that Y=o '(I') holds where I
={po} (as for the definitions of B-resolutions and = and I, see §1 in
O. Suzuki [10] and also see Proposition (6.9)). Then we have the
following

Theorem (2.12). Suppose that A is a normal conoid. Then the

followings are equivalent:

(i) 4

(i) 4

(iii) 4 is a holomorphically %-convex domain.

(iv) 4 is an H-manifold with respect to A, [X]™ and X (see
Definition (3.3) in O. Suzuki [10]).

(v) 4 is an L-manifold with respect to A, and [X]™" (see Defi-
nition (3.11) in O. Suzuki [10]).

is a domain of holomorphy.

is a x-complete domain.

Proof. (v)=>(iv). This is a direct consequence of Theorem 5 in
O. Suzuki [10]. (iv)=(iii). Setting o=tou, we see that a(X)=p,. Let
K be a compact set in 4. In view of 4,—X~A4, K=¢"1(K) is also
a compact set in 4,. By 0, (44) we denote the subalgebra of holo-
morphic functions which are obtained from holomorphic sections H%(4,,
0([21™™) by multiplying the defining equations of [X]". The convex
hull of K with respect to this subalgebra is denoted by K. Then we
see that K'(,,)—Z@A* (see (3.12) in O. Suzuki [10]). For feO,,(44),
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o7 *(f)e0(4) and {o7**(f)} make a certain subalgebra of @(4). The
convex hull of K with respect to this subalgebra is nothing but a(K(,,)),
which is *-compact. Hence K is also #-compact. (iii)=>(ii). Let K
be a compact set in 4. For ge A—K, there exists a holomorphic func-
tion fed®(4) such that |f(g)|>|flx. This holds on a small neighbor-
hood of gq. Now fix an arbitrary constant 6 (6>0). Then there exist
holomorphic functions fi, f5,...,f, on 4 satisfying the following condi-
tion: Let

A~={|_f11<31a |f2l<€zse.os Ll <8}
Then we have
R—Vy(po)=d—V(po) € 4
and | fjllg<l and ¢g;>1 (j=1,2,...,r).

Now take positive constants & and | and compact sets K and K. Then
we can find holomorphic functions g, g,,..., g so that

(2.13) <p=j§1Ig,-I2
satisfies
(2.14) lolg<e and o¢(q)>1 for geRK-4.

Let {6,} be a sequence of positive numbers with 6,—»0 and let K, be
a compact set in 4. We make an analytic polyhedron A4, for (K,
Vs.(po)). Let 4¥=4,—V;(po) and let K, be a compact set with A¥c
K,. Next we make A4, for (X,, Vs.po)). By repeating this process
we have a compact exhaustion {4%} of 4. Choose ¢; and [; (j=1, 2,...)
with }¢;<oo and [;— o0 (j—o0). For each j we construct ¢; as in (2.13)
which satisfies (2.14) for K=K, K=4%,,, e=¢; and I=I,. Then

=2 ¢;
Jj=1

is a #-complete pseudoconvex function on 4. (ii)=>(i). By Theorems
II, IIT, IV, it is sufficient to show that A=t"1(4) is a pseudoconvex
domain. For any point ged4—A and for any sequence {q,} with g,—¢q
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we see that 1*¢p(g,)»> . So A is pseudoconvex at d4—A. Now we
prove that A4 is pseudoconvex at every boundary point on A. Take a
point ge A. We assume that geV,. By assumption, An H=@. Choose
a small neighborhood U(g) and consider the following pseudoconvex
function

¢=1/ln;*+1*¢ on U(g).

Then we see that for any point pe U(g)n A and any sequence {p,} with
p.€4 and p,—p, we see that ¢(p,)— o0, which implies that 4 is pseudo-
convex at p. Finally we show that (i) implies (v). If 4 is a domain of
holomorphy, then 4 is pseudoconvex by Proposition (1.9). Then by
Theorems II, III, IV, we see that 4 is an L-manifold.

We finish this section with giving some examples of L-manifolds.
The first ones are as follows:

Proposition (2.15). Every A4 f,¢) is an L-manifold and is a do-
main of holomorphy for every pair of 6 and e.

Proof. By the construction of 4,f, &), we see that it is a weakly
x-complete domain. Also by (2.7), it is a normal conoid. Then by
Theorem (2.12), we prove the assertion.

Secondly we are concerned with some examples of simple domains
which are explicitly expressed on M. For this we assume that M is
nothing but the Remmert reduction of M, i.e., M=SpecO(M). Then
T is expressed as follows:

t=(f1, f2r-r [N): M — McCF,
where =@y (j=1,2,..., N)

and n; and m; are non-negative integers. We assume that n;#0 for
j=1,2,...,r. For a sufficiently large n, H is expressed as

H: {h;=0},
where hi=¢P s (=1,2,...,9).

We define 2; by A;=1*(h;). Let @y(xy, X,..., Xy) and @z(yy, Y2-e0s V)
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be two polynomials with positive coefficients satisfying the following
conditions: (1) ¢,(0,0,...,00=0 and (2) ¢, is a homogeneous poly-
nomial. Letting

2 =0,(1z41% 12212, 125D @2(114 %, |52, |AJ),
we set
45’5={Q<8} nz&-

The following proposition shows that the concept of simple domains
contains many examples:

Proposition (2.16). If p,€dd;,, 4;5. is a simple domain.

Proof is easy and may be omitted. Choosing suitable ¢, @,, we
can construct simple domains which are domains of holomorphy.

Proposition (2.17). If t*(®@)=® is a pseudoconvex function on M
—H, then A4;. is a domain of holomorphy if it is a normal conoid.

This follows from Theorem (2.12), (ii).

By using this proposition, we construct simple domains which are
domains of holomorphy with the explicit representations:

Proposition (2.18). Let d (resp. e) be the l.c.m of n; (resp. m)).
Set ®=¢,/p, with

py=01(123]%, [23]%,..., [ 22| %)™
+(P,1,(‘zf+ller+la"'$ l212v|e1v)k,

where @) and ¢’ are homogeneous polynomials of degree d and &
respectively and d;=d[n; and e;=elm;. Then simple domains defined by
D are domains of holomorphy for a sufficiently large m and k.

Proof. Let

T*Qi=a,/(3]?"9 and t*@]=b,n3|e 2.
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Then we get negative metrics {a;} and {b,} of [S]¢ and [H]® respec-
tively, where S={{,=0}. Then making m and k large, we see that
@ is a pseudoconvex function on M—H. We can prove that 4;,
is a normal conoid as in the proof of Proposition (2.7).

§3. Lemmas on Pseudoconvex Domains on a Complex Manifold

In this section, M is assumed to be a Stein space with an isolated
singularity and the condition (A) is not assumed on M without men-
tioning it. Every domain 4 on M is assumed to be a domain of holo-
morphy. The main difficulties in the proofs of Theorems stated in §1
lie in the proof of (1) in Theorem II. The purpose of this section is
to prepare a lemma (see Lemma (3.5)) which is an essential step in its
proof. First we state the following lemma concerning pseudoconvex
domains on a complex manifold, which is due to A. Takeuchi [11].

Lemma (3.1). Let M be a complex manifold with a real analytic
kihler metric and let D be a pseudoconvex domain on M. For two
points p and q, we denote the distance between p and q by d(p, q)

and we set
d(p)= qigafpd(p, q) and ¢(p)=—logd(p) for peD.

Then ¢(p) is a complete function and the infimum of the eigen values
of the Hessian of ¢ on D is bounded below by a real constant p,
where p is determined only by D.

The isolated singularity of M is denoted by p,. Then we have the
following

Proposition (3.2). If p,&04, then 4 is Stein.

Proof. We consider only the case where py,&d. The proof for the
case where poed is similar. An imbedding of M in CV is given, which
is denoted by ¢: M—CV. Restricting the canonical kdhler metric of C¥
to M—{py}, we get a real analytic kdhler metric on M—{py}. As (1.1)
we get an s-pseudoconvex function w on M. Because 4 is an domain of
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holomorphy and p,é&4, 4 is pseudoconvex. Then by Lemma (3.1) we
get @. Choosing a suitable convex increasing function y, we see that
¢+ y(w) becomes a complete s-pseudoconvex function on 4. By Theo-
rem of A. Andreotti and R. Narasimhan [1], we see that 4 is Stein.

Corollary (3.3). If a domain of holomorphy A is not Stein, then
Do must be contained in 04.

Here we consider the 4 on M treated in §1. By Proposition (1.9),
4 is a pseudoconvex domain. Because [S]™! is positive, we can choose a
real analytic kidhler metric on M. By using Lemma (3.1) we can prove
the following

Proposition (3.4). For any neighborhood V of S, there exists a
function @ on A such that (1) ¢ is of C*®-class, (2) ¢ is s-pseudoconvex
on A—V and for any boundary point qedA—V and for any sequence
{4.}, gn€ 4 with q,~q, ¢(q,)—> 0.

Here we remark on the analytic set H:

Remark. If A is contained in M—H, where H is a Cartier di-
visor in M through p,, then 4 is Stein.

The rest of this section is devoted to show the following lemma:

Lemma (3.5). Let M and S be a complex manifold with a real
analytic kdhler metric and a divisor on M respectively. Let D be a
domain in M. Suppose that D satisfies the following three conditions.
Then we see that D is a weakly 1-complete manifold.

(i) DnS#@ holds and [S]! is positive on M.

(ii) D is a pseudoconvex domain whose boundary is a real one
codimensional submanifold of C®-class except S n dD.

(iii) There exists an open set Q (22D) such that (1) DnS=2nS
and (2) there exist a pseudoconvex function n on Q and a
neighborhood V of SnD which satisfy the following: For
every point pedQnV and for any p,eQnV with p,—p, n(p,)
—00.
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The proof of this lemma is very complicated. So we separate the
proof into four steps.

(The first step). We fix a local coordinate covering U={U,} of M
and by {;=0 we denote the defining equation of S on U, with U,nS
#0. In terms of U, we denote the positive metric of [S]~! by {a,}.
Then we obtain a pseudoconvex function on M which is an s-pseudo-
convex function on M—S and a neighborhood system of S in D:

h=az'-|(l%,
V., where V,={h<g}.
Then we have the following

Proposition (3.6). Let K be an arbitrary compact set in D.
Then there exists a domain A in D with the following properties: (1)
KcdeD and (2) 4 is a weakly 1-complete manifold.

Proof. First we choose a positive constant R sufficiently large
so that Kc{n<R}. Next making ¢ so small that we may assume that
any connected component of {n<R}n7V, contains exactly one of the
connected components of {#<R} NS and

{n=R}néDnV,=0.

~

If we choose & with £<e, the above condition is also satisfied for
&. For such a fixed ¢, we choose ¢ and &” with 0<g&”"<é& <& and choose
a C>-function p, (0=<p,<1) with the following property:
1 on M-V,
Pe=
0 on V.

The function on D which is obtained by Lemma (3.1) is denoted by ¢.
We set

Pr=0Q" P,

We may assume that ¢, is a function of C%®-class. By Lemma (3.1)
there exists a real constant ¢ such that the infimum of the eigen values
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of the hessian of ¢, on Dn{n<R} is bounded below by c. We write
this implication as W(p,)=c on Dn{n<R}. So by choosing a suitable
convex increasing function y and referring to ¢,=0 on V,,, we may
assume that

3.7) .=+ x(h)

is pseudoconvex on Dn{n<R} and s-pseudoconvex except S. We fix
such a y. We note that (3.7) is satisfied for j(f) with j(t)> x(t), where
FO)>x(t) implies that FO=x®), F¥'@O=x' () and F'(H)=y"(f). Because
DS Q, we see that {y=R}ndD#@ for a large R. Moreover, making
R* sufficiently large, we have

(3.9) {¢.=R*}n {n=R}n V,=0.

This holds for R* with R*>R*. So choose R* with R*>R* where
R*=max ¢,(p) and define
peK

A={n<R}n{p,<R*},
¢=1/(1—¢/R*)+1/(1—n/R).

Then (1) and (2) are satisfied for 4 and ¢.

(The sccond step). We shall construct a special compact exhaustion
{4;} of D, where 4; is of the form as constructed in the first step.
Take a compact set K,. As in Proposition (3.6) choosing &,, py, X1, Ry
and R}, we make 4,. Next we choose a compact set K, with 4, €K,.
In the same manner we have 4,. Repeating this process we make 4,
by choosing e, p,, %, R, and R¥. We may assume that R,<R,,; and
R,—» o (v—00). In the following we write V,, ¢, and ¢, for V,, ¢,
and ¢, respectively. We may assume that (1) &,>¢,,, and &—0 (v—00),
(@) t<Ay+15 B) pv<py+; and (4) ¢,<0,,;. We define o,,; by

(3.9 G'v+1=igg {tv+1(0) = xy- 1 (M)}
+ Max [peSAup {(p:'-f-l _QD;—I}’ O] .

Also we may assume that R¥<R¥,, and R¥— oo (v—00) and

(3.10) RE>R*  +0,,, (v22).
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We fix such an exhaustion in the following.
(The third step). We set

84,=6,U 7,

where 6,={n=R,}n{p,=R7} and d,={p,=R¥}In{n=R,}. Let 4(,)
be open sets in M with 04(,) n {y=R,}=4,. By these domains we set

'Qv:(Av_Zv—l) n A(‘sv) (ng)
Also we set

(3.11) Hy+1=  SUP  Qy4q (vz2).

pPedy-1NQRy—-y

Then we have
Proposition (3.12). u,, <R} ;+0,,;<R}.

Proof. In view of ¢@,=¢,+y%, (3.9) and (3.11), the assertion is
easily proved.

Now we prove the following

Proposition (3.13). For each v+1, there exist positive convex in-

creasing functions VY, and ¥, such that
D =P (1 (1= @uiy/RED) + P11/ (1 =1/ Ry 1y))
satisfies the following condition: Let

m,y = inf &,.,(p) and M”“:psel,}p ?,,1(p),
v—-1

pedyri—dy
then we have
My >M, .
Corollary (3.14). Let
4y (m)={D,,<m}.

Then
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4y chy (M, €4y ((myy )4, €4y 4.
This corollary is a direct consequence of Proposition (3.13).

Proof. We prove in the following steps:
(i) First we choose P2, such that

inf @,,(p)> sup D,,4(p).

pe{n>Ry} pedyv-1N2yv-1

(ii) Next we choose Y1), such that

inf &,,4(p)> sup  D,.4(p).

pe{@v>RVx} pedy—1—Qy—y
(iii) Finally we prove m,, (>M, ;.
In what follows we set
PR =P8 (1/(1~2/RY:p) and TR0 =¥ 21 (1/(1—1/Ry41))-
Proof of (i). We choose ¥(}, with the following condition:
(3.15) FOO=1/1—1[R%,)  for 1=<p,.y.

In what follows ¥(, is assumed to satisfy (3.15).
By using ¥{V,(1)=0, we have

(3.16) inf &,,,=2%2,(R,).

pe{n>Ry} -

On the other hand, we have

sup b, = sup l1‘7‘514-)1 (py+)+ sup ‘175%-)1 (m.

PEdy-1NRy -y pPedyv-1NQRy-1 Pedy—1N2y-1

Because #n(p)<R,_; holds on 4, ,nQ,_,, so the second term can be
estimated as follows:

sup PR, () <PP(R,-,).

pedy 1Ny

By (3.11), we have

(1)
sup P04 )=K, g,
pPedy-1NRy -1

where
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(3.17) Kyi1=1/(1—py+1/RY41)-

We note that K,.; does not depend on a choice of WP{,. Then we

have

(3.18) sup @, <K, + PR, .

pedy-1NQRy—y

We choose a constant M), with
(3.19) M1 >K, 5.

For the proof of (i), from (3.16), (3.18) and (3.19), it is sufficient to
choose ¥, such that

(3.20) T2(R)>PZ(R,- )+ Ky i +2M .

This is always possible. Moreover, we can choose it with the following
additional condition:

(3.21) PR, ) <M.

We choose such ¥, and fix in the following.
Proof of (ii). Referring to ¥(2,()=0, we see that

inf @, inf P (e,
pe{ov<R%} pe{ov>R%}

Owing to @,+;>¢,, we have (9,4 1)>PL(¢,). Because

inf  FE () ZFFPI(RY),

pe{ov>R3}
we have
(3.22) inf . @, 2P (RY).
pre{ev>R,}

On the other hand we see that

(3.23) sup D, = sup ¢’51Jr)1((/’v+1) + sup ‘-T’%n(’?) .

pedv-1—2y -1 pedyv-1—2v-1 pedy-1—02v-1

Because n(p)<R,-; for ped, {—Q,_,, the second term in the right-
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hand-side of (3.23) is bounded above by ¥@ (R,_,). Since o,,,
=Q,_1+Avs1—Xv-1F+ P+ —@,—q1, the first term in the right-hand side
of (3.23) is bounded above by ¥ (¢, ,+a,,,) on 4, ,—Q, ;, where

we use (3.9). Because sup  ¢@,_,=R¥_,, we obtain from (3.23)
pedy-1—2,-1

3.24) sup ‘pv+1§¢$1+)1(Rf—1+av+1)+¢%)1(Rv—1) .

pedy-1—Qy-1

For the proof of (ii), from (3.22) and (3.24), it is sufficient to choose
Y, such that

(3.25) PR +0,,)+PR(R,_)<PP(RY).
From (3.21), it is sufficient to choose P{; such that
(3.26) PO (RE 40,41 + M <TD (RY).

This is always possible. Moreover, by Proposition (3.12) we can choose
it with the following additional condition:

(3.27) Ky <P (R +0,0) M.,

where we use (3.17) and (3.19). This completes the proof of (ii).
Proof of (iii). For this it is sufficient to show that &,., which
is chosen as above satisfies the following two conditions:

(3.28) inf &,.,> sup D,
pe{ov>R}} pedy-102y-y

and

(3.29) inf &,,,> sup &,
pe{n>R,} pedy-1—2y -1

First we show (3.28). By (3.22) and (3.18), it is sufficient to show that
FRLRH> K, +PR(R,-y)
Referring to (3.21), it is sufficient to show that
FRL(RH > K,y + My

This follows from (3.26) and (3.27). Next we show (3.29). By (3.16)
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and (3.24) it is sufficient to show that
FRU(R,)>TR(RE +0,.) +PRI(R,_)
By (3.21) and (3.27), it is sufficient to show that
PR(R)>2M,,,.

This follows from (3.20), which proves (iii). Thus we complete the proof
of Proposition (3.13).

(The fourth step). Finally we prove that D is a weakly l-complete
manifold. We choose n such that both line bundles [S]™" and [S]™"
®K;t are positive on D. We set for ¢ ={¢p,} e HY(D, 0([S]™")

(3.30) loll2(p)=a;le;|> and ||<p|IA=SP1ig||¢II(p) for A<D,

where {a,} denotes the positive metric of [S]~".
Let {4,} be a compact exhaustion of D which is constructed in the
third step.

Proposition (3.31). Let {6,} and {l,} be two sequences of positive
numbers with >6,<+oc0 and [,<l,.,, l,>0 (vo>x©). Let {Q} be a
compact exhaustion of D such that A,_,<Q,. If there exists a system
of functions {¢,} satisfying the following conditions (1) and (2), then
D is a weakly 1-complete manifold:

(1) ¢, is a non-negative pseudoconvex function of C*-class on D,

(2) “(Pv+1“4v-1<5v and (Pv+1(p)glv fOT pEQv+1—'Qv'

The proof is easy.
Now we construct such {¢,}. For this we prepare the following

Proposition (3.32). (1) For each v, A, is [S] "-convex except S
(see Definition (3.2) in O. Suzuki [10]). (2) Let A, denotes the convex-
hull of A, in A,,, (k=1) and let A*=4,—S. Then

At A, (m%), where mﬁi’k=su§> Dyie
PE4y

This is a direct consequence of Theorem 5 in O. Suzuki [10].
Let {y,} and {w,} be two positive sequences such that
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Ay (M1 +9y41) €A, 1(My g — 0,4 1) (v=2).

Set
M ’
Qv= % Qu+1 U AZa
pn=1

where

Q=AM =0, )= A0 (M1 +7,41)-

Then {Q,} satisfies the condition in Proposition (3.31). First we show
that for a fixed & the following holds: For a point pe Q,,,—V; we
can find a holomorphic section ¢,,; € HY(D, 6([S]™")) such that

(3.33) "(pv+1”Av—1<5v+l/C0 and ”‘Pv+1||(P).—>—_lv+1D§)‘f)v,
where Co=suph and D, = inf A
peD

pe@, 11— Vs

This can be proved as follows: By using Q,,;n4,_,=@ and by
Proposition (3.32), we can find a section ¢,;€H%4,., O([S]™™) for
a sufficiently small constant ¢ such that

lovsilla,_,<dy+1/Co—e and ”QD,v+1“(P)glv+1D<()‘?)v+8-
By Corollary (3.14), we see that
4,4, ,(M,15) €4y 5(My s~y )4, €4, ).

Then by the Theorem of H. Kazama [6], for any ¢,,, we can find ¢},
e HY(4,,,, O([S]™™)) satisfying

“(p’v+2—¢,v+1”m<sv+l'
By Corollary (3.14) again, we see that
Ay 1cdy3(M,13) €4, 3(My 3—0,43) €A4,,, €4, ;.

Then by the Theorem of H. Kazama again, for any ¢,,, we have a
section ¢',3€H%4,, 3, O([S]") such that

”(p,v+3 - (P,v+2”Av+ 3(my 43—y +3) <'Bv+2'

Repeating this process, we can find ¢,,, e H%(4, 4 O([S]™")) such that
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1054k — OV ik-1l Imrmmerimarso <Ev+i-1 (k=2, 3,...).
Choose {e,} with Y ¢,<e and set
(Pv+1=k1i_{g¢,v+k'
Then we have a holomorphic section ¢,,, € H(D, O([S]™*)) satisfying

”(pv+1 - ¢;+1 ”Av+x(mv+1-cuv+1) <e.

Therefore ¢,, , satisfies (3.33). Referring to (3.30), we see that

loP*D-Lill4,-, <0, and [@P*V0E(p) 21,

where @, ={p{"*V}.
Thus choosing sections of [S]™" on D, (¥, 0@,..., 9% and suffi-
ciently large m, we see that

Oy = Ellfl’wrglzm
satisfies
(3.34) léy+illa,-, <0, and ¢,,(p)2], for peQ,i -V,

By using the construction of {4,}, we can find a real analytic function
E,. (@) for a small 6 and for every v with the following properties:

1Ey+1@l4,., <0, and E,,(m(p)2]l, for peQ,., NV,
This can be proved as follows: Set

n,= inf n and ny= sup 7.

peRy 41 NS pedv-1nS

By using ®,,,|s=1+%2,(y) and noting that ¥2), is a convex increas-
ing function and that Q,.,n4,,,(M,,,)=9, we see that 5,>n,. So
choosing a real analytic convex increasing function &, ;(f), we can
satisfy

E, (D=1, for t=n, and E,, ;(0)<d, for t=ny.

Because 4,_,<={n<ny}, we see that Z,.,(n)<d, for ped,_;. Then
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making & smaller, we may assume that
E,(mzl, for peQi NV
E, (sl for ped,._,.

Thus for this 6 we make ¢,,, and set

d¥i1 =%—(¢v+l +E,41(m).

Then {¢¥,,} satisfy the conditions (1) and (2) in Proposition (3.31).
This proves that D is a weakly 1-complete manifold.

§4. Some Propositions Concerning Monoidal Transforms

In §5 we will use monoidal transforms repeatedly to resolve singu-
larities of indeterminancy of characteristic functions (see §1). There we
will consider the signs of certain kinds of line bundles in detail. For
this we have to fix local coordinates on a complex manifold which is
obtained by forming monoidal transforms.

Let M be a 3-dimensional complex manifold with the condition (A)
(see Introduction) and let S and H be non-singular divisors in M which
are defined by S={{;=0} and H={n,=0} respectively. The condition
(A) is stated as follows:

(A)oy: Let {;=f,,(, and n;=g,,n,. Then
f).u=flu(zu) and g}.u=g}.u(zu)'

(B)oy: [S1j4 and [H], are negative complex line bundles.
We write

¢([STiH=f and ¢ ([HljD)=g.
Then f and g are positive integers. The following proposition is easy:

Proposition (4.1). (1) If and only if l-f=g holds, then [S]!
®[H],4 admits a positive semi-definite metric {a,} and
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“4.2) @1 =a,(z,) 15512/ In41?

is a pseudoconvex function on M—H. (2) If and only if f=k-g holds,
[ST'®[H]I}, admits a positive semi-definite metric {b,} and

(4.3) (Pl,k=b).(z).) [Cal2/1mk12

is a pseudoconvex function on M —H.
From this we make the following

Definition (4.4). (i) The smallest integer o (6=1) satisfying o-f
=g is called a a-characteristic number of (S, H). The obtained pseudo-
convex function (4.2) is called a o-characteristic function. Moreover,
if o-f=g holds, then (S, H) is called a c-complete pair. If not so, it
is called a o-incomplete pair. (ii) The largest integer 1 (1=0) satisfy-
ing f=t-g is called t-characteristic number of (S, H). The obtained
pseudoconvex function (4.3) is called a 7t-characteristic function. Also

t-complete pairs and t-incomplete pairs are defined.

In what follows we use the following notations:

For a complex line bundle E, we write E>0 (resp. E<0 or E=0) if
¢1(E)>0 (resp. ¢,;(E)<0 or ¢,(E)=0).

Now we form a monoidal transform Qy: M,—M with center A.
Let P be a rational curve and V) and V® be a canonical covering
of P whose inhomogeneous coordinates are denoted by u(®) and u(®
respectively. We define a negative line bundle 7: F»P by (MD=y®.
E@), where T Y(VO)={u®, EM): |EBO|< + w0} (i=1,2). For each A, we
prepare a copy of F, which is denoted by F, whose local coordinates
are denoted by u{}j, £ (i=1,2). Then M, is identical with a
complex manifold which is obtained by the following identification bet-
ween {U)}, where U =171 (Vi) x {|z;l <p} (i=1, 2):

SR =L N
on Ulll n U”“,

ufl =g /o8- ufd
¢ =950
4.5) on U nUZ,

uﬁZﬁ =fi.ugz;1:u1(‘%i
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on U nUZ.

A=5511[)1 Cl=u£2|}£§2|} @)
(4.6) on U{}} and on Uf).
na=uil- &N n,=E¢H

Let Z)={=0}u{£3=0}. Then we see that Q}(4)=Z, and
0y: My—Z—M—A gives a biholomorphic mapping.

By using this expression, we consider resolutions of singularities of
indeterminancy of functions in the following form:

Gica=ax(z2) IC512/Im}]2.

First we consider

(I) The resolution of singularities of indeterminancy of ¢, ;.

We form the monoidal transform with center A4, Q): M,—»>M.
Choosing a local coordinate covering {Uflil)l} on M, as above, we see
that

Oty(@m,1) =08,(a)) | €§.1|)1(m_1)12/ ] u§.1|)1|2 on Uz(lll)l

When m2=2, there remain singularities of indeterminancy on A, where
Aqy={E}=0}n {ui}y=0}. We form monoidal transform with center
Ay again, which is denoted by Q,y: M(;—M(,. Replacing {; and 7,
by &) and wu{}} respectively in the previous construction, we make
a local coordinate covering {U{,} of M. Local coordinates z,, £,
uffy are determined so that Q) is expressed as £{}=¢{f) and uil}=
Ehully on U, Then the identification rule is given in the similar
manner as (4.5). We see that

0@ @) 1RV 1 [ufft|*  on U,

where Q@ =0 ;)°0Q).
Repeating this process j-times, we obtain a complex manifold M; and
a local coordinate covering {U{);} of M, whose local coordinates are
denoted by z,, &), ul}; in the similar manner. The identification
rule is given as follows:
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(1)
4:o’-l.t fl#é#ll
ug- glnfi-u ula}.)l

f( =g, f—(; 1)5(21
@.7) * U on U U

nlJ:

on U nUY

nlje

on UPnUR,

Let Q=0 ;Q(j-1y>**-°Q1y. Then we see that

C;.=fg.1)‘
on UY
na=ui ()
and
QU (9, ) =0 @) |EP™P 12/ luff) 1> on UL
Finally when j=m, we obtain
(4.8) O™ (1) =0™* (@) |uifp|™>  on Ui,

which is a desired resolution.
Set

L —{ul =0},

L_I { S.zl }U{u5.2|3+1—0} (j=1a2:'-~’ m"l),

{&h=0} U {¢3)=0},

L,
Z(m)=L1 U Lz u--u Lm'

Then Q(~'(4)=Z,. Consider a complex line bundle [L;_,] on L;
nL;_y, which is denoted by E;_,. Then

4.9) E; =[H]'Q[S]|4

Also we consider another complex line bundle [L;] on L;_;nLj; which
is denoted by F;. Then

(4.10) F;=[S]T"VU"DQ[H]|,
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Zm is expressed on Q7 '(n~Y(p)) as follows, where pe A and n: M—A:

g W
ufh - & ufh
AN |
Lo u@ L, £2)
0 3 Ny ia
L, N
3] L, @
e Uilm
L, _
l f m—1
U1 i EGn
L,—
ég.z|m—1
——a
uli,
Figure 1

We have the following

Proposition (4.11). (i) If (S, H) is a o-complete pair, then (1)
if j204+2,F;>0 and E;_,<0,(2) if j=0+1,F;=0 and E;_;<0, (3)
j=0,F;<0 and E;_;=0 and (4) if jSo—1, F;<0 and E;_,>0.

(i) If (S,H) is a o-incomplete pair, then (1) if jzo+1, F;>0
and E; <0, (2) if j=0,F;<0 and E; ;<0 and (3) if jSo—1, F;<0
and E;_;>0.

(II) The resolution of singularities of indeterminancy of

@1,0=ba(z2) 1G1?/In312.

Let Q(y: M;,—»M be a monoidal transform with center 4. We choose a
local coordinate covering of M), {U{#,} by (4.5). Then by (4.6),

0ty (01,0 =0, | u512|)1 [2/1 5512[)1“_1) [2.

In the case 122, there remain singularities on Ag,={uf}}=¢# =0}
Here we form Q,y: M;—M, with center A, again. Replacing (,
and n, by u{}} and &) respectively, we choose local coordinates on

{US) so that Q@ is expressed as uffj=&5) and &F=u{l}&{} on
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U{l). Repeating this process j-times, we obtain Q,: MM _;). We
choose local coordinates z;, &P, ui; on US); by the following con-
ditions:

W) —f a=G=Dg),
&y =faugn VN

on Uff}n U

4.12)
& =9..83)
| on U UG-
uf) =frg5iud)
Then
QU™ (¢1,) =0 (b |uff) 12/ 1EF P12,
where

Q(j) =Q(j)°Q(j—-1)°"'°Q(1)'

Especially when j=I, QW*(p,;) gives a desired resolution. Q(")(A4) on
Q0W-1(z~1(p)) is expressed as follows:

& ulf)
L
‘ Ve f(l)
usf) S
| L i
ufh) - —-
) l
N
£1) L,
Als . (1)
*. Uil
L
l Vel
ug.lﬂ—l 1 —‘6,(11[}
(1) <L,
5111—1 2
I fuz
uff)
Figure 2
Set

Ly={ER=0}U (s =0}  (j=1,2,..., I—1),
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L,={&if=0} v {¢f=0},
E(l)=L1 U LZ U b U Ll'

Then we see that QW7'(A)=Z,. Let [LJl|.,_,nr.=F, Then by
(4.12) we see that

F=[SIQ[H]* D] 4.
Let [Li—y1lr._snr.=Ex-1- Then we have by (4.12)

E._=[ST'Q[HT*| 4
We have the following

Proposition (4.13). (i) Let (S, H) be a t-complete pair with t=1.
Then (1) if k=t+2,E,_;<0 and F,>0, (2) if k=t+1, E,_;<0 and
F,=0, (3) if k=1, E,_,=0 and F; <0 and (4) k<rt, E,_,>0 and F;<O0.
(ii) Let (S, H) be a t-incomplete pair with t=1. Then (1) if k=1+2,
E,_1<0 and F,>0, 2) if k=t+1, E,_,<0 and F,<0 and (3) if k<7,
E,_,>0 and F, <O.

In the same manner, as for the conoid function ¢, ; we have

Proposition (4.14). (i) Let (S, H) be a o-complete pair. Then (1)
if 1>2 and o=1, then E,_;<0 and F,>0, (2) if =2 and o>1, then
E,_,<0 and F,>0 and (3) if 1=2 and o=1, E,_;<0 and F,=0. (i)
Let (S, H) be a o-incomplete pair. Then (1) if =2 and 1=2, then
E, <0 and F,>0 and (2) if =1 and 1=1, then E,_;<0 and F,;<0.

§5. Lemmas on Extension of Helomorphic Functions

The purpose of this section is to prove the following theorem, which
is a part of Theorem I:

Theorem (5.1). Suppose that M satisfies the conditions (A)y, and
(B)oy (see the beginning of §4) and A is a simple domain along A
(see Definition (1.4)) which is a domain of holomorphy on M. Then
there exist ¢ and O satisfying
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{p*<e}nVy(A) =4 nVyA),

where ¢* is the characteristic function of M (see Definition (1.6)).

Let 4 be a domain on M such that there exist a conoid function
®r,; (see Definition (1.4)) and 9, & satisfying

(5.2) {@ri<e} N Vi A)= 4 VA).

Then (5.2) is also satisfied for a conoid function ¢,, for a sufficiently
large 1, i.e.,

(O)0y: There exist a sufficiently large ! and a conoid function such that

for some ¢ and §,

{p<el nVy(A)=4nVy(4).

It is easily seen that if M satisfies the condition (4) and 4 is a
simple domain along A (see Definition (1.4)), then M and 4 satisfy

(A)0y (B)oy and (C)coy-

Lemma (5.3). Suppose that M satisfies (A)), (B)oy and A satisfies
(Ooy- If 4 is a domain of holomorphy, then we have

(I) In the case where g= f, we have
(i) if (S, H) is a o-complete pair, then there exist ¢ and & such that

{.,1<e} nVi(A)=dn Vi(4),

where @, is the o-characteristic function of (S, H),
(i) if (S, H) is a o-incomplete pair and 6=2, then there exist ¢ and
0 such that

{¢d—1,1<8} n V;S(A)CA n I/(S(A)9

where @, is a conoid function.
(II) In the case where f =g, we have
(@) if (S, H) is a t-complete pair, then there exist ¢ and 6 such that

{p1.<e} NV(A)=An VA,

where @, . is the t-characteristic function,
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(ii) if (S, H) is a t-incomplete pair, then there exist ¢ and & such that
{01 41<e}nVs(A)=d4nVy(A),

where @, ., is a conoid function.

By taking account that the characteristic function ¢* is identical
with the o-(resp. t-)characteristic function in the case where (S, H)
is a o-(resp. t-)complete pair (see (1.5)), we have

Corollary (5.4). In the case of (i) in (I) or (i) in (II), Theorem
(5.1) holds.

For the proof of Lemma (5.3), we prepare furthermore two lemmas:

Lemma (5.5). Let A be a compact Riemann surface and let F
and G be complex line bundles such that F<0 and Gz=0. With re-
spect to a fine covering {V,} of A, the fibre coordinates of F and G are
denoted by (;, and n, respectively. We set V=F®G and denote a di-
visor which is defined by {n,=0} by S. Let W be a small neighbor-
hood of the zero section of V and let Q be a neighborhood of (S—A)
nNW. Then every holomorphic function on Q can be extended to a
holomorphic function on some neighborhood § of the zero section.
Moreover, Q is determined only by Q.

Proof. Take metrics of F and G, {a,}, {b,} respectively and set
hy=a;|(;]*> and h,=b,|n,|>. Then there exist ¢, &, (¢,<¢,) and &; such
that A,={peV:e,<h;<g, and h,<e;} is contained in Q. Take a holo-
morphic function f on Q. Then fed(4,). Thus f is expressed on 4,
as follows:

f=3% X alm(z)lny,

I=—00 m=0
where {a{>™} e HY(4, O(F'QG™™)).
By assumption, F'®G "<0 for 1<0. Therefore, {a{™}=0 for [<O0.

Then f can be extended to QU A, where A,={peV:h <e, and h,
<é&3}.
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Lemma (5.6). Let M be a 3-dimensional complex manifold and
let LcM be a 2-dimensional compact complex submanifold which is
isomorphic to the compactification of a positive complex line bundle F
on a compact Riemann surface A. The zero section and the infinite
section are denoted by A, and A, respectively. Let A be a pseudo-
convex domain with

Agcd and dAnL#9.
Then we have
odnL=A.

Proof. Assume that d4AnNL#A,. In view of F>O0, there exists a
strongly pseudoconcave neighborhood system {V,} such that V,={p
eL—Aq,: h(p)>¢}. Then letting so=1nf h(p), we see that ¢,>0 and

V,,=d4nL. Take a point poeﬁ(AnL)nVs By assumption 4AnL is
pseudoconvex and V,, is s-pseudoconcave at p,. Choose a Stein neigh-
borhood U of p, in L. Then Un4 is a Stein manifold. So there ex-
ists a holomorphic function f on U n 4 which cannot be continued across
Po- On the other hand, restricting f to UnV,, we see that f is con-
tinued across py, which is a contradiction.

Proof of Lemma (5.3). We prove (i) in (I). For this we first prove
that

5.7 if {p,,<e}cd, then {¢p, <e'}cd

on a small neighborhood of 4. We may assume that [=2. Now we
consider the resolution of singularities of indeterminancy of ¢, Q®):
My—M. We choose a local coordinate covering of M, as fixed in (II)
in §4. We set

Apy=@D7 ()%  Q2uy=Q"V (91,1<?))°
AD T = oh l
'Q(l)=(Q(l) ((/)1,1<8))0 and E(l)=j\=J1Lj-

Then Q) and @, are drawn in Figure 2 in §4 respectively as follows:
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Figure 3

First we see that 4 is a pseudoconvex domain by Proposition (1.8).
We prove that A4, contains a neighborhood of L,nL;_,. E,_, is nega-
tive by (i) in Proposition (4.14). Take a complex line bundle which is
defined by {u{})=0} and restrict it to L,n {u2)=0}. Then we have a
positive line bundle. Considering the case j=I in (4.12), we see that
the line bundle defined by {£3)=0} is negative on L,n{u$})=0}.
Hence by using Lemma (5.5), every holomorphic function on 4g—2Z
can be extended at least to {¢@3)=0}. If dd,nL,=@, then L,nL,_,
=A4y. So for the proof of (5.7), we may assume that 04, nL,#@.
Then by Lemma (5.6) we see that @4, nL,=L,nL,_;. Next we con-
sider F,. Then by (i) in Proposition (4.14) F, is non-negative and F,
is flat if and only if /=2 and o=1. Since 4 is a domain of holo-
morphy on M, 4, must contain a neighborhood of L,nL,_; by Lemma
(5.5). From this we see that every holomorphic function on A4 —ZX,
can be extended to LU {u{})=0}. In the case where /=2, the asser-
tion (5.7) is hereby proved. Assume that [>2. In this case we see that
F, is positive. By the same discussion as above, we find that L,_,
NnL,_,=A4;. Repeating this process we can prove (5.7).
Next we prove that

(5.8) if {p;,<e}cd, then {¢,,<elc4

on a small neighborhood of the zero section.
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We may assume that o=2. Let Q) be the resolution of singu-
larities of ¢, ;. We choose a local coordinate covering of My as
expressed in (I) in §4. Set

4y=(Q71(4)9), Q4 =0Q (g,,<8?),
Q,=(Q (¢p,,,<¢)° and E(a)=j\=J1Lj_

Then Q,, and Q, are expressed in Figure 1 in §4 respectively as
follows:

Figure 4

We see that A, is a pseudoconvex domain by Proposition (1.8). Since
022, E, is positive and F, is negative by (4), (i) in Proposition (4.11).
So from Lemma (5.5), every holomorphic function on 4,,—Z2,, can be
extended to {Cfﬁ}=0}. As in the proof of (5.7), first we prove that
LinLy=4,. So we may assume that d4,,NL,#@. By Lemma (5.5)
we see that 04, NL,=L,nL,. By (3) or (4) in Proposition (4.11),
F, is negative and E, is non-negative and E; is flat if and only if o=2.
In the case where o=2, the assertion is proved. If ¢>2, then E, is
positive. And by Proposition (4.11) F; is negative. Then we see that
04N Ly=L,nL; by Lemma (5.6). So we see that 4, contains a
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neighborhood of L, N L;. Repeating this process, we prove the asser-
tion (5.8). Here we also prove that O(4,)—2Z,)=0(4,). So we
complete the proof of (i) in (I). Proofs in the other cases can be done
in the same manner by using (4.11) and (4.14). We omit them.

Remark. If (S, H) is a o-complete pair, then the characteristic func-
tion ¢* is identical with the o-characteristic function ¢, ; and

0" (9,,1) = luff|?

on a neighborhood of L,_;NL, is a pseudoconvex function on M,
~ (uify=0y.

Proof of (II). We prove only (i) in (II). The proof of (ii) in (II)
is almost the same as that of (i) in (II) and is omitted.
By (C)y we see that

{¢,,<€'}c=4 on a small neighborhood of A.

We may prove (i) only when I>7. Consider the resolution of singu-
larities of indeterminancy of ¢, as (II) in §4, which is denoted by Q®:
My—-M. We set

Q4= (QW=1(¢, ,<¢e)9), Om= OV~Y¢,,.<8)°

TN T g 1
A4y =QV7H4)") and Zy=\/L;.
iz

&

ui‘llu (

)
Sifi2

Ees

Figuer 5
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We see that 4, is a pseudoconvex domain. €, and Q. are expressed
in Figure 2 respectively as in Figure 5.

By (1), (2) in (i) in Proposition (4.13), E,_; is negative for I=t+1.
Then the complex line bundle which is determined by {u{}}=0} is posi-
tive on A{®=L,n{{3)=0} when IZ7+1. By Lemma (5.5) every holo-
morphic function on a neighborhood of A{» except {{3)=0} can be
extended to {{3)=0}. Then we see that dd;nL,2L,NL,—; by Lemma
(5.6). Also we see that F, is non-negative when [=t+1 by (1), (2) in
(i) in Proposition (4.13). Therefore we see that 4, contains a neigh-
borhood of L,_,nL, If I=t+1, the assertion is hereby proved. In
the case where I>7+1, we can prove the assertion by repeating the same
discussions as given in the proofs of (I). The details are omitted. Also
we see that 0(4)—Zq)=0(4).

Remark. In the case (i), letting Q@*(¢p*)=¢, we see that (1)
¢ is a pseudoconvex function on M,—{u{})=0} and (2) ¢ is expressed
as ¢=|uR3)|> near L n{u)=0}. Moreover, {¢p <e}c=4y,.

Proof of Theorem (5.1). We prove our Theorem only in the case
where g=f. The proof for the other case is similar. We express the
Euclidian algorithm of f and g as follows:

g=pf+ry,
f=pari+r,,

(5.9) ry=p3ry+rs,

rq=pq+2rq+ 1-

We prove it in the following cases successively:

(Case I)(;y. The case where (S, H) is a g-complete pair.

We see that o=p, and r,;=0 (see Definition (4.4)). Thus by Corollary
(5.4) we prove the assertion.

(Case I),y. (S, H) is a o-incomplete pair.

By the definition of o, we have g=(0—1) f+r; (see Definition (4.4)). So we
see that p;=0—1. First we restrict ourselves to the case where p;=1.
By (ii) in (I) in Lemma (5.3), we see that {¢, ;<e}c4 on some neigh-
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borhood of A. Let QW: M ,—»M be the resolution of ¢, ;. We
choose a local coordinate covering of M, as (I) in §4. We set

Hy=ul}), =0, Sqy={¢51), =0},
Ay =HyNSuy,  4ay=0Q"71(4)9).

Now we infer that E, _, is positive by (3) in (ii) in Proposition
(4.11). Then by Lemma (5.6), we may assume that 04 ,N S y=A4g,.
So if 4 is a simple domain along A4, then 4, is also a simple domain
along A(;). Moreover, My, S(1), H¢1y, Ay and 4, satisfy the condi-
tions Ay, (B)o, and (C),, near A, which are denoted by (A), (B)q,
and (C),, respectively. Set

(1) — £(1) (1) —

C}. _éllpl 10 f).u _fiu ( ) 1
(5.10) W , on Uiy, and - on U3, nU%,,.

ni =ujl), g =9 S

We see that by (4.7)

(O =0

’7(1)_9(}) ,75‘1)

(1) (1)
on Ujj,, NU,,,

and we have

ci([Saylid,)=f and ¢ ([Hy)1 ay,)=r1-

The t-characteristic number of (S, H(y) is denoted by 7,. Then
by ¢ ([S)]'®[H))=f—r;, we see that 7;,=1. In the case where
p=0, setting S,;,=S and H;,=H, we find that the 7-characteristic
number of (S(;), H(;)) is also greater than one in this case. Hence for
all p; we can choose the t-characteristic number of (S(;), H(;)) greater
than one.

(case II)(;,. The case where (S, H;,)) is t-complete. We see that
f=py-ry, r;=0 and t,=p, by (5.11) and (4.6). Then we see that by
@) in (II) in Lemma (5.3) {¢,,,<e}c4,, on some neighborhood of
A1y The 7 -characteristic function is

P1,p, = L3112/ [m§DP2 ]2,
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By (I) in §4, we see that
(5.11) on U,

By (5.11) we see that ko=p,-p,+1 and l,=p,, where k, and I, are
defined in (1.7). By this we obtain

QW () =9,,p,

which implies {¢*<e}<=A4 near A. Thus we prove our Theorem in this
case.

(Case II);). The case where (S, H(;)) is t-incomplete pair. By (ii)
in (II) in Lemma (5.3), we find that {¢, ,,.,<e&}<=4, near Ay, We
form monoidal transforms successively on M(;, p,-times, which is de-
noted by Q®: M, —Mg,. The local coordinate covering of M, is
chosen as in (II) in §4. Then we have

0@ (@1,p,+1) =0 (b) [ui}), 12/ 1 £33, 1%

By (4.12) we have

(2) — 4(1)£(2)
éllnz_glu éﬂlﬂz -
(5.12) > P near L,, N {uj3),=0}.
— (1) 5(1)- 2
Uilp2 _fi-# G pzuﬂlpz

Set
A(z)= (WA—;)O), Say= {u&%2,2=0},
Hy={&3),,=0} and A, =Su nHg).
By (5.12) and (5.9), we obtain
¢ ([H)I7d,,=r1 and ¢ ([S)lid,, =72

Then we see that My, H(;), S;;), A2y and A4, satisfy the conditions
(A)oy» (B)oy and (C)) near A, which are denoted by (A4)), (B),
and (C). We set
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(P =uf), 8 =ria)
and
i =&, g% =94y

Then we see that by (5.12)
(P =R
@ =g@n2.
Here we note that ry>r,.
(Case II)(;). The case where (S(,), H(;)) is o-complete. We see that

rs=0 in (5.9) and o=p;. Then (i) in (I) in Lemma (5.3), we see that
{¢p3,1<8}CA(2)- By using

(0 =P n P
s =1,
We see that by (5.11)
(=P
ny={@Perg@ereatt,
Moreover, by (5.9) and (1.5), we obtain
ko=(p2-p3+1)-pi+ps and Ilo=p,-p3+1.

Then we see that (Q®»-QW)*(¢p*)=¢,, ;. Therefore we obtain {¢p*<e}c
4.

(Case IIl)(,,. The case where (S(,), H;)) is o-incomplete. As we de-
fined S, and H, from S and H, we define S; and Hg, from S,
and H(;,. Then we see that

ci([Sayl ™ H=r, and c¢,([Hsl)'=rs.

Now we consider general cases. From (Case I) we see that by
making QW: M,—M,

ci([Snl™M=f and c,([Hyl Y)=ry

and QMW is the p,-times composition of monoidal transforms. From
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(Case II) we see that by making Q®: M,,—M,

ci[Hpyl™ H)=r, and ¢;([S)1™)=r,

and Q(2) is the p,-times monoidal transforms. From (Case III) by mak-
ing Q(S): M(3)"’M(2), we see that

ci([Szyl™)=r, and c¢,([HzyD=r;

and Q® is the p;-times composition of monoidal transform.
Hence repeating this process g+ 1 times, we obtain a complex mani-
fold M,y and divisors S,y and H,,,y on M,,, satisfying

ci([S+l™)=ry (or 744y) and ¢ ([Hg+1)] )=rg4  (resp. rp).

and QU@*V: M,,)—»Mg, is the composition of p,,,-times monoidal
transforms. In view of (5.9), we see that (Si4i) Hyer)) i now o
(resp. 7)-complete. Then as in (Case I),, or (Case IIl),,, we can prove
the assertion. By this we complete the proof of Theorem (5.1).

Let u: M,—M be the resolution of the singularities of indeterminancy
of ¢* and let h=p*(¢*). The exceptional divisor is denoted by 2 and
the divisor defined by {h=0} is denoted by X’. The exceptional baum
which is inserted in the final step is denoted by L, and we write A,
=X'"nL,. Finally we set 4,=(u"1(4))°. Then we have the following

Proposition (5.13). (i) Let Ex=[Ly]|L.qx -
Then

E,=[ST*®[H]".
(i) O(44—Z)=0(4,) holds.

Proofs can be done in each step in the proof of Theorem (5.1).

§6. Proofs of Theorems I, II, III and IV

In this section we shall prove our Theorems stated in §1. We fix
notations. Let u, My, h, X, 2, L,, A, and A4, be as described at the
end of §5. Let Vy(X)=u"1(Vy(4)) and V,(2)={h<e}. Then ViZ) and
VA2') give neighborhood systems of X and X’ respectively.
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Proof of Theorem I.

For the proof of Theorem I, we prepare a lemma. Let 4 be a
compact Riemann surface and let F be a topological trivial line bundle
on A. With respect to a fine covering {V;} of A, F is expressed as
{fi,}. We may assume that |f;,|=1. Then h'=[(;|* and V,={h'<e}
are a C*-function on F and a neighborhood system of the zero section
respectively, where {, denotes the fibre coordinate on V.

Lemma (6.1). Let A be a connected pseudoconvex domain on F.
Assume that (1) There exists a constant ¢ such that {h'<e}c=A and
(2) for a point peF with p=(z,(p), {i(p)) and for a real number 0,
we set po=(z;(p), e!%,(p))eF. Suppose that peA implies pyed for
any 0. Then there exist a constant ¢ such that

A={h'<c}.

Proof. For a point p in the zero section, we denote the Hartogs
radius at p by d(p). Then ¢(p)=—logd(p) becomes a pseudoconvex
function on A. Then ¢(p) is a constant function. By (2) we prove the
assertion.

We infer that there exists a weakly l-complete function # on 4,
i.e.,

n=1/(1=h/c).

Now we consider the resolution manifold 7: M—M which is stated
in Introduction and the simple conoid A4 along A (see §1). By Proposi-
tion (1.9) 4 is a domain of holomorphy on M. Then M, S, H, A and 4
satisfy the conditions (A4)), (B)y and (C),y in §4 and 5. So by Theo-
rem (5.1)

6.2) {¢* <&} n Vy(A) =4 n Vi(A).

By (i) in Proposition (5.13), we see that [Ly],, is a topologically trivial
line bundle on A4,. We choose a local coordinate covering of M, by
using (I) and (II) in §4. The local coordinates near L, n X’ are denoted
by z,, uf and f, where {{f=0}=L,. Set A,nNLy=A4,(Ly). Then if
ped,(Ly), then pyed,(L,) for every 6 by Definition (0.1). Moreover,
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since 4 is a simple domain along A, 4,(Ly) is connected. Hence by the
choice of local coordinates, we see that the absolute value of the transi-
tion functions of [L.],, is identical with one. So we find that hl,,
=h'. Therefore by Lemma (6.1), we see that

(6.3) dy(Ly)={h<c}

with some constant c. Let QFf={(z,, uf, &¥): luf|<+ o0, |EF]<+ o0}
and Q*=\UQ%. Then Q* is the maximal domain which admits the fibre
structure én A, whose fibre is isomorphic to C2. The natural projec-
tion is denoted by p: Q*—>A,. We remark that M,—pu '(SUH)cQ*
holds. Then we have

Lemma (6.4). 4,nQ*c{h<c}.

Proof. By Definition (0.1) we see that if p=(z,(p), &¥(p), ui(p))
€4, N Q% then p,=(z,(p), e*(f(p), efuf(p)) e 4, nQ2*. This implies
that 4, N Q*np~!(p) is a Reinhart domain. Assume that there exists a
point pg € 4, N Q* satisfying h(py)=c* with ¢*>c. By (6.2) we have

{1512 <, ufl?<e} =4, n 2* n p~ (p(Po))
for a sufficiently small &. Thus by Abel’s theorem, we see that
{IEF12<c**, [uflP<c*} =4, n Q% 0 p~(p(po)) s

where ¢**=|E¥(py)|2. Restricting this domain to L., we have {|u%|2<c*}
<A4,(L,), which leads a contradiction.

For the proof of Theorem I, it is sufficient to show (2) in (ii) in
Definition (1.4) (also see Definition (1.6)). By (6.2) we get V,(2')c4,
with a sufficiently small e&. By the construction of u, we see that X
N(4y—Q*)<X’ on a small neighborhood of X. So making & smaller,
we may assume that (4,—Q*)nVy(2)<V,(2) holds. Then for a point
PeV(Z)N(44—Q*), we obtain I'j°cd,, where I'}°={qeVy2): h(p)
=h(q)}. Take a point ped, n Q*. Then we see that h(p)<c by Lemma
(6.4). Then I'}°nLycAd,(Ly). Thus making 6, smaller, we get I'j%
<44 So we see that I')%ocA4.
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Proof of Theorem II.
For the proof of Theorem we prepare two Propositions:

Proposition (6.5). Suppose that M satisfies the condition (A)qy.
Let Q: M(y,—M be a monoidal transform with center A. Then we ob-
tain (i) if M satisfies the condition (B)y, furthermore, then [L]<O0,
where L=Q7(A).

(i) Suppose that a negative line bundle E is given on M. Let L
=Q7Y(A). Then we can find a positive integer ny such that

6.6) OHEM®[L]I<0  for n=n, on a small neighborhood of L.

Proof. Proof of (i). By the conditions (A4),, and (B)yg) we see
that L is an exceptional divisor on M, and L admits a neighborhood
which is isomorphic to a tubler neighborhood of the zero section of the
normal bundle. Then by H. Grauert [3, Satz 1, p. 341], we see that
[L]<O.

Proof of (ii). Choosing metrics {a,} and {b,} of [S] and [H], we set
h=a;|0;1>+ bln,)>
We choose a local coordinate covering of M(;, as (4.5). Set
(1) —

(1) -
cV=a;+b,|ui}}|? on U, P =a;|u}|2+b, on URZ.

Then {c{} becomes a metric of [L]. Let {e;} be a negative metric of
E. Then we have a metric of Q*(EM®L, {&}"} by

B =D Qe (i=1,2).

For the proof of (ii), it is sufficient to show that the restriction of the
above line bundle to L is negative. We write

00 log &” =a{"dz; A dz; +alhdz, A dit§D;
+afhduly A dz; +aPdul) A dufl),
where €5 =0Q%*(e;) on US), nL and

00 log i =hihdz, A dZ; +hydz; A di(ly
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+ 05 du By A dZ,+ RS dul A diadt
Here we note that
K =a;b,| |2 i=1,2).
Since E<0, we can find positive constants 6 and C such that
a1 26, %26 and |A$L|<C  for i, j, k=1,2.
Moreover, from Q*(E)=0, we have
6.7) if a%%=0, then a{%=0 and af’=0.

Then we see that nal?,+h$%,>0 for n=0. For a sufficiently large n
we have nal{¥),+h{’>0. Hence for the proof of the assertion, it
is sufficient to show that the following determinant is positive definite for
a sufficiently large n:

S=|n-al®+hd.
We see that
SgHZ(a(lt;)l a(zl)z_a(ll)z a(21)1)+n52_nc(a(z) (;) (:)) 2C2,

Take a positive constant ¢,. Then for any point p with a$”(p)#0, we
can satisfy S2e, on some neighborhood of p. If a%(p)=0, then by
(6.7) we get S=né2—2C? on some neighborhood of p. So making n
larger, we have S=g, on a small neighborhood of L, which proves the
assertion.

Proposition (6.8). Suppose that A is normal. Let A, and Q* be
as in Lemma (6.4). Then there exists a positive constant c¢ such that
() 4enQ*c{h<c} and (i) 44(Ly)={h<c},
where c= sup h.

peds(Ls)

Proof. If (i) is not true, then there exists a point p,e 4, n Q*
such that h(py)=c* with c¢*>c. By assumption, I'j’cA4, for some §.
This yields I'jénL,c4,(Ly), which contradicts the definition of c.
(ii) follows from the condition (iii) in Definition (1.4).
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First we show (2) in Theorem (II). Note that u is the composition
of monoidal transforms, i.e., p=Qm°Qum-1y° °Q)y Then by (A)q),
(B)y and (i) in Proposition (6.5), we see that [L] is a negative line
bundle, where L=Q}(4). By (ii) in the same proposition, Q,([L]™)
®[L(,)] is negative on M, for some n;, where M =0(M,)) and
Liy=Q} (A1) Repeating this process, we obtain a negative line
bundle [2]" on M, (for implication, see §3 in O. Suzuki [10]). Next
we prove that A, is weakly l-complete. For this we may prove that 4,
satisfies (i), (ii) and (iii)) in Lemma (3.5). (i) is satisfied by [Z]". (ii)
is satisfied by Proposition (1.8). Now we will check (iii):

I',={qedy: h(g)=c},
I'.=the connected component of I', which contains {h=c} n L.

Since A4, is a relatively compact domain in M,, we can choose neighbor-
hoods Q; and Q, of I', so that Q, €2, and h(p)<c for pe(Q,—Q,)
Ndg. For §; and §,, we set

Us,=(4: NV (A)UQ, and U, =(dsn Vs (A)U 2,.

We choose 6, and J, so that U, € U;, holds. Choose a C>-function
a(p) (0=a(p)<1) on M such that

1 on Us,,
o(p)=
0 on Us,

and set #'=a-h. Then n'(p)<c holds for ped, and #n is a pseudo-
convex function on U,,. Set

n=1/(1—n'[c)+ x(@*),

where w*=p*.t*(w’) (see (1.1)) and yx is a convex increasing function.
Choosing a suitable y, we get a pseudoconvex function # on 4, U U§,.

Now replacing D, Q2,S and V in Lemma (3.5) by 4,, 4,U(Us,
—{h=c}), 2 and U,, respectively, we see that (iii) is satisfied. So we
find that 4, is a weakly 1-complete manifold.

Proof of Theorem III.



570 OsAMU SuzUKI

Proof of (i). Because E,=[S]*°®[H]'c is of finite order, there
exists a positive integer r such that r-times tensor product of E, is
analytically trivial. So

=0 i

is a meromorphic function on M. Referring to [f|?=¢*, f*=u*(f)
is a holomorphic function on 4, and g=f*| . d«(Ly)—>D is a
proper mapping, where D is the 1-dimensional disk. Every fibre of g
is connected. We see easily that for any pair of two fibres of g there
exists a holomorphic function on A4, which separates their values at the
given fibres. Also by O. Suzuki [10] (see Theorem 5), 4, is [2]™"-
convex except X. So we see that each fibre of w: 4,—SpecO(4y) is
compact and connected. So by O. Suzuki [10] (see Proposition (2.3))
A,=Spec@(4,) admits the structure of complex space. Also we see
that 4, is a weakly l-complete manifold. Then by a well known Theo-
rem of A. Andreotti and R. Narasimhan [1], we see that 4, is a Stein
space.

Proof of (ii). Consider w: 4,—Spec@(4,). By (i) in Proposition
(5.13) every holomorphic function on A4, is constant on ZX. Because
A4, is [X] "-convex except Z (see Theorem 5 in O. Suzuki [10]), we
see that o Y(w(2))=2Z. Let h=g;|¢%'|?>, where ¢, denotes the minimal
defining equation of 2’. Then [Z']™" is a non-negative complex line
bundle. In (2) in Theorem 6 in O. Suzuki [10], replacing D, S and A4
by 2’ 2 and L,, we prove the assertion.

Proof of Theorem IV.
For the proof of Theorem IV, it is sufficient to show the following

Propesition (6.9). (i) If E, is of finite order, then A,=Spec0(4,)
is the K-convex hull of A (see Definition (2.5) in 0. Suzuki [10]).
(ii) If Ey is of infinite order, then A is an L-manifold.

Proof. Proof of (i). Let p=tou: 44—>A4. Then in view of X=
p~Y(po), 44—Z=A. Take an arbitrary fibre discrete holomorphic map-
ping @=(f1, /2. f3): 4—C3 Since A,—X is holomorphically separable,
A=wopt: A—A, is injective. We infer that 0(4)=0(4,) by (i)
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in Proposition (5.13). So there exists a fibre discrete mapping $*=
(fY.f3./3): 44—C® such that ®=0*). This implies that the K-
convex hull of 4 is contained in 4,. Because A4, is a Stein space, we
prove the assertion. Proof of (ii). In the same manner as in the proof
of Proposition (4.4) in O. Suzuki [10], we see that I' is nothing but
w(X), where I' denotes the closed set which never admit the structure of
a complex space (see Introduction in O. Suzuki [10]). Then 4, is a
B-resolution of 4, which proves that A is an L-manifold (see Introduc-
tion in O. Suzuki [10]).
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