Publ. RIMS, Kyoto Univ.
13 (1977), 627-680

Mod p Decomposition of Compact Lie Groups

By

Mamoru MIMURA*, Goro NISHIDA** and Hirosi TODA**

§ 0. Introduction

Let » be a prime number. A simply connected CW-complex X is
called mod p decomposable into r spaces if there exist simply connected
CW-complexes X; (1<<i<{r) such that H*(X;; Z,)#0, and if there exists
a p-equivalence f: [] X;—X. A mod p decomposition [ X;—X is

1<i<r 1I<ir
irreducible if each X; is not mod p decomposable.

In the present paper we shall consider the mod p decomposition of
simply connected simple Lie groups. For Lie groups (more generally,

for finite H-complexes) there is a well-known rational decomposition

G=]] S™!
0

into the product of spheres. J.-P. Serre has shown a similar decom-
position into a product of spheres for primes greater than a fixed prime
depending on G using the class theory. Then our main theorem is stated
as follows. If a compact Lie group has no p-torsion, then as is well
known H*(G; Z,) =A(xy, -+, x,) is the exterior algebra with deg x;=2n,;
—1. We define an integer 7(G) to be the number of ;s which are

distinct in Z,_;.

Main Theorem. Let G be a simply connected, simple Lie group
without p-torsion. Then if G£Spin(2n), G is irreducibly mod p de-
composable into r(G) spaces and Spin(2n) is irreducibly mod p decom-
posable into r(G) +1 spaces.
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For more concrete expression of our results see Theorems 3.5,
4.1 and 8.1 (cf. Theorem 4.2 of [6]).

The factors of the modp decomposition of G are, what we call,
mod p Stiefel complexes B,*(p) having the following properties:
() H¥(Ba* (8 Z) ZA(am 1, Tamsrsar s Tamors eng) With ¢=2(p—1),

(2) there exists a map
fi B () > Whies, s=1+(k—1)(»—1)

inducing an epimorphism of Z,-cohomology.

The proof of the main theorem for the classical groups is quite
different from that for the exceptional groups.

Among classical groups, SU(n) is particularly important and mod p
decompositions of Sp(n) and Spin(n) follow from that of SU(n) by the
result of Harris [6]. Our modp decomposition of SU(#) is an unstable
version of the mod p decomposition of p-adic complete K-theory (hence
the decomposition of BU,”) by Sullivan [21, 22], and the localization
technique is used to make the decomposition in the category of finite
complexes.

For the exceptional groups, first we introduce a spectral sequence
which is quite useful to compute the homotopy groups of a certain com-
plex, especially a complex whose cohomology mod p is an exterior algebra.
Then we construct B,*(p) and embed them (in the modp sense) into
G by making use of the obstruction theory, after calculating 7, (G:p).

the p-component of 7, (G), by the above spectral sequence.

The paper is organized as follows:
Chapter I The classical cases.

§1. Localization of CW-complexes,

§ 2. A construction of Sullivan,

§ 3. Mod p decomposition of SU(n),

§ 4. Mod p decomposition of the other classical groups,
Chapter II Mod p Stiefel complex B,*(p).

§ 5. Existence of B,*(p),

§6. A spectral sequence for meta-stable homotopy,

§ 7. Characterization of some B,"(p),



MoD p DECOMPOSITION OF COMPACT LIE GROUPS 629

Chapter III The exceptional cases.
§8. Mod p decomposition of p-torsion free exceptional groups,
§9. Mod 5 decomposition of E; and E;/G,,
§ 10. Mod 7 decomposition of E; and K.

In §1 the localization theory is summarized. Details of Sullivan’s
construction (an unstable version of the Adams operation) are given
in § 2. Then mod p decompositions of the classical Lie groups are proved
in §3 and §4. The complex B,*(p), which is a factor in the mod p
decomposition, is constructed in §5. A spectral sequence converging to
meta-stable homotopy groups of a space is constructed in § 6. The com-
plexes B,*(p) are characterized for particular &, m, pin § 7. The section
8 is to discuss the mod p decomposition of the p-torsion free exceptional
groups and to state the main theorem for them. In § 9 the mod 5 decom-
position of E; and in § 10 the mod 7 decomposition of E; and E; are
proved.

Unless otherwise stated, the coefficient Z of the integral (co)homo-
logy shall be omitted.

The present paper is the revised version of the two mimeographed
notes [12] and [17] circulated in 1970 and 1971 respectively. In fact,
the note [17] corresponds to Chapter I which was written by G. Nishida.
The note [12] corresponds to Chapter II and Chapter III, although enti-

rely rewritten, and they were written by H. Toda and M. Mimura.

Chapter I The Classical Cases

§ 1. Localization of CW-Complexes

Let P be a set of prime numbers and let O, denote the ring of
fractions whose denominators are, in the lowest term, prime to p for
any p€P. If P is the void set, Qp=Q is denoted by Q.

The notion of localization of CW-complexes at P is defined by Bou-
sfield-Kan [5], Mimura-Nishida-Toda [16], Sullivan [21, 22] and others.
According to Sullivan, we define the localization of a CW-complex as
follows. A CW-complex Y is called P-local if 7,(Y) is a Qpmodule.

A continuous map
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l: X_‘)Xp

from a l-connected CW-complex X to a P-local space Xp is called zhe
localization if for any map f: X—Y, Y P-local, there exists a map ¢:Xp

—7Y, unique up to homotopy such that the diagram

X_'_'é_'_'}Xp

f g

Y

is homotopy commutative. Then for l-connected CW-complexes, the lo-

calization theorem is stated as follows.

Theorem 1.1 ([21]). Let X and Xp be l-connected CW-com-
plexes and let 1:X—Xp be a map. Then the following conditions are
equivalent:

@) I is a localization,

(i) there is an isomorphism Wy (Xp) =7 (X) XQp which makes

the following diagram commutative

L

e (X)

7, (X»)

n

1QJj

T (X)X Q> .
(iii) there is an isomorphism H,(Xp) =H,(X) ®Qp which makes

the following diagram commutative

Ly
H, (X) > H,(Xp)

H*(X)®QP ’
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where j:Z—Qp is the canonical injection.

Theorem 1.2 ([21]). In the homotopy category of l-connected
CW-complexes, there exists a covariant functor L and a natural trans-
Sormation ¢: Id—L such that, for any complex X, ¢px:X—>L(X)=Xp

is a localization.

Now we recall the notion of P-equivalence and P-universality [13,
15]. If p is a prime or 0, we denote by Z, the prime field of character-
istic . Then a map f: X—Y is called a P-equivalence if

foH, (X2 Z,) > H, (Y: Z,)

is an isomorphism for any p& P and p=0. It is known that P-equivalence
is an equivalence relation in the category of P-universal spaces. Then we

have

Theorem 1.3 ([16]). Let X and Y be l-connected CW-com-
plexes of finite type. Then a map f: X—Y is a P-equivalence if and

only if fp: Xp—Yp is a homotopy equivalence.

Now a countable 1-connected CW-complex Y is called finite P-local
if H,(X) is a finitely generated Qp-module.

Proposition 1.4. Let Y be a mod 0 H-space. Then Y is finite
P-local if and only if there exists a l-connected finite complex X
and Y==Xp. Furthermore such a complex X is unique up to P-equi-

valence.

Proof. The *‘if part” is obvious. So assume that Y is finite P-local.
Let

[:Y->Y
be the localization at 0. By assumption, Hy (Y ) = H,(Y)XQ is a fini-

tely generated O-module. Since Y is a mod O H space, we have a homo-

topy equivalence:

Yo=II K(Q, 22,—1).

Then we see that
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Yo==(I S .
Consider the diagram
(IT S™<
: |
Y — Y= (I S™ D
where P is the complementary set of P. Let X=YX 7, (II 8 )5 be

the pull-back. Then we have a homotopy commutative diagram

x L, (1 7,

s, )

Y —_— Y(O) .

Let F be the fibre of /: (][ S*") 5—>Y, which is also the fibre of f: X—Y.
Since [ is the localization, we see easily from Theorem 1.1 that ﬁ* (F)
is a P-torsion group. Consider the Qp-coefficient homology spectral se-

quence associated with the fibring:
F—-X-Y.
Since H, (F;Qp) =0, we see that
Fas Hy (X0 ®Qp—>Hy (Y) ®Qr=H,(Y)

is an isomorphism. This shows that f is the localization. Similarly we
can see that H,(X) is a finitely generated abelian group. Hence we may
take X as a finite complex. Meanwhile Y is a mod 0 H-space and hence
P-universal ([13]). Then uniqueness up to P-type of a complex X fol-
lows from Theorem 5.3 of [16]. Q.E.D.

Lemma 1.5. If p€P or p=0, then I*: H*(X,; Z,) > H*(X; Z,)
is an isomorphism. If p& P, then ﬁ*(Xp; Z,) =0.

Proof is easy using the universal coefficient theorem.

§ 2. A Construction of Sullivan

In this section we shall state the Sullivan’s construction of unstable

Adams operations for the classifying spaces of U(z) and SU(%), and
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give some easy consequences of the construction.

Theorem 2.1 (Sullivan [21]). Let n be an integer. Let q be
a prime >n, then there exists a map ¢*:BG—BG, G=U(n) or SU(n),
such that (¢*)*c,=q'c; where ¢, H*(BG; Z) is the i-th Chern class.

We give an outline of the proof. Let G, (C) be the Grassmannian
variety. It is shown (Theorem 5. 2 [21]) that the “‘complete etale homo-

topy type” of BU(n) =1lim G, (C) is equivalent to the profinite comple-
—
A

tion BU(n)  of the classical homotopy of BU(#). Since the algebraic
variety G, ,(C) is defined over O, the natural action of the Galois group
Gal (Q/Q) on the etale homotopy type of G, (C) defines the action of Gal
(Q/Q) on G, (C)” and BU(n)", where O denotes the field of algebraic
numbers. The action on cohomology is given as follows (Cor. 5.5,

[21]). It is known that there is a canonical epimorphism
A:Gal (3/Q) —>Z*
where Z* is the group of units of the profinite completion of Z, and

Ker A=[Gal(Q/Q), Gal(3/Q)]. Let 6&Gal(Q/Q) and let A(c) =c.
Then

6*(01) :afci,

where c,€ H*(BU(n)"; Z) = Z[c,, ***, c,] is the Chern class.
Now let ¢ be a prime and let [¢] denote the set of all primes
except q. Let

g=4{a.9,.q,1,q,q, -yl Z*=2Z*,

where 1 is the coordinate of Zq*. Let 0= Gal (Q/Q) be such that A(0)
=g. Next let =11, --,1,¢,1, ---}62 such that ’d-zquEZCZ. We
shall show that if ¢>>#, then there exists a map

A: BU@#)"—>BUn)"
such that
*=g"id: H*(BU(n)"; Z) >H*(BU(n)"; Z).

Let T"CcU(n) be a maximal torus and let NCU(#) be the normalizer
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of T". Then the Weyl group is N/7"=J, and hence we may identify
BN with EX, X BT"/%,, where EX, is a universal X,-space. If ¢>n,
then from the fibring
BT">BN—BS,
we see that
i*:H*(BN; Z,)>H*(BT"; Z,)

is injective and Im *=H*(BT"; Z,)*", the invariant subgroup of X,.

Hence we see that the induced homomorphism
H*(BU(n); Z,) >H*(BN; Z,)

is an isomorphism. Since BN has a bad fundamental group, namely 7,

=2, we consider the canonical projection
BN=ES,xBT"/%,>BT"/%,.
Then by the Leray spectral sequence of the above map, we see that
n*: H*(BT"/%,; Z,) >H*(BN; Z,)

is an isomorphism.

Lemma 2.2. Let X be a l-connected CW-complex. Then the
symmetric product SP"(X) =X"/2, is l-connected.

Proof. Let K be an s.s. complex and let |K| be the geometric reali-

zation of K. Then it is known that there exists a canonical weak homo-

topy equivalence
ISP*(K)|—->SP" K]|.

Let S(X) be the singular complex of X. As is well known S(X) has
a minimal complex K as a deformation retract. Then if X is l-connected,
K has unique 0 and 1 simplexes. Hence so does SP*(K) and we see that
|SP*(K)| has no 1-cell. Therefore we see that SP*(X) is l-connected.

Q.E.D.

Then by the obstruction theory we obtain a homotopy equivalence:
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h: BU(n) "= (BT"/3.) "
such that the following diagram is commutative:

o

(BT™" t > BU (),

(BT"/2.)," -

Let f: BT—~BT be a map of degree ¢ on H*(BT';Z). Then f": BT™
—BT™" defines a map on BT"/2, and hence defines a map g: BU(n),”
—BU(1),” such that g-i"=7" (f")”. Then by the homotopy equivalence
BU(n)”—BU(n),” X BU(n) g, we define
A=gXid: BU#n)"—>BU ()" .
Note that H*(BU(n)"; Z) =H*(BU(#),"; Z,) QH* (BU (1)t Za) by
the Kiinneth formula and by the fact H*(X,™; ZP) =0 if g=4p and if X
is l-connected and of finite type. Then comparing 4 with (f*),” Xid:
(BT ™= (BT™", we have
¥ =g*id . H*(BU(n)"; Z) >H"™(BU@)"; Z).
Now let us consider the composition
0 : BU@R)"—BUn)",
then (A0)*=¢"-id on H*(BU(»)"; Z).

Since the rational type of BU (%) is homotopy equivalent to f[ K(Q,

2k), we can define easily a map -
r: BU®n) o, —>BU®) o
such that r*=g"-id on H*(BU (%) »; Q).

Finally to get a map on the ordinary homotopy type BU (%) from
maps on the profinite type and on the rational type, we must check the
coherence condition ([22]). Here the coherence map is a canonical homo-
topy equivalence

c:(BUM)™) o> (BU™) w5,
where X;~ denotes the formal completion ([21]). The coherence condition

requires that the map (A0) o on (BU@®)") is homotopic to (), on



636 MAMORU MIMURA, GORO NisHIDA AND HIROsI ToODA

(BU) @) after identifying by c.

Note that we have a homotopy equivalence
(BU@) ), =[] K(QR®Z, 25).

But it is clear that (A0) and (r), are homotopic after this further
identification. Therefore by the pull-back of 40 and 7 we obtain a map

(in general not unique up to homotopy)
¢? . BU(n)—>BU(n)

satisfying the required property. Now BSU(1) is the fibre of the map
BU(n) >BU(1) =K(Z, 2) corresponding to the first Chern class. Hence
@7 restricts to J%: BSU(n) >BSU(n). Q.E.D.

§ 3. Mod p Decomposition of SU(n)

Let 2 be a positive integer and ¢>» a prime. Let (?: BSU(n)
—BSU(n) be a map defined in § 2. By applying the loop functor, we

obtain a map
207 : SU(n) ->SU(n).

Recall that H*(SU(n) ; Z) =A(h,, -+, h,) is the exterior algebra gener-
ated by the universal transgressive generators A; with deg h;=2i—1.
Since (V) *xr=g*x for any x€ H*(BSU(n);Z) by Theorem 2.1, we
have
(g¢q) *hi :qt}l,; B

Let &,: SU(n) >SU(n) be the map defined by %,.(x) =x% for x

eSU#®). We define a map
Ao, =8¢%k, : SU(n)—>SUn)

as the composite
2¢iIxk,

SU(n) 5SU(n) X SU(n) 225 SU(n) x SU () 5SU(n),

where d is the diagonal map and 4 is the multiplication of SU(%).

Lemma 3.1. (4,,)*(&) =(¢*—q") A
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Proof. Note that A; is primitive. Then as is easily seen, k.*(A;)
=—q"h; and
(Aq.r) * (he) = d* (2° X ky) *p* (hs)
=d* (2P X k) * (R, Q1+ 1Q0A;)
=(g"—q") h;. Q.E.D.

Lemma 3.2. Let n be a positive integer and p a prime. Then

there exists a prime q>n which is a primitive root mod p.

Proof. Let k be a primitive root mod p. Then so is £+ p¢ for any
positive integer £. Since (&,p) =1, there exist infinitely many primes
of this form by the classical theorem of Dirichlet. This proves the
lemma. Q.E.D.

Proposition 3.3. Let n and p be as in Lemma 3.2. Then for
each m, 2<m<min(n, p), there exists a l-connected finite complex
X.(n) and there exists a map f: SUn) —>X,(n) satisfying

1) H* (Xm (n) 5 Zp) ;A(xnu xm+p—1’ tcty xm+s(p—1)) )

where deg x;=21—1 and s= [n—nlz] is the largest integer gi_—m— s

i) Fu (@) =hs .

Proof. We choose a prime as in Lemma 3.2. Let
On : SU@R)—>SU)

be the composition of 1, 2<<i<<n, iEm(mod p—1). Let g, q,, -+ be all
primes except p and let d,=¢,"---q;*. Let r,(x) =x%, xeSU(n). Con-

sider the sequence
SU(n) 5SU (n) BSU(n) 3SU(n) BSU(n) 5
Let X, (1) be the telescope of the sequence. As is easily seen,
¥ (hy) =dgh;
and by Theorem 2.1 and by Lemma 3.1
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9= 11  (¢—aVh.
<t<n
tzm(mod p—1)

If igm(modp—1), c= JI (¢*—¢q") =0 and if i=m (mod p—1) then
<i<n
t#£m(mod p—1)

¢#0(mod p) by Lemma 3.2. From this we see easily that

H*(Xm (72) 5 Zp) ;A(ymy Vm+p-15 *"% ym+s(p~1))
and

H* (Xm (72) s Q) =4 (y;'m yr/u+p~b Tt .y:ni-s(p-l)) »

n—m

1] Since X, (n) is 1-

where deg(y;) =deg(y;) =2i—1 and s= [

connected, we see that X,,L(n) is finite p-local and is a mod 0 H-space.
Then by Proposition 1.4, there exists a finite complex X, (1) (unique
up to p-equivalence) such that
X, (%) ,,:Xm (1)

Let j: SU(n) —>X'm(n) be the canonical inclusion map and let [: X, (1)
—-X,, (n) p:}?m (n) be the localization map. Note that 7;(X, (#),, X, (7))
is a torsion group without elements of order . Then by the obstruction
theory, we see that the map j can be compressed into X, (n) after com-

posing k,: SU(n) »SU(n) for some [, i.e., there is a map
S SUm) - X, ()
such that the diagram
J o
SU (n) — X, (n)
Tk‘ 7 Tl
SU (n) =25 X ()

is homotopy commutative. Note that %, is a p-equivalence and (%) *(A;)
=d,h;. Then by Lemma 1.6,

H*(Xm(n) y Zp) ;A(xnu Lprp-15 °"°s xm+s(p—1))

and

Ju¥(zs) =chi, ¢#0 (modp). Q.E.D.

Although the mod p splitting of SU(n) follows immediately from

the above proposition, we state it in a slightly different form. Put
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vy b4
f=Iqu,,, : SU (n) — Hsz (n),
m=2z m=

vwhere X, (n) =* if m>n. By the above proposition f is a p-equivalence.
Since SU(#n) is p-universal, there exists a converse p-equivalence

g {1 X (n) >SU ()

m=2

~ P

by [13]. Let g, denote the composite X, (1) >[] X;(»n) LSU). The
=2

construction of X, (#) depend: on a choice of the map . BSU(n)

—BSU (). (Note that ) is not uniquely determined). However we

have

Proposition 3.4. Lct Y, (#) be a finite complexr (2<m=<p) and
let @,:Y, () —=>8SU((n) be a map such that H*(Y, (1) ; Z,) =AY ms Y p-15
e ). s:[’;:-’%] and ay*: H*(SU@); Zy) ~H*(Yo(n); Z,)
is an epimorphism. Then

i) Y, () is p-equivalent to X, (n),

i) if mts@—1)<n<n'<m+(s+1)(p—1), then Y, (n) is p-
equivalent to Y, (n'),

iii) Zhere exists a sequence

Y,(m+s@p—1) =Y, (m+ (s+1) (p—1)) »Snr2e+v@-n-1

which is p-equivalent to a fibring.

Proof. Let m+sp—1)<n<m-+ (s+1)(p—1). Let g, : X,(m+s
(p——l))gSU(m+s(p—l))—>SU(71) be the composite and let

gnXT1g:
9" X (m+s(p—1)) X1 Xi(n) —5 1] SU(n) >SU(n),

where # is the multiplication. Similarly consider

amX_Hgt
9" Yo () XTI X: (n) — 51T SU(n) SSU ().
iE=m

Then clearly ¢’ and ¢” are p-equivalences. Since all spaces in the above

are p-universal, we see easily that Y, (n) is p-equivalent to X, (m+s(p
—1)). This proves i) and ii).
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Next let
SUm+p—2+s(p—1)) >SUGm + (s+1) (p— 1)) S>Semree+n@-0-1

be the usual fibring. Let 7’ be the composite

X, (mA+ (s +1) (p—1)) BSUGm + (s +1) (p— 1)) HSm+2e+0 =01

and let F be the fibre of 7. Then we have a homotopy commutative

diagram:

SU (m+p—2-+5(p— 1)) SU (m + (s+ 1) (p— 1)) ——s Sem+26+D@-n-1
a gm

i/ TC’
F Xm (m + (S'I' 1) (P _ 1)) Szm+2(s+1)(p—1)—1

where @ is an induced map. Then easily we see that a:F—»SU(m+p—2
+5s(p—1)) satisfies the condition of the proposition and by i) and ii)

we have

F=X,(m+s@—1)).

This completes the proof. Q.E.D.

Now by the above proposition, if m+s(p—1)<n<m+ (s+1) (#—1),
X,,(n) uniquely determines a mod # homotopy type which we denote by
B} (p) by an abuse of notation (cf. §5). Then from the above argu-

ment, we obtain

Theorem 3.5. Let p be a prime and let 1<m<p be an integer.
Then for any positive integer k, there exists a space B,*(p) and there

exists a p-equivalence

II B.™™ (p)—>SU (),
1=m<lp

where k(n, m) = [wl_]

p—1

Corollary 3.6. Le: p, m and k be as above. Then the space
B, (p) is a modp H-space.

Remark 3.7. In §5 there is given a slightly different definition
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of B,*(p) for general m. The difference with this definition is to require
the existence of a map to SU(m+1+ (k—1) (p—1))/SU(m) instead of
SU(n). In this weaker definition, it is not known in general if B,*(p)

is unique up to p-equivalence.

§ 4. Mod p Decomposition of the Other Classical Groups

In this section, p denotes always an odd prime. Let FS5ESB be
a fibration. A map s: B—E is called a cross-section mod p if pos is a
p-equivalence. Let E be an H-space mod p with the mod p multiplication
/t.  Suppose p:E->B admits a cross section mod p. Now if F, E and B
are l-connected finite CW-complexes, then F X BSExESE gives a p-
equivalence by Serre’s class theory.

Consider the canonical bundles associated with the classical groups:
Sp(n) =>SU(2n) >SU(2n) /Sp (n),
Spin(2n+1) >SU2n+1) ->SU(2n+1) /Spin(2n+1),
Spin (2n—1) >Spin (2n) >S5 .

B. Harris [6] has shown that such bundles have cross-section mod p for

odd p. Hence we have p-equivalences:
Sp(n) X (SU(2n) /Sp(n)) TSU (2n),
Spin(2n+1) X (SU(2r+1) /Spin(2n+1)) ?SU(Zn +1),
Spin (2n—1) X S”H?Spin (2n).

It is also shown in [6] that Sp(n) ?Spin (2rn+1).

2(a—b)

Theorem 4.1, Let p be an odd prime. Let k,,,,,:[ -

Then there exist the following p-equivalences:

[
) (=12
Sp(n) =Spin(2n+1) = ]_—[1 Bim (p),
b4 m=
_ =12
Spin (2n) =S 'x [| Bizm(p),
p m=1

(-1)/2
SU @n) /Sp(n) =TI Big(2),
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—~1)

¢ /2
SU (2n+1) /Spin(@n+1)= I1 Biz=(2).

p m=1

Proof is straightforward from Theorem 3.5 by virtue of the above

formula and will be left to the reader.

Theorem 4.2. SU(n) has no mod p decomposition into p spaces.
Let p be odd, then Sp(n) and Spin(2n-+1) have no mod p decomposi-
p+1

tion into £ 9" spaces. Sp(n) has no mod 2 decomposition into 2 spaces.

Proof. Assume that SU(n) is mod p decomposable into p spaces, i.e.,
ﬁX:SU(n). It is easy to see that H*(X;; Z,) is an exterior algebra
;;:d h:,nce there exists a number ¢ such that the degree of the lowest
generator of H*(X,; Z,) is greater than 2p+1. Let x be such a gener-
ator and let 2=degx. Then clearly the mod » Hurewicz homomorphism
hem (11 X)) ®Z,— H, (I1 Xi; Z,) is non-trivial. Hence so is A: 7, (SU (%))
®RZ,—~H,(SU(n); Z,). But since k=>2p+1, this is a contradiction. For
Sp(n) and Spin(2n-+1), the proof is quite similar. Q.E.D.

Chapter II Mod p Stiefel Complex BE, (p)

§ 5. Existence of BL (p)

Throughout this chapter » will be an odd prime and we use the

notation ¢=2(p—1).

Definition 5.1. i) A map f: X—Y is called a mod p injection
(resp. a mod p surjection) if f induces an epimorphism (resp. a monomor-
phism) f*: H*(Y; Z,) ~H*(X; Z,).

ii) A complex B is called to be of p-type (i, ns, -+, 7,) and indi-
cated by B=B(n,, n,, -+, n,) if

H*(B’ Zp) =A(xn17 Tty xn;):

where deg x,,=n;, i=1, .-+, [, and each cell of B represents an additive
base of H*(B; Z,).
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Note that

(56.1) if X is l-connected and H*(X; Z,) = A(xn,, -+, x,,) for dim<n,+
- +n,, then there is a complex B of p-type (my. ---,n,) with a modp
injection f:B—X.

Definition 5.2. We call a complex B,*(p) of ptype (2m+1,2m
+1+4+q, -, 2m+1+ (k—1)q), ¢g=2(p—1), a modp Stiefel complex if

there exists a mod # injection
fi B () >SU(m+1+ (—1) (p—1))/SU(m) =Wpuss,
where s=1+ (k—1) (p—1).

Note that

(5- 2) H*(Wm+s,s§ Z) =A(ZLom+1, Tamen+1, *" Loom s-n41) and in Zp°coeﬁ'
cient we can choose the generators Tomsp+1 Such that f*(Zymep+1) =0

for j#£0 (mod p—1) and f*(Xemi1rig) =Tamr14iq JOr 0i<lk.
Example 5.3.1. B,'(p) =5"".

Example 5.3.2. B,’(p) =S""'XS$"*71 if m=0 (modp) and
B2 (p) =B, (p) if m#0 (modp), where B,(p) is a S *-bundle over
Sl given in [11, 18].

Example 5.3.3. B}, ,(3)=X,i1.:=Sp(n+k)/Sp(n) with the natu-
ral map f: B),.1(3) =»SU(21n+2k) /SU(2n +1).

Example S5.3.4. By Theorem 3.5, for 1<lm<{p there exists
B,*(p) with
f: B, () >SU(m+1+ (k—1) (»—1))
>SU(m+1+ (k—1) (»—1))/SU(m).

In meta-stable ranges we have the following theorems.
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Theorem 5.4. If kCm+1+(k—1) (p—1))<<2(m+1)p—2, there
exists B, (p) uniquely up to p-equivalence.

Theorem 5.5. If
(@ (;R-1)Cm+1+k(—1))<2(m+2)p—2

or
(B m is odd and (k—1)(2m+1+k(p—1))<2(m+3)p—2,

there exists a B,*(p) which is a S™ "-bundle over By, (D).

First we recall James’ work [8]. For each positive integer s, there
associates a James number & =5, such that for all positive integers # and

N, there are maps
. Qe .
Ji S Waii > Waiiem for i<s

satisfying the commutativity of the diagram

2Nb; Wy,
SZNan+i—l,i—1 — S Wn+i,i'—>
lji—l ; l]z lﬁ:id
Woariswo—t,iei —— Wapiiwe,s ———>SHOFrO=

S2r+i+Ny) -1

where W,,,;=SU(¢+17)/SU(¢) and —i—>, 25 are the natural fiberings.
We put

K, ..;=S(CP'*"'/CP'™).

According to Yokota [25], K, ;; is embedded in W,.;; such that
(Wissi, Kivss) is (4¢+3)-connected and H*(K,,:;) has an additive base
{¥eo+p-1} for the restrictions ¥,4.5-; of the generators Zpe.p-; of
H*(Witi4).

So, by taking N sufficiently large, we have the following homotopy
commutative diagram:

2Wb; 2oy,
2Nb 2Nb
S Wn+i—1.i—l"_’>S Wn+i,i_““_"

lji—l ; ljz » l]}:id

Sz(n+i+zvb)—1

S2mritNy-1

R11,-{-;'+1Vll-—1,i—-1 aI<n+i-v(~IVb,v: 3

in which the lower sequence is a cofibering.
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Using (5.2) and the above diagram inductively we have
(5.3) 7i:S™W,.os—Kuisims and the adjoint map Ji: Wy, —2

. H — Q2Nb 2Nb
Kiisims satisfy i*(Veamsriemm+1) =S7 Tomen+r and  J* (0 Voni i-vm+1)

=Zynrnn+1.  Lhus j, is a mod p surjection and J, is a mod p injection.

By Corollary 9.5 of [16]

(5.4) we have a p-equivalence
’ - P2
g: Kn-rs-e—Nb.s‘).\_/OLi s

where L;=S"Ue" U ...Ue" ™ for M=M;=2(n+1i+Nb)+1 and

7 s—i—1
h=h, [p—l ]

From (5.2), (5.3) and (5.4) we remark that

(5.5) there is a mod p surjection S*B,*(p) —>L, for sufficiently large
N, given the existence of B,*(p), where L,=S""+1gmte¥+itay

v @M1t (k-
An easy calculation, using Corollary 3.3 of [24], shows

(5~ 6) H* (-QZNbLi; Zp) =A(Zpr21+1, Lon+oi+1+q> *°°s z2n+2i+l+h.q) Sor dim<2(n
+i+1)p—-2,

and for the composite map

-2
g=g ody: Wrsa 2™V L),
i=0

—2
(5.7) gt : H*(@" (VL) ; Z) > H*(Woss s Zy)
i=0

are isomorphisms for dim<<2(n+1)p—2.

Then it follows from (5.1) that
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5.8) if (h+1)(@Cn+2i+14+h(p—1))<2(n+i+1)p—2 there exist a
complex B; of type (2n+2i+1,22+2i+1+gq, -, 2n+2i+1+hq) and

a mod p injection

fi: B—2"L;.

Proof of Theorem 5.4. Let n=m, s=1+ (k—1)(p—1) and con-

sider the following diagram:

4

( —2
Woyos—s @ (\/ Ly
$ =0
Tf h BT]"’
B(," .- ‘}Bo
where j, is the composite map of f3:B,—>2**L, and the inclusion £°V°L,
*%.QZM’(\./Li). By the assumption, dim By<2(m+1)p—2. By Corollary
1.4 of [13], B, is p-universal. Applying Theorem 2.1 of [15], we have
that there exist a p-equivalence 2 and a mod p injection f such that the
above diagram homotopy commutes. Thus B,=B,"(p).
Given a B,*(p) with a mod p injection f: B,"(#) =Wy, consider
the composition
J: Bat($) Lo W, 0o~V L) 250,
It is easy to see that ¢*: H*(2*"L,; Z,) > H* (B, (»); Z,) are isomor-
phisms for dim<2{(m+1)p—2. Apply the above dicussion to g, in place

of g, then we get a mod p injection f: B,—B,"(p) which is a p-equivalence.
Q.E.D.

Proof of Theorem 5.5. First consider the case (a). Let n=m
+1, s=(k—1)(p—1) and apply Theorem 2.1 of [15] to the diagram

g
Wm+1+s,s ”‘““‘)gﬂvb(\/ Ly
Tf ]l/ ij—z
B, ,------- >B,_,.
The condition (&) is equivalent to dim B, ,<2(m+2)p—2. So, we get
a mod p injection f":B,_,—> W, 1145s. By composing the projection Wi, 1445

—>Wi14ss-pr2, We see that B, ,= By 1(p). Consider the sphere bundle
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S W is1es—> Whiisss and let B be the total space of the sphere
bundle induced by f. Then B is an S$*™*'-bundle over By, ,(») with
the induced map f:B—>W,.1151.s. Obviously f is a mod # injection and
B=B,"(p).

For the case (8), let ' =5/2, m’= (m+1)/2 and use the composition

9" Xprsgrs =Sp(m' +5") /Sp(m’) > Wirsss
gV Ly 2 (VL)
AN i A 27-1

in place of g. We see that ¢’* are isomorphisms of H*( ; Z,) for dim
<2(m+3)p—2. Then the case (#) is proved similarly. Q.E.D.

A slight generalization of Theorems 5.4, 5.5 may be obtained in
unstable ranges, as will be seen in the proof of Proposition 5. 6.

For small values of £ we have

Proposition 5.6. (i) B, (p) exists if k=1, k=2, k=3.
(i) B,'(p) exists if p>3 or if p=3 and m is odd.

Proof. By Proposition 3.4, B,*(p) exists for m<p. So, we may
assume that m=>p.

For k=3, the condition (&) of Theorem 5.5 is equivalent to
m>‘g~zé which is satisfied for m=>p>3. Thus B,*(p) exists. The exi-
stence of B,'(p) and B,’(p) is easily proved.

For k=4, the conditions («) and (#) of Theorem 5.5 are equivalent

to m>1;*?_——33 and m>?;b:33 respectively. Thus B,'(p) exists for p>5

and for p=5 and m+£5, 6, 8. For odd m, Example 5. 3. 3 shows the

existence of B,*(3).

Consider the construction of Bg*(5) along the proof of Theorem 5. 5.
Then the only difficulty is to extend a map f of B} (5) into W, ,,=SU
(21) /SU(9) over the top cell of B},(5), and the obstruction lies in the
kernel of S :7s (S™) —>7agsam (SU**). By [24], this S** is a mod 5 in-
jection. Thus Bs'(5) can be constructed. B;'(5) is similarly constructed
by using X,:=Sp(9)/Sp(3).

Finally, the obstruction to construct Bg*(5) lies in the kernel of
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Ox: Tas (SU(9)/SU(T)) —>7rgs (277 (S5+270\/ S¥+2M0)y . Here SU(9)/SU(7) is
p-equivalent to S®*XSY and g, is equivalent to S*™ X S*® on 7g(S™) X s
(S") which is mod 5 injective by [24]. Thus B;*(5) can be constructed.

Q.E.D.
§ 6. A Spectral Sequence for Meta-stable Homotopy

In this section all homotopy groups m;(X) are localized at p and
considered on l-connected spaces of finite type. We use the notations
T(X:p) =1, (X) ®Zp ,

(Gi: p) :Gi®Z(p) for G;=lim m;,(S"),

where
Zp= {ﬁ'm, neZ; (m,p) =1}.
m

Let # be an odd integer =>3. We shall give a functor which associ-

ates a spectral sequence {E},} for each zn-connected map f: B—X, satisfy-
ing the following properties.

(6.1) () E;.=0 for s<n, Ei ,=n...(B:p) and E;,=m,.,(B;: p) for
s>n, where B,=\/S" is a bouquet of n-spheres.
(it) With respect to the differential d": E} ,—E;_, ..,
d’'d"=0 and H(E:,)=E.
(i) E;,=E$, for r>Max(s—n,t+1). E&=D,,/D; ,,., and
D,,=Ey,=Im(fy: T (B: p) >, (X:p)) for a filtration
Tsar (X1 9) =Dyt 0D DD, DDs_ g1 D DDy sipn -
(v) d'(E;y,) Cp-Ei,, for s—1>n.
(v) For each vem,..(S"), there associates a map (composition)
-1:E} > EL ., of the spectral sequences such that B-y=(B<(S7) for (8
En (Bs: p) =E;, and similar for €D, ,Crs (X: P).

(vi) A spectral sequence converging to mw,.,(X, B:p) is obtained
by taking E, ,=D,,=0.

Let N={n,, n,, ---} be a strictly increasing sequence of positive inte-
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gers n; >3, and let

n=m—1 if n, is even and n=n,—2 if n; is odd.

Theorem 6.1. For the map f:B—X assume that
H*(X; Z,) =B*@A(x,,: n; is odd) ®Z,[x,,: n; is even]

Jor dim<M+1<p(n+1), f*(x,,) =0 and f*|B* is an isomorphism
of B* onto H*(B; Z,). Then the above spectral sequence {E; .} satis-
fies the following properties.

(i) Let s<M, then B,=8" (s&N) and B,=%* (s&N).

(ii) Let BEE;, for 1<r<q, s<M and s,s—reN. If r=1,
d'(B) =aB for an integer a=0 (modp) satisfying (0/a)x;-y=x;
(mod decomp.) for a0. d"(R) =0 if 1<r<q. Ifr=gq, d'(R) =ba,-f
for some beE Z, satisfying P'x,_,=bx, (mod decomp.), where o, Emp,q-
(S*:p) is detected by P

In the following (iii) and (iv), we assume that s, s—re N, s<M,
aoSTTIB=R8'r=0 for aA€mur1(S":P) =Ei,r1, BEM.(S":p) =E;,,
TET.(SY), d'(0) =« for the identity class ¢(cw,(S*: p) =Ei, and &

indicates a suitably chosen element of
{a, 7B, ™"} Clpersrsu (S™) = B tiren -

Moreover we assume E}_;,..=0 for 1<i<r.

Gii) If [RlEm:.(X: D) is represented by RS EY,, then [B] 7€ Tss14u
(X: p) is represented by EESE7 i riu

(v) If d7(0)=p for some O0EEj., i .1, then d"77(@0-7)
SSEE;i:,’t-«-T-&u-

(v) If B=S""' by shifting E,, to Ei,..., the above (i), (ii),
(iv) are satisfied for s—r=2m+1.

Corollary 6.2. If m(X, B: p) #0 for some k<<M—1, then k=s+1¢
for some s&N and t with (G,: p) 0.

The construction of the spectral sequence and the proofs of (6.1)
and Theorem 6.1 will be given at the end of this section.
We shall show some applications. Recall the following results on

the stable homotopy groups of spheres from [23].
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(6.2) For t<(20+1)q—2, the groups (G,: p) have the following gen-

erators:
(Go: p) =Z <0, ¢ is the class of the identity,
(Grg-1:0) = ZK ) Sfor 0<r<2p and r+p,
(Gupgo1: £) = Zplsp) for s=1,2, pag,=0a,,
(Gipg2s: 2) = ZXBD Sor s=1, 2,

(G(sp+1>q—2s—1 1p) = Zp<af1313> Sfor s=1, 2.

(6.3) aa.=aa;,=0 and {a, a,, ptt contains &./r (=ai,/s for
r=sp).
A typical case of X is the following one.
(6. 4) H* (X, Zp) :A(x2m+1, g“xzmﬂ, ) g)k_lxlm+l)7 1<k<p.
Proposition 6.3. For a 2-connected X with the property (6.4),
7, (X:p) =0 for t<Min(2(m+1)p—3, 2m+(2p+1)g—1) except for the
following:
Toms1+1q(X: 9) = Zp{[Pt(2m +1+7g) 1> SJor 0<j<k,

ﬂzm-%jq (X P) :Zpl:<[afj—k+1 (2m+1+ (k—l) Q)]>
for k<j<p and p+k<j<2p,

Tam+iq (X2 2) = Zypil[goees Cm +1+(k=1D)@) 1> for p<j<p+k—1,
Tam+ g ri-nq (X1 P) = Zpeal [0 (2m 41+ (k—1) @) 1D,
with the exception
Tomipq (X2 P) = Zpl[a Cm+14+ (p—2) @) 1) for k=p,
and, in addition for k<p,
Tom+1+spa-2s (X2 P) = Z,X[8° 2m +1) ] Jor s=1, 2,
Tom+ prma-2(X: ) = Z [ 2m+1+2(k—1)q) ]).

Here 7v(s) € E;, indicates the element whose stable class is 7,

and [v(s)]€n:,(X:p) is represented by the permanent cycle 7(s)

e E?..
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Proof. For t<2(m+1)p—3, 7 (S™"': p) is stable. We use the
spectral sequence {E;,} converging to 7, (X:p) with Ej,=(G,:p) for
s=2m+1-+ig (0<<i<k). The first non-trivial differential is d” and it is
computed by (ii) of Theorem 6.1 and by (6. 3), (6.4), and E?% has the

following generators:
be@Cm+1+ig) for 0<<i<lk,
o, (2m+1+iq) for 0<i<k, 2<r, i#0(modp) and i+r<2p,
oy (2m+14ig) for 0<i<<k, s=1, 2 and sp+i<2p,
o, (Cm+14+ (k=1 q), B(@Cm+1), afi(@m+1+(k—1)q)
and B2(2m-+1).

Next we have

(6.5) dU(p(@Cm+1+1iq)) =a,2m+1+ (i—f)q) for 1<f<i up to

non-zero coefficients.

This is true for /=1 by (i) of Theorem 6.1 and proved inductively
by use of (iv) of Theorem 6.1 and (6.3). For dimensional reasons
and by the following lemma, the other non-trivial differentials are d® "¢
(@B 'Cm+14+ (p—1)q)) =B (2m+1), s=1, 2, of the case k=p. By
use of (ii) of Theorem 6.1 and (6. 3), we see that the groups @pp,.;,(X: )

are cyclic. Consequently we obtain the required results. Q.E.D.

In the above proof, the only differentials in question are
(i (2m+1+i9)) =a-B,(2m+1) for some ac Z,.

The element 3;(2m+1) is stable only if m>>p.

Lemma 6.4. Let m>p and 1<i<k. Then
d(a,-;(2m+1+ig)) =0 for i<p—1
and  d?P(af " @m A1+ (p—1)9)) =8 (2m+1) for k=p

up to non-zero coefficients.
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Proof. We shall consider a complex
Lmkzszmﬂ U gtmtite U---u ezm+1+(k—1)q with g)k—d#o

for k<<{p<m. Denote by L, the 2m+1+ (j—1)g skeleton of L,* by

i;: L, —L,7"" the inclusion and by

Te € Tom+ k-1g (Lmk_l)

2m+1+(k—-1g

the attaching class of the top cell ¢ First we prove

(6.6),. For 2<<k<p, there exists a complex L,* such that 7.=7 -1
P Toje1 = sl Aj<<k—1) and 1p,=ar_,(2m~+1) up to non-zero coef-

ficients, for a series of elements 7. ;€ Tomys -ng (Ln").

This is obvious for 2=2, L,>=S""'U¢™*'*? the mapping cone of
a;(2m+1). Assume that (6.6),_; holds for £>2 and consider L34 ..
We define L,* as the mapping cone of a map f: SLEZ:_;—>S* ! such that
FISLy, .o 1 =f18™"* represents «;(2m+1). The existence of such a map
S follows from apijq-1 (S 1p) = (Gjp-p:p) =0 for 1<j<p. The attach-
ing class 7y is given by a coextension of the attaching class Stx-; for
SLE Vi If 74,41 is given by a coextension of Sti-1j, P-7Trj+1 IS a coex-
tension of pSY.-1,; =S8%-14S7k-1,7-1. LThen p-7i 1 =1%47r; for a coextension
Tes of Sti-1;-1. Since 7. is a coextension of S7.-1,1 =7%-: in the mapping
cone L,* of a,(Cm+1), p-7e.=tx{0s(Cm+1), cpy, Pt} =114 (-1 (2m
+1)) by (6.3). Thus (6.6), is proved by induction on k.

Next we show

(6.7) Let j:S™"'—>L,* be the inclusion. Then j,u (£ (2m+1)) =0
and jii (2, 2m+1)) is divisible by p*™' if k<p.

Consider the map f:SL2, 1 —S*"" and try to extend f over SLZ . ;.

The obstruction to the extension is

S (ST2) EMempg-1 (ST p) = Z KB (2m +1) ).

Assume that fy (Sr,) =0, then f can be extended over f: SLZ,, ,—S™".
Then in the mapping cone of f we have P*P? '=£0 which contradicts
to the Adem relation P'P?'=0. Thus f4(S7,) 0, and in the mapping
cone L,? of f, jou(8:(@m+1)) =0.

It follows from (6. 6), that fiy (Stpr-1) =P "4 (£ (2m+1)) =0 for
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E<p. Thus there exists a coextension &, € Topmspg(Ln") of Stpr-1- Then
P2, =14,'7 for a coextension 7 of 7,,=a,_, and for the inclusion ¢": L,
—L.* By (6.3), p-1=dix{c (@m+1), oy, Pt} =ir14(,’(2m +1)). Thus
P =i (P-7) =Jex (@’ (2m +1)), which completes the proof of (6. 7).

Now we go back to the proof of the lemma. A mod p injection S*™*?
=L,'>X can be extended over a map ¢:L,*—>X since ynsiq(X:p) =0,
1<li<k, as is seen in the proof of Proposition 6.3. Since «,’(2m+1)
is divisible by p*7!, so is it in X, and 7p+pe(X: p) contains a cyclic group
of order p*"’. By counting the orders of generators in Ej ;4 We have
that a,_;(2m+1+1iq), i<p—1, are permanent cycles for k<p.

In the case £=p, 3,(2m+1) vanishes in L,?, so does it in X and E%,
and & (ap-i(2m+1+iq)) =B (2m+1) for some i. If i<p—1, a(2m
+1+4 (»—1)g) is a permanent cycle. Then by use of (iii) of Theorem
6.1 and (6.3), we see that a;(2m+1+ (p—j)g) are permanent cycles
successively for j=1, 2, ---,p—1. This contradicts to the above result
for j=p—i. Thus d? Y (a;2m+1+ (p—1)q)) =8,(2m+1). By (iv)
of Theorem 6.1, d? (a5, Cm+1+ (p—1)q)) =B2*(2m+1). Q.E.D.

Remark 6.5. For the case H*(X; Z,) = Z,[Zoms2, P'Zomss, =+, P
Zom+z] for dim<2p(m+1), a result parallel to Proposition 6.3 holds by
considering SL,* or X. In general H*(X; Z,) may be the tensor prod-
uct of some subalgebras of the above type and the type of (6.4), and
the discussions of differentials in the proof of Proposition 6.3 are valid.
In particular, Lemma 6.4 may be applicable provided there exists a mod

# injection ¢: L,*—X.

If the connectedness is lower, such as B,*(p), Proposition 6. 3 is not
so useful. In such a case it is convenient to consider the fiber F} of

the mod p injection B,*(p) —B,”(p) because
(6.8) m (B~(p):p)=2Zy Sfor t=3 (mod q) and =0 for t#3 (modq).
Then we have

(6- 9) H* (Fk; Zp) :Zp[-r2+qu Lo+ w+11gr L2+ (k+2)qs ] for dim<P(2+k‘Z)
—2 and le%—jq: =1z, G+Dg-
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Computing 7,(Fy: p) and applying the exact sequence

o (B2 (0)) 2w (Fi) > (BF(p)) »m (B (p)) =+

and also using the fact that 7,(B/*(»)) is finite for >3+ (k—1)¢q, we
have the following

Proposition 6.6. Let 2<k<<p+1. For :<Min((kp+1)g—1, (2p
+k+1)q) the group w,(B*(P):p) wvanishes except the following

values of t:

t=ig+3 Sor 0<<i<k,
t=ig+2 for i>k,
t=ig+1 for izp+2,

t=(k+p)q, (20+2)q—1, (2p+2)q, (k+2p)g—2,
Bp+2)q—3, 3p+2)q—2, 3p+2)g—1.

For the group structure of non-trivial 7,(B,*(p):p), see [7].

We shall construct the spectral sequence {Ej,;} for a given n-con-
nected map f:B—X. For the sake of simplicity, every space will be
localized at p; me( :p) =7x( ). We define a sequence of fiberings

(6.10), F5BLF,, (s=nn+1,n+2, )

by giving maps f=f; inductively. For s=n, f,=f:B,=B—>X=F,_;, then
F, is (n—1)-connected. For s>n, given an (#—1)-connected F;_;, there
exists a bouquet B;=\/S" of n-spheres with a map f;:B,—F,_, such that
S H"(Fy_y; Z,) =H"(B;; Z,), then the fibre F; is (#—1)-connected.
Note that B, and f; are unique up to p-equivalence.
Put

Tyt (F) for s=n, Tnyi(By) for s2n,
— 1

5,0 5,6

Tsrn1(X)  for s<n, 0 for s<n.

The following exact sequences are those of homotopy groups for
the fiberings (6.10),, s=n, and trivial ones (0,=id) for s<ln:

F) i 7 2,
1 tar B T 1
e '_>As-1,t+1'_)As,t’—>Es,t">As—l,L’_)As, t—1>
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So, we have an exact couple (r==1) aud derived couples (»=2,3.:)

(N VE 0 i ), AT=2" A}, E'=>] E;, with exact sequences
R S i
e AL L SA DAL

where AT =0,(A7_, ., = (0 A 1ery Orys=0,|A™, EIf'=H(EI,) with

respect to the differential
dr :irofr : E;:L_)E;—r,t+r—1 )

Sv1 is induced by f, and i,,; by £,0,7%

Proof of (6.1). The properties (i) and (ii) are obvious.
Put D,,=Ker((8)" """ 7, (X)=AL 1 ,1_n—>AL;_1), then

Tore(X) /Dy = Al = AT, for r>s—n+1.

Since F; (s=>n) is (n—1)-connected, A;,=0 if s=»n and £<{0. So, we

get a short exact sequence
Ir oy
0->E],SA,,—ALL,_1,—0 for r>Max(+1,s5—n).

From these results (iii) follows easily by putting Ef,=E;, for »>Max
(t+1,s—n).

For g=iof: B—F,_,—B,_,, g¥=0: H"(B;_,: Z,) >H"(B,; Z,). So,
there exists a map ¢’: B;—B;_, such that g is homotopic to ¢’ (p-id).
Then (iv) follows.

The compositions B-7=£(S'7), fET,+.( ), define a map -7: (4L,
E})—> (AL, iu Ei1iu) of the exact couple. Then (v) follows.

From the fibering (6. 10),, w,., (X, B) =m;,,-1(F,). Use f: B,.,—F,
in place of f: B—X, then we get a spectral sequence {'Ej ,} converging to
7wy (F,) with "E},=E!, for s##n and "E.,=0. Then (iv) follows.

Q.E.D.

For homogeneous elements x,, A(x,) denotes the free commutative
algebra generated by {x.}, ie.,
A(x,) =A(x,; deg x, is odd) ®Z,[x,; deg x, is even].

Lemma 6.7. Let F>B5LX bea fibering, x,=Ker (f*: H"«(X; Z,)
—H"(B; Z,)) and let B* be a submodule of H*(X,;Z,) such that
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f*|B*: B*>H*(B; Z,) is bijective. Assume that the natural map, de-
fined by cup product,

B*QA(x) ~H*(X; Z,)

is bijective for dim<<M and injective for dim= M, then, for the coho-
mology suspensions 0(x,) € H" '(F; Z,), the natural map

A(0(x)) > H*(F; Z,)

is bijective for dim<Min(M—1, p(m—1)) and injective for dim
=Min(M—1,p(m—1)), where m =Min(deg x,=n,: odd).

This is proved by use of the comparison theorem (cf. Cor. 3.3 of

(24D.

Proof of Theorem 6.1. Applying Lemma 6.7 successively we

have

(6.11) the natural map A(0° "z, n, €N, s<n,<M)—>H*(F; Z,) is
bijective for dim<M—s+n—1 and injective for dim=M—s+n—1.

Then (i) follows immediately.

Let s,s—1=N. Then d'(¢) =at¢ for the degree a of g=iof: S"=B,
—F,,—B;.;=8" a=0 (modp) by (iv) of (6.1). Then (0/a)(c*™™!
Zyy) =0, in H¥(Fy_,; Z,) ={0° " x4y, 6° " 'z, -} if a5~0, whence
(6/a)x,_, =z, (mod decomp.). By (v) of (6.1), &'(B) =d'(¢c-B) =ac¢-B
=af}, and the first half of (ii) is proved.

Let s&N, g: S*""*—>F, be a map, put g=icg: S"**—>B; and let L=S"
Ue**** be the mapping cone of g. The following (6.12) is proved by

constructing maps.

(6.12) There exists an extension h: L—>F,_, of f:B,—F,_, such that
0. (hel) =7 (8) holds for any coextension &S mn,sssum (L) of E€Misrn
(Sn+t).

Apply this to the case =0, §=f: S*>F, and L=S"Ue"*'. In the
homotopy exact sequence of the fibering (6.10),_;:
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[S'L, Fy o J5[S7'L, Fyo 5 [S7'L, By

the last term vanishes for 1<<:<{r—1 (<{q) by (6. 2). Thus there exists
an element 7€ [S™:L, Fy_,.,] such that (04) " *p={A}. d'(B)=g+(B
=0 for B E:,. So there exists a coextension BETm (L) of BEEL,
=7,:(S"). From

fi(B) =4 (B) =0:({h} oB) =0, ((0:)"*1°8) = (8) " (n=S"*H)

we have that f;(70S"?8) =i, (%) 0S" 2§ represents d’(f), where i: F,_,
—B,_,=8" If 1<r<q, i.(7) €[S"*L,S"] =0 by (6. 2), and d"(3) =0.
If r=gq, i, (7)) =n*(b-a;) for the projection 7:S*"2L—S"**"! and for some
beZ, Then d?(B) is represented by

iy (1) 0SB = (b-a,) o7y (ST2) = (b- ) 0 ST =bct, -3 .
Let K=S"UC(S*2L) = (S"\V/S"'B;_;) Ue"*? be the mapping cone of

a representative of . Then we can construct a map of K into F,_,_;
inducing isomorphisms of H" and H"*%. Then the relation Pz, ,=bx;,
(mod decomp.) follows from (6.11), completing the proof of (ii).

Next consider the property (iii). From the assumption d'(¢) =a,
fi(©) =(0)" '@ and 7,(@) =« for some @< A;_,._,. Apply (6.12) to a
representative § of @&, then L=S"Ue""" is the mapping cone of « and
h:L—F, ., satisfies h|S"=f and 0,(h.l) =0,() =a-B for (=S58
Then f;(B) =(8)""'@-B= ()" (k). Since B represents [F], fi(B)
=(9,)7(0)°* " "[B]. From the assumption E},;, ;=0, 1<{i<r, it follows
that (0)": Al_,_,,.,—A! ., is injective. So, (8,)* " "[8]=h.>. Since
€ is a coextension of ™8, £oS**Tyr=7j,(€) for a & of {a, ST7IB, STy},

where j: S"—L is the inclusion. Then the equality
(@) 7R 1) =haloS = hyjub =£(8)

shows that § represents [8]-7, and (iii) is proved.

Consider the property (iv). The equality & (§) =8 means that f;(6)
=(0,)7"'f and i,(f) =8 for some € Al,. Apply (6.12) to the repre-
sentative § of 3, then L=S"Ue¢"***! is the mapping cone of §# and h: L
—F,_, satisfies 2|S"*=f and 0, (h&) =7§,.=8 7 for £=S7. Let j: S">L
be the inclusion and 7, €[L, F,_,] be the class of A, then j*(7,) =£(¢)

=(0,)" '@ and 7,(@) =a. In the exact and commutative diagram
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[S™t B, ]
6+
[Sn+1l’ B._] A [Sn+i, Fy o] i; [Sn+13—1, F,_J] Q) [Sn+i—1’ B,_:]

GO T T
[SL, Boi] BISL, Froi] SIST'L, Foo] S[S7L, B,]
T
[Sn+t-ri, Bs—i],

i =S¥ B, ;] =0 for 1<<i<r by the assumption. By diagram
chasing, we get a sequence of elements 7, [S*'L, B,_;], i=2, 3, -+, 7,
such that 0,(7) =7%:;_; and j*(7;) =(0,)" ‘@ Since j*i, (4,) =i.5* (V)
=4(a@) =, i, €[S 'L,S"] is an extension of «. Since Zis a
coextension of SY, i, (7,08 %) =¢6c{a, S8, S y}. This and the
equality

@D =@ B 1) =007 (hel) = (0)7 (1:08)

= @) oS E)

show that &7 (0-7) =&, proving (iv).
When B=S8""*! we define the spectral sequence by putting

Tnse (Is) for s=n,
s =C s (F) for 2m+1<s<n,
7TS+;+1(X) fOr S<2m+1 )
”7L+t (Bs) fOf 52” 3

Ely=¢m (8™ for s=2m+1,

0 for s<m, s#2m-+1.
Then we get the required spectral sequence in (v). Q.E.D.
§ 7. Characterization of Some Bk (p)

We shall try to characterize B,.*(») of some type by its cohomological

structure.

Proposition 7.1. Assume that m#0 (mod p), m#2p*—3p—1 and
m<2p*—2p—1. Let B be a complex of p-type (2m+1,2m+2p—1) such
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that H*(B; Z,) = A(Xsms1, P Tsm.1). Then B is p-equivalent to B,*(p).

Proof. B=S""'Ue&m'® U™ From m=*=0 (modp) we have
H*(B,}(p); Z,) = A(xoms1, P'xsp11). We consider an extension B—B,}
() of a mod p injection S*"*'—>B,*(»). The obstruction to the extension
lies In Topizp—o(Bnl(P) 1) and Tipisp-1 (B (@) :2). These homotopy
groups are in the meta-stable range and they are computed in Proposition
6.3 when 4m+2p—1<2m+14+2(2p+1) (p—1) —2, ie., m<2p*—2p—1.
By Proposition 6. 3, Typr2p-2(Br>(®) 1) =0 and the case Tipssp-1 (Bn’ () iP)
#0 may occur only if 4m+2p—1=2m+1+2p(p—1) —2 or =2m+1
+4p(p—1) —4, that is, m=p" or m=2p*—3p—1 which are excluded by
the assumption. Thus we have an extension B—B,’(p) which is a p-

equivalence by the naturality of P. Q.E.D.

Proposition 7.2. Assume that p>3, m#0, 1 (mod p), m<p*—2p
and m=+£p—1, f%ﬂ—l, pP—4p+2. Let B be a complex of p-type
@m+1, 2m+2p—1, 2m+4p—3) such that H*(B; Z,) =A(Zsm:1,
Py 1, Poxynsy). Then B is p-equivalent to B,*(p).

Proof. B consists of cells of dimensions 7+1 for
i=2m, 2m+2p—2, 2m+4p—4, dm+2p—1, 2m+4p—3,
dm+6p—5, 6m+6p—4.

As in the previous proof it is sufficient to show that m;(B,'(®):2) =0
for the above values of 7.

Let m<p. By Proposition 6.6, we see that the possibility of 7;
(B.)(P):p)~<0is i=4m+2p—1=2m+4p—3 or 2=2m+1-+2k(p—1) —1
=6m F6p—4, thatis, m=p—1 or 2m=(k—1) (p—1) —1. The first case
is excluded and the second one does not occur since p—1 is even.

Let m>p. Then the homotopy groups are in the meta-stable range
and computed in Proposition 6. 3 for :<2m+1+4+2(2p+1) (» —1) —2, that
is, m<p*—2p for i=6m+6p—4. Then an obstruction may appear in the

following cases:

2m+1+2p(p—1) —2,
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2m+1+4p(p—1) —4=4m+2p—1, dm+4p—3, 4m+6p—5,
6m+6p—4=2m+1+2k(p—1)—1, 2m+4p—3+2(p+1)(p—1)—3.

The cases 2m+1+44p(p—1) —4=--- do not occur since p—1 is even.

The remaining cases are excluded by assumption. Q.E.D.

Proposition 7.3. Assume that p>5, m=%0, 1, 2 (mod p), %:ZS

<m<@:§%@—1, 3m+(p—6)(p—1) —2, 2(p—3)(p—1) —3, 2m
#—2 (modp—1) and m#% —1, —2 (modp—1). Let B be a complex
of p-type 2m+1,2m+2p—1, 2m+4p—3, 2m+6p—>5) such that H*(B;
Z,) =A(Xoms1, Pxomirs, PoXomer, PoXomer). Then B is p-equivalent to
B, (p).

Proof. As before, it suffices to show up.1.;(Bn'(®) ») =0 for j
=2m+2k(p—1) (£=1,2,3,4,5), j=4m+2k(p—1)+1 (£=3,4,5,6)
and for j=6m+12(p—1) +2. These j are not of the form 2hA(p—1) —1.
So, we need to exclude the cases j=2p(p—1) —2, j=6(»—1) +2(»+1) -
(p—1) —3 and j=4p(»—1) —4. And, we see that the assumptions on

m are sufficient to construct a p-equivalence B—B,'(®). Q.E.D.

Proposition 7.4. Let B be a complex of p-type (3,2p+1, -,
3+ (k—1)q), k=3, 4, 5, and let ® be a secondary operation which

detects o,.
(1) If k=3 and H*(B; Z,) = A(xs, P'xs, Ox,), then B is p-equiv-

alent to B*().
() If k=4, p>3 and H*(B; Z,) = A(xs, P'zy, Oy, P'0xy), then

B is p-equivalent to B*(p).
(i) If k=5, p>7 and H*(B; Z,) = A(xs, P'xs, Ox5, P'0xy, P*0x,),

then B is p-equivalent to B(p).

The proof is given by use of Proposition 6.6 and omitted.

In the sequel of this section we consider the complexes Bi;(7), By’ (5)

and B,°(5) which have been not characterized by the previous propositions
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and will be used in the next chapter. Note that these three complexes
are unique up to p-equivalence by Theorem 5.4 and Proposition 3. 4.

First we see that the only obstruction to construct a p-equivalence
B=B(23, 35, 47, 59) —»B1,(7) lies in (B (7):7) which is generated by
[8:(23)]. This obstruction can be removed by use of the following
Lemma 7.5.

Let Bi(7)® denote the k-skeleton of B}, (7). Let £§&m(Bh(7) ™)
be the class of the attaching map of the top cell e of B (7)“® =8B,
(7) %% U e which represents xuxs. [1(23) is a generator of the 7-com-
ponent of 7,5(S*), and we denote by the same symbol (3;(23) its image
[8:(23)] in mys(B1(7) ™) by the injection.

Lemma 7.5. For each ac Z,, there exists a map h:B: (7)) —Bi,
(7)Y such that h|S® is a mod 7 injection and hy(§) =n-&—a-f,(23),
n#0(mod 7).

Proof. For the sake of simplicity, we put B=DB}(7) and B*=B}
(1H®. B"=B”Uc¢€" for a cell €” representing Tpx,. Let ¢:B°—>B°\/S"
be the map pinching an equator of ¢ and let A:S™—B* be a represent-

ative of [, (59)]Em,(B:7). Consider the composition
hy: B _f‘_)B7ovs7o iava B"G B

Since (,(23) is the only obstruction, 4, can be extended to A,:B™

— B and
hiy(§) =m-£+0b-5,(23) for some b=Z, and m%#0 (mod 7).

Now we assume #=0 and deduce a contradiction. From 5=0, we
have an extension h,:B'*—B" of ;. Asin § 5, we have a mod 7 injection

(M: large)
j . Bloa_)gzﬂlL L :Sz W +23 U ezﬁl +85 U ez)[ +47 U €2M+ 59
It follows that %40 in L. By the loop-multiplication we have a map
k=3 (johy,) : B[

Since h,|B*=id, k|B*® is homotopic to zero and % is factored as B

p—mi—>Bm‘i/B“'—'Ex!.?mL. Consider the adjoint map K:S*(B"/B*) —L and
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let C=LUCS*™(B"/B®) be its mapping cone. Then P'(&"*%) =CS¥
(xgxy). By Cartan’s formula P*(ryzy) =2x4,x5 in B*®/B®. Thus we
have P*P'P3 (%) =2CS* (x4245) 70 which contradicts to Adem’s
relation P*P'P*=P*P*=0. Consequently we have proved that &=~0.
Let 71 be the #fold iteration of h,. Then h,(§) =m'-é+b(1+m(¢
—~1))/:(23). Since m, b%#£0 (mod 7), —a=b(1+m(z—1)) (mod 7) for
suitable #, and the map A satisfies the condition of the lemma. Q.E.D.

If the obstruction to construct a p-equivalence B= B(23, 35, 47, 59)
— B4 (7) is a-3(23), the obstruction vanishes by changing the constructed
map BB, (7)™ by the composition with the map A of the lemma.

So, we have

Proposition 7.6. If P’z,,=z in a complex B of T-type (23, 35,
47,59), B is T-equivalent to Bi; (7).

Apply Proposition 6.3 to By*(5), then we have

(7.1) 7w, (BS(5):5) for i<97 has the generators t(19), [5-¢(27)],
[25-¢(35)], [u(35)], [@(35)], £:(19), [s(35)], [a.(35)], [as'(35)],
[au8:(35)], [ae(35)], [ (35)] and BF(19) of dimensions i=19, 27,
35, 42, 50, 57, 58, 66, 74, 80, 82, 90 and 95 respectively.

Consider B=B(19, 27, 35) with $?#0. Since the dimensions of the
cells of B are 0, 19, 27, 35, 46, 54, 62, 81, the only obstruction to
construct a 5-equivalence B—B*(5) lies in H*(B; w5 (B,*(5):5)). Thus
we obtain a b5-equivalence of the 62-skeletons: B®? —B2(5)“®. Let &
E g (B,*(5) ®) be the attaching class of the 81-cell of B,*(5) =By’ (5) ®

Ue®. By the exact sequence
075 (B (5), Bs*(5) ®: 5) 7o (Bi* (5) ®: 5) 57y (B (5) : 5) >0,

there exists an element 7’ €7 (B,*(5) : 5) with 7.7 =[a,3,(35)] and 5-77
=m-& for some meZ. If m#0 (mod5), B(5) is 5-equivalent to the
mapping cone C of m-§&, and z,xyxs;+0 in C. But, since m-§=5-7".

Z1aXyZss =0 in C contradicting the above. Thus m=5m’, m'€Z, and
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by putting y=7"—m’-§ we have

(7.2)  7(Bi(5):5) =Zo6>+ 21> with ix§=0 and i,g=/[ap
(35) .

Then we have easily:

(7.3) Let Bi(5;a) =B(B)®Ue™ be the mapping cone of E+a-7.
Then any complex of 5-tvpe (19, 27, 35) with P*~0 is b-equivalent to
B?(5;a) for some ac€ Z,

Proposition 7.7. Let B be a complex of 5-type (19, 27, 35) with
IT%(B; Z;) = A(xyy, L'y, PPyy). Then the following three conditions
are equivalent.

(i) B is b-equivalent to BS(5).

(i) There exists a map p:(S*U e®) X B—>B such that y*(x;5) =xy

R1+1Rx,, wp to non-zero coefficients in Z;.

(iii) There exists a mod 5 surjection p: B—S®.

Proof. ()= (ii). It is sufficient to prove (ii) for B=B,"(5). Let

0 Wi s> 2" (\/ Ly) proj QUL Lo=S™(S®U e U %),

be the map considered in § 5 (M: large) such that § =g of: By (5) > Wiy,
— 2], induces isomorphisms of cohomology mod 5 for dim<(98. More-
over §yu: 7, (B(5):5) =7, (£ Ly:5) for t< 104, t97, as is seen in the
proof of Proposition 5.6. Then the composite map

B (5) x B'(5) ZLSU (18) X Wigo i3 W s o 2L,

restricted on B*(5) *® X By*(5) is factored through g, in the mod 5 sense,
and we obtain a mod 5 surjection z’: B°(5)“® X B*(5) >B,*(5). Let S*

U e ! be the mapping cone of &, then we have that

(7.4) there exists a mod p injection i: S*Ue? '—>B/*(p), k=3.

! since 7yp-s(By*

For, the inclusion S*—>B*(p) is extendable over e~
(»): p) =0. Then *(@x;) =0:i*(x;) <0, and (7.4) follows.

The composite map u=u"o (i Xid) satisfies (ii) for B=B(5).



664 MAMORU MIMURA, GORO NIsHIDA AND HIrosl Toba

(ii) = (iii)). By (7.3) we may assume B® =B#(5)®. Put P=(S*
Ue®) X B® w,=ulP, ty,=y|P™:P™ 5B and let 7E s (P™) be the
attaching class of the top cell e =P— P, From the assumption, ,*
(X190 35) = X1sQRTyZss.  Thus p:P—>B*(5) has a non-zero degree on the
top cell, and it defines a 5-equivalence of the mapping cone B® U €™
of 44 (7) onto B. So, we may assume that B is the mapping cone of

U (7). Consider the composite map
P(”)-f—z)B(GZ)—{).QZMLOE;.WMS?MJ““ ,

where 7 is induced by the projection 7: Ly—>S**®=L,/L""".

We shall prove
&) T4l sllos () =0.
Then 7og is extended over B, and the extended map gives the required
mod 5 surjection ¢ since the inclusion S*—>2**S**"% induces isomorphisms
of cohomology mod 5 for dim<(178.

As is well-known the suspension S(A X B) is homotopy equivalent
to the one point union of SA, SB and S(AAB). Put

K2: (Ss U 619) /\B(46) , Kl — (Ss U 619) /\3(54) ,
K=K U (S AB®) and K=(SUe*) AB®=K,U ",

then there is a map S* K—S*P having degree 1 on the top cell. Thus,

to prove (*) it is sufficient to show that the composite map
SzMKﬂ_“i) LO_"_>Sul+35

is mod 5 trivial for any map G. K,=K,Ue®, K, =K,Ue"Ue"® and K,
consists of cells of dimensions 0, 22, 30, 38, 46, 49, 54, 65. Ty, (Lq: 5)
=, (2% Ly:5) =m, (B,*(5) : 5) for ¢<97. So, by (7.1), G|K, is mod5

trivial, and G is factored to
SR, 8 (K, /K) 3L,
where S*(K,/K,) = (S U ™) U Since 5 (B (5):5) ={f,

(19) >, Gy|S*™*% is homotopic to a map G, : S-S  Now we can
extend the map G,” to G': S*(K,/K;) > L™ since Ty, (S :5) =0
and B Taxree (SP7:5) ={Byo;) is trivial in L ¥, the mapping cone of
;. The difference of G and G’ is trivial since Tausrs(Lo:5) =apees (Lo
:5) =0. Thus G is homotopic to G’ and 7oG is homotopic to the constant
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map 7oG’, and (*) has been proved.
(iii)) = (i). By Theorem 5.5 we have the following composition of
fibre bundles

02 By*(5) » B} (5) =By (5) =S¥

which is a mod 5 surjection. By (7.3), we may put B=B}(5;a), then
B® =B2(5)* for k< 81. Compare mod 5 surjections 0 and p, on B®,
We may assume that o|B® is homotopic to 0,|B®”, by composing 5-
equivalences S*—S* By (7.1), H*(B; (B, (5):5))=0 for 35<n< 81,
and the homotopy can by extended to one between p|B® and p,|B®.
So, we may put o’ =p|B* =p,|B®, The existence of a mod 5 surjection

onto S¥ implies
0 (§) =0 and a-04" (1) =04 (§+a-y) =0.

It is easy to see that o4’ (7) =3, (35) generates 75 (S*:5)=Z,. Thus
a=0 and B=B(5;0) =B,*(b). Q.E.D.

In the proof we see that
(7.5) B#(5;a) is b-equivalent to B(5) if and only if a=0.

Next from Proposition 6.6, 7,(B,°(5):5) =0 except for £=3, 11,
19, 27, 35, 43, 50, 57, 58, 65, 66, 73, 74, 80, 81, 89, 90, 95, 96, ---

B=DB(3,11,19, 27, 35) consists of cells of dimensions 0, 3, 11, 14,
19, 22, 27, 30, 30, 33, 35, 38, 41, 46, 46, 49, 49, 54, 57, 57, 60, 62, 65,
65, 68, 73, 76, 81, 84, 92, 95. Thus H"(B; m,-,(B,°(5):5)) =0 if =81,

and we have the following:

(7.6) Let B be a complex of 5-type (3,11,19, 27, 35) with Pla,+0
and PDxy+0. Then B™ is 5-equivalent to B;'(56)" Further if B®
is 5-equivalent to B°(5)®, then B is 5-equivalent to B;(5).

Proposition 7.8. Let B be a complex of 5-type (3,11, 19, 27, 35)
with H*(B; Z;) = A(xs, Py, Oxs, P'Oxy, PDxy). Then B is 5-equiv-
alent to B*(5) if and only if there exists a mod5 surjection m:B
— B3 (5).
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Proof. As is seen in the first part of the proof of Proposition 7. 7,

the composite map

proj

B (5) 58U (18) 25 Wy o 52°¥ L,

is factored to B°(5) 5B (5) —§>!22ML0 since dim B,°(5) =95<(98. Thus we
have a mod 5 surjection

m: B (5) =By (5),
and the only if part of the proposition follows.

Let F be the fibre of m;, then we have easily that H* (F; Z;) = A (s,
P'xy). By Proposition 6.6, 7, (F:5) =0 for =80, 81. It follows that
Tt a0 (B,°(5) 1 5) =gy (By*(5) : 5) is an isomorphism. Since 7,* (219Z%ss)
=0, the followiig (7.7) is obtained asin (7. 2). Let & be the attaching
class of the cell =B/"(5)% —B}?(5) .

(7.7) 7(BP(5)™: 5) = Zu{E>+ZL<r> with my(§) =0 and 7, (1)
= [, (35) ].

Now assume the existence of a mod5 surjection 7:B—B,*(5). By
(7.6) we may assume that B =B°(5) and by (7.7) that B® =B
Ue™ is (5-equivalent to) the mapping cone of §+a-7 for some acZ,
Obviously 7. (§+a-7) =0. We shall prove

(*  04ms(E+a-7) =0 for the mod 5 surjection 0: B,*(5) —>S®.

From (*) and (7.7), we have easily a-a,/5,(35) =0, so a=0 and
thus B®" is H-equivalent to B,°(5)®” Then, by (7.6), Bis 5-equivalent
to B,°(5), completing the proof of the proposition.

To prove (*), we may replace S* by £*"S**® and (*) by a condition

in adjoint maps. Then it is sufficient to prove the following:
(7.8) Put 7=S"(é+a-7). For any modp surjections %, 7;: S*B"®
—L,=S™(S®U e" U e*®) and for the projection p: Ly—>S***, 047+ (1) =0

implies D4T14 () =0.

Here is an important remark.
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(7.9) 7 isin the image of the injection homomorphism yy.s (S B)
> T20r+80 (SZMB (76)) .

For, if (7.9) is not true, then x;,xyxy,S P'H™(B; Z;) since the
non-trivial elements of Ty, (S (B /B%)) are detected by P’ But
PH™(B; Zs) ={ P (x1,Znxs5) >=0. So, we have (7.9).

In (7.8) we may replace T and 7%, by the compositions with 5-
equivalences of L,. For example, we may assume that 7% |S*? B"® is homo-
topic to 7| S*B“”. The primary obstruction to extend this homotopy
is in HA* (S™ B e (Lo 5) ) =7 (B (5) : 5) =<([5-¢(27)]>. Let the
obstruction be represented by ¢:S*’**—L,, and construct a 5-equivalence
h:Ly—> L, such that AS**={d and the difference id— h is represented by
an extension of ¢. Then %o7|S*B®” is homotopic to 7,|S*?B®. Simi-
larly, by a suitable change of 7, we have a homotopy between 7|S**B®”
and 7;|S*B%?.  Since H"(B;m,(B,°(5):5)) =0 for 35<<2< 57, the homo-
topy is extended over S*’B®’. Then the difference 7 —7, is represented

by the composite map
SmBm;)_I;SMI(B(W)/B(M)) gLo .

As in the second part of the proof of Proposition 7.7, Go P|S**B® is
homotopic to a map G': S** B® —»L>2**  Then by (7.9),

0574 (1) — 04T (1) = 0£Gabs (1) =04Gy” (1) =0
since 0(Ly""**) =*. This shows (7.8). Q.E.D.

Chapter [l The Exceptional Cases
§ 8. Mod p Decomposition of p-lorsion Free Exceptional Groups
By [11],

(8.1) except the cases
(G’ p) = (GZ’ 3) H (Eh 5) ’ (Eh 7) ’ (E89 7) ’

each p-torsion free exceptional group G is quasi-p-regular, that is,
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G is p-equivalent to a product of spheres and mod p Stiefel com-
plexes B’ (p). ’

For the case (G, p) =(G,, 3), G, is not mod 3 decomposable since
H*(Gy; Zs) = A (x5, Oxs).-

G, is not 3-equivalent to our complex B,°($), but it is 3-equivalent

to an analogous complex:

(8.2) G, is 3-equivalent to a complex B of 3-type (3,11) with a
mod 3 injection f: B—>SU(6) =W, ; (cf. Definition 5. 2).

The main purpose of this chapter is to give a mod » decomposition

of the remaining three cases in (8.1).

Theorem 8.1. (i) E,=B/j(5) XB?(b),
5
(i) E,=B?*(7) X B:*(7) x.S”.
7

i) E=B*(7) X BL(D).
Theorem 8.2. E,/F,~B}(5) and E,/G,~B;*(5) X B,"(5).
5 b

By Proposition 3.4 and Theorem 5. 4, the complexes B,*(p) in the
above theorems are characterized, up to p-equivalence, by their p-types
@2m+1,2m+14gq, --,2m+1+4+ (k—1)q) and the existence of mod p in-
jections
8.3) f:B,)(p)—>SU(m~+1+ (k—1) (p—1))/SU@m).

Propositions 7.1, 7.2, 7.3, 7. 4 and 7.6 show that the complexes

BA(5), B (7), B(7), B'(7) and Bi(7)
are characterized by their cohomology rings with the operations P¢ (i
=1,2,3,) and 0.
To characterize the complexes B,*(5) and B;°(5), we need more

properties as in Propositions 7.7 and 7. 8.
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Remark 8.3. If we weaken the existence of the mod p injection

(8.3) to that of a modp injection
(8.3) F B () >SU(m+N)/SU(m), N:large,

then B#(5) and B°(5) are not characterized. In fact, By*(5;a), a0,
is not 5-equivalent to B,*(5) but a mod 5 injection f":Bg(5;a) »SU(22)
/SU(9Q) exists. A complex B of 5type (3,11,19,27,35) has a modb
injection B—SU(22) if and only if it is 5-equivalent to a complex B°(5;
a) for some a& Z;, where B,°(5;a) is characterized by H*(B,°(5;a) ; Z;)
=A(xy, Plzy, Oy, POy, P?Pxy) and a mod 5 surjection B (5;a) >By
(5;a). B?®(5;a) is not 5-equivalent to B*(5) if a=~0.

The existence of a mod 5 injection f": B,*(5; a) —»SU(22) /SU(9) fol-
lows from that 7, [a,5;(35)]1 =0 for the inclusion ¢": B*(5) »>B,*(5). In
the next section B,°(5) is constructed as the total space B of the principal
Gy-bundle over B,*(5) induced by a mod 5 injection By’ (5) —E;/G, Let
g:By*(5) —>BG, be a map which induces B. Consider B,*(5;a) =B}(5) “*
Ue* and g4 [auf;(35)] Emg (BG,:5) =, (G,: 5). Since G, is 5-equivalent
to B*(5), 7:(G,:5) =0 by Proposition 6.6. Thus ¢!B,*(5)“” can be ex-
tended over ¢':B,*(5;a) >BG, Then Bj’(5;a) is realized as the total
space of the G,-bundle induced by g’ (cf. (5.1)).

The proof of Proposition 7.8 yields that there exists a mod 5 surjec-
tion B°(5;a)—>S¥ if and only if a=0. Thus B;°(5;a) is not 5-equivalent
to B’(5) if a5=0. On the other hand, the only obstruction to construct
a 5-equivalent B°(5;a) —B°(5) is the element y of (7.7) and it vanishes
in B,°(5), by Proposition 6.6. Thus there exists a mod 5 injection B°(5;
a)—>B*(5)—>SU(22). We have seen that a mod p injection of the type

(8.3)’ does not necessarily characterize the complex B,*(p).

The statement (8.2) can be generalized as follows.

Proposition 8.4. There exists a complex B of p-type (3,4p—1)
satisfying the following properties.
(G) H*(B; Z,) = A(xs, D).
(i) There exists a modp injection B—>SU(2p).
(iti) There exists a modp fibering B—B?(p) —>S?+,
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(iv) B is a mod p H-space.
One of the properties (i), (i) and (iii) characterizes the complex

B of type (3,4p—1) up to p-equivalence.

Proof. For p=3 this is true by (8. 2), and also true even for p=2
by putting B=Sp(2), B?*(2) =SU(4). Let p=>5. Let g: B*(»)®™"=S*
Ue?' 8" be a map of degree 1, and extend it over Bj*($). The
obstructions are in H" (B (p) ; .-, (S p)) for n=2p+4, 4p—1, 4p+2,
6p, 6p-+3. So, the only obstruction is in H*? 7 '(B2(p); Tup—2 (ST 5))
=7, (S?ip) =Z,Ka,>. But this obstruction is trivial since P'x;,., =0
in B#(p). Thus we have a mod p surjection g: B*(p) =>S?*!, and let F
be its fibre. Then H*(F; Z,) =A(x;, Ox;), and we obtain B by use of
(5.1) as a complex of type (3,4p—1) p-equivalent to F. Obviously
B satisfies (i), (iii) and (i) : B—>B*(») »>SU(2p).

(iv) is proved by constructing a multiplication BX B—B directly,
where the obstructions are in H*(BX B, B\/B; n,_;(B: p)). By the fiber-

ing (iii) we have an exact sequence

0 (S0 ) 7,y (B: ) =Ty (B (D) : ) BT, (SP1: p).

Then it follows from Proposition 6. 6 and (6. 2) that 7,_,(B: ) =0 except

for
n=4, 2p+1, 4p—2, 4p, 6p—4, 6p—3, 8—6, 8—5,
10p—8, 10p—7, ---.

Thus H"(BXB,B\/B;n,.,(B:p)) =0, and (iv) is proved.
The proof of the last statement is easy and omitted. Q.E.D.

§9. Mod 5 Decomposition of E; and E,/G,

For p>=5, the simply connected compact exceptional groups G,, F,,

E,; are p-torsion free and they have the following cohomology rings:

.1 H*(G2§ Zp) =A(xs, ),
H* (Fy; Zp) =A (x5, 11, L1, Xas)

and
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H* (E7: Zp> :A(Iay L1y L1540 L1945 Logy L7y Ly5)

where x;’s are universally transgressive elements of degree 1.

As is well-known, we have a sequence of injective homomorphisms
G,—Spin(7) =»Spin(9) —=F,

with Spin(7) /G,=S", Spin(9) /Spin(7)=S" and F,/Spin(9) =I =S ¢®.
Thus

(9.2) we have an inclusion i: Gy—>F, such that i*: H*(F,) = H*(G,)
for dim<(6.

Next, in [2], we have injective homomorphisms
F—E—EL,

such that for the quotient spaces E,/F, and E,/E,,

(9.3) (1) H*(E,/F,) = A(xy, Z17)
and

() H*(2(E/E)) =A(us, ) Q@ Z[wss, ]  Sfor dim=<I26.

Proposition 9.1. Let p=5. With respect to the above injections
G,CF,CE, F, (resp. G,) is totally non-homologous to zero modp in
E, (resp. F,), and ’

H* (F‘4/G2; Zp) =A(x5, L),
H* (E7/F4; Zu) =1 (-l'w, Tog, Lyg)
and

H* (E:/G5; Zp) = A (L5, Lrgy Loz, Tozy X35)

Proof. Consider the injection homomorphism *:H*(E;; Z,) —>H*
(Fy; Z,). Applying (9.3) to the fibering 2(E,/E,) >E;/F,—~E,/F,, we
see that E;/F, is 8-connected, and by (9. 1) that *:H*(E;; Z,) = H*(F,;
Z,) for dim<{11 and H*(E,/F,; Z,) =0 for dim<(10. Again by (9.3)
and the above fibering we have H*(E;/F,; Z,) =0 for dim<{17. And,
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by (9.1),
*: H¥(Ey; Z,) =H*(F.; Z,) for dim<{19.
Next, consider the mod p spectral sequence associated with the fibering
E—E,/F,—BF,,
in which E,**=H*(BF,; Z,)QH* (Ey; Z,) = Z,[ x4, 12, T1, T24] QA (x5, X1,

X5, 19, L, Lor, XL35). By the above discussion, the transgression T satisfies
t(x;) =x;., for =3, 11, 15, up to non-zero coefficients. Then E}*=Z,
(X2 ] R A(Z19, a3, Zop, Tgs). For dimensional reasons, t(x;) =0 for =19,
27, 35. Since E;/F, is finite dimensional, 7(x,) must be non-trivial.
Thus EX*=A(xy, Zu, xs) =H*(E;/F,; Z,). Then, by (9.1), we see
that the spectral sequence associated with the fibering F,—E,—~FE,/F,
collapses, and F, is totally non-homologous to zero in E..

Similarly but more easily, from (9.2) and (9.1) we have that G,
is totally non-homologous to zero mod p in F, and H*(F,/G,; Z,) =A (x4,
Zy). The last statement also follows easily. Q.E.D.

Note that Proposition 9.1 is valid for p=2, 3 ([1, 2]):

(9.4) For p=2, 3, F,(resp.G,) is totally non-homologous to zero
mod p in E,(resp. F,).

Now we consider the case p=5. By Theorem 4.2 of [11]

(9.5) Plry=xy, P'2,=0 in G, F, E,,
Pz, = Las, @1332320 in F,, E,
and

lelg =X, gjlxy v i1 and Q)!x% =0 in E7 .
Then it follows from Proposition 9.1 that
(9.6) H*(F4/Gz; Zs) = A(xy5, @1x15),

H*(E;/F,; Zj) = A (x5, Pz, gjzxw)
and
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H* (ET/Gz; Zs) :A(xwv MATH gjlxlsy galxls, g‘)leg) .
By Theorem 2.3 of [14]

9.7 Qxy =0,y in H*(E;; Zy).

Proposition 9.2. E;/F, is 5-equivalent to By'(5).

Proof. By (5.1), we may assume that E;/F, is a complex of 5-type
(19, 27, 35). Apply Theorem 6. 1 to the inclusion S°* (—G,) —»E;. Since
Plx,; =0, we have m,(E;, S*:5) =Z;»<{[¢(19)])>. By use of a representa-
tive (E*, S®) > (E;, S*) of [¢(19)], we get a complex S*U e and a mod 5
injection
g: S*Ue’—>E,, g*(xy,)#0.
Then it is easy to see that the composite map

gxid action

£:(S*Ue") x (E;/F,) —E; x (E,/F,) —E,;/F,

satisfies the condition (ii) of Proposition 6.6. Thus the proposition is
proved by (9.6) and Proposition 6. 6. Q.E.D.

Let
¥V:Ker P*(CH*(X; Zy)) > H*(X; Z;) /P H*(X; Zs)
be the secondary operation associated with the Adem relation
PPr=0.

As is well-known (cf. §6), ¥ detects the generator (3,(15) of 75 (S¥:5)
=Z.

Lemma 9.3. Let X=FE, and E./G,. The secondary operation
¥ is defined on the generator x5 of H®(X; Z;) and ¥ (xy5) =0 with the

trivial indeterminacy.

Proof. We consider the secondary operation ¥ for X=E, E,/G,
and E; X E;. For these spaces X, H*'(X; Z;) =0. Thus ¥ is defined on
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the whole of H"(X;Z;). We see also H*(E;; Z;) = Z{XsZo, Z11 %10,
HY(E;/G,; Z;) =0 and HY(E, X E;; Z;) = ZL1Q 5% s, 1Qx1115, T3 R Zor,
Z11 Q) L1g, L1515, -+, Z1x19@1>. By Cartan’s formula and (9. 5), we have
that P*H¥(X; Z;) =0 and that the secondary operation

¥: H*(X; Z) > H™(X; Zy)

is a well-defined, single valued and natural homomorphism for X=FE,
E. /G, and E,XE,.
For the multiplication 4: E, X E;—E, and the projections py, p.: E; X E;

—E; to each factor, we have
(¥ (x15)) =¥ (U* (215)) =¥ (21Q1 + 1R 1)
=V (0" (x1s) +2.*(215)) =% (¥ (215) )+, (¥ (215))
=V (25) Q1+1Q¥ (245) -

This shows that ¥ (xy5) € H*(E;; Zs) = Z;{x13Xs;» is primitive, while x5
is not primitive. Thus ¥ (xy;) =0 in H*(E;; Z;). Let w: E,—>E;/G, be
the projection. By Proposition 9. 1, n*: H*(E,/G,; Z;) >H*(E,; Z;) is in-
jective. Then the naturality 7*¥ =¥7* implies that ¥ (z;) =0 in H*
(E,/Gy; Zs). Q.E.D.

Lemma 9.4. There erists a mod 5 injection f: B*(5) >E;/G,.

Proof. Let f:B*(5) >E,/F, be a 5-equivalence given by Proposition
9.2 and let 7: E;,/G,—E,/F, be the bundle map with the fibre F,/G,.
By (9.6) and Proposition 7.1, B?(5) is 5-equivalent to F,/G,.

We consider to lift the map f” to a map f: B(5) »E;/G, such that
mof is homotopic to f ok for a 5-equivalence A: B*(5) =B,(5). The ob-
struction to the lifting is in H"(By*(5) ; Tn-1 (F4/G,:5)). The homotopy
groups 7y (Fy/G,:5) =74 (B;*(5):5) are computed by applying Theorem
6.1 to a mod 5 injection S*—F,/G, or by use of the homotopy exact
sequence for the fibering S®*—B,*(5) =>S® (cf. [12]). Then we have

(9.8) 7 (F,/G,:5) =0 except for i=15, 23, 30, 38, 46, 53, 54, 62, 68,
70, 77, 78, 84, -+, where 7:3(F,/G,:5) =Z; is generated by the injection
image of B3:(15) €7y (S¥: 5).
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Note that 7;(S*:5) is unstable for >77. Then the only obstruction
isin H*(BS(5) ; mss(Fi/G;:5)). So, there is a partial lifting fi: B*(5) “®
—E;/G,. Let €, (B(5)“") be the attaching class of the cell =B’
(5) 6 _ps (5) “  then

f;*($> =1y (4'81(15>)
for some a< Z; and for a mod 5 injection 7: S®*—>F,/G,—~E,;/G,. The ob-

struction vanishes if and only if a=0, whence the required lifting f
exists.

Construct a complex
K: (393 <5) (45)\/S15) U 654

by attaching a 54-cell €* by 7,4(£) +ipe(—a-3(15)), where 7, and i,
are the inclusions of By(5)“? and S™ into B, (5)“*®\/S™ respectively.
Then the map f,Vi: B(5) \VS®—>E,/G, can be extended over a map h,: K
—E,/G, such that

h*: H'(E,/Gy; Zs) =H'(K; Z;) for i=15, 54.

As before we see that the secondary operation ¥: H”(K; Z)—»>H*(K;
Z;) is well-defined and single valued. By the naturality ¥h* =h,*?,
YH"(K; Z;) =0. Next let
p: K—>L=K/B}(5)"“=8"U¢*
be the map smashing B,*(5)“". Then p*: H (L; Z)) =H'(K; Z;) for i
=15, 54, and ¥H"(L; Z;) =0. Since L is a mapping cone of a-f,(15)

and since ¥ detects (3,(15), we have that a=0, and the existence of the
lifting f is proved. Q.E.D.

Proof of Theorem 8. 2. Proposition 9. 2 shows the first assertion.
By Theorem 4.5 of [11], there is a 5-equivalence B*(5) X B,*(5) —=F..
So, we have a mod 5 injection

g: B*(5) »>F,—E,,

by Proposition 9.1. Then it is easy to see that the composite map

action

B (5) x B*(5) L5 By X (Br/Gy) Z55E, /G,

is a 5-equivalence, where f is the mod 5 injection given in Proposition
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9. 4. Q.E.D.

Proof of (1) of Theorem 8.1. The mod5 injection f:B*(5) ~>E,
/G, of Lemma 9. 4 induces a map f: B—E, of principal G,-bundles, where
B is the induced G,-bundle over B,*(5). It follows from Proposition 9.1
that G, is totally non-homologous to zero mod5 in B. Then we have
easily that f is a mod 5 injection, the projection 7:B—B;*(5) is a mod 5

surjection and
H*(B; Z;) = A(xy, P'xy, Oxy, P'Oxs, P*ODxy)

by (9.5) and (9.7). By (5.1), we may assume that B is a complex
of 5type (3,11,19, 27,35). Then it follows from Proposition 7.5 that
B is 5-equivalent to B,°(5). Thus we have a mod 5 injection f: B/°(5)

—E,. Then the composite map
BF(5) X B(5) L5 E, x E-5E,

is a b-equivalence. Q.E.D.

§ 10. Mod 7 Decomposition of E; and E,

By Theorem 4.2 of [11] and Theorem 2.3 of [14],

(10.1) in H*(E; Z) =A(xs, Tu1, T15, T1g, Las, Lo, Zy5),
Plor,=x40 for i=3, 11, 23,
Plx,=0 for i=15, 19, 27, 35

and Qxy=xy;

(10. 2) in H* (EB; Zy) = A (x5, Z15, Xos, Tor, T, Lsa, Lz ZT39) .
Plx; =z for i=3, 23, 27, 35, 47,
Plx;=0 for i=15, 39, 59

and Oy = xy.

Theorem 2.3 of [14] is based on the existence of honiomorphisms

l: E,—U((B6) and  u: Ez—U(240)
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such that A* and #* are isomorphisms of H*( ;Z,). By use of Theorem

3.5, we have mod 7 surjections
7;: U(56) =B, (7) and m,: U(240) —»B,*(7).

Let F, and Fj be the fibres of the compositions p; =m;04 and ps=msou
respectively. Thus we have fiberings
FESES BN,
(10. 3)
FSESB(7).

Lemma 10.1. (1) H*(Fy; Z;) = A(xy, Tie, Ty Ts5) Q Zr [Tssi1ay;
7=0,1,2, -, 6) for dim< 264, where P'x;=x;,,, for i=11, 27, 38 +12;
(0<5i<5).

(1) H*(Fs; Z7) = A(Zas, Lasy Turs Tso) Q Zi[Xs91153 7=0, 1, 2, ---] for
dim<(348, where P'x;=x;.1, for i=23, 35, 47 and for i=50+12j,
j#£4 (mod 7).

Proof. We shall prove (i). The proof of (ii) is similar, and left

to the reader. As is well-known,
H*(U(56) ’ Z7) :A(y2i+1; l:Oa 1y 27 " 55)

for the suspension image y,.; of the (7+1)-th Chern class ¢;.,. It fol-

lows from the Wu formula

(10. 4) Plygi= < ; >y2i+12t+1 .

We shall show

(10.5) H*(B,"(7); Z;) =A(Zs,1255 7=0, 1, 2, -+, 9) for generators
{x;+121} Sﬂtisf:Vi77g P7*(»T;+1zj> = T3+125 (i:O, 1, 2), P7* (1'§+12j) =0 (i:3, 4,
RN 9) and g)tl‘;-,'fl';“gt (t:]., 2, ey, 7).

Since p*: H*(B,"(7); Z;) =H(Eq;; Z), we put xy' =p* (x3), xis
=Pz, x5 =0x, and xy,1u=%L'zy for 1<<¢<{7. By the naturality,
¥ (x’) =z, for k=3, 15, 27. By (10. 4), n,*(x;") are indecomposable.

For 1<<t<<7, p.*(xh,1) =P’y is primitive and it vanishes since the



678 MAMORU MiMURA, GORO NISHIDA AND HIROsI TODA

generators {x;} of (10.1) span the set of the primitive elements in H*
(E;; Z;). Thus (10.5) is proved.

Let {E.**} be the mod 7 cohomology spectral sequence associated
with the first fibering of (10.3): E**=H*(B,"(7); Z:) QH*(F;; Z;).

We construct a formal spectral sequence {’E.**} by putting
B = EX (B (7); Z) QF*
with F* = A(x11, Z1gy Loz, T55) Q Zy [ Zg11055 0 <L Fj<L6],
and by giving derivative differentials d, by
a.(H*(B"(7); Z)®1) =0,
d,(1Qx;) =0 for 7=11, 19, 23, 35,
d, (1@ xsi1) =0 (r<38+12)) =51y @1 (r=39+12)).
Then it is directly verified that
'EX* = A (x4, 15, o) Q) (X1, Zrg, s, Zgs) for dim<265 .

The natural map defines a map f5: 'E, *—>E,** The differential
d, in E,** satisfies the properties corresponding to those in 'E, **. Thus
f» induces a map f,: 'E,**—>E ** of spectral sequences such that f, is
bijective for dim<(265. By virtue of the comparison theorem, it follows
from f,: 'E,*°=E,*° that f,: 'ESX*=F*>E"*=H*(F,; Z,) is bijective
for dim<(264. Thus (i) is proved. Q.ED.

Now apply Theorem 6.1 to F; and Fs. Then the follwing results

are computed as in § 6.

Lemma 10.2., () 7;,(F;:7) =0 except for i=11, 19, 23, 30, 35,
38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 93, 94, ---. For i=11,
19, there are mod 7 injections of S' into F,.

(i) 7 (Fs:7) =0 except for i=23, 35, 47, 50, 59, 62, 70, 74, 82, 86,
94, 98, 105, 106, 109, 110, 118, 121, 122, 130, 132, 133, 134, 142, 145, 146,
152, 154, 157, 158, 165, 166, :--. There is a mod 7 injection i: S®*—>F;
such that i,(B,(23)) generates s (Fs:7)=Z,.

Proof of (ii) of Theorem 8.1. By (i) of Lemma 10. 2, we have
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mod 7 injections 7,”: S"—F; and i,: S®—F,. Also we have H"(B’(7);
a1 (F7:7)) =0. Thus 7’ can be extended, in the mod 7 sense, over a
mod 7 injection i;: Bs*(7) —F.

For the inclusion f: B*(7) —»B,"(7), consider a lifting f: B,*(7) = E,
such that pyof~f oh for a 7-equivalence A: B;*(7) »B,*(7). The obstruc-
tions to the lifting are trivial since H*(B?(7); m,1(F7;:7)) =0 by (1)
of Lemma 10.1. Then f exists and it is a mod 7 injection. The composite

map

B (7) X B (T) x S*—L2% , B x F,x F,

1dXigX1q multip
—_—

E7 X E7 X E1~—)E7

is a 7-equivalence since it induces an epimorphism, thus an isomor-

phism, of the mod 7 cohomology. Q.E.D.

Proof of (iii) of Theorem 8.1. The proof is done similarly to that
of (ii)) by wusing (ii) of Lemma 10.2. The only difficulty is that
H"(B},(7); wai(Fs:7))=0 if n=106. This obstruction is avoided by
use of Lemma 7.5 as in proving Proposition 7.6. Thus (iii) of Theorem 8.1
is proved. Q.E.D.
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