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On the Long-Range Stationary Wave Operator

By

Hiroshi ISOZAKI*

§ 0. Introduction

In the present paper we shall be concerned with the stationary
theory of scattering associated with the Schrédinger operator with a
long-range potential,

In quantum theory of scattering, many authors have investigated the
existence and completeness of wave operators W*:sﬁ-lim g where
H, and H, are self-adjoint operators acting on a Hilbe;imspace 9. Among
them, Kato and Kuroda gave an abstract time-independent approach to
scattering theory. They derived a stationary form of the wave operator

in the following way:
0.1) W= jw E; () (Hy,— (A+10)) R, (A+:0) P, dA,

where E;(4) denotes the resolution of the identity for H,, E,”(4) is the
“formal” derivative of E,(1), and R,(2) and P, denote the resolvent
and the projection onto the absolutely continuous subspace of H,, re-
spectively. They discussed in their abstract theory the existence and unitary
property of this operator and coincidence with the time-dependent one
([8]1, [9]). In the case of the Schrédinger operators, Hy= —4, Hy,=— 4
+ V(x), their theory covers general short-range potentials: ie. V(x)
=0 (jzx|7""®) as |x|—>o0, €>0. But when V(x) is a long-range potential
V(x) =0 (|z|™®), 0<0=<1, the operator defined by (0.1) does not exist.

Recently, Pinchuk [10] has derived an appropriate modification of
(0.1) in the case of a long-range potential. His remedy consists in
inserting a unitary operator U(41470) which depends on the concrete

potential as follows:
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0.2) W= r E} () (Hy— (A£40)) U (A£40) R, (A +10) P dA.

Using this form, he discussed the existence and completeness of the
stationary wave operators for the various potentials. His decay assump-

tions on V(x) are as follows:
V(z) =Vi(z) + V,(2),
Vi(@), AVi(x) =0 (=79,

"a‘a‘V‘ (@), Va(2) =0 (12779,
r

grad, Vi(z) =0 (|z| %) as jz{—>o0, ¢>0,
where grad,,,-—-grad—co-ﬁ—r (w=x/|x|), and A denotes the Laplace-
Beltrami operator on the unit sphere. His choice for U (A4:0) is the
operator of multiplication by a function exp(—z:jz LMVI (w))ds) and

the method of construction is based upon Kato-Kuroda’s abstract theory
(especially upon the “spectral form™).

The purpose of this paper is, influenced by the work of Pinchuk,
to construct the stationary wave operator in the form of (0.2) for the
general long-range potentials, and to discuss the unitary property. Our

assumption on V(x) is as follows:

V(x) is a real C™function (m will be given precisely later in
§2), and D*V(x) =0 (|x|~*%) as |x|—>o0, 0>>0, =0, where

D* denotes an arbitrary derivative of k-th order.

And our choice for U(A+10) is the operator of multiplication by the

function exp(—iX(x, VA+i0)), where X (x, £,) is an approximate solu-

0X

tion of the non-linear equation 2, =V (x) +|F X"
r

Here we must mention the recent work of Saito [12] concerning
the eigenfunction expansion associated with H,. He obtained the spectral

representation of H, in the following way: Define

F Q) f=n"2 2 s-lim 7" 2 exp(—i/Ar+iX () Ry(A+20) £ (r+)

=00

in L,(S™™"), and set (Zf) () =% (A)f. Then the operator &F:H—
L,((0, o0) : L,(S™")) gives the generalized Fourier transform associated
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. . . . . - 0X
with H, Here, X is an approximate solution of equation 2\/1—6—

or
=V (x) +|FX|®. Our choice of X is suggested by this work. And we

can also clarify the relation between our stationary wave operator and
Saitd’s eigenfunction expansion theory.

The plan of this paper is as follows. In §1, we construct the
stationary wave operator in a rather abstract way, but differing from
Pinchuk, we do not use Kato-Kuroda’s abstract theory. Some calculation
lemmas needed for the application of the abstract theory are proved in
§ 2. Our main theorem appears in § 3. In § 4, we discuss the coincidence
of our stationary wave operator with the one obtained by the eigen-
function expansion theory. We shall give some remarks for the short-
range perturbation of our theory in §5. In the Appendix, we shall

establish some a-priori estimates which play a crucial role in our context.

§ 1. Construction of the Stationary Wave Operator

In this section we construct the stationary wave operator in a rather
abstract way. The author owes most of the ideas to Ikebe [6].
First we introduce some notations.

Let % be a separable Hilbert space and (., J_, [, be Banach

spaces. We assume the following inclusion relations for these spaces:
(1. 1) J.cH ., cHCIH_,

where all inclusions are dense and continuous. And moreover, we
assume that J/_ is identified with the dual space of J,. We use (,)
to denote not only the inner product of 4 but also the coupling of 4,
and 4{_, which will not confuse our argument. € and R denote the
totality of complex and real numbers, respectively.

Let us consider two self-adjoint operators M, and H, on Y. We
denote the resolvent of H; as follows (j=1,2):

1.2 R;(2)=(H,—2)"' (zeC—R).

The resolution of the identity for H; is denoted by E,;(1) (j=1,32).
In general, B(,;: A,) denotes the totality of bounded linear operators

from a Banach space A4, into a Banach space A,
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Now, we assume as follows.

(A-1) The limiting absorption principle is guaranteed. That
is, for arbitrary 2>>0, ¢>0, R,(A+ie)eB(H :H_ ), and when
¢ tends to 0, there exists a strong limit s-lim R; (A4ie) =R; (A £:0)
eB(H,.:H_). Moreover for an arbitr;;‘; fedl,, R;(A+i0)f is
an Y _-valued strongly continuous function of A (0<<A<o0)
(Jj=1,2).

With the aid of this assumption we define for j=1,2, 1>0,

(1. 3) ES Q) =-2—3;(Rj(1+i0) —R,(A—i0)).

This is a bounded linear operator from 4, into J{_, and strongly con-
tinuous with respect to 1>0.

Our next assumption is:

(A-2) There exist unitary operators U, (d, &) on I having the
Sfollowing properties (X, e>0).
(1) For an arbitrary g€ 4,
U. (4, e)R(A+ie)ge D(H,),
Ut(4, &) R,(A+ie)ge D(Hy),
where D(H;) denotes the domain of H;, and * denotes the adjoint
in K.
(2) We define
Gy (Atie) = (H,— (A+ie))U. (A, e) Ry (A*ie),
Gp(Atie)=(H,— Axie))U%(A, &) R, (A £ie).
For every 1>0, ¢>>0, G(A+ie)e B(IL . : I ,), and s-lim G,(A +ic)
&0
=G, (A£i0) exists in B(YH .:H,). Horeover for an arbitrary

fe j?,L, G (A+40)f is a strongly continuous function of 1>0
(U, £=1,2).

Let an interval (a, ) be fixed, and choose an arbitrary Borel set e

contained in (a, 8), 0<la<b<loco. We define
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14  Wh@Ef= jE (DG, (Axi0)fdd,  for vfedl..

By our assumption, the integrand is an H _-valued strongly continuous
function of 21>>0. Hence this integral is well-defined, and W} (e) is a
bounded linear operator from ﬂ?+ into 4 _. The purpose of this section

is to prove the following theorem.

Theorem 1. (1) Wi(e), defined above, is actually an operator
with range in H which can be uniquely extended to a partial isometry
on K with initial sct E.(e) H and final set E;(e) H. (We use the
same notation for the extended operator.)

2) (Wh(e)*=Wgl(e), where * denotes the adjoint in K.

(3) Wi(e) intertwines H; and H,. That is, for an arbitrary
bounded Borel function (1) defined on the real line

a(Hy) Wji(e) = Wji(e) a(Hy)

holds. In particular, H,, restricted to E,(e) H, and H,, restricted to

E,(e) Y, are unitarily equivalent.

For the proof of this theorem, we state a lemma which is of funda-

mental importance.

Lemma 1.1. Let f(2), 9(A) be H.-valued locally bounded
strongly measurable functions defined on (0,0), and e, ¢’ be Borel
sets in (a,b). We put

o= [Bwrwar, p= [ B@Wwar
Then not only ¢, 9= H_ but also ¢, pc I, and

(1.5) G0 = | E@FD, 9042
holds.

Proof. First we consider the case that f(1)=f, ¢(1)=¢ do not
depend on Z. In this case, by the well-known Stieltjes inversion formula,

we have for an arbitrary he 4(,,
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@,m = | E LD

—lim <L_[R,(/t+is) _R,(2—ie)1f, h>di
e\ 271

el0

=(E;(f, h).

By the fact that 4, is dense in 4, we have
o= (B fai=E,@f=s.
Similarly ¢ f E;()gdA=E,(¢)ged, and

¥, 8) = (E;(e)f, E; () 9)
=(E;(eNef, 0

S IRCAGYALS

So, the assertion of Lemma 1.1 holds for constant f(1), ¢g(4).

Next we consider the case that f(1), g(1) are step functions. In
this case there exist a finite number of Borel sets e,, e, contained in
(0, 00) and a finite number of f,, g, such that f(2) =] %, (A)Sm,
g () =); Xe, () 9., where x, (1) and %, (1) are the characteristi”:: functions

of e, and e,, respectively. Then we have
i= [Ewr@a

= ;} memE} (D) fnd
=2 E;(eNen)fm,

and similarly ¢=31E; (¢’ Nex)0n Hence ¢, <, and

(@ 9) =2, (B (Nen)fm Ei(¢' Nen)00)

=23 (E;(eNene’ Nen) fn, Gn)

2] (E5 (D) fmy 9) dA

m,n JeNexpNe Neén
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= [, E O 10 D Fn, T 1. D 942

N jn E NS, (W) dA,

which proves (1.5) when f(1) and g (1) are step functions.

Finally we consider the case that f(1), g () are strongly measurable
functions. In this case there exist sequences of step functions {f,(4)},
{9.(A)} such that £, (A) =f(A), 9.(A)—>¢g(A) in I, almost everywhere.
Writing ¢, = £E}(l)fm(ﬂ.)dl, Gn= LE;(A)g,,(Z)dl, we have ¢,—¢,

Oo.—¢ in H_. But in view of (1.5) valid for step functions we have

(fn—ba, $n—0) = j;(Eﬁ- (D) (Fn () =2 (D), fn(A) —fa(4)) dA.

So, there exists § € 4 such that ¢,—@ in K, by Lebesgue’s dominated
convergence theorem. But since ¢,—¢ in H_ also, we have ¢=¢ € X,
and ¢,—¢ in K. In the same way, we see ¢ K, and ¢,—¢ in 9.

Again in view of (1.5) valid for step functions we have

G )= | B DS D), 0 (D),

Letting m, # tend to infinity, we see ¢o,—¢, ¢,—¢ in H and f,. () —f(4),
g.()—g(A) in 4 ,. Hence,

Go=| E@OrW,0@)a,

which completes the proof of Lemma 1. 1. Q.E.D.

Lemma 1.2. Lez f, g9l ., and e, ¢’ be Borel sets contained in
(a,b). We have

Wi f, WhEhoe X,
and

(1.6) (Wi @f, Wi@0) = | EWS,0dl

= (Ex(eNeNS, 9)
holds.
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Proof. Let us define f(1) =G, (1£120)f, g(1) =G, (A+i0)g. By
the assumption (A-2), (1) and g (1) are J(,-valued strongly continuous
functions of A>>0. Hence we have by (1.4) and (1.5) of Lemma 1.1,
Wi (e)f, Wie)ge I, and

(Wi(e)f, Wi(e) ) = Lne, (E; (D) G (A£0)f, G (A £70)g) dA.

Now, using the definition of G,.(447¢) and the unitarity of U, (4,¢),

we have
<?71r7[R]' (A+i8) — R, (A—ie)1G A +ie) f, G e (A iz’s)g)
~ (G?k(liie)EiT[R,- (A+i8) — R, (A —i2) ]G, (A+i0)f, 0)
- (%R,, (A+ie) Ry (A—ie) f, g>
1 . .
=<——_—[Rk(l+ze)—Rk(/I—ze)]f, g).
211
Letting ¢ tend to 0, we have

(E5 ()G (A£10)f, G (A£10)9) = (EL (D) f, 9).
From this, (1.6) immediately follows. Q.E.D.

Taking into account that J(, is dense in 4, we see by Lemma 1.2
that W (e) can be uniquely extended to a partial isometry on J{ with

the initial set E.(e) /. We use the same notation for this extension.

Lemma 1.3. Let e be a Borel set contained in (a,b). We have
(W) =W,

where the adjoint is taken in Y.

Proof. In the proof of Lemma 1.2, we have seen

1

—[R;(A+7ie) —R; (A—1ie) ]G, (A £ie)
27

G, (A +ic)

=1 [R.(A+ic) —~R.(A—ie)].
2mz



ON THE LONG-RANGE STATIONARY WAVE OPERATOR 597

Since G§;(A+7e)G¥ (A+ie) =1, which follows from (A-2), multiplying
both sides of the above equality by G¥;(24:i¢) leads to

—Z}TT[R,-(Hie) —R,(A—ie) ]G, (A +i¢e)
7
=Gz‘j(liie)%[1€k(x+ie)—R,,(/z—ie)].
T
Hence for f, gEﬁH we have
<f,-1—.[Rj (A+ie) —R;(A—ie)1G (,u:z'e)g>
27

1
27i

= (£ 68 (tie)——[Re+i8) — R (A—ie) ]g)

= (- TR+ i) = Ry (A=) 1Goy (hi) £, ).
2mi

Letting ¢ tend to 0, we have
Q.7 (f, E; (D) G (A£40) 9) = (EL (1) Gi; (A£40)f, ).
Integrating both sides with respect to 1 on e yields

(f, Wi (e)9) = (Wi5(e)f, 9),

from which the assertion of the lemma readily follows. Q.E.D.

In particular, we see by Lemma 1.3 that the final set of Wi (e)
equals the initial set of W& (e), which is just E;(e) X.

Lemma 1.4. For an arbitrary bounded Borel function «(R)
defined on the real line, the following formula holds:

a(H)WHe)=Wihle)a(H,).

Proof. Let us show the following equality
(1.8) E;(e"YWi(e) =Wi(e)EL(e),

where ¢’ is an arbitrary Borel set on the real line, and ¢ is a Borel
set in (a,b). It suffices to show (1.8) in the case that ¢’ is contained

in (a, ), because the initial and the final sets of W (e) are E,(e) A
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and E;(e) ¥, respectively.
For arbitrary f, g€ ., we set f() =G, (A+20)/, g(A) =¢g. By
Lemma 1.1, the next formula holds for an arbitrary Borel set ¢’ in

(a, d).
1.9) (E; )Y Wi(e)f,9) = (Wi(ef, E;(e)9)

- [ @We.axins, 9,
The right hand side of this equality is rewritten as follows.

| E@C s, 0dr

- £ﬂe’(f’ E (DG (A£0)g)dd (by (1.7))

= (f, Ex ()Y W& (9) (by (1.9))
=(f, Ex(e") (Wi (e))*9) (by Lemma 1. 3)
= (Wi E(e)f,9).
Hence we have
(E;@HYWh@f,9) = Wi E(f,9),

which proves (1.8).
Approximating a(A) by a sequence of step functions, in view of

(1.8), we can conclude the assertion of the lemma. Q.E.D.

Now, it is easy to see that all the assertions of Theorem 1 hold

in view of Lemmas 1.2, 1.3 and 1. 4.

Remark: The above argument is ‘“local” in the sense that it is
restricted to a bounded interval (a,4). However, if we define for an
arbitrary fe jﬁ

b
Wi F= lim f E (1) G (A £10)fdA,
booo Ja
a—0

then W is uniquely extended to a partial isometry on 4, with the
initial set E,(0, co)#H and the final set E;(0, o) K, (WH)*=Wg, and
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moreover W5 intertwines H; and H,. Thus, we can obtain a ‘“global”

wave operator,

§ 2. Some Remarks on the Limiting Absorption

Consider the Schrédinger operator H=—4+V(x) in L,(R"), (4
denotes the Laplacian in R"). In this section we assume on the potential

the following condition:

(C) There exists a constant 6 (0<<60<<1/2) such that V(x) is

a real C™function and

(@) =0 (|,

DV (x) =0 (2| as |xl-so0 (1<k<m),
where D* denotes an arbitrary derivative of k-th order, and

2/0+1 (if 2/0 is an integer)

m=

[2/01+2 (otherwise).

Here [2/07] denotes the greatest integer not exceeding 2/0.

We introduce a real C-function ¢ such that
0 (l=[<D
1 (l=[>2),

and decompose V(x) as V(x)=V,(x)+V,(x), where V,=¢V, V,=
(1—¢)V. Then V, and V, satisfy the following conditions:

o]

(C-1)" V,(x) is a real C™function such that
D'V (x) =0 (|z|™*%) as |x|>c0 (0E<m),
Vilx) =0 (Jx|<]).

(C-2)" Vy(x) is a bounded real function with compact support.

Remark: Our assumption on V() is stronger than actually needed.

V(x) can have certain singularities. But for the sake of simplicity, we
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continue our argument under the condition stated above.

Now, the limiting absorption method tells us a way for finding a
solution of the inhomogeneous Schrédinger equation. First we list up
some notations.

L; (G) denotes the Hilbert space of all measurable functions
f such that (1+|z|)#f(x) is square integrable over a domain

GCR". The norm of L,4(G) is denoted by | [gg When
B=0 or G=R", we often omit the subscript.

.f':xj/r’ 7"2{1}‘, (j::l"", 72).

&

~

= ("fly Ty xn)'

&

K,={g=k+ik,eC: k,€ (a,d), £, (0,1)},
K—= {IG:IC1+Z.IC2EC: ICIE (—‘b, '-a), ﬁze (0, 1)},

where a, b are arbitrary positive constants such that a<(é.

g)j=_6_.+ ”"’1‘:Ej-—i/c36, (kekK,, 1<;<n).
0x; 2r

g),-=i+ n—1 “iKZijQj.
i

or 2r

D=(D, Dy, -, Ds).

N/ a
grad =grad — 27— .
or

Hy,. is all Ly, functions with L, . distribution derivatives up

to the second order, inclusive.

Under our assumption on V(x), H=— 44V (x) is, when restricted
to Cy (R"), essentially self-adjoint. We use the same notation H for its

unique self-adjoint extension. Further, we adopt the following notations.
R =H—-H" (kek.).
E(A) is the resolution of the identity for H.
u(k:f) =R(ENS.

€ is a positive constant such that 0<(e,<<0/2.
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E,={xsR": [x|=0} (0>0).
B,={zxeR": [z[<0} (0>0).
B,,={reR": p<|z[<0} (0<p<0).

The following theorem is due to Ikebe-Saits [7].

Theorem 2. (a) The following a-priori estimates hold :
loe (£: 1) |~ e Cfll a1 025
[Du&: - a-eprme, =ClS N aiepn

where C is a constant which does not depend on &L, e and
rekK..

(b) (Limiting absorption method) wu(k:f) 1is continuous in
Ly ey with respect to k€K, and f€ L, ey and for any 1>0
(a<<A<b), the limit

u(E£ /A1 +0: ) =limu(E£/1+ie:f) =R(A+i0)f
e—0
exists in Ly g eyn, and the inequalities stated in (a) are satisfied with
u=u(x./1+:0:1).

(¢) For any pair (k,f) €K, XLy yiepn where K, is the closure
of K, in C, there exists a unique solution u=u(k:f) € Ly _q, ey Hix
of

H—-eYu=f, [Du|_q-eppz<00.
The mapping
K:t X Ly areynD (&, ) 1mu(K:f) € Ly arens
is continuous on K. X Ly g, ey

(d) For f,9€ Ly q, ey and any Borel set e (0, c0) we have

(E(e)f,9) = Zim L(R(l +10)f—R(A—0)f, 9)dA.

The part of H in E(0, o)L,(R") is absolutely continuous.

Remark: We say that a function #(x) satisfies the radiation con-

dition if it satisfies the following inequality
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[ ,@u]] —(-60)/2,8, < OO

Now, for a real constant £, (a<lt;<b, —b<k;<—a), we consider

the following non-linear equation

0X

2k, =Vi(z) +F X,
or

where V denotes the gradient on R®. A successive approximation scheme

for the above equation is

XO (z, k) =0,
26, X9 (z, ;) = K(Vl (sZ) +| (P XY™D) (sZ, k) [*) ds

+¢j (‘%’, Icl) p (x) >
r:’xl, ]:1’ 2’ e,
where the function ¢;(Z, £,) is defined by
0 i j<1
¢.7' (‘%9 Icl) = )
6,1 (Z, K — j A, (s% k)ds i jo>1,
0
where A;(z, £) =|FX?) (x, ) "= | FXY™) (z,£) °, and p(z) is a
real C=-function such that
0 |z|<1,
o(z) =
1 |z|>2.

Here we should remark that without loss of generality we can assume
1/0 is not an integer. The following lemma concerning the jth ap-

proximation can be proved by induction on j.

Lemma 2.1. XY (x,£)=0 f |z|<1,
|D* X (z, £) |=CA+ ]z (0=k=m—j+1),

2k 6’0

r

XX, k) =Vi(z) = | (P XD) (2, £1)

=CQA+|z)-9?,

where the constant C does not depend on K, (a<k,<b, —b<k,<—a).
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We choose the smallest positive integer j such that (j+1)0>2 and
difine X (x, k) =X (x, k,). Note that X(x, k,) is a real C*-function of

x and k; having the following properties:
2.1) X(z, £,) =0 if |zx|<1,
|ID*X (z, £1) |<C A+ |2]) 7F*17° (1=k=3),

260X e, ) ~ V@) ~ |70 (@, £ [[EC L+ ),
r

where the constant C does not depend on k; (a<lk;<<b, —b<k<—a).
We put v=v(k:f) ="y (r:f), where fELy g sy €=k,
t=K,. Then we can prove the following a-priori estimate concerning

the radiation condition.

Lemma 2. 2. ||~§D'U|| (1—ao>/2,E1§C 1 a-epres

where the constant C depends neither on f&€ L, gy, nor on rek,.

The proof of this lemma is somewhat long and complicated, so we

shall prove it in the Appendix.
Lemma 2. 3. ||£D'U” (1~3£o)/2,EpSCO_E°“f” @-gyrz  (YO>1).

Proof. This lemma follows easily from the following inequalities:

H .@v|l%1—3so)/2, E,~= j‘l-tl>p (1 -+ ixl) 1= _26°in]2dx

§<1+p)-2€°j“ A+ |z]) 5| Dol *da
z| >0

=A+0)7Clf 1 6-er

(by Lemma 2.2). Q.E.D.
Lemma 2.4. v (1-50)/2§C“f” (3—60)/2 (’CEK;L)-

Proof. In Ikebe-Saito ([7], Lemma 2. 3), the following inequality

is proved:

2.2 ol a-epe=C (ll&| — e+ | Dl —1-spyre,z, + | flarense) -
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Taking into account that X(x, £,) is a real function, we have for an
arbitrary real constant 8

2.3 lolls=llealls=llzl4-

In view of Theorem 2 (a), the right hand side of (2.2) is estimated
from above as follows:

2. 4) (the right hand side of (2.2)) <<C|f|arenr

=Cllfla-enre-

By (2.2), (2.3) and (2.4), the assertion of the lemma readily follows.
Q.E.D.

Lemma 2.35. /'72”'0”(1-350)/2,Eu§Cp_e"l}f||(3—50)/2 (Yo>1).

This lemma is proved in the same way as in Lemma 2. 3.

Remark: It is easy to see that in Lemmas 2.3, 2.4 and 2.5, the
constant C does not depend on reK,.

Lemma 2. 6. sslim ko (:f) =0 in Ly g sepsn
Fo>ty/ T+10

Proof. By Lemma 2.5, for an arbitrary &¢>0, there exists a con-
stant 7,>>0 such that £,||v| q_se,2,z,,< &, Where 7, is independent of ke K ,.
By Theorem 2, we see that w(k:f) converges in L., the space of
locally L, functions, when £ tends to 4 4/ 1 +20. Hence |[v(£: 1) || a-se/2.5r
is uniformly bounded in k€ K.. So, letting &, be sufficiently small, we
have #y|v(£:f) || a_seqye,8, €. These facts yield the lemma. Q.E.D.

Lemma 2.7. When k=k,+ik, (€K,) tends to +.1+10,
Do (: £) tends to (grad + L iy 12 0 (£ VA +i0:) in Ly ssnp.
r

Proof. First we note that u(k:f) tends to u(+ /1 +20:f) in H.,
which follows from Theorem 2 and the following well-known elliptic

estimate:
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2.5 3 j SplD"‘ul"’deC(p,R)(L |(H—2) u|dz+ Llsklurdx),

1@<z Jiz| <R
where 2 C, p and R are arbitrary positive constants such that p<{R, u(x)
is an arbitrary H. function and « is a multi-index. From this fact we
can conclude that v(£:f) tends to v(+ /1 +20:f) in Hi.. By Lemma
2.3, for an arbitrary &>>0, there exists a constant 7,>0 such that
| Dv|| t—sepys2,5r,< €, where 7,>>1 and is independent of reK.. If we
take £ sufficiently close to + /1, we have

n

| Do (k: f) — (grad+ 'rl z ?z\/m)v& V0 F) lacssprnsnn <€

which follows from the previous fact that v (£:f) tends to v (£ v A +120: 1)
in H?.. These two facts yield the lemma. Q.E.D.

Lemma 2.8. For an arbitrary f€ Ly g_cyp the following facts
hold.
(1) The following inequalities hold:

1

@0 |G+

7>

iV 1o (VTE: f) u(l_e,,),z,&scufu o—earts

—~ _
2.7 |grad W(\/}\Ile ) (1—5.,)/2,E1§C||f“ (3—&0)/2

where the constant C does not depend on L and ¢ such that a<1< b,
0<e<1, Im v =0 (Im=imaginary part).

(2) The following two strong limits exist in Ly y_sepp,n, -

(2. 8) s-1im<i+ ”;1 $i«/7>v(«/l¥i’é:f}
r

>0 \ Q7

/0 n—1 _. LT 0.
_<a_r+ o ?zJ}.)v(:t\//l-HO-f)

-/ - N/ __
2.9 s-ligngradv(«//l:l:ie:f)=grad v(£V2+:0:f).

0 n—1
3 <a—r+ o

are strongly continuous for A>0 in L, y_seyp,5,.

¢iﬂ>v(i JA+i0:F) and grad v(+ YT +i0:f)

Proof. Let us first show the assertion (1). We have
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(2. 10) <_§;+ ”2;1 ?i«/f)v(x/fi—z?:f)
= (-(%—-i— nz_rl —i«/liie)v(x/liie:f)
F Ty VAEES.

Then we have by Lemma 2.2 and Lemma 2.4,

T

<(Z

;z\/a)v(\/uze f)M

\(1 &0)/2,E,

1 —iWH:ie)v(«//iQa:f)”

2r (1-80)/2, B,

|VZ:IZLE:1: \/ll ll‘v(\/lila f) ”(l £0)/2,E,

=C|flla-zor2>

which proves (2.6). Similarly by Lemma 2.2 we have (2.7).

Next we show the assertion (2). By Lemma 2.7, the first term of

the right hand side of (2.10) tends to <ai+ :Fl\//1>’0(* VA +20:1)

in L ¢ sepsn,e, and by Lemma 2.6, the second term converges to O in
L;, 4 seyr as €—0. This proves (2.8), (2.9) is proved similarly.

To prove (3), we must first note that the mapping Al—~>u (£ /2 +20: f)
is continuous in HpY., which follows from (c¢) of Theorem 2 and the
elliptic estimate (2.5). From this we can conclude that mapping
M—=wv(+ VA +40:f) is continuous in HE.. Now, let there be a sequence
An>0 (m=1,2, ---) such that 1,—21,(>0) as m—oco. By Lemma 2.3,
for an arbitrary >0, there exists a constant 7,>0 independent of 1,

(m=0,1,2, ) such that <0a + 2 > 3;i«/ﬁ>v(ix//1—m+i0:f)
r r

<(&. By the strong continuity of v(k:f) in Hj,., we have for sufficiently

(1-880)/2,Ery

large m

H<56F+ ”;rl :FNE)-a(i JTn4i0:F)

<.
(1-3&9)/2,B1,7o

0 n—1 _. 4 ST
_<5;+ = :sz/llo>'o(i~/lo+l0-f)
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These two facts prove the strong continuity of (ai—t' n—1

-
-

— . N —
Xo(x /A +10:f) in Ly, y_seys,z- Lhe strong continuity of grad v(++/1

+10:f) is proved similarly. Q.E.D.

§ 3. Existence and Unitarity of the Stationary Wave Operator

Let Hy=—4, H,=—J+V(x), where V(x) satisfies the condition

(C) stated in § 2. Then we can prove the following theorem.

Theorem 3. When we take U, (A,2) as the operator of multi-
plication by the function exp(—iX(x,RevVA+ic)), where X is the
Sunction which has been defined in §2 and Re means the real part,
assumptions (A-1) and (A-2) of §1 are satisfied. Hence there exist
stationary wave operators W 3 (¢) having the following propertics:

1) Whe) is a partial isometry with the initial set E, (e) L,(R")
and the final set E;(e)L,(R").

@) (Wae)*=Wg(e), where the adjoint is taken in L,(R™).

B) H;WiE)2Wsie)H, (j,k=1,2),
where ¢ is a Borel set in (a,b) (0<a<lb<loo).

PI"OOf. Let _g{:Lz (Rn) 5 j[i :LZ,.t(1+En)/27 j?:. =L2‘(3_50)/2 in the
notation of §1. The assumption (A-1) is guaranteed by Theorem 2.
To see that (A-2) is fulfilled, we rewrite G;,(A47¢). Let us calculate

the commutator [—4, e **] as follows:

B [—d,e == e =207

X, AX
* <0r2 * r

> +e—iX<IVXI2——2(Re\/EE)%>

+ 2ie

_ix Oi( <%+ nz—rl ?z\/}f)

-/ N/
+2ie~*¥ grad X grad

+1ie iy 0X
_l_2<R e iX ,
CALic+ VA )6 0r

where A denotes the Laplace-Beltrami operator on the unit sphere.
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Then we have for fe L,(R",
(3.2) Gu(Atie)f=(Hy,— (A+ie))U. (A, &) R (A£ie)f
—U, (A €) {—d— (A+ie)} R, (A=ie)f
+{[—4, e %]+ V() e~ R, (A ie)f
=U.(@,¢e)f

0X AX

iU (A, e)( )R,(/H:zs)f

YU. (A, &) {|VX|2+ V() ~2RevIEie)

0X}
r

X Ry(A+ie) f

42U, (4, a)—(-g-—l- -

:FzJA)Rl(Aﬂ:ze)f

+2iU, (4, ¢€) grad X- grad Ri(ALie)f

—|-2Ui(/1,e)<Re tie >6X R (A+ie)f.
or

Nitie£ V2

The calculation of G;(A+£ie)f can be done in a similar way after com-
puting the commutator [—4,e**]. But in this case we must further

compute [¢** F]. Thus we get the following expression for Gy, (A £i¢) f:
(3.3) Gu(h+ie)f= (Hi— A+ie))U%(A, &) Ry(A£is)f
=Ut@,e)f

<0X AX

2 >U*(i &) Ry(ALie)f

—UL & {IVXI2+ V(2) -—2(Rex/m)aa—)f}

X Ry (ALie)f

—2i

0X (0 1 * .
or < or ) (Ui, &) R,(A£ie)f)

—27 grad X. grad (Ut )R, (A+ie)f)

+ie 0X
20t Qo) (Re2 ) P R Gaio)y.
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Now, let us show the following two assertions:

(38.4) There exists a constant C which does not depend on 2, &
(0<<a<(A<lb, 0<e<(1) such that for an arbitrary f& L, ¢/,

G (A£ie)f | aren=C| flla-enr
holds.

(3.5) For fel;g ¢y there exists a strong limit s-lim G, (A+Ze)f
€0
=G, (A+0)f in Ly g, e and G (A£20)f is an Ly, ¢, -valued strongly

continuous function of 1>0.

First we consider G, (A+ig)f. Let us first note that &*™*> is
a continuous function of £, with its derivatives. The first term of the
right hand side of (3. 3) is easily seen to satisfy (3.4) and (3.5), where
G;(A+ie)f is replaced with U%* (R, e)f, for U%(4, ¢) is just an operator
of multiplication by a function with the absolute value one. Hence we

have

IULA, ) F [arenr=larenr =[Sl a-cnr2-

By Lebesgue’s convergence theorem, U¥ (4, &)f—-U%(,0)f in Ly uieys
as €—0, and U%(4,0)f is strongly continuous for >0 in Ly ¢ ey

In veiw of Theorem 2, R;(A+17¢) is a bounded operator from L 3_¢,2
into Ly _giepn, and by (2.1) of § 2 we have

2 1
[a X A <oz (=26,
or? 7|

(iVX¢2+ V(z)—2 (Re\/ziie)%é{ <C@+|z]),
r

where the constant C is independent of 1, ¢ (a<{1<(b, 0<Ce<C1). Hence

we have the following inequalities for the second and the third terms.

I

.1U*(l a){IVX| YV () — 2(Re«//1:!:zs)———}R (A+ie)f

(4, c)Rz(Kﬁ:le)f} =C[Sflle-eor2,

(1+&p)/2

(1+&0)/2

=C|| flla-ens2s
where the constant C is independent of 1, ¢ (a<{A<(b, 0<Ce<C1). Also
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we can easily see by Theorem 2 and Lebesgue’s convergence theorem
that the second and the third terms converge in L y,.,: as €¢—0, and
the limits are continuous functions of A>0 in L e,

We have by (2.1) of § 2, FX=0 for |z|<1 and |[FX(z, Re v1=£i¢) |
<C(1+|x|)~® where the constant C does not depend on 4, ¢ (a<<A<(5,
0<e<(1). Hence by Lemma 2.8 we have the following inequalities

concerning the fourth and the fifth terms:

| 90X /0 n—1
2L (g
| "o <0r 2r

;i«/’[) U, e)Rz(liiemi

(1+&g)/2
=C|fl a-enrzs
~ o~ .
lgrad X-grad (U* (4, &) Ry (A7) ) [ asenzC| f | a-co2-

Also it is easy to see that the fourth and the fifth terms converge in
Ly, 4z, and the limits are strongly continuous function of >0 in Ly 14,2
by Lemma 2. 8.

The sixth term can be treated in the same way by Lemma 2.4 and
Lemma 2, 6.

Next we consider Gy (A+7¢)f. We have to note that the assertion
of Lemma 2.8 is also true for R;(A+ie)f in place of v(k:f) =&*®"
X R, (k%) f, because in this case we can take X=0. So, we can treat
Gy (A+ie)f in a similar way to Gy (A+ie)f. Hence by Theorem 1 of
§ 1, we can complete the proof. Q.E.D.

§ 4. Eigenfunction Expansions and the
Stationary Wave Operators

In this section, we consider the relation between our stationary wave
operator and the eigenfunction expansion theory developed by Saitd

[12].

First we introduce some notations.

gpﬂ=§;+ ”2;1 Tivl  (r=|z).

2=l ariyTz.
.
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S,={xeR": |z|=0}.
S™=!: the unit sphere in R".

Let us consider Hy=— 4+ V(x), where V(x) satisfies the condition
(C) in §2. Consider the solution

u(A+£i0: ) =R, (A+£20)f
of (Hy—=Nu=f (f€Ly@a_¢yn A>0) satisfying the radiation condition

| Do (A£50: ) | —amepyro,m, <00

The following Lemma 4.1 plays a crucial role in the eigenfunction

expansion.

Lemma 4.1. ([11]). Let f€L, e epp Q) There exists a
sequence {rn} of positive numbers diverging to infinity such that for

m—> 00

T;E"f lu(A+£40: f)|*dS—0,

Tm

rit [ 19, @u@i0:)) a0,
.
where X is the same as in §2, X=X (x, £/1).

(2) There exists a strong limit

s-lim 78 V2 exp (Fiy Arn+iX e, £V 1)) (@(A£i0: 1)) n-)

m—>oo

in L,(S™™"), where {rn} is any sequence specified in (1). This limit
is independent of the choice of {rn}.

Then, the following definition makes sense.

Definition 4.2. For 1>0, and feL, s syn let Fpu(R): Lyg-zysn
—L,(S™") be defined by

Fos (D) f=a720 s-lim 7P 0m D (R, (A+40) f) (- ),

m—o0

where 0. (rp, 1) =F NV Arn+XGn-, £V 2), and {rn} is any sequence
specified in (1) of Lemma 4.1.
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Now, we can state the result of [12].

Theorem 4. ([12]). (a) For f, 9€ Ly 3 e, 4>>0, the following

relations hold :
“4.1) Frs(R) € B(Lo,s-eyp: Lo (S™7)),
(G (DS, G (D G) Ly(Sn-1)

=L (R, +i0)f— R, (2—i0)f, ).
211

(b) Let F,. be defined by (F,.f) (2) =F,. (S, and let JH=L,
X ((0, 00) : Ly(S™Y)) be the Hilbert space of all L,(S"')-valued square
integrable functions over (0,00). We have EEHEB(L&@_%VZ:&‘?).
Moreover &,, can be uniquely extended to a partial isometry from
I onto [ with the initial set E,; .9 (the absolutely continuous sub-
space for H,), which will be denoted by F,.. (H,.=L,(R")).

(¢) For f,9€E,,.H and any bounded Borel function o (L)

defined on the real line, we have

(a(H)f,9) = Lwa(l) (&2 ) (D), (Z2:9) (D) Lysn-ndA

= (% f, F2:9) 7,
where by « is meant the operator of multiplication by the function
a (). (This is a diagonal representation of H,).
(d) The inversion formula holds for an arbitrary fEE, X :

f=slim j fg D * (Fouf) (VA

In the same way, we can define &,, for H,= — 4. (In this case we
take X=0).

Let us take a Borel set e contained in (a,d) (0<<a<(b<(oo) and
let %.(4) be the characteristic function of e. We can define a stationary

wave operator which is “formally” different from W () we have

discussed in § 3.

Definition 4.3. Let 25 (e) be defined by
25 (e) = g;ktXegli >
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where y. denotes the operator of multiplication by yx.(1) in I

The purpose of this section is to prove the following theorem.
Theorem 5. Wi (e) =925 (e).

Proof. It suffices to show the following equality

(4.2) (B (D)Gu(A£i0)9, f) = (F1. (DG, Fou (DS) £y

for arbitrary f, g€ L, ¢, Indeed, if (4.2) has been established, we

have only to integrate both sides with respect to A on e. Then we have

(Wi(0)9, /) = (1eL129, Fouf) 2= (FEnT1:9, 1) -

Taking into account that L, _g,, is dense in J{, we can conclude that
Wi (e) =g§k¢7€eg1¢-

Now, let us prove (4. 2). Let u=U%(A, 0)R,(A+40)f, v=R,;(1+70)g,
w=R,(AFi0)g. First we note the following lemma.

Lemma 4.4. There exists a sequence {r,} tending to oo such
that for m—oo

r r

rat | lu(x) [dS—0, 770 |D.u|dS—0,
S,

Y Srm Tm

s [ |v(x) |2dS—0, ri \ | D ,v|*dS—0,

Js,, Js,,

r r
T |w (x) ’*dS—0, ke | D w|*dS—0,
s

J8S,

Tm m

hold.

Proof. We have by assumption and Lemma 2,2

[, t@s1a-om qup o+ wp)
(L2l (1 Dal + | Dol +] Darol) Az oo,

Hence the assertion of the lemma readily follows. Q.E.D.
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Proof of Theorem 5 (continued).

By Green’s formula we have

£x|<rm{(4w)ﬁ~v(ﬂ)}dx= j

S,

m

= {( D)0 —v(D o)} dS

Sy,

+2i/2 vu dS,

S

where {r,} is a sequence specified in Lemma 4. 4. Noting that

vA=exp(Fi/Ir) Ri(A+i0)g Xexp(Fiy/ Ir+i1X) R, (A+40)f,
by Definition 4.2 and Lemma 4.4 we have,

L lim {(dv)T—v(du)} dz

Tl Tmooo J12|<rp

= £ (F1: (D9, Lo (DF) Lysnn-

4.3)

Similarly by Green’s formula

LKTM{(Aw)n—w(E)}dx: j (a"‘f a—wﬂf)czs

Sy

=j (D)7 —w (D) }dS.
S
Hence by Lemma 4.4, we have

L jim {(dw) 7 —w (dw)} dz=0.

ML rmoo J121<rm

4.4)

Let us compute the left hand side of (4.3) and (4.4). Introducing the

function
1 if |z|<ra
Am=
0 if |z|>rn,
and replacing 4 by — (H,— (A+ie)) — (A+ie), we have
(Amd Ry (Ax18)9, UL (4, €) Ry (A 18)f)
— (nRi(Ax18)9, 4(UL(4, e) Ry (A£16)f))
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= (UnRi(A£78)9, G (A£16)f) — (xud, UL(4, &) Ry (ALi6)f)
F 2ie (mBy (A£1€) g, UL (4, &) Ry (A £76)f).

Letting ¢ tend to 0, we see R,(A+ie)g—v in HY. and U%(4,c¢)
X Ry(A+ie)f—u in HY. Hence we have

4.5)  (tmdv, u) = (nv, 4u)

= (nRi (A£40) g, G (A£10)f) — (xu9, UL (A, 0) Ry (X £i0)f).
Similarly,
4.6)  (ndw,u) — (fnw, 4u)

= (nBi(AF70)9, Gu(A+70)f) — (zn9, UZ(4, 0) R, (A+70)f).
Subtracting (4.6) from (4.5), we have

@7 ((4v) 7T —v (Fa) Y dz——2

; - {(dw) @ —w (du)} dx
2nt Jizi<rn 21t Jizi<rn

= % (tn s [Ra(A+i0) =R, (A=i0) 19, Gu (A £10) ).
2mz

Letting m tend to infinity, by (4.3), (4.4) and (4.7), we have

4.8) ES (DY, Gup(A+i0)f) = (. (Mg, G (D) Ly(Sn-1)+

By (1.7) of §1, the left hand side of (4.8) is equal to (&, (4)
X Gy (A+10)g, f), which proves (4.2). Q.E.D.

§ 5. Remarks on the Short-Range Perturbation

In this section we consider the case in which V(x) has a short-

range part. More precisely, we assume the following condition:

€))7 V(x)=V,i(x)+Vs(x), where Vi (x) satisfies the condition
(C) in 8§82, and Vs(x) is a bounded real function having the
following decaying order

Vs(@) =0(lz|7") as |z|—>oo.

We denote by Hj the unique self-adjoint extension of —d4+ V,(x)
+ Vs(x) restricted to C5(R™). Also we set Hy=—4, Hy=—4+V,(z).
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It seems that the general theory of §1 cannot be applied directly to
H, and H,, because Lemma 2. 2, which is crucial to see that the assump-
tion (A-2) is satisfied, cannot be proved without assuming the differ-
entiability on Vg(x). So we construct the stationary wave operator,
which shows the similarity of H; and H, using the so called “chain
rule”.

First let us prove the following theorem.

Theorem 6. Let ¢ be a Borel set in (a,b) (0<a<lb<oo). There
exist stationary wave operators W(e), Wi(e) having the following
properties.

(1) Wsi(e) is a partial isometry with the initial set E,(e) H
and the final set E;(e) I (j,k=2,3).

@) (WiEe)*=Wi) (U, %k=2,3).

B) H,Wi(e)2Wji(e)He (4,k=2,3).

Proof. We first note that Theorem 2 is also true for Hy=—4
+V.(x)+Vs(x) (see Ikebe-Saits [7]). Next in §1 we take the
identity operator as U, (4,¢), and g%+=j7+=Lz,(1+ée)/2’ IH_=L; _iepsn-

By direct calculation we have for f& L, gy ey
Gy (Atie)f= (Hy— (A+ie)) Ry (Atie)f=f+ Vs(x) R, (At ie)f,
Gu(Axie)f= (H,— (Axie)) Ry(A+ie) f=f—Vs(x) Ry(A%1ie)f,
By Theorem 2, R,(A+17¢e)f, Ry(A+7e)f converge in L, .., as & tend
to 0. Taking into account that Vg(z) =0 (|x|~*"?), we can see that the
assumption (A-2) of § 1 is satisfied. So, by Theorem 1, we can construct

the stationary wave operators Wix(e), Wi(e) having the properties
stated above, Q.E.D.

We have already constructed the stationary wave operators W (e),
Wi(e) which shows the similarity of FH, and H, in § 3. Now, define
Wii(e), Wi(e) by

(5.1) Wii(e) =Wi(e) Wii(e),
(5.2) Wii(e) =Wii(e) Wi(e).
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Then it is easy to prove the following theorem, in view of Theorem 3

and Theorem 6.

Theorem 7. Wi(e), Wii(e), defined above, have the following
properties.

(1) Wih(e) is a partial isometry with the initial set E.(e) X
and the final set E;(e) K.

2 (Wi@)*=Wi(e).

3 H;Wji(2Wji(e)He (J,k=1,3).

Next let us outline the idea of Ikebe [5] concerning the short-range
perturbation of the eigenfunction expansion. In §4, we have already
explained the construction of the operator &, (1) € B (L, g-eys2: L (S™™))
associated with Hy,=— 44V (x). But by Theorem 2 and the formula
4.1

(F e D, Fow () 9) Lm-x)=—£z—i-(Rz(/1+i0)f—Rz(l—i0)f, 9,

which is valid for f, g€ L, g_¢yn, Wwe can uniquely extend &F,.(1) as a
bounded operator from L; g,y to L,(S*™"). We use the same notation
for this extension. Since Vs& B (Ly_qyiepns: Lo,areyn), which is easily

seen by the condition (C)”, the following definition makes sense.
Definition 5.1. %, (1) =%,. (1) (1 —VR;(A+10)) for 21>0.

When we set (Zs.f) (D) =T (A)f for f&€Lyuiepym Fsx can be
uniquely extended to a partial isometry on 4 with the initial set Ky 4%
(the absolutely continuous subspace for H;) and the final set L,((0, co) :
L,(S™")), where we also use the same notation for the extended
operator. Then we can get the spectral representation associated with
H; with the aid of &,.. See for the details Ikebe [5].

Now, we can define the stationary wave operator by the spectral

representation as in § 4.

Definition 5.2. Let 95 (e), 2% (e) be defined by
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25(e) =F¥AeF 2s s
25 (e) =FFxeF 12,

where by 1y, is meant the operator of multiplication by the function

2%e ().
Then we can prove the following theorem.
Theorem 8. Wile) =825(e).

Proof. As in the proof of Theorem 5, we have only to prove the
following equality:

(5.3) (By' (1) Gy (A£20) 1, ) = (F2a (DS, L5 () ) 1,50
fOr f, g e LZ,(1+£0)/2 y A>0 .

By the resolvent equation we have
(G5 TR (hi) = Ri(A=i6) IGu (A1), 4)
2ni

- (%Rs(}.+z‘e)Rs (A —ig) (Hy— (A+ie)) Ry (A ie) f, g>

- <-;—R3 (AFie) Ry (A £ie)f, g>

~ <%R2(/1 Fie) Ry(A+ie)f, g)
— <%R3 (AFie) VR, (AT ie) Ry (A 46) f, g>
1 . .

— (55 [Ri(+ie) ~R(1=i9)1 £, )

2ni
— <L_[R2(,1+ie) —Ry(A—ie) 1S, VsRs(liie)g>.
2mi
Letting ¢ tend to 0, we see by Theorem 2

(ES (D Ca(£i0)f, 0) = (5 —[Re(2+i0) ~ RA=i0)1£, 0)

— (555 LR (A 4i0) = Ry (A= i0) 1, VsRs (A 0)).
21z
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But by (4.1) of §4 and Definition 5.1, the right hand side of this

equality is rewritten as
(Fox (DS, Foa (D)D) 2yisr-1 = (2w (DS, Fow (B) Vs Ry (A£70) 9) 1,50
= (G2 (DS, Fou (D) (1= VsRe (A£70)) 9) L,sn-n
= (Goe (DS, G52 (D D) 1,500 5
which proves (5.3). Q.E.D.

Since &,. is a unitary operator on E, .9 onto L,((0, 00) : L,(S*™")),

we have
0255 (€) 25 () =FEneF 5. T ke F 12
=5t F e
=024 (e).

By this fact and Theorems 5, 6, 7 and 8, we can easily get the follow-

ing theorem.

Theorem 9. Wi(e) =8ii(e).

Appendix. An Estimate Concerning the Radiation Condition

In this Appendix we prove Lemma 2. 2.
Let u€Cy(R™) and let f=(—4+V(z)—k)u, k€K,.. We put

v=¢e'*y. Then v satisfies the following equation,

6.1) —Av+<]VX|2+V(:c) 2mﬂf_)v Ko
or
— iX 02X AX 9 aX
e f— <6r + = >v ZZ;axj@,v,

where A denotes the Laplace-Beltrami operator on the unit sphere. We

can rewrite this equation as follows,

n_IQ,v+<V(x)+|VX| 2;:393) — ik D
7 or

(6. 2) @j‘v +

=e'¥f—i <%)§+A§> —2 Z—-——@v,
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where V(x) =V (x) +—(n;1;—(2n—_3—)
r

Let us put ¢(x) =a(|z|) A+ |z|)*¥*, where f=(1—¢,) /2 and a(r)
is a C-function on (0, 00) such that 0<a () <1, &’ () >0 and

J 0 (<1
a(r) =
|1 >2).

Then we can prove the following identity.

Proposition 1.

6. 3) j;cz¢|g9v|2dx+ H(%—% %’ri) | Do+ (%%—%) I.@,—v|z}dx

=Re jqﬂe”f D, vdx+Re j¢<2/€1 0X —{/\(;) — |VX|2> vD,vdx
or

2 _
—Rei j(ﬁ(%%—%- %) vD,vdx
X

0 Qj'v.@:'—vdx
a.rj

—Reziqu;

+Re 2k,2 j‘zﬁv aaX @?dx.
la

Proof. Let us multiply both sides (6.2) by ¢Q?, and integrate
by parts and take the real part. Then we can get this identity. (See
for the details Ikebe-Saitd [7], Lemma 2.2.) Q.E.D.

Now, we shall estimate the last three terms of the right hand side

of (6.3). For this purpose, we introduce other identities.

Proposition 2. For a real C'function A(x), we have

(6.4) Re 27 J(;SAZ/@—,'(—/dx: —Re——l—— jggAvQ,vdx
k£, J or
“Rel j¢v 104 g dn
Ky i axj



ON THE LONG-RANGE STATIONARY WAVE OPERATOR 621

*dx

1 J‘ 0X
— (A (2
+/€1 ¢ <191 o

V- |VX[2> |vi*dz
+ Re— J‘qﬁAve‘led:c

@ﬂ/dx

+Re—— y¢A 2

Proof. By (6.2), we have

6.5 kD= n- 1£D;u—<V(x)+IVXI aX)?
7 0x; r or
ixF OZX AX
+e i+ <0 . > +2i Z

Multiplying both sides by ¢Av and integrating by parts give the follow-
ing identity:

2% j 6AvD,vdr= — f %‘iAvE,_vdx
,.
— \dv Z—aé@Tzzdx
J @xj
— jgzsA;.@dex

+ J‘QSA 2, aaX

V- |VXiz> |ol*dzx
— 2y j¢A——~|v|2dx
+ ‘fngA've“'Xf—dx

+z‘f¢A(aX AX)

|v|’dx

+2i | pAv Z——g) judx.

J .Z'j

Let us take the real part of this identity. Then (6.4) follows.
Q.E.D.
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Now, we use the notation [J] for the sum of the any of the follow-
ing integrals:

r

O(al*ofdz, | O(af*)vfdz

Jiz|>1

rn

O (|2~ | Do)z, j 0 (|z|*-* v D ,vdzx
>1 lz|>1

Jlz|

r

O (lz|**'=*) D,vfdx,

Jiz|>1

where O(]x|%) means a function which behaves like |x|® as |x|—>oo.

Proposition 3.

6.6) Rei j¢<002)f + 4508 vdz
r r

:Re—i-j¢<a2X—|— AX)o 5 gX D odz+ [J].

ky 01"2 r2 7 Z ;

Proof. Let us note that

X | AX e
ort * rt =00,
#X . AX .
V( ar2'+7>:o(r ) (r=lzD).
Then (6.6) follows from (6.4), if we put A=2% 14X
r r

Q.E.D.

Proposition 4.

(6.7) Re 2i j 63 9% 9 v Dvds

O0x;

—Re . J'qSZ 0X @jv<02X+ AX)‘ﬁd.r

ky 7 0x; ort rt

vdx

~Re 2% qu 310X g, 0X
£

7 ax,

—qus X | @oldz+[].
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0X

0x;

Proof. Let us multiply both sides of (6.5) by qSZ D,v, inte-

grate over R", and take the real part. We have then

(6.8) Reik Div g
x; & 0xy

aX @,v@,-vdx Re j¢ »

OXQWGX

vdx

—Re 256 jqﬁ >

0X g o <02X+ AX>'adx+[J}.

+Rezj¢2 52 =

61‘]

Integrating by parts and using the relation

gJ,v___g),c ( 1_im><zj@kv_fkg),v),

6xk r

we have the following expression for the first term of the right hand
side of (6.8):

0X .@,7}2 0 Dyvdx
axj 0.7Ck

(6.9) Rej«b;

— _Reix qu 310X .@fu.@;ad.r ks qu | Dol*dz+ [T].
Combining (6.8) and (6.9), we can see that (6.7) holds. Q.E.D.

Now, we can estimate the right hand side of (6. 3).

Proposition 5. The following inequality holds:
(6.10) 1Do]5,8,=C (Ivl3-1+ If 511+ | Dolb—op. 5,
F el vl sl vllo-1+ ollvll g5 [ F L g41
+ K2l 0]l g5l Dol g-spo,z, + | D5,
where C is a constant which docs not depend on usCy(R™) and

rek,.

Proof. Let us denote the j-th term of the right hand side of (6. 3)
by I,. By Propositions 3 and 4, we have

I+1,= Re2’"2 0X

_d.r
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+Ref J¢i¥~[@v|2dx+ [J].
£y or
Hence, we have

@:z;dx

13+14+I5=[J]+x2{Re 2i Iqﬁv %X
-

@X * 908 0X X vzt 1 1 qu I.@'vlzdx}

We denote the right hand side of this equality by [J]+1;.. Let us
in (6.4). Then we have

kK, J 0r Or

X
t A=
e or

—Re-jq} 2 aa aX)gﬂdx

T

(2 1——V |VX|2>Iv|2dx

+Re _qu 0% ve-t3fdal.
Hence by Schwarz’ inequality, we can estimate [J]+1I; from above as
follows:
(6.11) [J1+L=C(|v]s-1+ 501+ | Do]s-sn.5,
+ £all vl p-sl| vl o=+ Kol 2l p=s [ S Nl 641
+ &3] 0] g-arsll Dol g-s2,8,) -

By our assumption we have for »>2

¢ _ 1 a¢ =i2‘1(1+r)2’s,

r 2 or
b
or r

So, we can estimate the left hand side of (6.3) from below as follows.

(6.12) %[[@v]]%,E,—CHEDvH%MS (the left hand side of (6. 3)).
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Further for an arbitrary ¢>-0, the following inequality holds.

(6.13) L+ L=C(|Dvl gzl f g1+ 0] 51 Dolle)
=e|Dv)b.z,+Ce(If 5+ llvle-0)
<e|Do)s.z,+Ce(|f 131+ w51+ D5,

Summing up, we can see by (6.3), (6.12) and (6.13)

(6.14) 1Dv)% 6, =C (£ 501+ 0ll51+ | Dol3, ) + L+ L.

From (6.11) and (6.14), we can get (6.10). Q.E.D.

Proposition 6. The following inequality holds:
(6.15) 1Do|5, 2, <C(lv|s-1+ [ f 5,

where v=¢"*u, ucCy (R"™), and the constant C does not depend upon

rek,.

Proof. By Schwarz’ inequality, we have by Proposition 5,
1Do)5, 2, <Cvl5-s+ [ £ [t | Dols-sp, 5, + |0 ]5-0) -
Let us recall the inequality in Lemma 2.4 of § 2, that is,
£S5 =C| fl5s:-

which can be proved without using Lemma 2.2. Hence we have
1Dol|3 2, =C vl + £ 501+ 1 Dol|3-s12.5,) -

From this, taking R sufficiently large, we have

(6. 16) 1Do). 8, =Cvli-s+ £ I2e2+ | Dol3,0) -

By Ikebe-Saito ([7], Lemma 2.1), we have

(6.17) 1 Doliz, ,=C (Jollz+ £ 5.0 -

Taking into account of (6.16) and (6.17), we can prove (6.15).
Q.E.D.

Proof of Lemma 2.2. By Theorem 2 of §2 |v|3.:=C|f|3%:1n

hence we have the following a-priori estimate

(6.18) 1Do)5, 5, =Cl (H—£) x|,
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for v=e¢"Yu,ucCy(R") rek,.
Extension of (6.18) to the general case can be treated in the same
way as lkebe-Saitd [7] using the fact that the set {(H—t®u: usCy(R™)}

is dense in L g g, so we omit the details, Q.E.D.
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