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§ 1. Introduction

Some modal logics based on logics weaker than the classical logic
have been studied by Fitch [4], Prior [18], Bull [1], [2], [3], Prawitz
[17] etc. In this paper, we treat modal logics based on the intuitionistic
propositional logic, which we call infuitionistic modal logics (abbreviated
as IML’s). Our main concern is to compare properties of several IML’s
of S4- or S5-type by using some model theoretical methods. The study
of modal logics based on weak logics seems to reveal to us various pro-
perties of classical modal logics, especially of S5, which will be indistin-
guishable by dealing them only on the classical logic.

We will introduce some IML’s in the Hilbert-style formalization in
§ 2. Then we will define IML’s in the form of sequent calculi, all of
which are given by restricting or modifying the sequent calculi 54 and
S5 of Ohnishi-Matsumoto [15]. We will show the proper inclusion rela-
tionship between these IML’s by using a kind of algebraic models. In
88§ 3 and 5, we will introduce two kinds of models for IML’s. One of
them is a natural extension of Kripke models for the intuitionistic logic
and the other is for modal logics (see [11], [12]). Then we will prove
the completeness theorem with respect to these models. In § 4, the finite
model property for some IML’s will be shown.

We would like to thank M. Sato for his valuable suggestions.

§ 2. Intuitionistic Modal Logics

We will introduce some intuitionistic modal logics. We take A\, V/,
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D, — and [J (necessity operator) as primitive. We don’t use & (pos-
sibility operator), only for brevity’s sake. Note that, unlike classical
modal logics, & A can not be considered as the abbreviation of —[]—A4.
But by a technical reason some IML’s containing <> are treated later.

Let H be the intuitionistic propositional logic formulated in the Hil-
bert-style. The rules of inference of H are modus ponens and the rule of
substitution. The IML L, is obtained from H by adding the following

three axioms,
1) Opop,
(2) Op>0O0P,
(3 O@E>9>(@ro00,

and the rule of necessitation, i.e, from A infer [JA. Clearly, L, with
the law of excluded middle (»\/ —p) becomes S4. Next, we consider the

following axioms;
A;r OpD O 0p,
4,: (Op> 09 20200,
Ay OOV 2 (OpVOD,
A OpVO—0Op.

The logic L, with the axiom A; is denoted by L; for £=1,2,3,4. The
logic Ly with A, (or A,) is denoted by L (or Ly, respectively). It is
easy to see that S4 with any one of A; is equal to S5. So, we can say
that L, is of S4-type and others are of S5-type. We remark that the
logic L, with either —p > []—1[Jp or p D[ ][] 1p is equal to L,, and L,
with ] [Jp>D[1p is equal to L,. We can show that Iy (or Ig) in
[17] is equivalent to L, (or L,, respectively) and that MIPC in [18],
which contains > as primitive, is a conservative extension of L, as proved
in §4.

We sometimes identify a logic L with the set of formulas provable in
L. If L and L’ are IML’s then the set LNL’ is closed under modus
ponens, the rule of substitution and the rule of necessitation. So LNL’
is also considered as an IML. But the union of L and L’ is not neces-

sarily closed under these rules. Hence, we write LUL’ for the minimum
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set of formulas which contains the union of L

and L’ and is closed under these three rules.
Then, LUL’ is an IML. In Figure 2.1, we |
show the lattice made up of our IML’s. The L

proper inclusion relationship between two logics L

The inclusion relationship shown in Figure
2.1 are almost trivial. It is proved in the last
part of this § that these inclusions are proper.

2
is represented by the line connecting them. \
;

1
Ll

As another way of introducing IML’s, we

n
take the formulation by sequent calculi. We |
modify the sequent calculi of modal logics S4 L,
and S5 in [15]. Consider the sequent calculi Figure 2.1.

obtained from the propositional part of L] of Gentzen [6] by adding the

rules concerning [] of the following form;

AT>d (o T—A

O 54754 Ir>0A’

where 4 consists of at most one formula. In the application of (—[]),
we impose one of the following conditions on I'.

(0) I is a sequence of formulas of the form [B.

(1) I is a sequence of formulas of the form [1B or —[]B.

(2) TI'is a sequence of completely modalized formulas, where a
Sformula is said to be completely modalized (abbreviated as c.m.) if
any occurrence of a propositional variable in it is within the scope of
a necessity operator.

The rule (—[]) under the condition (i) is denoted by (—[Ji) for
1"=O, 1, 2. The sequent calculus K; is the propositional part of L] with
(0-) and (—=[09).

L]’ is the sequent calculus obtained from LK by restricting applica-
tions of rules (——1), (—= D) and (—V) to the case where in the lower
sequent of the application, only one formula occurs in the succedent. It
is known that LJ’ is equivalent to LJ and is cut-free (i.e, the cut-
elimination theorem for L]’ holds). See [22]. For i=0,1,2, let G,
be the sequent calculus obtained from the propositional part of L]’ by
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adding ([J—) and (—[Ji). Then it is easy to see that for each i, G;

is equivalent to K.

Now consider the sequent calculi obtained from the propositional

part of L]’ by adding the following rules;

A T'—4 I'—>4, A
O-o+)—2" "= (> T
( +) (A, I'—4 =0+ I'—4,0A

In the application of (—[]-+), we also impose one of the following
conditions.

(0) Both I' and 4 are sequences of formulas of the form []B.

(1) Both I' and 4 are sequences of formulas of the form [B
or —[]B.

(2) Both I' and 4 are sequences of c.m. formulas.
The rule (—[J+) under the condition (i) is denoted by (—[]+%) for
i=0,1,2. The sequent calculus G; (Gy, G;,) is the propositional part of
L) with (C—+) and (—=[1+0) (or (—=[1+1) or (—=[]+2), respec-
tively).

The sequent calculus G, is obtained from G; by replacing the rules
(——) and (— D) by the following rules (—=—%*) and (—D%*).

A, I'—4 (o> %) A, I'-4,B ’
I'—4,—A I'-4, ADB

(>

where 4 is a sequence of formulas of the form [JC. (The definition of

G, mentioned above is suggested by Sato.)

Theorem 2.1. For J=0, 1, 2, 3, 31, 32, 4, G, is equivalent
to Ly, t.e. for any formula A, A is provable in G; if and only if
A is provable in L.

We will prove in § 3 that K, and G, are cut-free. On the other
hand, we can show that others are not cut-free. For, the formula P>
(J—[J—p is provable in G, (and K;) and hence in G, (and K;), but is not
provable without cut in any of them. Also, (J(pVe) D[PV g
is provable in G,;, Gy and Gy, but is not provable without cut in any
of them. The sequent —p, [J—1[Jp is provable in G, but is not prov-

able without cut in it. Henceforth, we sometimes write G—71"—4 if I'—4
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is provable in the sequent calculus G.

We introduce algebraic models for IML’s, which correspond to topolo-
gical Boolean algebras in classical modal logics. A topological pseudo-
Boolean algebra (abbreviated as a (pba) is a pair (P,I) of a non-
degenerate pseudo-Boolean algebra P and a unary operation I on P such

that for each a, b= P,
i) I(anNbd)=IaN1b,
ii) In<a,
iii) Ila=1Ia,
iv) =1,

where 1 is the greatest element of P. An element a in P is said to be
open in a tpba (P, I), if Ia=a holds. We can see that the set of all
open elements in (P, I) constitutes a sublattice of P. An assignment
of a tpba (P, I) is defined in the usual way. In particular, for any
assignment f, f([(JA) =If(A). A formula A is valid in a tpba (P, I)
if f(A) =1 for any assignment f of (P, I).

We define tpba’s of type J for J=0, 1, 2, 3, 31, 32, 4 as follows.

0) Any tpba is of type O.

1) A tpba is of type 1 if the complement of any open element in
it is also open.

2) A tpba (P,I) is of type 2 if the set of all open elements in
it constitutes a sub- (pseudo-Boolean) algebra of P.

3) A tpba is of type 3 if it satisfies the condition

V) I(IaUb)<<IaU Ib.

3i) For i=1, 2, a tpba is of type 3i if it is of type 3 and also
of type i.

4) A tpba is of type 4 if it is of type 2 and the subalgebra con-
stituted by the set of all open elements is a Boolean algebra.

We remark that in any tpba, IaU Ib<<I(laUb) holds. By using

the Lindenbaum algebra, we get the following theorem.

Theorem 2.2. For J=0, 1, 2, 3, 31, 32, 4, a formula is provable
in L; if and only if it is valid in any tpba of type J.
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Next we show that there exist uncountably many IML’s of S5-type,
by using the McKinsey-Tarski translation [14]. Let T be a translation
from the set of formulas of propositional logics to the set of formulas

of model logics such that
1) T (p) =0p if p is a propositional variable,
2)  TANB)=TANTB),
3  TAVB)=TANT®),
4  TADB)=0(TA)>TH),
5) T(—A) =0T (A).

Let C be the classical propositional logic. An intermediate proposi-
tional logic is a set of formulas, which contains H and is contained by
C and which is closed under modus ponens and the rule of substitution.
Let J be any one of 0, 1, 2, 3, 31, 32, 4. For any intermediate proposi-
tional logic L, T;(L) denotes the IML obtained from L, by adding every
formula in {T'(A); A is in L} as axioms.

Lemma 2.3. For every intermediate propositional logics L, L',
1) LCL implies Ty(L)CST (L"),
2) i Ty(LNL)=T;(L)NTy(L"),
il. T,(LUL)=T;,(L)UT;(L"),
3) L=£L’ implies T;(L)=~T,;(L") if J#4.

Proof. 1) and 2) are obvious. We prove 3). Suppose that L=~L’
and A€L—L’. Then there exists a pseudo-Boolean algebra P, in which
1) every formula provable in L’ is valid and 2) A is not valid. Define a
unary operation I on P by Ia=a for any a€P. Then (P, I) is a tpba,
in which 1) every formula provable in 7,(L") is valid and 2) T(A)
is not valid. So, T(A)&T,(L"). On the other hand, T(A)eT;(L).
Thus, T,(L)+T;(L).

We remark that 1) for J=2, 32, 4, T,(H) =L; and 2) T,(C)
=T,(C) =L, Jankov proved in [9] that there exist uncountably many
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intermediate propositional logics. So by Lemma 2. 3, we have the follow-

ing.

Corollary 2.4. There are uncountably many IML’s between L,
(or Ls,) and L,

Theorem 2.5. 1) Following three conditions are equivalent.
i. A is provable in H.
ii. T(A) is provable in To(H).
ili, T(A) is provable in S4.
2) Following three conditions are equivalent.
i. A is provable in C.
ii. T (A) is provable in L,.
iii. T(A) is provable in S5.

Proof. In each case, it is well-known that i. is equivalent to iii.

Clearly, i. implies ii. and ii. implies iii.

Finally, we show that each inclusion relationship shown in Figure

2.1 is proper.

0

Figure 2.2 I'igure 2.3.

Lemma 2.6. It holds that 1) L& Ly, 2) L NLSL, and 3)
L,NL,SL,N Ly,

Proof. Consider the tpba (P, I,) shown in Figure 2.2, in which
it holds LLa=ILb=Id=d and ILc=0. In the figure, we indicate an open
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element by a black dot. It is easy to see that (P, I;) is a tpba of
type 3. We show that A, is not valid. Let f(») =d. Then,

S(A) =f(mOp>o00p) =cD0=051.

Thus, L,#L;. Hence L;&L,;, =L, UL; and L, NLyS&L,. Assume that L,
NLy=L,NLy. Since L,NLy=L,N (L, UL)=L,U(L,NLy), L,CL,NL,
holds. But this implies L,C L, This is a contradiction. Hence L,N L,
EL.NL,,.

Lemma 2.7. 1t holds that 1) LS L,NLy and 2) L,NL;<L,
N Ls.

Proof. Consider the tpba (P, I,) in Figure 2.3, in which Lb=c¢
holds. It can be verified that (P,, I,) is of type 1. We show that A,\/ A;
is not valid in it, where Aj is [(J((O7rVs) D ([JrV [Js). Define an assign-
ment f by f(p) =f(r) =a and f(g) =f(s) =b. Then,

f(AV AF) =((@Dc) DL(aDc)) U (L(aUb) D(alUc))
=(b>c)U (1Da)

=a==1.

Since A,\/ A; is a theorem of L,NL; L,NL;ZL,, Now suppose that
L,=L,NLy. Since L,NLy=L,N(L,ULy) =L, UT,NLy), L,NLCL,
by the assumption. But this is a contradiction. Hence 1) holds. 2)

is easily derived from 1).

0

Figure 24. Figure 2.5. Figure 2.6.
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Lemma 2.8. It holds that 1) L, Ly, 2) L,NL; &Ly and 3)
LN Ly& L.

Proof. Consider the tpba (P, I;) in Figure 2. 4. Notice that ILb
= Le=1Ld=0. It is easily seen that (P, I,) is of type 2. Let f(p) =a
and f(q) =6. Then,

f(A) =L(LjaUb) D (LiaU L) =1Da=a1.

Thus, As is not valid. Hence, L;Z&L,. So 1) holds. From 1) it
follows 2) and 3).

Lemma 2.9. It holds that 1) L, Ly %L, and 2) LyS Ly,.

Proof. Consider the tpba (P,, I,) in Figure 2.5. In (P, L), La=5b
and Lic=d. The tpba (P, 1) is of type 31. Let f(p) =b and f(q) =c.
Then

F(A) =(0D2d)DL(bDd) =cDd=0b1.
Hence L,ZLy. Thus 1) and 2) hold.

Lemma 2.10. 17 holds that L., L,

Proof. The tpba (Ps, I;) in Figure 2.6 is clearly of type 32. But
LaULi—La=aU0=a. Hence, I,Z£L,,.

§ 3. I Models

In this section and § 5, we introduce two kinds of Kripke models for
IML’s. They are obtained by extending either Kripke models for the
intuitionistic logic or those for modal logics. So they are called to be
I models (intuitionistic-type Kripke models) and M models (modal-
type Kripke models), respectively.

A triple (M, <,R) is an I frame, if

1) M is a nonempty set with a partial order <<,

2) R is a reflexive and transitive relation on M such that x<ly
implies xRy for each x,y& M.

A valuation W on an I frame (M, <,R) is a mapping from the
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direct product of the set of formulas and the set M to the set {¢ f},
such that for any a€ M,

1) W(p,a) =t and a<<b imply W(p, b) =¢ for any propositional
variable p,

2) W(AAB,a) =t if and only if W(A,a) =t and W(B,a) =¢.

3) W(AVB,a)=t if and only if W(A,a) =¢ or W(B,a) =t

4) W(ADB,a) =t if and only if for any & such that a<<b,
W(A, b) =f or W(B,b) =¢.

5) W(—A,a) =t if and only if for any & such that a<<b, W(A, &)
=f.

6) W([JA,a) =t if and only if for any & such that aRb, W(A, &)
=1

We remark that each value W(A,a) is completely determined by
values W(p, b) for propositional variables p and elements b=M. A
quadruple (M, <<, R, W) is an I model, if (M, <<, R) is an I frame and
W is a valuation on it. A formula A is valid in an I model (M, <,
R, W) if W(A,a)=¢ for any @ in M. A formula A is valid in an
I frame (M, <,R) if it is valid in an I model (M, <, R, W) for any
valuation W.

In the definition of an I frame (M, <, R), we may take a quasi-order
(i.e. a reflexive, transitive relation) for <. More precisely, for any I
frame (M, <<, R) with a quasi-order <{, there exists an I frame (M¥,
<* R*) with a partial order <<* such that any formula is valid in
(M, <, R) if and only if it is valid in (M*, <* R*). We can verify

the following lemma.

Lemma 3.1. Every formula provable in L, is walid in any I

model.

For any binary relation R, we write x~py if xRy and yRx hold.
Clearly, the relation ~j is symmetric. We omit the subscript letter R
in the following definition. Define I frames of type J for J=0, 1, 2, 3,
31, 32, 4 as follows.

0) Any I frame is of type O.

1) An I frame (M, <, R) is of type 1, when for each x,y= M,
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if xRy then there is an element v’ in M such that x<y' and yRy'.

2) An Iframe (M, <, R) is of type 2, when for each x,y& M, if
xRy then there is an element y' in M such that x<y' and y~y’.

3) An I frame (M, <, R) is of type 3, when for each x,y € in
M, if xRy then there is an element x' in M such that x~x' and
x' <w.

3)) An I frame is of type 3j if it is both of tvpe 3 and of tvpe
j for j=1, 2.

4) An I frame (M,<,R) is of type 4 if R is symmetric.

An I model (M, <<, R, W) is of type J, if the I frame (M, <, R)
is of type J. We remark that models for MIPC introduced in [3] are
of type 2, if we leave & out of consideration. When an I frame (M,
<, R) validates the law of excluded middle, x<<y must imply x=y.
In this case, we can see that the condition of an I frame (M, <, R)
to be of type J, where J=£0, coincides with the condition that R is
symmetric. Now we show the completeness theorem for IML’s with re-

spect to I models.

Theorem 3.2. A formula is provable in L; if and only if it
is valid in any I model of type J, for J=0, 1, 2, 3, 31, 32, 4.

Proof. Only if part. By Lemma 3.1, we have only to prove that
axioms of each IML added to L, are valid in the corresponding I models.
Here we give only a proof of the validity of A, in any I model of type 2.
We first remark that for any formula A and any I model (M, <<, R, W),
x~zx" implies W([JA,x) =W([JA,x'). Now suppose that A, is not
valid in an I model (A, <<, R, W) of type 2. Then there is an element
a in M such that

(1 W(Op>odg,a)=t,
(2 W(Opo0q).a) =f.

By (2), W(dp>g, b) =f for some b such that aRb. So, W([p,
¢) =t and W([g,c) =f for some ¢ such that b<{c. Since b<<c implies
bRc, aRc holds by the transitivity of R. By the assumption that (MM,
<, R) is of type 2, there is an element ¢’ such that a<<c¢’ and c~c’.
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By (1), either W([p,c¢’) =f or W([q,c¢’) =¢t. Using the above re-
mark, it follows that W([Jp,c) =f or W([g,c) =¢ But thisis a con-
tradiction.

If part. We make use of a standard method. Let @ be the set
of formulas. Suppose that I" and 4 are subsets of @. A pair (I, 4)
is said to be G-inconsistent, where G is any one of sequent calculi

G;’s, if there are formulas A, --+, A, in I and B, -+, B, in 4 such that
G!"—Al’ Tty Am_éBl’ Y Bn .

Otherwise, we say that (/',4) is G-comsistent. A pair (I',d) is G-
complete if it is G-consistent and 4=1"°, where I™° denotes the complement
of I with respect to @. Let (I',4) and (I, 4’) be G-consistent pairs.
We say (7, 4") is an extension of (I, 4) if 'CJI"” and 4C 4’. By using
Zorn’s lemma, we can verify that for any G-consistent pair, there exists
a G-complete extension of it. Now, let M be the set {[7; (I',4d) is
G-complete}. We write I'y for the set {{]A; [ JAEI'}. Then, define
a binary relation R; on M; by

PIRGF2®(]—'1)D§-(F2>D )

where C denotes the set inclusion. It is obvious that 1) /7, &1, implies
I''R;I, and 2) Ry is a reflexive and transitive relation. Thus, (M, C,
R;) is an I frame, for any sequent calculus G under consideration.

A valuation W; on (Mg, C, R;) is defined by

iy}

for any propositional variable p. Then we can show by induction that

for any formula A,
We(A, I =t AeTl.

Here we give a proof of this only for the case where A is []B. Suppose
that [JB&I. Let I'" be any element of M, such that I" R; I"’. Then
Bel’. Since Gy—[1B—B and (I, I'’*) is G-complete, B must be in
I'’. So, by the induction hypothesis, W;(B, I'’) =¢. Hence W (1B, I")
=¢. Suppose next that [JBeI". Then (I, {[JB}) is G-consistent, since
I is in M, Now we show that (I'g, {B}) is G-consistent. Suppose

otherwise. Then there are formulas [A,, -+, [ 1A, in I" such that
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GH—[A, -, [JA,,—B. Since G is equal to or stronger than Gy, G- ]A,,
--,JA,—B. But this contradicts the G-consistency of (/7, {{JB}).
Hence, (I'g, {B}) is G-consistent. Let (II,II°) be a G-complete extension
of (I'g, {B}). Then I'RI holds by the definition. Moreover, Be&Il.
So, by the induction hypothesis, Wg(B,II) =f. Thus W (OB, I") =1.

Now, we show the completeness of L,, Let A be any formula not
provable in L,. Then, by Theorem 2.1 (&, {A}) 1is G-consistent.
There is an Gy-complete extension (/7,1) of (@, {A}). Since A&l
We, (A, M) =f in (M, &, Rg,). Thus there is an I model of type 0 in
which A is not valid.

In order to prove the completeness of other IML’s, it is sufficient
to show that the I frame (A, &, R¢,) thus constructed is of type J.

Consider the case where J=2. We will show that if /'R /" then
there is II in Mg, such that I'CII and I =11 .

Assume that 'R ["’. We first show that (I"UT",, (I"%),) is Gy
consistent. Suppose otherwise. Then there exist formulas A, ---, A, in

I, OB, -, 0B, in I'" and G, ---, [JC, in I'’® such that
G.— A, -+, A, (1B, -+, (1B,—[1C,, ---, (IC,.
Then,
Gob-As, -+, Ay A\ OB ,-\ZDCJ"
By using (—[]J2) and cut,

Gzi‘“An T, Akh’lj( ,/\1 0B:> .\/1 ch)
i= J=

From the assumption that each A; is in /7, it follows that [}(7\ [B;
i=1

SVOC) X Since I'\CI", by the assumption, O(AOB OV OC)
j= i=1 j=1

el”. Thus AOB,2VIOC,eI”. Since each []B; is in I, 7\EBi
i=1 j=1 i=1

e/ and hence \/[JC,I"”. So some [JC; must be in I”. But this

j=1
is a contradiction. Thus (I"UI”",, (I""°),) is Gyconsistent. Now, let
(I,II°) be a Gycomplete extension of (I'UI",, (I"%,). It is clear

that 'CII and I, CII,. Let [JDe&I’,. Then [De (%) CI"
Thus, ODe&II,. So, II,CI", and hence I =II.
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The completeness of L; can be proved similarly as above. Next,
consider the case J=3. We will show that if 'R/ then there is I in
M, such that I'y=II, and IICT’. Assume that 'Rs;I’. We prove
that (g, (I'*),UTI"®) is Gj-consistent. Suppose otherwise. Then there
are formulas [(JA4,, -+, (14,in I, (1B, --, B, in I® and C,, ---,C, in
I’ such that

Gslr“ ;:lAlﬁ Tt DAL'_)DBH Ty DBW’ Cl; T Cn -

Hence,
n

Ga}'_ DAU ) DAk—)DBls Tty DBnu \/ Ci .

i=1

By the rule (—[]+0),

(3) GB,L-DAI,--uDAwDBI,---,DBm,DL_\Zcﬁ.

Suppose [JV/GiEl. Since 'Ry ", C\/C:€l" and hence \"/lcier'.
i=1 i=1 i=

So, some C; is in I/, But this is a contradiction. Hence {ji\"/lCiEP”.
Then it follows from (3) that (I7, 1) is Gsinconsistent, contra;y to our
assumption. Thus (I',, (I"),UTI"%) is Gy-consistent. Let (II,II°) be a
G;-complete extension of (I, (I),UI"). We have that [IC /", since
recimi’. Let [ODe&l',. Then [De ™) CII°. Thus [I,CT.
Clearly, I';CII,. Hence I'y=II,. So we have the completeness of L.
Combining this with the proof of the completeness of L; and L,, we get
also the completeness of L; and L,,.

Finally, consider the case J=4. We must show that R, is symmet-
ric. Suppose that I'R; /"’ and that there is a formula [JA such that
OAel” —TI'. Since [JAV [J—JA is provable in G, it must be in /.
So, either [(JA& or [(1—[JA&l'. But since [JA&I', (J—JAeT.
By the assumption that 'R /"', (] [JA&l”. On the other hand, [JA
eI"”. But, it is clear that G,— A, [ [JA— . This contradicts
the Gi-consistency of (/7',I"%). Thus, I';=I",. This means that Ry,

is symmetric. This completes the proof of the theorem.

Similarly as Theorem 3.2, we can obtain the completeness theorem

for other IML’s. For example, consider an IML L obtained from the
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intuitionistic logic H by adding the axioms (1) and (3) in §2. Then
T is an IML of T-type. An I frame (M, <,R) is a triple of a set M,
a partial order < on M and a reflexive relation R on M. Then we
can show that L is complete with respect to T frames.

Using Theorem 3. 2, we show that sequent calculi K, and G, are
cut-free. We employ the method due to Fitting [5]. We use the ter-
minology of [5]. A Gyconsistency property (or a Kyconsistency prop-
erty) is obtained from the propositional part of a Beth intuitionistic con-
sistency property (or a Gentzen intuitionistic consistency property, respec-
tively) by adding the following conditions for [];

i) If TTJAeS then SU{TA} 7,

i) if F(JAES then SU{FA}e#,
where Spo={T[B; T[] B<S}. Similarly as [5], we can show that ev-
ery Gg-consistency property can be extended to a Ky -consistency property.

Let S&€ @, where @ is a Kg-consistency property. We say S is
T-saturated if

1) if p is a propositional variable, not both Tp<.S and FpeS,

2) if T(AAB) &S then TA€ S and TBES,

3) if T(AVB) S then TA=S or TBES,

4) if T(ADB)=S and SU{TB} €% then TBES,

5) if TOAES then TAESS.

Then we can prove the key lemma similarly as [5]. Let S, be a set
of signed formulas, belonging to a K, -consistency property %. By the
key lemma, we can assume that ¥ is closed under chain unions. Let
M be the set of all T-saturated elements in %. Then there is some S
in M such that S is an extension of S,. For each S, S’ M, define
S<S if S;C.S7, where S;={TB; TB&S}. Clearly < is a quasi-order.
For each S, S’eM, define SRS’ if S;,CS7,. If S<S then S, CSr
C.8’. Hence SRS’. Thus, (M, <,R) is an I frame of type 0. (See
the remark just above Lemma 3.1.) Now, define a valuation W on
(M, <, R) by

W,s) =t TpeS,

for any propositional variable p and any S& M. Then we can show that
for any S&€M and any formula A



702 HIirRoAKIRA ONO

1) TAecS implies W(A4, S) =¢,

2) FAeS implies W(A,S) =£.
Hence S, is satisfiable. Thus we get the model existence theorem for
K, and G,. As a corollary, we have the completeness of K, (or Gy)
without cut, with respect to I frames of type 0. Combining this with

Theorem 2.1 and 3.2, we have the following theorem.

Theorem 3.3. Any sequent provable in the sequent calculus K,

(or G,) is provable without cut in K, (or G,, respectively).

We remark that A. Yamamoto proved this theorem syntactically.
Next, we show a connection between tpba’s and I frames. Let (M, <, R)
be an I frame of type J. A subset S of M is said to be closed if a €S
and a<{b implies &S. Let P, be the set of all closed subsets of M.
Then Py is a pseudo-Boolean algebra with respect to set operations. Note

that for every S, T € Py,
So>T ={a; for any b such that a<<b, be (M—-S)UT}
and
~S={a; for any b such that a<<b, b&S}.
Define an operation I on Py by
4) IS={a; for any b such that aRb, b S}.

It is easy to see that (Py, I) is a tpba. We can show also that (Py, 1)
is of type J. This can be proved quite similarly as only if part of
Theorem 3.2. Now we get the following theorem.

Theorem 3.4. Suppose that (M, <<, R) is an I frame of type J.
Let Py be the pseudo-Boolean algebra consisting of the set of all
closed subsets of M and I be an operation defined by (4). Then,
(P, I) is a tpba of type J such that for any formula A, A is valid
in (M,<<,R) if and only if A is valid in (Py, I).

Conversely, consider a construction of an I frame corresponding to

a given tpba. As in the case of pseudo-Boolean algebras, we can only



SOME INTUITIONISTIC MODAL LOGICS 703

prove a weaker result. Suppose that (P,I) is a tpba of type J. Let
My be the set of all prime filters of P. Clearly, Mp is partially ordered
by the set inclusion C. For any F in Mp, F; denotes the set {Ia;
IncF}. Now, define a binary relation R on M, by

) FRGeF,CG;.

Then we can show that (Mp, C,R) is an I frame of type J. Also,
this can be proved quite similarly as if part of Theorem 3. 2. We have

the following theorem (cf. [13]).

Theorem 3.5. Supposc that (P,I) is any ipba of type J. Let
Mp be the sct of all prime filters of P. Then the I frame (Mp, C, R),
where R is defined by (5), is of tvpe J. For any assignment f of
(P, 1), let W be a valuation on (Mp, &, R) such that W(p, F)=¢
< f(p) €F, for any propositional variable p. Then, for any formula
A, f(A) =1 if and only if A is valid in the I model (Mp, Z, R, W).

Furthermore, when P is finite, it holds that a formula is valid in
(P, 1) if and only if it is valid in (Mp, C, R).

We notice here that each I frame (M, <<, R) can be considered as
a Kripke frame of a bimodal logic. That is, R gives an interpretation
for a stronger necessity and <{ for a weaker necessity. Thus, we can
define bimodal logics corresponding to each type of I frames. For exam-
ple, as proved in [8], the bimodal logic S4-S4 is complete with respect
to I frames (of type 0). In other words, each IML can be embedded

into some bimodal logic by a standard traunslation.

§ 4. The Finite Model Property for IML’s

We prove in this section that every IML under consideration except
L, and Ly has the fAnite model property. By the finite model property
for an IML L, we mean that for any formula A not provable in L,
there is a finite tpba of type J in which A is not valid. By Theorems
3.4 and 3.5, this is equivalent to the condition that for any formula A
not provable in L,, there is a finite I frame of type J in which A is

not valid. The finite model property for L, is proved by Bull [2].
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We don’t know whether L; and Ly have the finite model property.

By modifying the proof of Theorem 3.2, we can prove the finite
model property for L,. Let A be any formula not provable in L,. Our
proof proceeds in the similar manner as the if part of Theorem 3. 2.
This time, we take the set of all subformulas of A for 0, instead of the
set of all formulas. Using this @, we define an I model (Ms, &, Rg,,
Ws,) in the same way as before. The I frame thus obtained is finite,
since @ is finite. Moreover we can show that this I model is of type
0 and that A is not valid in it. The method of proving the finite model
property by taking a finite set @ is developed by Schiitte [21] for the
intuitionistic propositional logic and by Sato [20] for some classical modal

logics.

Theorem 4.1. (Bull) L, has the finite model property and

hence is deciable.

To show the finite model property for L, we can use the filtration

method. But we give here a more direct proof suggested by Sato.

Theorem 4.2. L, has the finite model property and hence is
decidable.

Proof. Suppose that A is any formula not provable in L, and @
is the set of all subformulas of A. Let M be the set {I"'; (I',d) is
G-complete in @F. Clearly, M is finite. Define two binary relations
R and << on M by

I'RIN'sI' =I",,
and
I'<I"sI'RI" and I'CT".

Then it is clear that I'<<I"’ implies I'RI"’ and that (M, <, R) is an I
frame of type 4. A valuation W on (M, <, R) is defined by

W, I =tepel.

Then, we can prove that for any formula B in 0,
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W(B, )=t < BeI'.

To show this, it suffices to prove that
1) for any formula BDC in 0,
BoCel & for any I € M such that I'<I"”
either B&TI" or CeT,
2)  for any formula —B in 0,
—B& !l s for anv I’ M such that I'<<I",
B&l™”,
3) for any formula [JB in @,
(OBeIl < for any I'"& M such that I'RI",
Bel".
Suppose that BOCeJ and I'<I’. Then BDCe&I", since I'<I"’ im-
plies I'CI"”. Since G~ B,BDC—C, BEI" implies C=l"”. That is,
Be&I" or Cel"”. Conversely, suppose that BOCe&I'. We show that
(U AB}, (I'),U {C}) is G,consistent. Suppose otherwise. Then there
exist Ay, -, 4, in I and (O]D,, ---, 0D, in (I"*), such that

G4l——B, Aly "t Am_)DDI: Tty DDn5 C-
Then by using (—D2%*),
G4I_A1’ Ty Am"*DDla Tty DDm BoC.

But this contradicts to the G-consistency of (I°,1). Thus, (I"U{B},
(I"),UA{C}) is G,consistent. Then for some I"€M, I'U {B} I and
I, U{CrS (). Clearly, B€I” and Ce&I’. Moreover, I',=1I",
and 'CJ7”. Thus, I'<ST’. 2) and 3) can be shown similarly. Now,
since A&/’ for some I'eM, A is not valid in (M, <, R, W).

For other IML’s, the method used in Theorems 4.1 and 4.2 does
not work well. We show the finite model property for other IML’s by

using tpba’s.  Our method is a generalization of the one by Bull [2].

Theorem 4.3. L, has the finite model property and hence is
decidable.

Proof. Let A be a formula not provable in L;, By Theorem 2. 2,
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there is a tpba (P, I) of type 3 and an assignment f of (P, I) such that
Ff(A)=1. N, U and D denote join, meet and relative pseudo-comple-
ment in P. The greatest element and the least element in P are denoted
by 1 and 0, respectivelv. We enumerate the value of each subformula
of A by f as a,, **-,a,. For each nonempty subset U of {ai, ', an},
define an element U* by U*=54,U---Ub, if U={b,, -+, b;}. Now, let

S=1{0,1,a,, -, a,y U {IU*; U is a nonempty subset of {a,, ,an}}.

Let P, be the sublattice of P generated by the set S. Since Sis finite,
P, is also finite. For each x,y€ P, define x>y by

xDy= U {2;2€ Py and z<xDy}.

Then, x>y is also in P, and is the relative pseudo-complement of x in P,
with respect to y. Remark that if xDye P, for x,y&P, then x>y
=xDy. Furthermore, P, with the operation N, U, » and the least
element 0 constitutes a pseudo-Boolean algebra. We will show that for
any a€ P, Ia€ P,. Suppose that a= P,. Since P is a distributive lattice,
so is P,. Hence a can be represented in the conjunctive form. So, we

n k; n k
let a=iﬂ (Uby;), where each b;&S. Then, Ia=NI( Uib,-,-). It is suffi-
=1 j=1 i=1 j=1

ki

cient to show that I(Ub;) &P, Without a loss of generality, we may
=1

suppose that among &, ---, by,, elements b, -++, by, are open and others

are not. Then,

Il

ki h ks
ICU by) =I(U IbyU U by)
=1 Jj=1 j=h+1

C=

kg
Ib; UI( U byy)
j=1 F=h+1

(by v) in § 2, since (P, I) is of type 3)

[

r Iy
= U b,,,UI( U b,;j).
j=1 j=h+1

It is ob;rious that an element in S which is not open is among a, ***, @pn.
i ki
So, I(j U b5;) €S by the definition of S. Since &;, -+, by, and I( U b;;)
=h+1 j=h+1

k
are in S, I(ALiJlbfj) €P,. Let I, be the restriction of I to P,. It is easy
=
to see that (P, 1) is a tpba of type 3, since (P, I) is of type 3. Now
define an assignment g of (P, ;) by g(p) =f(p) if p is any propositional

variable appearing in the formula A. Then we can show that for any
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subformula B of A, ¢(B)=f(B). In particular, g(A) =f(A)=+£1L.
Thus, A is not valid in (P, L).

To show the finite model property for L, and L,,, we introduce two
IML’s containing > as primitive, which are extensions of L, and L,

respectively. Consider the following axioms concerning .
QO poOr,

2 OOr20p,

3 D@20 20200,

4 O@Va) > OrVOow),

B OpoOCP,

6 OOp>0p.

Let L, and Ly be IML’s obtained from L, and L, respectively,
by adding the above axioms. It can be easily verified that L, is equi-
valent to MIPC in [18].

Lemma 4.4. Ly, and Ls are conservative extensions of L, and
Ly, respectively. More precisely, any formula not containing > is
provable in L, (or Lg) if it is provable in Ly, (or Ls.).

Proof. Let (M,<,R, W) be an I model of type 2. We extend
W so that W(A, a) is defined also for any formula A containing .
Let us define W(CA, a) =¢ if and only if for some & such that a~d,
W(A,b) =t. We first contirmu that for each a. b M, if W(OA,a) =t
and a<(b then W(OA,b) =t. By W(COA,a) =1t there is some a’ such
that a~a’ and W(A,a’) =+ Since a~a’ implies a’Ra and a<{b implies
aRb, a’Rb holds by the transitivity of R. As (M, <<, R) is of type 2,
there exists an element &’ such that a’<<d’ and b6~0’. So, from a’<lb’
and the induction hypothesis it follows that W(A,d’) =¢ Hence
W(OA,b) =t

We say that the I model thus obtained is the {>-extension of (M,
<, R, W). It is easy to see that each axiom of L, (or Lg.) is valid
in the <{-extension of any I model of type 2 (or type 32). Hence,
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any formula provable in L, (or Ls:) is valid in the {O-extension of
any I model of type 2 (or type 32). Now, suppose that a formula A
not containing > is not provable in L, (or L;;). Then by Theorem 3. 2,
there is an I model of type 2 (or type 32) in which A is not valid.
Clearly, A is not valid also in its (-extension. Thus, A is not provable

in Ly (or Lg.).

A triple (P, 1,C) is a bi-topological pseudo-Boolean algebra (ab-
breviated as bi-tpba), if
1) (P,I) is a tpba,
2) C is a unary operation on P such that
i)  C(aUb) =CalUC(Cb,
i) a<Ca,
i) Ca=CCa,
iv) I(aDb)<Ca>DCbh,
v) Cla=]Ia,
vi) ICa=Ca.
We say that an element @ in P is open (or closed) in a bi-tpba
(P, I,C) if In=a (or Ca=a, respectively). By v) and vi), an element
is open if and only if it is closed. So, we say that an element is clopen,
if it is either open or closed. A bitpba (P, I,C) is said to of type 2,
if the set of all clopen elements in (P, I, C) constitutes a sub- (pseudo-
Boolean) algebra of P. A bitpba is said to be of type 32, if it is of
type 2 and I(laUb)<IaUIb holds in it. It is clear that if (P, I, C)
is of type 2 (or of type 32) then (P, I) is also of type 2 (or type 32).
Note that the condition iv) in the above definition is redundant, when
a bi-tpba under consideration is of type 2. An assignment f of a bi-tpba
(P, I,C) is an assignment of the tpba (P, I) with f(OA) =Cf(A) for
any formula A. Similarly as Theorem 2.2, we have the following theo-

rem.

Theorem 4.5. A formula is provable in L,. (or L) if and
only if it is walid in any bitpba of type 2 (or of type 32, re-
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spectively).

We show here that in any bi-tpba (P, I, C),
@) CanNCb=C(Canb)

holds for every a, b= P. By the condition i), d<<e implies Cd<<Ce for
every d,e. Using this, it follows that C(CaNb) <<CaNCbh. On the oth-
er hand, since CaNb<<C(CaNbd), Ca<(bDC(CaNb)). Then

Ca=ICa<<I(6>C(CaNb))
<Cb>CC(Canb)
—Cbh>C(Canb).

Thus, CaNCb<C(CaNbd). Now we show the finite model property for
L.

Theorem 4.6. L. has the finite model property and hence is
decidable.

Proof. Our proof proceeds similarly as the proof of Theorem 4. 3.
Let A be a formula not provable in Ly. Then there is a bitpba (P,
I,C) of type 32 and its assignment f such that f(A)=~1. Let a, -+, an
be values of each subformula of A by f. For any nonempty subset U
of {a,, -+, a,}, define Uy=b,N--Nb, if U={b, -+, b}. Let S=1{0,1,
a, oy any U{IU*; U is a nonempty subset of {a;, -, ant} U{CU,; U
is a nonempty subset of {a,, *,an}}. Let P, be the sublattice of P
generated by S. Then P, becomes a finite pseudo-Boolean algebra with
respect to N, U, D and 0. Moreover, we have that for any a in P,
Ia and Ca are also in P,, When we prove that Cae P,, we represent
the element a in the disjunctive form and use (7). Let I, and C, be
the restrictions of I and C, respectively, to P,. It remains to us to show
that the set of clopen elements in (P, ), C;) constitutes a subalgebra
of P,. It is sufficient to prove that for every clopen a,b=P, a™b is
also clopen, since other cases are obvious. By the definition of =, let
a>Db= Li,'z,-, where {z;}; is an enumeration of such an element g of P,

that z<<aD¥&. It is obvious that a©b<{UCz;. On the other hand, Cz;
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<<C(a>Db) =aDb for each j, since both @ and b are clopen in the bi-tpba
(P, I,C) of type 32. Thus, for each j Cz; must be in {2;};. Hence
UCz;<<a™®b. So,

i

an: U CzIZC( U z,-) :Cg( U :,').
i i i

Hence, a>b is clopen. So, similarly as the proof of Theorein 4.3, we

can show that A is not valid in (P,, L,, C,).

Corollary 4.7. Ly has the finite model property and hence is
decidable.

Proof. Let A be a formula not containing {, which is not provable
in L. Then A is not provable also in Ly, by Theorem 4. 4. By Theo-
rem 4.6, there exists a finite bi-tpba (P,, I,. C,;) of type 32 and its assign-
ment g such that g(A)=~£1. Then, (P, L) is a finite tpba of type 32.
Let & be an assignment of (P, I), which is obtained from ¢ by restricting

the domain of g to the set of formulas not containing {>. Then, clearly

h(A)#1.

Since a tpba (P,I) of type 2 does not always satisfy the condition
I(IaUb)<<IaU Ib, we must alter the above proof slightly to show the
finite model property for L,.

Theorem 4.8. L, has the finite model property and hence is
decidable.”

Proof. Let A be a formula not provable in L,. Then, there is
a bitpba (P, I,C) of type 2 and its assignment f such that f(A) 1.
Take the elements a,, -+, a,, as in the proof of Theorem 4.6. Let S

be the set defined by
S={0,1, a, -+, any U{CUy; U is a nonempty subset of {a,, ***, an}}.

The sublattice P, generated by S is a pseudo-Boolean algebra with respect

1) Bull showed in [1] that L, has the finite model property. But his proof seems to

contain a gap.
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to N, U, ® and 0. As Theorem 4.6, if a= P, then Cac P, Let
C, be the restriction of C to P,. Now define an operation I’ on P, by
Ia=UA{z:2€ Py, 2z is clopen in (P,1,C) and z<a}, for any ac P,
Since ZPO is finite and is closed with respect to the join, I’z is also in

P,, We show that (P,, I’, C,) is a bi-tpba of type 2. First we prove that
(P,, I'.C,) is a bi-tpba.

1) I'(aNb)y=Tanrlb.

It is obvious that I'(aN&)<<FaNT'b. Let I'a= Uz, and I'b= Uwy,,
where both =, and w, are clopen, z;<<a and w,<{b. I Then '

Fanrl'b= U 2N Uw;= U (2,Nw,).
i j L

Since =;Nw; is clopen and 2;Nw;<<aNb for each 7,j, U (z: Nwy) <
I'(and). Thus, I'aNIb<TI (anb).

2) Cl'a=1Ta.

Let I'a= L;}zi, where each z; is clopen and satisfies z;<a. Then

Cla=C(Uz)=UCgz;= U z;=Ta.
i i i

Other conditions are easily verified. It is easy to see that if an element
is clopen in (P,, I’, C,) then it is also clopen in (P, I,C). Using this,
we can show similarly as Theorem 4.6 that (P, I', () is of type 2.
Let g be an assignment of (P, I’, ) such that g(®) =f(p») for any
propositional variable p appearing in A. Then we have that g(A4) =f(A4)
=#1. Notice that Ia€ P, implies I'a=1I1a. Hence, A is not valid in (2,
I, Cy).

Now we can prove the following corollary quite similarly as Corol-
lary 4.7.

Corollary 4.9. L, has the finite model property and hence is
decidable.

Modifying the proof of Theorem 4.8, we can get another proof of
Theorem 4.1. In proving Corollaries 4.7 and 4.9, we have first shown

the finite model property for a conservative extension and then derived
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the finite model property for the IML under consideration. We have no
direct proofs at present. For L, and L,, we can define L, and Lg. by
adding the axioms from (1) to (6). Then we can also prove that both
L+ and Ly« have the finite model property. But we don’t know whether

they are conservative extension of L, and Ls, respectively.

§ 5. M Models

In this section, we will introduce another type of Kripke models,
called M models. A triple (M, R, P) is an M frame, if

1) M is a nonempty set,

2) R is a reflexive and transitive relation on M,

3) P is a non-degenerate k(M) <-complete pseudo-Boolean algebra,
where £(M) is the smallest cardinal which is greater than {b;aRb}
for any ac M. More precisely, for any subset {a,},cr of P such that
7=1<IC(M), there exist U @, and N @, in P.

teT ter

A valuation W on an M frame (M, R, P) is a mapping from the
direct product of the set formulas and the set M to the set P such that
for any ac M

1) W(AAB, a) =W(A4, a) N W(B, a),

2) W(AVB,a)=W(A, a) UW(B, a),

3) W(ADB,a)=W(A, a) DW(B, a),

4) W(A,a)=—-W(A4,a),

5) W(OA,a)= N W(A,Db).

aRb

In the above definition, N, U, D and —, which appear in the right side
of equations, denote lattice operations in P. A quadruple (M, R, P, W)
is an M model if (M, R, P) is an M frame and W is a valuation on it.
A formula A is valid in an M model (M, R, P, W) if W(A,a) =1 for
any a in M, where 1 is the greatest element of M. A is valid in an

M frame (M, R, P) if it is valid in an M model (M, R, P, W) for any

valuation W. We can verify the following lemma.

Lemma 5.1. Every formula provable in L, is valid in any M
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model.

Let us define an M frame of type J, where J=0, 2, 32.

0) Any M frame is of type O.

1) An M frame (M, R, P) is of type 2, if R is symmetric (and
hence is an equivalence relation).

2) An M frame (M, R, P) is of type 32, if it is of type 2 and
satisfies the following distributive law: For any subset {a,},cr of P
siuch that ’T‘(/c(]lfl) and for any element b of P,

@Y N (aqUub)< Na,Ub.
tET

tc’r

An A7 model (M, R, P, W) is said to be of type J if the M frame
(M, R, P) is of type J.

Lemma 5.2, For any M frame (M, R, P) of type 2 (or of type
32), there exists a set {(M;, R;, P)}; of M frames of type 2 (or of
type 32, respectively) such that

1) for any i and any x, ve M;, xRy,

2) a formula is wvalid in (M, R, P) if and only if it is valid in
any (M;, R;, P).

Proof. Let {M;}; be the set of all equivalence class determined by
the equivalence relation R. Let R; be the restriction of R to M;. Then

1) and 2) are easily verified.

As proved in Theorem 2.1, L, and L,, are equivalent to sequent
caleculi G, and Gy, respectively. Let G, be the sequent calculus obtained

from G, by adding the following rules of inference concerning .

A L—d4 Ay oA
(&) "<‘>‘A7_]::—A‘ ( <>) r=OA N

where 4 consists of at most one formula. In the application of (—)
rule, we impose the condition that both I and 4 are sequences of bi-
completely modalized formulas, where a formula is said to be bi-com-
pletely modalized if any occurrence of a propositional variable in it is

within the scope of a model operator (i.e. either [J or ). Let Gy
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be the sequent calculus obtained from G;, by adding the following rules of

inference.

A, I'—4 I'—4, A
S>p) SR i T (o) S A
< T)jl,FA(O)I’ 4 O

In this case, 4 may contain an arbitrary number of formulas. In the
application of ({—+), we also impose the same condition as that of

Gy+. Now we have the following theorem.

Theorem 5.3. L, (or Ly.) is equivalent to Gy (or Gy, re-

spectively).

Let LD be the sequent calculus obtained from L]’ by replacing the
rule (—V) by the rule

I'—4, A(a)
I'—4,vzA(x) ’

where a is a variable not appearing in the lower sequent (see [22]).
It is known that 1) LD is equivalent to the intuitionistic predicate logic
with the axiom schema Vx(A(x)VB) D (VxA(x)\/B), where x is a
variable not occurring free in B, and 2) LD is complete with respect to
Kripke models with a constant domain (see [7]). It seems that there
exist close connections between G,« and L] and between Gs and LD. For,
if we interprete [] and <> as the universal and the existential quantifier
and regard the condition of the bi-complete modalization as the variable
condition in the application of rules of Gy« and Gy, then we have the
corresponding systems LJ and LD. These connections are also found out
in the definition of I frames of type 2 or type 32. The set {b;a~b}
for any element a in an I frame corresponds to the domain attached to
a of a Kripke frame. Now, let us state these connections more precisely.
For any variable x we define a translation ¢, from the set of formulas
of modal propositional logics to the set of formulas of predicate logics.
First, we take a monadic predicate variable P(x) for each propositional

variable p. Then we define that

¢, (») =P(x) if p is a propositional variable,
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¢ (ANB) = ¢, (A) N (B),
¢ (AN B) = (A) V. (B),
¢ (ADB) =¢.(A) D.(B),
¢ (TA) =14 (4),
$-(OA) =vzd. (4),
¢ (OA) =322 (A).

It is well-known that a formula A is provable in S5 if and only if ¢, (A)
is provable in LK.

Theorem 5.4. 1) (Bull [3]) A formula A is provable in Gp
if and only if y,(A) is provable in LJ.

2) A formula A is provable in Gy if and only if ¢,(A) is
provable in LD.

Proof of 2). We prove 2) in the same way as [3]. Only if part
is obvious. We first replace every occurrence of ¢(¢#) by a constant V,
in the definition of Kripke’s semantic tableaux [12]. Then we replace
the rule II, by the following IT.*.

II.* If vxA(x) appears on the right of a tableau ¢, and vy is
the alphabetically earliest wvariable which has not yet appeared in
any tablean of any alternative set at this stage, put ySV and put
A(y) on the right of t.

Then we can show that the following three conditions are equivalent.

1) The construction for A thus modified is closed.

2) A is valid in any Kripke model with a constant domain.

3) A is provable in LD.

Now, using the normal construction as [3], we have our theorem.

It should be remarked that G, is not cut-free, while L] is cut-free.
This remark can also apply to the sequent calculus S5 in [15] and LK.
But as Kanger did for S5 in [10], we can construct a cut-free system
for L,. by using Theorem 5. 4.

Next we show the completeness theorem with respect to M models.



716 HIROAKIRA ONO

Lemma 5.5. For any formula A, A is valid in any M model
of type 2 if and only if ¢,(A) is provable in LJ.

Proof. We first notice that A is valid in any M model of type 2
if and only if [JA is valid in any M model of type 2 and that for any
formula B of predicate logics, B is provable in LJ if and only if any
universal closure of B is provable in LJ. So, it is sufficient to prove
the lemma for the case where A is of the form []B, since ¢, ([(1B)
=vxd,(B). Now suppose that ¢,(A) is not provable in LJ. Then,
there exists a pseudo-Boolean frame (P, V) consisting of a complete
pseudo-Boolean algebra P and a domain V such that for some assignment f
F(P,(A))==1 in (P, V). (See [19]. In [16], a pseudo-Boolean frame
is called as a pseudo-Boolean model.) Let R be a relation on V such
that vRw holds for every v, we V. Then, (V, R, P) is an M frame of
type 2. Define a valuation W on (V, R, P) by W(p,v) =f(P(®@)) for
any propositional variable p and any v& V, where ¥ denotes the name
of v. Then it is easily seen that for any formula C of modal logics,
W(C, v) =f(S;*¢,(C)), where S;° means the substitution of ¥ for any
free occurrence of a variable x. Then for any veV, W(4,v)=
F(SFP. (A)) =f (¢, (A)) 1, since ¢, (A) (=Vx¢,(B)) is a closed formula
by our assumption. Hence A is not valid in (V, R, P, W). Conversely,
suppose that A is not valid in an M model (M, R, P, W) of type 2.
By Lemma 5.2, we can assume that xRy holds for any x,ye M. In
this case, £(M)<-completeness of P means ﬁcompleteness. So, (P, M)
is a pseudo-Boolean frame for LJ. Define an assignment f of (P, M)
by f(P(@)) =W(p,v) for any propositional variable p and any v M.
Then, as the above, we have f(¢,(A)) =W(A,v) for any veM. So,
f($.(A))=~1 by the assumption. Hence, ¢,(A) is not provable in LJ.

Lemma 5.6. For any formula A, A is valid in any M model
of type 32 if and only if $,(A) is provable in LD.

This lemma can be proved similarly as Lemma 5.5. In the proof,
we use the completeness theorem of LD with respect to complete pseudo-

Boolean frames satisfying (1) (see [7]).
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Theorem 5.7. A formula is provable in L,(or Ls,) if and only
if it is valid in any M model of type 2 (or type 32, respectively).

Proof. By Lemma 5.5 (or 5.6), a formula A is valid in any M
model of type 2 (or type 32) if and only if ¢,(A) is provable in L]
(or LD). Then by Theorems 5.3 and 5.4, this is equivalent to the
condition that A is provable in L, (or Lss). By Lemma 4.4, this is

also equivalent to the condition that A is provable in L, (or Lg,).

Now, recall the condition (1). If the set T is finite then (1) holds
always. Thus, any formula provable in Lg is valid in any M model
(M, R, P, W) of type 2 with a finite set M. Moreover, the following

lemma holds.

Lemma 5.8. Let (M,R,P) be any M frame. If either A, or
A, is valid in (M, R, P) then R is symmetric.

Proof. Suppose that A; (i.e., "1[JpD[J[Jp) is valid in (M, R, P)
and that R is not symmetric. Then there are a,b& M such that aRb
but not bRa. Let S and T be subsets of M defined by

S={x;aRx but not xRa},
T={x;aRx and xRa}.

Then for any x such that aRx, either x&S or x&T. Since b&.S and
acT, both S and T are not empty. Define a valuation W on (M, R, P)
by

1 if z€S8,

W(p, x) =
D=0 it zeT.

Since a=T and aRa, Q W, 2) <W(®,a) =0. Thus, W(—[1p,a)
=— N W(,x)=1. On the other hand,

aRz

w{@O—Opa)= N — N W(,y)
aRx zRy

=(N =—NWe,y)N(N —nN We).
resS TRy zeTl TRy
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It is easy to see that if x&.S and xRy then y&S. So,

N —NWe,y=Nn—-1=0.
res

reES zRy
Thus W([J—p,a) =0. Hence W(—[DpDJ—p, a) =0. But this
contradicts the assumption. Hence R is symmetric. The case where A4,

is valid in (M, R, P) can be treated similarly.

Using the above lemma, we have the following theorem (cf. Corol-
lary 4.9.). Here we say that an IML L is characterized by a set of
A frames ({M;, R;. p:;)}: if it holds that for any formula A, A is prov-
able in L if and only if A is valid in any (M, R;, P;).

Theorem 5.9. L, can not be characterized by any set of M
frames (M, R, P), where each M is finite. Hence, L, has not the
finite model property with respect to M frames.

Similarly, we can answer the question presented by Bull in [1]

negatively.

Theorem 5.10. L., can not be characterized by any set of M
frames (M, R, P), where each M is finite. Hence, Ly, has not the
finite model property with respect to M frames.

Proof. Let A be the formula [J——p>——1[Jp. We show first
that A is not provable in L;. Define an I model (M, <<* R, W) as

follows;
1) DMl is the set NX N, where N is the set of natural numbers,

2) for every i, j, m. neN,
(i, md<*{j,n) = i<j and m=n,
and
G, myR{j, n) & i<j,
3) for every i,meN,

W, {i,m)) =t ©i>m.
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Clearly, the I model thus defined is of type 32. Moreover, we can show
that W(A4,<0,0>) =f. Thus, A is not provable in Ly, by Theorem 3. 2.
Next we show that A is valid in any M frame (M, R, P) with a finite
set M, in which axioms of Ly, are valid. By Lemma 5. 8, R is symmetric.
By Lemma 5. 2, we can also assume that for every x,ve& M, xRy holds.
Let W be any valuation on (A, R, P). Then for any a€ M,

W(A, a) =( QM— —W(p,x)) D(—— ﬂvTV(p, x)).

We write «,. for W(p.2). We show by induction on the number 2 of

elements in A/ that

(2) N ——u,<—— Nun,.
reM reM

Clearly (2) holds if 2=1. Consider the case where n=F+1. Let AL

=M—{a) and w= N u,. Since M =k<n, by using the induction hy-

T=M’
pothesis,
N ——u,= N ——u,N ——u,
reM Ti_M’
<—— Nu,N——u,
&M
=——w ——u,.

On the other hand,
w N (i, N — (wNuy)) =(wNu,) N — (wNu,)<<0.
Thus, #,N — (wNu,)<<—w. This implies that
U, N —(wNu,) N ——w<<0.
So, —(wNi) N — —w<—1u, and hence
—(wNu,) N — —wN — —u,<<0.

Thus, N ——u,<—-—wn ——y4,
TEM

<——(wNu,)=—— N u,.

reM

Hence W(A,a) =1 for any a€ M. Therefore, A is valid in any M
frame (M, R, P) with a finite set M. Thus, Li, can not be characterized
by any set of M frames (M, R, P) with a finite set M.
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Using Lemma 5. 8, we prove that other IML’s except L, are incom-

plete with respect to M frames.

Theorem 5.11. Any one of L,, Ly and Ly is not complete with
respect to any set of M frames.

Proof. Let L be any one of L;, L; and L,. Suppose that L is
characterized by a set of M frames {(M;, R;, P;)};. Since either A; or
A is provable in L, each R; is symmetric by Lemma 5.8. Then each
(M;, R;, P;) is of type 2 and hence L must be equal to or stronger
than L, by Theorem 5.7. But this contradicts the inclusion relationship

mentioned in § 2.

Theorem 5.12. L, is not complete with respect to any set of
M frames.

Proof. Suppose that L, is characterized by a set of M frames {(M,
R;, P))};. Since A, is provable in L,, each R;is symmetric. Moreover,
by using Lemma 5. 2, we can assume that for each i, xR;y holds for
every x,yE M;. Now for a fixed ¢ take any element z# in P;. Define
a valuation W; on (M;, R;, P;) by W;(p,a) =u for any a= M,. Then,

Wi(CpVO—0Op, a)
=N W;(p,b)u N —
aR b aRd

aQ_cW'i(P, )
=ulU —u.
Since [JpV [J—1[Jp is provable in L,
Wi (OpV O 0Op,a) =uU —u=1.

This means that each P; is a Boolean algebra. Thus, A\/—A is valid
in any (M, R;, P;) and hence is provable in L,. But this is a contradic-

tion.

We don’t know whether L, is complete with respect to M frames

of type 0 or not.

Finally, we remark a connection between M frames and tpba’s. Let
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(M, R, P) be an M frame. Then the set P" of all functions from A{
to P constitutes a pseudo-Boolean algebra. More precisely, for any f, ¢
in P¥ define fNg, fUg and fDOg by

Ny (a) =f(a) Ng(a),

(fUg (@) =f(a) Ug(a),

(fo9) (@) =f(a) Dg(a)
for any ac= M. Let 0 be s function in P¥ such that 0(a) =05 for any
ae M, where 0p is the least element of P. Then P¥ with N, U, D

and 0 is a pseudo-Boolean algebra. Next, define a unary operation I
on P¥ by

s @ = 0 (f®))

for any ac M. Then (P, I;) becomes a tpba. Now suppose that for
any propositional variable » and any a& M, it holds that W(p, a)
=@ (p) (@), where W is a valuation on (M, R, P) and ¢ is an assignment
of (P", I;). Then we can show that for any formula A, W(A4, a)
=¢(A) (a). From this it follows that for any formula A, A is valid
in (M, R, P) if and only if A is valid in (P, I,).
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