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§ la Introduction

Some modal logics based on logics weaker than the classical logic

have been studied by Fitch [4], Prior [18], Bull [1], [2], [3], Prawitz

[17] etc. In this paper, we treat modal logics based on the intuitionistic

prepositional logic, which we call intuitionistic modal logics (abbreviated

as IML's). Our main concern is to compare properties of several IML's

of S4- or S5-type 03^ using some model theoretical methods. The study

of modal logics based on weak logics seems to reveal to us various pro-

perties of classical modal logics, especially of S5, which will be indistin-

guishable by dealing them only on the classical logic.

We will introduce some IML's in the Hilbert-style formalization in

§ 2. Then we will define IML's in the form of sequent calculi, all of

which are given by restricting or modifying the sequent calculi S4 and

S5 of Ohnishi-Matsumoto [15]. We will show the proper inclusion rela-

tionship between these IML's by using a kind of algebraic models. In

§§3 and 5, we will introduce two kinds of models for IML's. One of

them is a natural extension of Kripke models for the intuitionistic Jogic

and the other is for modal logics (see [11], [12]). Then we will prove

the completeness theorem with respect to these models. In § 4, the finite

model property for some IML's will be shown.

We would like to thank M. Sato for his valuable suggestions.

§ 2B Intuitionistic Modal Logics

We will introduce some intuitionistic modal logics. We take A? V?
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13, — i and D (necessity operator) as primitive. We don't use <^> (pos-

sibility operator), only for brevity's sake. Note that, unlike classical

modal logics, <^> A can not be considered as the abbreviation of iQ \A.

But by a technical reason some IML's containing <0> are treated later.

Let H be the intuitionistic propositional logic formulated in the Hil-

bert-style. The rules of inference of H are modus ponens and the rule of

substitution. The IML L0 is obtained from H by adding the following

three axioms,

(1)

(2)
(3)

and the rule of necessitation, i.e, from A infer D^L Clearly, L0 with

the law of excluded middle (/>V — ]P) becomes S4. Next, we consider the

following axioms;

A,-.

The logic L0 with the axiom At is denoted by Lt- for z' = l, 2, 3, 4. The

logic L3 with A1 (or A2) is denoted by L81 (or L32, respectively). It is

easy to see that S4 with any one of At is equal to S5. So, we can say

that L0 is of S4-type and others are of S5-type. We remark that the

logic L0 with either ~~ip^[3~^L]P or p^CJ—\[3~~]P is equal to Ll5 and L0

with iQ 'D^^D^ is equal to L4. We can show that IS4 (or IS5) in

[17] is equivalent to L0 (or L1? respectively) and that MIPC in [18],

which contains <^> as primitive, is a conservative extension of L2 as proved

in §4.

We sometimes identify a logic L with the set of formulas provable in

L. If L and L' are IML's then the set L D L' is closed under modus

ponens, the rule of substitution and the rule of necessitation. So L D L'

is also considered as an IML. But the union of L and L' is not neces-

sarily closed under these rules. Hence, we write L U L' for the minimum
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set of formulas which contains the union of L
L

and L' and is closed under these three rules. 4

Then, LUL ' is an IML. In Figure 2.1, we

show the lattice made up of our IML's. The / 32

proper inclusion relationship between two logics i ' L
2 f 31

is represented by the line connecting them. N. / \.

The inclusion relationship shown in Figure 2 ̂  31 ^3

2.1 are almost trivial. It is proved in the last / \ /
1 2^ 3

part of this § that these inclusions are proper. \. /

As another way of introducing IML's, we

take the formulation by sequent calculi. We

modify the sequent calculi of modal logics S4 ^0

and S5 in [15]. Consider the sequent calculi Figure 2.1.

obtained from the prepositional part of LJ of Gentzen [6] by adding the

rules concerning Q of the following form;

where A consists of at most one formula. In the application of (—>C]) j

we impose one of the following conditions on F.

(0) F is a sequence of formulas of the form D^-

(1) F is a sequence of formulas of the form £]B or —iD-B.

(2) F is a sequence of completely modalized formulas, 'where a

formula is said to be completely modalized {abbreviated as c.m.) if

any occurrence of a propositional variable in it is -within the scope of

a necessity operator.

The rule (—>D) under the condition (i) is denoted by (—>Qz) for

/ = 0, 1, 2. The sequent calculus K$ is the propositional part of LJ with

(n->) and (->DO-

LJ' is the sequent calculus obtained from LK by restricting applica-

tions of rules (—»~i), (->!}) and (—>V) to the case where in the lower

sequent of the application, only one formula occurs in the succedent. It

is known that LJr is equivalent to LJ and is cut-free (i.e, the cut-

elimination theorem for LJ' holds). See [22]. For f = 0, 1, 2, let G*

be the sequent calculus obtained from the propositional part of LJ' by
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adding (D~0 an^ (— > DO- Then it is easy to see that for each /, Gz-

is equivalent to K?-.

Now consider the sequent calculi obtained from the prepositional

part of LJ' by adding the following rules;

In the application of (— > D H ~ ) , we also impose one of the following

conditions.

(0) Both F and A are sequences of formulas of the form

(1) Both F and A are sequences of formulas of the form

or — iQB.

(2) Both T and A are sequences of c.m. formulas.

The rule (— > D + ) under the condition (i) is denoted by (-»D+0 for

£ = 0,1,2. The sequent calculus G3 (G31, G32) is the prepositional part of

LJ' with (C-> + ) and (-*D+0) (or (->D+1) or (->D+2), respec-

tively) .

The sequent calculus G4 is obtained from G3 by replacing the rules

(->— i) and (— >D) by the following rules (— >"~ i*) and (->D*).

where A is a sequence of formulas of the form QC. (The definition of

G4 mentioned above is suggested by Sato.)

Theorem 2. 1. For J=Q, 1, 2, 3, 31, 32, 4, Gj zs equivalent

to LJ, i.e. for any formula A9 A is provable in Gj if and only if

A is provable in LJ.

We will prove in § 3 that K0 and G0 are cut-free. On the other

hand, we can show that others are not cut-free. For, the formula Pz>

D >D ]P is provable in G1 (and KI) and hence in G2 (and K2), but is not

provable without cut in any of them. Also, D (D/>V#) ^ n^V~1~~1D(7

is provable in G3, G31 and G32, but is not provable without cut in any

of them. The sequent —»/>, Q—iQ£ is provable in G4 but is not prov-

able without cut in it. Henceforth, we sometimes write G\—F—>A if F—>A
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is provable in the sequent calculus G.

We introduce algebraic models for IML's, which correspond to topolo-

gical Boolean algebras in classical modal logics. A topological pseudo-

Boolean algebra (abbreviated as a Lfiba) is a pair (P, J) of a non-

degenerate pseudo-Boolean algebra P and a unary operation / on P such

that for each a,

ii)

iii) I la = la ,

iv) 71 = 1,

where 1 is the greatest element of P. An element a in P is said to be

open in a tpba (P, J), if Ia=a holds. We can see that the set of all

open elements in (P, /) constitutes a sublattice of P. An assignment

of a tpba (P, J) is denned in the usual way. In particular, for any

assignment /, /(D^) =If(A). A formula A is valid in a tpba (P, I)

if f(A) = 1 for any assignment / of (P, I) .

We define tpba's of type J for J=0, 1, 2, 3, 31, 32, 4 as follows.

0) Any tpba is of type 0.

1) A tpba is of type 1 if the complement of any open element in

it is also open.

2) A tpba (P, /) is of type 2 if the set of all open elements in

it constitutes a sub- (pseudo-'Booleati) algebra of P.

3) A tpba is of type 3 if it satisfies the condition

v) I(Ia U 20 <Ia U Ib .

3i) For z = l, 2, a tpba is of type 3i if it is of type 3 and also

of type i.

4) A tpba is of type 4 if it is of type 2 and the subalgebra con-

stituted by the set of all open elements is a Boolean algebra.

We remark that in any tpba, la U Ib<I(Ia U V) holds. By using

the Lindenbaum algebra, we get the following theorem.

Theorem 2. 2e For J=0, 1, 2, 3, 31, 32, 4, a formula is provable

in Lj if and only if it is valid in any tpba of type J.
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Next we show that there exist uncountably many IML's of S5-type,

by using the McKinsey-Tarski translation [14]. Let T be a translation

from the set of formulas of propositional logics to the set of formulas

of model logics such that

1) T(p) = Ejp if p is a propositional variable,

2) T(A/\B)=T(A)/\T(B),

3)

4)

5)

Let C be the classical propositional logic. An intermediate proposi-

tional logic is a set of formulas, which contains H and is contained by

C and which is closed under modus ponens and the rule of substitution.

Let J be any one of 0, 1, 2, 3, 31, 32, 4. For any intermediate proposi-

tional logic L, Tj(L) denotes the IML obtained from Lj by adding every

formula in {T'(A) ; A. is in L} as axioms.

Lemma 2. 3. For every intermediate propositional logics L, L' ',

1) Z,CZ/ implies Tj(L)£Tj(L'),

2) i. T J(inL /)=T J(L)nT J(L /),

ii.

3) L=£L' implies Tj(L)^Tj(L'} if

Proof. 1) and 2) are obvious. We prove 3) . Suppose that

and AeL — L'. Then there exists a pseudo-Boolean algebra P, in which

1) every formula provable in L' is valid and 2) A is not valid. Define a

unary operation /on P by Ia=a for any #eP. Then (P, /) is a tpba,

in which 1) every formula provable in Tj(L /) is valid and 2)

is not valid. So, T(A)$Tj(L'). On the other hand,

Thus, 7X

We remark that 1) for J=2, 32, 4, T,,(H) =L^ and 2) T0(C)

= TI
4(C) ^L^ Jankov proved in [9] that there exist uncountably many
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intermediate prepositional logics. So by Lemma 2. 3, we have the follow-

ing.

Corollary 2. 4. There are uncountably many IML's between L2

(or L32) and L4.

Theorem 2. 5e 1) Following three conditions are equivalent.

i. A is provable in H.

ii. T(A) is provable in T0(H).

iii. T(A) is provable in 54.

2) Following three conditions are equivalent.

i. A is provable in C.

ii. T(A) is provable in L4.

iii. T(A) is provable in 55.

Proof. In each case, it is well-known that i. is equivalent to iii.

Clearly, i. implies ii. and ii. implies iii.

Finally, we show that each inclusion relationship shown in Figure

2. 1 is proper0

Lemma 2.6. It holds that 1) Ls5Z/ai, 2) L.HL^L, and 3)

Proof. Consider the tpba (P1? Jj) shown in Figure 2. 2, in which

it holds ^a = 1$ = ̂ d = d and J^^O. In the figure, we indicate an open



694 HIROAKIRA ONO

element by a black dot. It is easy to see that (Pl5 /j) is a tpba of

type 3. We show that Al is not valid. Let f(p) =d. Then,

Thus, LjCjtLs. Hence L3^L31 = 1^ U L3 and L2 fl Lg^Lj. Assume that L2

n L3 = L2 n L31. Since L2 fl L31 = L2 0 (L, U L3) = Lx U (L2 f! L3) , L, C L2 fl L3

holds. But this implies I^CZLg. This is a contradiction. Hence L2 fl L3

Lemma 2.7. If AoWs */ia* 1) L^^HL,, awe? 2)

Proof. Consider the tpba (P2, J2) in Figure 2. 3, in which I,b = c

holds. It can be verified that (P2, J2) is of type 1. We show that A2\/ A'3

is not valid in it, where A'3 is n (QrV*) ^ (D^V D^). Define an assign-

ment / by /(/>) =/(r) =a and /(«-) =/(s) =&. Then,

= (6 DC) U

Since A2V^-3 is a theorem of L2 Pi L3, LaDLa^Lj . Now suppose that

L, = L2 n L31. Since L2 0 L31 = L2 n (L, U L3) = Lj U (L2 0 L3) , L2 H L3CLj

by the assumption. But this is a contradiction. Hence 1) holds. 2)

is easily derived from 1) .

o

Figure 2.6.
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Lemma 2.8. It holds that 1) L2^L32, 2) L2n7,31^L31 and 3)

Proof. Consider the tpba (P3, 73) in Figure 2. 4. Notice that 73£

~ Isc = Izd = 0. It is easily seen that (P3, 73) is of type 2. Let /(/>) =a

and /(gO = b. Then,

Thus, A3 is not valid. Hence, L3§£L2. So 1) holds. From 1) it

follows 2) and 3),

Lemma 2.9. It holds that 1) L2flL31^L2 <27Ztff 2)

Proof. Consider the tpba (P4, 74) in Figure 2. 5. In (P4, 74), 74a

and 74c - d. The tpba (P4, 74) is of type 31. Let /(/>) =6 and /(g)

Then

/(Aa) = (*Dd) ^It(blDd) =c^d

Hence L2^L31. Thus 1) and 2) hold.

Lemma 26 10. 7f holds that

Proof. The tpba (P5, 75) in Figure 2. 6 is clearly of type 32. But

75aU75 — I5a = a ( J Q = a. Hence, I4^L32.

§ 3. I Models

In this section and § 5, we introduce two kinds of Kripke models for

IIVlL's. They are obtained by extending either Kripke models for the

irituitionistic logic or those for modal logics. So they are called to be

7 models (intuitionistic-type Kripke models) and M models (modal-

type Kripke models), respectively.

A triple (M, <, R) is an 7 frame, if

1) M is a nonempty set with a partial order < ,

2) jR is a reflexive and transitive relation on M such that x<y

implies xRy for each x,y^M.

A valuation W on an 7 frame (M, <C, R) is a mapping from the
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direct product of the set of formulas and the set M to the set {£,/},

such that for any a£iM,

1) W(p, a) = t and a<b imply W(p, b) =t for any propositional

variable />,

2) W(A/\B,a) =t if and only if W(A,a) =t and W(B, a) = t.

3) W(A\/B,a) =t if and only if W(A,a) =t or W(B, a) = *.

4) W(AlDB,a)=t if and only if for any b such that a<b,

W(A, b} =f or W(B, b} =t.

5) W(—iA, a) =t if and only if for any b such that a<b, W(A, b)
r

6) W(HA,a)=t if and only if for any b such that aRb, W(A, b)

I'm

We remark that each value W( A, a) is completely determined by

values W(p, b) for propositional variables p and elements b^M. A

quadruple (M, <, R, W) is an I model, if (M, <, -R) is an I frame and

W is a valuation on it. A formula A is valid in an J model (Af, <C.

J?, W) if TF(A, a)=t for any « in M, A formula A is valid in an

I frame (M, <, R) if it is valid in an / model (M, <C, .R, W) for any

valuation W.

In the definition of an /frame (Af, <C, .R), we may take a quasi-order

(i.e. a reflexive, transitive relation) for <C. More precisely, for any J

frame (M, <, J^) with a quasi-order <[, there exists an / frame (M*,

<*, 7^*) with a partial order <* such that any formula is valid in

(M, <,-R) if and only if it is valid in (M*, <*, 2?*). We can verify

the following lemma.

Lemma 3. 1. Every formula provable in L0 is valid in any I

model.

For any binary relation .R, we write x^Ry if xRy and yRx hold.

Clearly, the relation ~R is symmetric. We omit the subscript letter R

in the following definition. Define / frames of type J for J=Q, 1, 2, 3,

31, 32, 4 as follows.

0) Any I frame is of type 0.

1) An I frame (M, <C, R) is of type 1, -when for each



SOME INTUITIONISTIC MODAL LOGICS 697

if xRy then there is an element y' in M such that x<yf and yRy' .

2) An I frame (M, <, K) is of type 2, -when for each x,y<^M, if

xRy then there is an element y' in M such that x<^yf and y^y'.

3) An I frame (M, <, J^) is of type 3, when for each x, y e in

M, if xRy then there is an element x' in M such that x^x' and

3j) An I frame is of type 3j if it is both of type 3 and of type

j for j = 1,2.

4) A?i I frame (7\f, <, JR) is of type 4 if R is symmetric.

An J model (M, <, R, W) is of type J, if the I frame (M, <, R)

is of type J. We remark that models for MIPC introduced in [3] are

of type 2, if we leave O out of consideration. When an 1 frame (M,

<, R) validates the law of excluded middle, x<y must imply x=y.

In this case, we can see that the condition of an I frame (Af, <C, R)

to be of type J, where J^O, coincides with the condition that R is

symmetric. Now we show the completeness theorem for IML's with re-

spect to J models.

Theorem 38 2. A formula is provable in Lj if and only if it

is valid in any I model of type J, for J=0, 1, 2, 3, 31, 32, 4.

Proof. Only if part. By Lemma 3. 1, we have only to prove that

axioms of each IML added to L0 are valid in the corresponding I models.

Here we give only a proof of the validity of A2 in any / model of type 2.

We first remark that for any formula A and any / model (M, <, R, W),

x^x' implies W(D A, x} = W^D^U ^')- Now suppose that A2 is not

valid in an / model (M, <, R, W) of type 2. Then there is an element

a in A I such that

(1) T

(2) T

By (2), WXQ/^Utf, *) =/ for some 6 such that <2.R&. So, W(D/>,

c)=t and W(D<7, *0 — / for some c such that &<c. Since Z?<c implies

bRc, aRc holds by the transitivity of R. By the assumption that (M,

<C, R) is of type 2, there is an element c' such that a<c' and c^c' .
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By (1), either W([3P,c')=f or W(Oq,c')=t. Using the above re-

mark, it follows that W(D/>, c) =f or W(D#, c) =t. But this is a con-

tradiction.

If part. We make use of a standard method. Let 0 be the set

of formulas. Suppose that F and A are subsets of 0. A pair (7\ J)

is said to be G-inconsistent, where G is any one of sequent calculi

Gj's, if there are formulas A1? • • • , Am in F and Bl9 • • - , Bn in A such that

Otherwise, we say that (F, A) is G-consistent. A pair (T, A) is G-

complete if it is G-consistent and A = FC, where Fc denotes the complement

of F with respect to 0. Let (F, A) and (T77, J') be G-consistent pairs.

We say (/", J') is an extension of (F, A} if F^Ff and JC A'. By using

Zorn's lemma, we can verify that for any G-consistent pair, there exists

a G-complete extension of it. Now, let MG be the set {F; (F, A) is

G-complete}. We write Fu for the set {DA; DAeT}. Then, define

a binary relation RG on MG by

where C denotes the set inclusion. It is obvious that 1) Fl^Fz implies

F1RGF2 and 2) 7^G is a reflexive and transitive relation. Thus, (MG, d?

.R^) is an 7 frame, for any sequent calculus G under consideration.

A valuation WG on (AfG, d? ^G) is defined by

for any prepositional variable p. Then we can show by induction that

for any formula A,

Here we give a proof of this only for the case where A is Q.B. Suppose

that OB^F. Let F' be any element of MG such that F RG F' . Then

[H^er7. Since GohD^-^^ and (F',F'C} is G-complete, B must be in

F'. So, by the induction hypothesis, W0(B, T') =^. Hence WG([^B, F)

= t. Suppose next that l^B^F. Then (F, {CD 72}) is G-consistent, since

F is in MG. Now we show that (Fa, {B}) is G-consistent. Suppose

otherwise. Then there are formulas D-Ai, • • • , QAm in F such that
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Gf— DAl3 •", DAm->B. Since G is equal to or stronger than G0, G\-

•", DA^D^- But this contradicts the G-consisteiicy of (F,

Hence, (7^, {B}) is G-consistent. Let (77, IT) be a G-complete extension

of (rD5{£}). Then 7̂ 17 holds by the definition. Moreover, B&H.

So, by the induction hypothesis, W0(B,IT)=f. Thus WG ( n 5, T) =/.

Now, we show the completeness of L0. Let A be any formula not

provable in L0. Then, by Theorem 2. 1 (0, {A}) is Go-consistent.

There is an Go-complete extension (T7, 7^°) of (0, {A}). Since A$:7",

WGo(A, r) =/ in (A/Go, C, ^o). Thus there is an I model of type 0 in

which A is not valid.

In order to prove the completeness of other IML's, it is sufficient

to show that the 7 frame (MGj, d? RGj) thus constructed is of type J.

Consider the case where J=2. We will show that if FRGzF
f then

there is II in MGz such that F^II and rf
a=ITn.

Assume that rRGzF'. We first show that (F 1J T' 0, (r
/c) D) is G2-

consistent. Suppose otherwise. Then there exist formulas A1? • • • , Afc in

r, OB19 • • - , OBm iii Tx and QC,, •-, DC7l in T/c such that

Then,

m 7i

G.F-AJ, -,A*-* A ns4D v ncy.
i=i y=i

By using (->D2) and cut,

m n

Gt\-Alt -,A t->D( A DBi3> V DQ).

From the assumption that each At is in F, it follows that

Z)VGCy)er. Since rDCr'n by the assumption, D C A D
y=i €=i

7. Thus AD^DVnQer'. Since each OBt is in
4=1

' and hence VDQer7. So some QQ must be in T7. But this
j-i

is a contradiction. Thus (77U/T /
n , (T7'0) n) is G2-consistent. Now, let

(/7,UC) be a G2-complete extension of (F (J T' n, (r/c) D) . It is clear

that rC/7 and r'DCUD. Let OD^ra. Then

Thus, D£>£ffn. So, IIaC:F'a and hence r/
n=7Z'a.
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The completeness of Lj can be proved similarly as above. Next,

consider the case ,7=3. We will show that if FRG^F' then there is H in

MGa such that Fa=na and 77CZF'. Assume that FRGf. We prove

that (FD, (Fc) D U F'c) is G3-consistent. Suppose otherwise. Then there

are formulas D^, • • • , ^\Ak in F, DA, • • - , OBn in Fc and Cl9 —,Cn in

F'c such that

Q, • - - , C7! .

Hence,

By the rule (->D+0),

(3) G,h DA,, .», DAfc->DBi, -, H^m, D V Ct .

Suppose QVCier. Since FRGFf, OVC^F' and hence
i=l i=l

So, some Q is in F' '. But this is a contradiction. Hence
i=l

Then it follows from (3) that (F, Fc) is G3-inconsistent, contrary to our

assumption. Thus CFD, (rc)n U T/c) is G3-consistent. Let (77", /7"c) be a

G3-complete extension of (7^, (Fc}aUF'c). We have that /KIF', since

r/cC/7c. Let D-D^rD. Then DD<= (Fc) D^IIC. Thus Hn^Fn.

Clearly, Fn^JIu. Hence Fa=IIa. So we have the completeness of L3.

Combining this with the proof of the completeness of L! and L2, we get

also the completeness of L31 and L32.

Finally, consider the case J=4. We must show that RGt is symmet-

ric. Suppose that FRGtF
f and that there is a formula QA such that

DAer'-r. Since D^Vn^nA is provable in G4, it must be in F.

So, either DAeT or D" 'DA-eF. But since DA^r,

By the assumption that FRGiF\ n~~iDAer'. On the other hand,

^Ff. But, it is clear that G4hnA, n~^DA-> . This contradicts

the G4-consistency of (F',F'C). Thus, Fn=F'a. This means that RCt

is symmetric. This completes the proof of the theorem.

Similarly as Theorem 3. 2, we can obtain the completeness theorem

for other IML's. For example, consider an IML L obtained from the
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intuitionistie logic H by adding the axioms (1) and (3) in § 2. Then

L is an IML of T-type. An / frame (M, <i, R) is a triple of a set M,

a partial order <C on M and a reflexive relation jR on M. Then we

can show that L is complete with respect to J frames.

Using Theorem 3. 2, we show that sequent calculi K0 and G0 are

cut-free. We employ the method due to Fitting [5]. We use the ter-

minology of [5]. A G^-consistency property (or a ^-consistency prop-

erty) is obtained from the propositional part of a Beth intuitionistie con-

sistency property (or a Geiitzen intuitionistie consistency property, respec-

tively) by adding the following conditions for Q;

i) If TQAeS then SU {TA} GE <& ,

ii) if FQ AeS then STn U {FA} e & ,

where STO= {TQ5; TOB^S}. Similarly as [5], we can show that ev-

ery Go-consistency property can be extended to a K0-consistency propertys

Let /SGE ̂ , where ^ is a K0-consistency property. We say S is

T-saturated if

1) if p is a propositional variable, not both Tp^S and

2) if T(Af\E) eS then TAeS and

3) if T(AV£) eS then TAEE-S or

4) if T(Az>B) e5 and SU {T5} e ^ then

5) if TDAe5 then TA^S.

Then we can prove the key lemma similarly as [5]. Let S0 be a set

of signed formulas, belonging to a K0-consistency property ^. By the

key lemma, -we can assume that ^ is closed under chain unions. Let

M be the set of all T'-saturated elements in %?. Then there is some S

in M such that S is an extension of SQ. For each S, S' G! M, define

S<^S' if ST^ST, -where ST = {TB; TB EE 6*}. Clearly < is a quasi-order.

For each 5, S'eM, define 5.R5' if 5rnQ5ra. If S<S' then 5raQ5r

C5'. Hence SRS'. Thus, (M, <, R) is an / frame of type 0. (See

the remark just above Lemma 3. 1.) Now, define a valuation W on

(M,<,^) by

W(p,s) =t<=>Tp^S,

for any propositional variable p and any S^M. Then we can show that

for any S^M and any formula A
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1) TA e S implies W(A, S) = t,

2) FA<=S implies W(A, S) =f.

Hence SQ is satisfiable. Thus we get the model existence theorem for

K0 and G0. As a corollary, we have the completeness of K0 (or G0)

without cut, with respect to I frames of type 0. Combining this with

Theorem 2. 1 and 3. 2, we have the following theorem.

Theorem 3. 3. Any sequent provable in the sequent calculus KQ

(or GO) is provable -without cut in K0 (or G0, respectively).

We remark that A. Yamamoto proved this theorem syntactically.

Next, we show a connection between tpba's and / frames. Let (A/, <, K)

be an I frame of type J. A subset S of M is said to be closed if a 6E S

and a<Jj implies b&S. Let PM be the set of all closed subsets of M.

Then PM is a pseudo-Boolean algebra with respect to set operations. Note

that for every 5, T<=PM,

SnT={a; for any b such that a<b, b^(M-S) U T}

and

^S={a; for any b such that a<b, b&S}.

Define an operation I on PM by

(4) IS={a; for any b such that aRb, b^S}.

It is easy to see that (PM, /) is a tpba. We can show also that (PM-> I)

is of type J. This can be proved quite similarly as only if part of

Theorem 3. 2. Now we get the following theorem.

Theorem 39 4. Suppose that (M, <, R) is an I frame of type J.

Let PM be the pseudo-Boolean algebra consisting of the set of all

closed subsets of M and I be an operation defined by (4). Then,

(PM, 1) is a tpba of type J such that for any formula A, A is valid

in (M, <, R) if and only if A is valid in (PM, J).

Conversely, consider a construction of an I frame corresponding to

a given tpba. As in the case of pseudo-Boolean algebras, we can only
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prove a weaker result. Suppose that (P, I) is a tpba of type J. Let

MP be the set of all prime filters of P. Clearly, MP is partially ordered

by the set inclusion CI. For any F in Mp, F/ denotes the set {/a;

. Now, define a binary relation R on Mp by

(5)

Then we can show that (MP, ^, R) is an J frame of type J. Also,

this can be proved quite similarly as if part of Theorem 3. 2. We have

the following theorem (cf. [13]).

Theorem 3. 5. Suppose that (P, J) is any tpba of type J. Let

MP be the set of all prime filters of P. Then the I frame (MP, CI, R) 9

iv he re R is defined by (5), is of type J. For any assignment f of

(P, I), let W be a -valuation on (MP, CI , R) such that W(p,F)=t

^f(p} £=F, for any prepositional variable p. Then, for any formula

A, f(A) =1 if and only if A is valid in the I model (MP, CI, R9 W).

Furthermore, -when P is finite, it holds that a formula is valid in

(P, 7) if and only if it is valid in (MP, CI, R) .

We notice here that each I frame (M, <, R) can be considered as

a Kripke frame of a bimodal logic. That is, R gives an interpretation

for a stronger necessity and < for a weaker necessity. Thus, we can

define bimodal logics corresponding to each type of I frames. For exam-

ple, as proved in [8], the bimodal logic S4-S4 is complete with respect

to I frames (of type 0) . In other words, each IML can be embedded

into some bimodal logic by a standard translation.

§ 4. The Finite Model Property for IML's

We prove in this section that every IML under consideration except

L! and LS1 has the finite model property. By the finite model property

for an IML Lj, we mean that for any formula A not provable in LJ-,

there is a finite tpba of type J in which A is not valid. By Theorems

3. 4 and 3. 5, this is equivalent to the condition that for any formula A

not provable in Lj, there is a finite I frame of type J in which A is

not valid. The finite model property for L0 is proved by Bull [2] .
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We don't know whether L! and L31 have the finite model property.

By modifying the proof of Theorem 3. 2, we can prove the finite

model property for L0. Let A. be any formula not provable in L0. Our

proof proceeds in the similar manner as the if part of Theorem 3. 2.

This time, we take the set of all subformulas of A for 0, instead of the

set of all formulas. Using this 0, we define an J model (MGg, CI, RGo9

WGO) in the same way as before. The I frame thus obtained is finite,

since 0 is finite. Moreover we can show that this / model is of type

0 and that A is not valid in it. The method of proving the finite model

property by taking a finite set 0 is developed by Schiitte [21] for the

intuitionistic prepositional logic and by Sato [20] for some classical modal

logics.

Theorem 4. 1. (Bull) L0 has the finite model property and

hence is deciable.

To show the finite model property for L4, we can use the filtration

method. But we give here a more direct proof suggested by Sato.

Theorem 4. 2. L4 has the finite model property and hence is

decidable.

Proof. Suppose that A is any formula not provable in L4 and 0

is the set of all subformulas of A. Let M be the set {F \ (T, J) is

G4-complete in 0}. Clearly, M is finite. Define two binary relations

R and < on M by

and

r<rf<=>rRT' and rcir'.
Then it is clear that F<F' implies FRF' and that (M, <, R) is an I

frame of type 4. A valuation W on (M, <, R) is defined by

W(p,F) = t

Then, we can prove that for any formula B in 0,



SOME INTUIT IONISTIC MODAL LOGICS 705

To show this, it suffices to prove that

1) for any formula BlDC in 0,

5z)CeF & for any F'eM such that F<F'

either B&P' or CeF',

2) for any formula \B in 0,

^ for any F't=AI such that F<F',

3) for any formula \~\B in $,

D-S^F ^ for any F'eA/ such that

BEEF'.
Suppose that B^CE^F and F<F'. Then B^C^F', since F<F' im-

plies FGIF'. Since G4h £,£lDC->C, 5GEF' implies CeE/7'. That is,

5^T' or CeT'. Conversely, suppose that B^C^F. We show that

(ru {jB}, (r c)DU {C}) is G4-coiisistent. Suppose otherwise. Then there

exist Al9 '"9Am in F and DA, •", D^n in (/"On sucn tnat

Then by using (— »D*),

G4h A,, -, Am

But this contradicts to the G4-consistency of (F, Fc) . Thus, (F U {B} ,

(FC)DU {C}) is G4-consistent. Then for some F'eM, FU {5}CFr and

(Fc)DU{C}e(F')c. Clearly, BtEF' and C^F'. Moreover, FD=F'D

and FCF'. Thus, F<_F' ' . 2) and 3) can be shown similarly. Now,

since A&F for some F^M, A is not valid in (M, <, R, W) .

For other IML's, the method used in Theorems 4. 1 and 4. 2 does

not work well. We show the finite model property for other IML's by

using tpba's. Our method is a generalization of the one by Bull [2].

Theorem 4. 3. L3 has the finite model property and hence is

decidable.

Proof. Let A be a formula not provable in Ls. By Theorem 2. 2,
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there is a tpba (jP, J) of type 3 and an assignment f of (P, /) such that

f(A) =£1. fl , U and ID denote join, meet and relative pseudo-comple-

ment in P. The greatest element and the least element in P are denoted

by 1 and 0, respectively. We enumerate the value of each subformula

of A by f as al}--,am. For each nonempty subset U of {al9 •••,#,»},

define an element U* by U^ = b, U •-• U bk, if U= {bl9 —,bk}. Now, let

5={0, 1, fli, • • - ,# m } U {/£/*; £7 zs a nonempty subset of {al9 -~,am}}.

Let P0 be the sublattice of P generated by the set S. Since S is finite,

PO is also finite. For each x, y^P0, define xIDy by

= U {z;z^PQ and z<x~Dy}.

Then, xIDy is also in P0 and is the relative pseudo-complement of x in PQ

with respect to y. Remark that if xIDy^P0 for x, y^P0 then xIDy

= xIDy. Furthermore, P0 with the operation fl, U, ID and the least

element 0 constitutes a pseudo-Boolean algebra. We will show that for

any a^PQ la EE PQ. Suppose that a EE P0. Since P is a distributive lattice,

so is P0. Hence a can be represented in the conjunctive form. So, we

let a= H (U*v) , where each &veS. Then, Ia= fl /( U^?7) . It is suffi-
i = l .7=1 i = l / = !

*«
cient to show that /( U £,7) EE P0. Without a loss of generality, we may

y=i
suppose that among ^z-l5 --,biki, elements bil9 "-,bih are open and others

are not. Then,

/( u *„)=/( u nvv u *„)
y=i /=i j=h+i

= U J&yU/( U 6i,)
j=i y=/ t+ i

(by v) in § 2, since (P, /) is of type 3)

- U bv\Jl( U bv).j=i j=fi+i

It is obvious that an element in S which is not open is among al9 --,am.
ki kt

So, J( U b^ e5 by the definition of 5. Since btl, • • - , bih and 7( U *«)
y=ft+i y=f t+ i

fci

are in 5, /( U &v) e P0. Let 70 be the restriction of I to P0. It is easy
.7=1

to see that (P0, J0) is a tpba of type 3, since (P, /) is of type 3. Now

define an assignment g of (P0, J0) by g(p) =f(p) if p is any prepositional

variable appearing in the formula A. Then we can show that for any
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subformula B of A, g(E)=f(E). In particular, g(A) =/(A)=£l.

Thus, A is not valid in (P0, J0) .

To show the finite model property for L2 and L32, we introduce two

IML's containing <^> as primitive, which are extensions of L2 and L32,

respectively. Consider the following axioms concerning <0>.

(1) p^OP,

(2) OOP ̂  OP,

(3)
(4)

(5) O=3 DO,

(6) OD^D£.

Let L2* and L32* be IML's obtained from L2 and L32, respectively,

by adding the above axioms. It can be easily verified that L2* is equi-

valent to MIPC in [18].

Lemma 4.4. L2* and L32* are conservative extensions of L2 and

L3Z, respectively. More precisely, any formula not containing O z°5

provable in L2 (or L32) if it is provable in L2* (or L32*) .

Proof. Let (M, <, R, W) be an I model of type 2. We extend

W so that W( A, a) is defined also for any formula A containing <^>.

Let us define JV(^A, #) ~/ if and only if for some b such that a^b,

W(A,b}=t. We first confirm that for each a.b^M, if W(<^A,a)^=t

and ^<^ then W(^A9b) ~t. By TF(<^>A, a) =r, there is some a' such

that a^a' and W(A, #0 ~ /. Since a^a' implies a' Ra and a<b implies

aRb, a'Rb holds by the transitivity of R. As (M, <, K) is of type 2,

there exists an element b' such that a* <Jb' and b^bf . So, from a' <^b'

and the induction hypothesis it follows that W(A, bf) = t. Hence

We say that the / model thus obtained is the ^-extension of (M,

<C, ^, W) . It is easy to see that each axiom of L2, (or L82i.) is valid

in the <0>-extension of any I model of type 2 (or type 32) . Hence,
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any formula provable in L2* (or L320 is valid in the <3>-extension of

any / model of type 2 (or type 32) . Now, suppose that a formula A

not containing <0> is not provable in L2 (or L32) . Then by Theorem 3. 2,

there is an I model of type 2 (or type 32) in which A is not valid.

Clearly, A is not valid also in its <£>-extension. Thus, A is not provable

in L2* (or L3L*)8

A triple (P, /, C) is a bi-topological pseudo-Boolean algebra (ab-

breviated as bi-tpba), if

1) (P,I) is a tpba,

2) C is a unary operation on P such that

ii) a<Ca,

iii) Ca = CCa,

iv) I(

v) CIa = Ia,

vi) 7C# = Ca.

We say that an element a in P is open (or closed) in a bi-tpba

(P, J, C) if Ia=a (or Ca—a, respectively). By v) and vi), an element

is open if and only if it is closed. So, we say that an element is clopen,

if it is either open or closed. A bi-tpba (P, J, C) is said to of type 2,

if the set of all clopen elements in (P, /, C) constitutes a sub- (pseudo-

Boolean) algebra of P. A bi-tpba is said to be of type 32, if it is of

type 2 and I(Ia U b) <Ia U Ib holds in it. It is clear that if (P, I, C)

is of type 2 (or of type 32) then (P, /) is also of type 2 (or type 32) .

Note that the condition iv) in the above definition is redundant, when

a bi-tpba under consideration is of type 2. An assignment / of a bi-tpba

(P, I, C) is an assignment of the tpba (P, I) with f(<$A)=Cf(A) for

any formula A. Similarly as Theorem 2. 2, we have the following theo-

rem.

Theorem 4. 5. A formula is provable in Lz- {or L32I) if and

only if it is valid in any bi-tpba of type 2 (or of type 32, re-
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spec lively) .

We show here that in any bi-tpba (P, /, C) ,

(7) CanCb = C(Caftb)

holds for every a,b^P. By the condition i), d<e implies Cd<Ce for

every d, e. Using this, it follows that C(Ca fl b) <Ca fl Cb. On the oth-

er hand, since Ca fl b<C(Ca H b) , Ca<(b^C(Ca H &)). Then

Thus, C<2 fl Cb<iC(Ca fl &). Now we show the finite model property for

1^32*'

Theorem 4B 6. L32* Aas £Ae finite model property and hence is

decidable.

Proof. Our proof proceeds similarly as the proof of Theorem 4. 3.

Let A be a formula not provable in L32*. Then there is a bi-tpba (P,

J, C) of type 32 and its assignment f such that /"(A) =^1. Lst al9 •"ya.m

be values of each subformula of A by f. For any nonempty subset U

of {al9—,am}, define [7*=^ fl ••• fl ifc if C7= {bly • • • , ft*}. Let 5= {0,1,

«i, "S^m} U {/?/*; f/ z'5 a nonempty subset of {aly •••,am}} U {Ct/^; C7

is a nonempty subset of {al9 --,am}}. Let PQ be the sublattice of P

generated by S. Then PQ becomes a finite pseudo-Boolean algebra with

respect to D , U , Z> and 0. Moreover, we have that for any a in P0

la and Ca are also in JP0. When we prove that Ca£iPQ, we represent

the element a in the disjunctive form and use (7) . Let J0 and C0 be

the restrictions of / and C, respectively, to PQ. It remains to us to show

that the set of clopen elements in (P0, J0, C0) constitutes a subalgebra

of PQ. It is sufficient to prove that for every clopen a,bE:P0, a~Z)b is

also clopen, since other cases are obvious. By the definition of Z), let

= U zi9 where {zt}t is an enumeration of such an element z of P0

that z<a1)b. It is obvious that aZ)£<U Cz{. On the other hand, Cz3-
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= aDb for each j, since both a and b are clopen in the bi-tpba

(P, /, C) of type 32. Thus, for each j Czj must be in {Zi}t. Hence

(JCzt<a^b. So,
i

a-Db = U C2;t. = C( U zt) =C0( U ~,).
i i i

Hence, aZ)£ is clopen. So, similarly as the proof of Theorem 4. 35 we

can show that A is not valid in (P0j J0, C0) .

Corollary 40 7* -L32 Aas £/z^ finite model property and he?ice is

decidable.

Proof. Let A be a formula not containing <^>, which is not provable

in L32. Then A is not provable also in L32^ by Theorem 4. 4. By Theo-

rem 4. 6, there exists a finite bi-tpba (P0, J0, C0) of type 32 and its assign-

ment g such that g(A)^=l. Then, (P0, /0) is a finite tpba of type 32.

Let h be an assignment of (P0, ^o) » which is obtained from g by restricting

the domain of g to the set of formulas not containing <£>. Then, clearly

Since a tpba (P, I) of type 2 does not always satisfy the condition

I(Ia U V) <Ia U /&, we must alter the above proof slightly to show the

finite model property for L2.

Theorem 4. 8. Z/2* has the finite model property and hence is

decidable?

Proof. Let A be a formula not provable in L2*. Then, there is

a bi-tpba (P, /, C) of type 2 and its assignment f such that f(A) =f=\.

Take the elements aly -"yam, as in the proof of Theorem 4.6. Let S

be the set defined by

S= {0, 1, aly • • • , am} U {CC7*; C7 z*5 a nonempty subset of {aly
 m",am}}.

The sublattice P0 generated by S is a pseudo-Boolean algebra with respect

1) Bull showed in [1] that L2* has the finite model property. But his proof seems to
contain a gap.
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to H, U, ID and 0. As Theorem 4.6, if a^PQ then CaeP0. Let

C0 be the restriction of C to P0. Now define an operation I' on PQ by

Ta= U {2:; z^P0, z is clopen in (P, I, C) and z<a} , for any aeP0.
z

Since PQ is finite and is closed with respect to the join, T a is also in

PQ. We show that (P0, /', C0) is a bi-tpba of type 2. First we prove that

(P0, /', C0) is a bi-tpba.

1) I'(ar\b) -^TaftTb.

It is obvious that /' (a fl V) < fa fl /"'£. Let /'# = U et and Tb = U wy,1 j
where both \r, and te/7 are clopen, z;^a and iVj<^b. Then

Ta(M'b= U *;n U w>y = U O.flte;.).
' 7 *. 7

Since £/ fl Wj is clopen and zt fl zt>j<ia 0 £ for each f,j\ U (^ H Wy) <

/(an*). Thus, ra

2)

Let J'^7 = U ̂ , ^vhere each Zt is clopen and satisfies Zi<a. Then

a=c0( 11*0=11 G>zt= u Zi=ra.
i i i

Other conditions are easily verified. It is easy to see that if an element

is clopen in (P0, /', C0) then it is also clopen in (P, 7, C). Using this,

we can show similarly as Theorem 4. 6 that (P0, /', C0) is of type 2.

Let g be an assignment of (P0, /', C0) such that g(P)=f(p) for any

prepositional variable £ appearing in A. Then we have that g(A) =f(A)

Notice that Ia^PQ implies I'a = Ia. Hence, A is not valid in (P0,

Now we can prove the following corollary quite similarly as Corol-

lary 4. 7.

Corollary 4. 9» L2 has the finite model property and hence is

decidable.

Modifying the proof of Theorem 4. 8, we can get another proof of

Theorem 4. 1. In proving Corollaries 4. 7 and 4. 9, we have first shown

the finite model property for a conservative extension and then derived
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the finite model property for the IML under consideration. We have no

direct proofs at present. For L2 and L31, we can define L!* and L31* by

adding the axioms from (1) to (6). Then we can also prove that both

I^* and L31* have the finite model property. But we don't know whether

they are conservative extension of L2 and L31, respectively.

§ 5. M Models

In this section, we will introduce another type of Kripke models,

called M models. A triple (M, R, P) is an M frame, if

1) M is a nonempty set,

2) R is a reflexive and transitive relation on M,

3) P is a non-degenerate K (M) ^complete pseudo-Boolean algebra,

where K(M) is the smallest cardinal which is greater than {b;aRb}

for any a^M. More precisely, for any subset {at}t^T of P such that

T<£(M), there exist U at and 0 at in P.
t^T t^T

A valuation W on an M frame (Af, R, P) is a mapping from the

direct product of the set formulas and the set M to the set P such that

for any a^M

1) W(A/\B, a) = W(A, a) fl W(B9 a),

2) W(A V B, a) = W(A, a) U W(B, a),

3) W(A z> 5, a) = W(A, a) z> W(B9 a},

4) W(~iA, a) = - W(A, a),

5) W(OA,a)= H W(A, b}.
aRb

In the above definition, fl, U, Z> and —, which appear in the right side

of equations, denote lattice operations in P. A quadruple (M, R, P, W)

is an M model if (M, P, P) is an M frame and W is a valuation on it.

A formula A is valid in an M model (M, R, P, W) if W(A, a) =1 for

any a in M, where 1 is the greatest element of M. A is valid in an

M frame (M, R, P) if it is valid in an M model (M, R, P, W) for any

valuation W. We can verify the following lemma.

Lemma 5. 1. Every formula provable in L0 is valid in any M
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model.

Let us define an M frame of type J, where «7=0, 2, 32.

0) Any M frame is of type 0.

1) A;2 M frame (M, jR, P) zs of type 2, zf ^ is symmetric (and

hence is an equivalence relation}.

2) An M frame (M, .R, P) is of type 32, if it is of type 2 and

satisfies the following distributive law: For any subset {at}tGTofP

such that T<fc(M) and for any element b of P,

(1) H ( t f ,U#)< 0 at\Jb.
LCT t(ET

An M model (M, R, P, W) is said to be of type J if the M frame

(M, R, P) is of type J.

Lemnia 5. 20 For any M frame (M, P, P) of type 2 (or of type

32), there exists a set { (M^, jRi? P) }t- of M frames of type 2 (or of

type 32, respectively) such that

1) for any i and any x, y^Mif xRty ,

2) a formula is valid in (M, R, P) zjf and only if it is valid in

any

Proof. Let {M^j- be the set of all equivalence class determined by

the equivalence relation R. Let R{ be the restriction of R to Mt. Then

1) and 2) are easily verified.

As proved in Theorem 2.1, L2 and L32 are equivalent to sequent

calculi G? and G32? respectively. Let G2- be the sequent calculus obtained

from G2 by adding the following rules of inference concerning <()>.

where A consists of at most one formula. In the application of CO"*)

rule, we impose the condition that both F and A are sequences of bi-

completely modalized formulas, where a formula is said to be bi-com-

pletely modalized if any occurrence of a prepositional variable in it is

within the scope of a model operator (i.e. either Q or <^>). Let G32i
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be the sequent calculus obtained from G32 by adding the following rules of

inference.

In this case, A may contain an arbitrary number of formulas. In the

application of (O~> + )? we also impose the same condition as that of

G2*. Now we have the following theorem.

Theorem 5. 3. L2t (or L32t) is equivalent to G2<= (or G32t, re-

spectively) .

Let LD be the sequent calculus obtained from LJ' by replacing the

rule (— >V) by the rule

r-*J, A (a)

where a is a variable not appearing in the lower sequent (see [22]).

It is known that 1) LD is equivalent to the intuitionistic predicate logic

with the axiom schema \/x(A(x) \/B) D (\/xA(x) \/E), where x is a

variable not occurring free in B, and 2) LD is complete with respect to

Kripke models with a constant domain (see [7]). It seems that there

exist close connections between G2* and LJ and between G32* and LD. For,

if we interprete Q and <^> as the universal and the existential quantifier

and regard the condition of the bi-complete modalization as the variable

condition in the application of rules of G2* and G32*, then we have the

corresponding systems LJ and LD. These connections are also found out

in the definition of / frames of type 2 or type 32. The set {b;a^b}

for any element a in an I frame corresponds to the domain attached to

a of a Kripke frame. Now, let us state these connections more precisely.

For any variable x we define a translation 0^ from the set of formulas

of modal prepositional logics to the set of formulas of predicate logics.

First, we take a monadic predicate variable P(x) for each propositional

variable p. Then we define that

0* (/O ==P(x) if p is a propositional variable,
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</,,(<> A) -3^ (A).

It is well-known that a formula A is provable in S5 if and only if

is provable in LK.

Theorem 5.4. 1) (B«K [3]) A formula A is provable in G2*

if and only if 0.r(A) is provable in LJ.

2) A formula A is provable in G32* if and only if (/^(A) is

provable in LD.

Proof of 2). We prove 2) in the same way as [3]. Only if part

is obvious. We first replace every occurrence of (/>(£) by a constant V,

in the definition of Kripke's semantic tableaux [12]. Then we replace

the rule TIr by the following 7Tr*.

nr*> If \/xA(x) appears on the right of a tableau t, and y is

the alphabetically earliest variable -which has not yet appeared in

any tableau of any alternative set at this stage, put yt=V and put

A(y) on the right of t.

Then we can show that the following three conditions are equivalent.

1) The construction for A thus modified is closed.

2) A is valid in any Kripke model zuilh a constant domain.

3) A is provable in LD.

Now, using the normal construction as [3], we have our theorem.

It should be remarked that G2* is not cut-free, while LJ is cut-free.

This remark can also apply to the sequent calculus S5 in [15] and LK.

But as Kanger did for S5 in [10], we can construct a cut-free system

for L2* by using Theorem 5. 4.

Next we show the completeness theorem with respect to M models.
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Lemma 5. 5. For any formula A, A is valid in any M model

of type 2 if and only if (fjx(A) is provable in LJ.

Proof. We first notice that A is valid in any M model of type 2

if and only if QA is valid in any M model of type 2 and that for any

formula B of predicate logics, B is provable in LJ if and only if any

universal closure of B is provable in LJ. So, it is sufficient to prove

the lemma for the case where A is of the form DA since (/^(D-B)

= \/x<Jj:c(B) . Now suppose that 9^ (A) is not provable in LJ. Then,

there exists a pseudo-Boolean frame (P, V) consisting of a complete

pseudo-Boolean algebra P and a domain V such that for some assignment/

/(</>*( A) )=£! in (P, V). (See [19]. In [16], a pseudo-Boolean frame

is called as a pseudo-Boolean model.) Let R be a relation on V such

that vR-w holds for every v9w^V. Then, (V, R, P) is an M frame of

type 2. Define a valuation W on (V, R, P) by W(p, v) =/(P(zO) for

any prepositional variable /> and any t> GE V, where ?7 denotes the name

of z;. Then it is easily seen that for any formula C of modal logics,

W(C, £>) = f(SvX<px (C) ) , where S/ means the substitution of v for any

free occurrence of a variable .r. Then for any v£=V, W(A, v) =

/(S/0,(A)) =/(0x(A))=£l, since 0*(A) ( = V*0*OB)) is a closed formula

by our assumption. Hence A is not valid in (V, i?, P, W). Conversely,

suppose that A is not valid in an M model (Af, P, P, W") of type 2.

By Lemma 5.2, we can assume that xRy holds for any x.y^M. In

this case, ^(Afj^completeness of P means Af-completeness. So, (P, M)

is a pseudo-Boolean frame for LJ. Define an assignment f of (P, M)

by /(P(tO) ~ ^(A ^) f°r anY prepositional variable /> and any v^M.

Then, as the above, we have f ( ( f ) x ( A ) ) = W(A, T;) for any v^M. So,

x( A)) =7^1 by the assumption. Hence, 0X(A) is not provable in LJ.

Lemma 5. 6* For any formula A, A is valid in any M model

of type 32 if and only if $X(A) is provable in LD.

This lemma can be proved similarly as Lemma 5. 5. In the proof,

we use the completeness theorem of LD with respect to complete pseudo-

Boolean frames satisfying (1) (see [7]).
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Theorem 5. 7. A formula is provable in Lz (or L32) if and only

if it is valid in any M model of type 2 (or type 32, respectively).

Proof. By Lemma 5. 5 (or 5. 6) , a formula A is valid in any M

model of type 2 (or type 32) if and only if (px(A) is provable in LJ

(or LD) . Then by Theorems 5. 3 and 5. 4, this is equivalent to the

condition that A is provable in L2^ (or L32*) . By Lemma 4. 4, this is

also equivalent to the condition that A is provable in L2 (or L32) .

Now, recall the condition (1) . If the set T is finite then (1) holds

always. Thus, any formula provable in L32 is valid in any M model

(M, R, P, W) of type 2 with a finite set M. Moreover, the following

lemma holds.

Lemma 5. 8. Let (M, R, P) be any M frame. If either A1 or

A3 is valid in (M, R, P) then R is symmetric.

Proof. Suppose that Al (i.e., -nQ/>I3 D"~iD^) is valid in (M, R, P)

and that R is not symmetric. Then there are a,b^M such that aRb

but not bRa. Let S and T be subsets of M defined by

S={x\aRx but not xRa},

T={x;aRx and xRa} .

Then for any x such that aRx, either x^S or x^T. Since

a e T, both S and T are not empty. Define a valuation W on (M, R, P)

by

O if

Since a eT and aRa, fl W(p, x) < W(p, a) = 0. Thus, W(—\np,a)
aRx

= — H W(p,x)=I. On the other hand,
aBx

,« )= n - n w(p,y)
aBx xRy

= ( n - n W(£,y))n( n - n
x^S xBy x^T xBy
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It is easy to see that if x^S and xRy then y^S. So,

n - n w(p,y)= n -1=0.
x^S xRy x&S

Thus W(n-iDA^)=0. Hence W(—\HP^> D^OP, a) =0. But this

contradicts the assumption. Hence R is symmetric. The case where A3

is valid in (M, R, P) can be treated similarly.

Using the above lemma, we have the following theorem (cf. Corol-

lary 4. 9.) . Here we say that an IML L is characterized by a set of

J\f frames ({A/f, -R«. />/)},-, if it holds that for any formula A, A is prov-

able in L if and only if A is valid in any (A/i, jR,,-, Pf) .

Theorem 5. 9. L2 can not be characterized by any set of M

frames (A/, R, P) , where each M is finite. Hence , L2 has not the

finite model property 'with respect to M frames.

Similarly, we can answer the question presented by Bull in [1]

negatively.

Theorem 5. 10. L32 can not be characterized by any set of M.

frames (M, R, P) , where each M is finite. Hence, L32 has not the

finite model property 'with respect to M frames.

Proof. Let A be the formula n~l~~L£^>~1~1DA We show first

that A is not provable in L32. Define an I model (M, <*, R, W) as

follows ;

1) M is the set A/"xJV, where N is the set of natural numbers,

2) for every i, j, m* ti£:N 9

and

3) for every i , m £E N ,

W(p, <z, w
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Clearly, the I model thus defined is of type 32. Moreover, we can show

that W(A,<Q, 0» =/. Thus, A is not provable in L32 by Theorem 3. 2.

Next we show that A is valid in any M frame (M, R, P) with a finite

set M, in which axioms of L32 are valid. By Lemma 5. 8, R is symmetric.

By Lemma 5. 2, we can also assume that for every x,y^M, xRy holds.

Let W be any valuation on (M, R, P) . Then for any a

We write //r for W(p* .r) . We show by induction on the number n of

elements in jl/ that

(2) n --«,<-- n «,.
j-eM zeJf

Clearly (2) holds if « = 1. Consider the case where n = k-\-\. Let 7\/'

— J\I—{a} and ia — P. «T. Since M' —k<^n, by using the induction hy-
x=M'

pothesis,

= -- W PI -- ^^a .

On the other hand,

ze; n (ua 0 - (w P z/a) ) = (ze; P ua) P - (ze; 0 ua) <0 .

Thus, «a Pi — (zo Pi z/a) < — w. This implies that

^ n - (w n //a) n — zv<o .

So, — (wO*O P, -- w< — /^ and hence

- (w P «j n — w n — ua<Q .

Thus, P -- nr< -- wP -- un
rGM

< -- (w P ua) = -- P ux .
x(=M

Hence W(A,a)=~L for any a^M. Therefore, A is valid in any M

frame (M, R, P) with a finite set M. Thus, L32 can not be characterized

by any set of M frames (M, R, P) with a finite set M
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Using Lemma 5. 8, we prove that other IML's except L0 are incom-

plete with respect to M frames.

Theorem 5. 11. Any one of Ll9 Z/3 and L81 is not complete -with

respect to any set of M frames.

Proof. Let L be any one of Ll5 L3 and L31. Suppose that L is

characterized by a set of M frames {(Miy Riy Pi)}i. Since either A1 or

As is provable in L, each Rt is symmetric by Lemma 5. 8. Then each

{Miy Ri, Pi) is of type 2 and hence L must be equal to or stronger

than L2 by Theorem 5. 7. But this contradicts the inclusion relationship

mentioned in § 2.

Theorem 5* 12. L4 is not complete with respect to any set of

M frames.

Proof. Suppose that L4 is characterized by a set of M frames { (Mi}

Rt,Pi)}i. Since A1 is provable in L4, each Rt is symmetric. Moreover,

by using Lemma 5. 2, we can assume that for each z", xRiy holds for

every x,y^Mt. Now for a fixed i take any element u in Pt. Define

a valuation Wt on (M{, R{, P{) by Wi(p, a) ~u for any a^Mt. Then,

= n wi(/>,*)u n - n wt(t>,c)
a Rib aRib aRtf

= u(J —u .

Since Q^VD — *OP is provable in L4,

)=u\j -u=i.
This means that each Pt is a Boolean algebra. Thus, AV '-A is valid

in any (Mi9 Riy Pi) and hence is provable in L4. But this is a contradic-

tion.

We don't know whether L0 is complete with respect to M frames

of type 0 or not.

Finally, we remark a connection between M frames and tpba's. Let
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(M, R, P) be an M frame. Then the set PM of all functions from M

to P constitutes a pseudo-Boolean algebra. More precisely, for any /, g

in PM, define /Og, /U g and /=>g by

(f i> 00 (*)=/(*)

for any a^M. Let 0 be a function in P'v such that 0(a) ^Op for any

aeA/, where 0P is the least element of P. Then PM with 0, U, Z>

and 0 is a pseudo-Boolean algebra. Next, define a unary operation IB

on P'7 by

/*/)*)= n

for any a GE -M. Then (PM, IR) becomes a tpba. Now suppose that for

any prepositional variable p and any a^M, it holds that W(p, a)
= (P(P) (a), where W is a valuation on (M, P, P) and <£> is an assignment

of (PM, Is). Then we can show that for any formula A, W(A, a)

= (p(A)(a). From this it follows that for any formula A, A is valid

in (M, R, P) if and only if A is valid in (PM, IB) .
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