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A Finite Element Method for Solving the Two Phase
Stefan Problem in One Space Dimension1'

By

Masatake MORI*

Abstract

A finite element method based on time dependent basis functions is presented for solv-
ing a two phase Stefan problem for the heat equation in one space dimension. The stability
and the convergence of the method are studied, and a numerical example is given.

§ I, A Two Phase Stefan Problem In

One Space Dimension

This paper is concerned with a finite element solution of the follow-

ing two phase Stefan problem in one space dimension for the heat equa-

tion. Given the data Qi(t), Qz (f) , f\ (x) , f2 (x) and b, find functions

U i ( x 9 f ) 9 u2(x9t) and x = s(t) in 0<.r<L, 0<*^T, such that

a.
dt 9-r2

s(t)<x<L, 0-O^

(1.2)
» . ( L , t ) = g . ( t ) ,

(1.3) .s(0) = £, 0 , b L,

(1.4)
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(1.5) ^=-Kl^(s(t),t)+ict^(sW9t)
at ox ox

where (Tl9 (T2, £1, /C2 and L are positive constants, and T is an arbitrarily

fixed positive number. The last equation (1. 5) expresses the heat

balance and is called the Stefan condition. This condition (1. 5) gives

the speed of propagation of the free boundary. Specifically, the functions

Hi and uz may be interpreted as the temperature of the water existing in

0<.r<OCO and that of the ice existing in s(f)<^x<^L, respectively,

which contact at the front x = s(f) with each other.

For the moment we assume an appropriate smoothness for gl9 gz, f\

and f29 and we make the following four assumptions for these Stefan

data. First we assume that the initial data are bounded by quadratic

functions both from above and from below:

Assumption A8 There exist positive constants A/, A2\ BI and B2'

such that

(1.6)

b

A , -< f ( } < B,(L-x
~A* -M}~~ 2

b<Lx<^L.

For the boundary data we make

Assumption B, There exist positive constants A^'', J3/'\ A<? and

B" such that

(1.7)

Set

Al = max (A,', A,"), B, = mm (B,', B,"),
(1.8)

A, = max (A/, A,"), B2 = min (£/, 5,*),

and define
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a q\ h — ICiBi j fc — &iAi T. y; om -- - - —-L, , OM — — - - —-LI .

We shall show later that bm and bM are a lower bound and an upper

bound of s ( f ) , respectively. For the initial position b of the free

boundary we make

Assumption C.

(1. 10)

Next we define

li B2( + __ _

(1.11)
2

r_ =
L

and set

(1.12) r

and

(1. 13) fj = max

Then finally we make

Assumption D,

From Assumptions A and B it is obvious that

(1.15) 3B,<A19 3B2<A29

so that from (1. 11) we have /+>0 and 7_>0. As we will see later

the physical meaning of f+ and 7 '_ would be more evident if we rewrite

(1. 11) equivalently as

a ia\ ~> _ 2/CiAj 2K2B2 __ 2&2A2 2tCiBi
.10; j+ -- - --- - — , T- — — - - •
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In the preceding paper [7] we proposed a finite element scheme

for solving the one phase problem and discussed the stability and the

convergence of the scheme assuming that the initial data is bounded by

a linear function from above. In the one phase problem the free boundary

function s(t) is monotone with respect to t, while in the two phase

problem s(/) is not monotone in general, so that we need quadratic or

some other kind of functions as the bounding functions of the initial

data in order that the maximum principle holds with our scheme. Cannon

and Primicerio [2, 3] proved the existence and the uniqueness of the

solution of (1. !)-(!. 5) assuming that the initial data are bounded b}-

exponential functions under a similar assumption as Assumption D,

Various numerical methods have been presented for solving the one

phase Stefan problem in one space dimension. See, for example, Douglas

and Gallie [4], Meyer [6], Bonnerot and Jamet [1], Nogi [10], Kawarada

and Natori [5] and Mori [7]. See also Mori [8] for the numerical

solution of the Stefan problem in two space dimension.

The purpose of the pre-

sent paper is to present a finite AI

element method for solving
3B!

(1. !)-(!. 5), and to discuss

the stability and the conver-

gence of the method.

Before proceeding to the

numerical method, we shall

give here some remarks on

the quantities bm, bM9 f+ and
T?- . i • .1, j w<*)\ J\\|_3B,f_. rirst we claim that under

Assumptions A, B, C and D "*H -A,

the solutions u^ and uz of (1.1)-
Fig. i.

(1. 5) are always bounded by

quadratic functions as follows (see Fig. 1) provided that \ds/dt\<f:

( V(x)<u1(x9t)<W(x')9 0<x<(i), 0</
(1. 17) \

where
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(1.18) W(x) =

(1.19)

The mathematical tool which can be used in order to prove these in-

equalities is the maximum principle. We shall show here only the

inequality

(1. 20) W (x) = A, l - - >«, (x, f) , 0<x<s (0 .

Define

(1. 21) d, (x, 0 ̂  A, jl - -^4 - Ul (x, 0 ,

then, if \ds/dt\<f, we have

/ /5 ^2 \ (ft ftZ \ 2

(1. 22) _ff * U(x, 0 = - A j - - f f A -z 2 *

^ffis(t) dt

2Aiff1

ds l

ff,

by (1. 12) and (1. 13), so that from Assumption D

(1. 23)

Therefore, we obtain (1. 20) using the maximum principle in view of

Assumption A, the boundary condition (1. 2) and Assumption B. The

other three inequalities in (1. 17) can be proved in a similar way.

If we assume that the derivatives of HI and u2 at x = s(t) exist (cf.

[2]), then from (1.17) we have
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f

s(t) — dx ' s(t)
(1. 24)

2A,

so that from (1. 5)

(1.25) 2/t^Ax _ 2fc2B2 -> ds ^
s(t) L — s(f) = dt = \^ —5^; 5W /

^5The bounding function 2£1A1/s(0 — 2lc2B2/(L — s(*)) which bounds
dt

from above is nothing but the difference between the gradient of W(x)

at x — s(t) — 0 and that of V(x) at x = s(t) + 0, and it decreases as the

free boundary moves to the right, i.e. as s(t) increases. It vanishes

when the free boundary reaches the point s(t) — bM defined by (1.9),

and hence we see that the free boundary s(f) can never go rightwards

beyond the point x = bM. Similarly s(t) can never go leftwards beyond

the point x = bm defined by (1.9). Hence we have

(1.26) bm<s(£)<bM.

On the other hand, the bounding function 2^A^/s (t) — 2fC2B2/ (L — s (t) )

bounding from above attains its maximum value y+ defined by
dt

(1.16) at s(t)=bm, and the function - {2/C2A2/ (L - s (t} ) - 2ic1B1/s (t) }

bounding from below attains its minimum value — f_ defined by
dt

(1.16) at s(£) =bM9 so that, as long as we assume (1.17), we have

(1.27) - r - ^ r + or
dt

_
dt

In § 3 we shall show in a more consistent way that our finite element

solutions also satisfy inequalities similar to (1. 17) and (1. 27).

§ 2. Application of the Finite Element Method

In this section we shall give a finite element scheme for solving

(1.1)-(1.5) approximately. We write the approximate boundary func-

tion as sn(t) in order to show explicitly that it is an approximation of
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First we fix time t^>0, and divide the whole domain 0<x<L into

two subdomains A and D2 separated by the free boundary x = sn(t):

\ D1={x
(2. 1)

( Dl={x

Then we partition Dl and D2 into nl equal and 7?2 equal subintervals,

respectively, and hence the free boundary x — sn(t) always coincides with

a mesh point. The numbers of partition n^ and ??2 are fixed throughout

computation. Although each of D^ and D2 might be partitioned using

a non-uniform mesh, we employed the equi-distant partition for simplicity.

We denote each mesh point as Xj .

(2.2)

.7=0,1, • • - , ? ? , ;

In the usual finite element method the mesh points are always fixed as

t varies, while in the present problem they change with time t.

We construct piecewise linear basis functions {<l>j(x,f)} as shown

in Fig. 2:

(2.3) ^

otherwise.
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For 0o and <f)ni+nz we employ the components of (2. 3) in 0<.r<.r1 and

^»1+na-i<C-^^A respectively. Note that the basis function (j>j(x,t) is

time-dependent because x$ depends on time t. See [7] for the deriva-

tives of (pj (x91) with respect to x and t.

Now we apply the Galerkin method based on the basis functions

constructed above. We expand the approximate solutions tll and u2 of

(1. !)-(!. 5) in terms of linear combinations of $j(x9tys:

(2.4)

where from (1. 2)

}
[ «,(0=ffi(0, ««,+». (0 = 0t (0

(2. 5)
I a., (0=0.

If we substitute (2.4) into (1.1), multiply <j>t(x,f), z = l, 2, •••,nl — \,

»!+!, • • • , Wi + Wj — 1, and integrate over 0<^:<L, then we have the follow-

ing system of ordinary differential equations:

at
(2.6)

where

(2.7)

and Afl5 A/2 are mass matrices, Kly K2 are stiffness matrices, and Nly Nz

are velocity matrices [7]. We note that the matrices Mlf K^9 N! are of

(H! - 1) X (X + 1) and M2, K2) N2 are of («2 - 1) X (wz -f- 1) .

If we use the basis functions

(2.8)

otherwise
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instead of <^ (.r, t) in the computation of the mass matrices, we have

equations for the lumped mass system, while the equations obtained

using 0y (xy t} 's are for the consistent mass system.

The explicit forms of Mv, Kv, Nv (v = l, 2) are as follows:

Lumped Mass System:

( hv- j=i, v = l,2,
(2.9)

( 0; otherwise ,

(2.10)

h, '

2

0; otherwise,

(2.11)

0; otherwise,

(2.12)

\y V/*l I '"2 »J I ^J , ?

6^2 #£

3^2 dt

0; otherwise.

Consistent Mass System:

We have only to replace the mass matrices by the following ones:

(2.13)

l_t

G '

2
3

-vj ^ ' j — > — 7

0; otherwise.

In the next step we discretize the time t using an equal time mesh
At:
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(2.14) t
w

and replace the time derivatives of a\ and a2 by the time differences:

(2 15) da» ~ a" &**} -***((£- 1) 4*) v = 1 2
<fc ' J* ' '

Then we have simultaneous algebraic linear equations from (2. 6) .

Similarly we make an approximation

(2. 16)
dt 'At

where Asn is the increment of sn(t) from t=(k — Y)At to t = kAt. We

compute Asn by replacing the gradients of HI and u2 at x — s(t) by those

of #! and w2 at x = sn(f) in the right hand side of (1.5). Although

the functions {uly u2, sn (t) } should be computed simultanously and con-

sistently, we employ an approximation such that we compute {ulf u2}

and sn(t) alternatively.

We summarize here the whole procedure obtained. We introduce

a parameter d with 0<0<1, which denotes the mixing ratio of the

forward difference (6 = 0) and the backward one (d = T) in the discretiza-

tion of the time derivative.

Initial Routine:

(2. 17)

(2.18) ^»(0)=i.

General Routine;

Repeat the following process for k = l929'-9m.

(i) Compute Asn(kAt) and sn(k£t} using ay((£-l) J*) and ^B ((*-!) At)

by means of

(2. 19)
*„((*-!) JO L-*,.(

(2. 20) 5n (A JO = s, ( (A - 1) JO + J*. (A JO -
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(ii) Compute MV9 Kv, Nv,v = l,2 using Asn(kAt) and sn(kAt) .

(m) Solve the following linear equations for ai(kAt) and a,2(kAt) :

(2. 21) {Mv -\-6At (GVKV + AQ } av (kAt)

§ 3. Stability

In this section we consider the stability of the scheme (2. 17) -

(2. 21) obtained in § 2. Here we shall confine ourselves to the case of

the lumped mass system, while the stability of the scheme of the con-

sistent mass system will be referred to at the end of this section.

In order to simplify the description we introduce

,
(L-sn(kAt)Y

and

(3.2)

When the argument is kAt, it may be omitted. AI and /L2 correspond to

the parameter h = 6At/h, where h is the space mesh size, appearing in

the finite difference or in the finite element method for the usual heat

equation. In the present case, since hi and h2 are time dependent, ^

and A2 also depend on t.

We define here two linear discrete operators Pl and P2:

(3.3) P1(kJ)wt^-

$+1- (i-e) - -
o
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(3.4) Pt(k,f)W*,= -

ll-2(l -(?)(*, -!&)[«;$-'
* \ O / /

»,-.;— -
O

If we write

(3.5) a*j

then the scheme (2. 21) is expressed simply as

f ^(4,^)^ = 0, j= 1,2,- ..,»!-!, * = l,2,-,m,
(3. 6)

In addition to the assumptions for the Stefan data given in § 1, we

make two assumptions for the choice of the parameters nl9 nz and At.

We set

(3. 7)

Assumption E.

(3.8)

Next writing

/o n\ 5 M Gl^l At j 5 M\o. \y) AI ̂  and A2 ^~

we make
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Assumption F (lumped mass system).

1
2(1-6) = \ \ 6^2/ \ 6n

We shall see later that bn<sn(kAt)<bjt, so that If and 12
M are the

upper bounds of AI and A2, respectively.

Note that, Assumption E becomes trivial as j£->0 and nly n2— >oo

while Assumption F remains essential except when 0 = 1.

The aim of the present section is to establish the stability theorem,

which will be obtained as a byproduct of the proof of the following

finite element analogue of (1.17) (see Fig. 1):

(3.11)

<a, (xt> kAf) < A, l -

.7 = 0,1, •••«!,

We shall prove these inequalities by induction with respect to k, and

for that purpose we need the following five lemmas.

Lemma 1. If

(3. 12)

(3.13)

(3.14)
Zn

Proof. Suppose we have dsn(ldt)>0 when we compute the right

hand side of (2. 19) . Then from (2. 19) , (3. 12) and (3. 13) we have
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At = sn((l-r)At)\ 2n L-sn((l-I)At)\ 2n2

2K2B2

2n L-bm\ 2n
+

bm L-b\ 2 n 1 - \ 2n

We can prove the left inequality of (3. 14) in the same way supposing

that 4sn(Ut)<0. Q.E.D.

Lemma 2« Under Assumption E,

(3.15) | 2K2A2 2
^ J \(L-bmy
(3.16) bx-

Proof. If we substitute the explicit forms of bm, bM, f- an^ T+ i

the above four inequalities, they are expressed equivalently as follows

in that order:

(3 17^ u22 ~H /UI-QI) Af<T2 C^i^-i "

(3. 18)

It is evident from Assumption E that all these inequalities are

valid. Q.E.D.

Lemma 3« Under the same hypothesis of Lemma 1 and under

Assumption E,

(3.19) bm<sn(lAt)^bM.

Proof. Since

(3. 20) - r-At<*Asn (lAt) <^f+.At
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from Lemma 1, the increment of sn never exceeds 7 '+At or )'_j£ at each

step. When Asn(lA£)>^ we suppose sn((l- 1) At) <LbM-d, 0<^d<^r+4t

in view of (3.20) and prove that sn(lA£)<J?M, while when Asn(lAi)<f),

we suppose bm + d<,sn((l— 1) At) , 0<3<;r_j£ and prove that bm<^sn(lAi) .

First assume that Jsn(7j£) >0. Suppose that

(3.21) sn((l-

where bm<^bM — S because of (3.16). Define an auxiliary function

(3.22) f+(g)
w — 0 L — fttf +

Then it is obvious from (2. 19) in view of (3. 21) and (3. 12) that

(3.23) O^Js^JO^FV(o),

so that, if F^(o)<,8, then

(3. 24) ^ (Uf) = 5n ( (/- 1) JO + Asn (lAf) ^sn ( (/- 1) JO + F+ (ff)

from (3. 21). So what we need is to show that F+ (5) ̂ 8. It is easy

to see that F+(d)<^8 follows from

(3. 25)
dS

and

(3.26) F+G

If we write (3. 25) explicitly using (3. 22), we have

/Q fJ'~7\ I «A/ixii(3*27) { / / +

which is guaranteed by (3.15). The inequality (3.26), on the other

hand, can be shown to hold as follows using (3.16) and (1.16):

(3. 28) F+(r+At) = (- 2KlAl ?^ \At

which verifies F+ (d) <^8.
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When Asn(lAt)<£), we define

(3. 29) F_ (8) -
L-bm-S £m +

Then bn<,sn(lAt) can be derived from ^m + ̂ ^((/-l) JO, 0^0^r_J*

in the same way as given above. Q.E.D.

Lemma 4 (Lumped mass system). Under the same hypothesis of

Lemma 1 and under Assumptions D and F,

(3. 30)
-0) = 'v ' 31

1

A (*JO ̂ *il A

Proof. We begin with the first inequality.

2(1-6} 3 2(1-6) 6s,,2 ff,

>> - _^ M _| -- ) (from Assumption D)
= 2(1-0)

>0 (from Assumption F).=^ JT /

The second inequality can be proved as follows.

(3.32) A1 + l/?1

The other inequalities can also be proved in a similar way. Q.E.D8

Finally using Lemma 4, we have the following local maximum

principle for the present scheme, the proof of which is exactly the same

as that of Lemma 1 in the preceding paper [7].
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Lemma 5 (lumped mass system). If (3.30) holds for l = k and

if

(3.33) pkj>Q9 J=l, 2, • • • , T Z i — 1 , 7*!+l, •", TZi + 722—1,

then the following maximum principle holds for the scheme

\=p"it ./=1, 2,-•.,»!-!,
(3. 34)

locally at k:

/o o cr\ * ((o. GO) mm^

J= 0,1, ..-,»!,

(3. 36)

min.2= min

Now we are ready to verify the inequalities (3. 11). We introduce

the following quantities for simplicity.

^i|l--^-K J=Q> 1» ' • • > " ' >
~ I HI* )

(3.38) Wj^l
Ho~1 J=nl9'-9n1 + n2.

(3.39)

Lemma 6 (Lumped mass system). Under Assumptions A, B9 C9

D9 E and F9 the folio-wing inequalities hold for £ = 0, 1, • • • , m.

(3. 40)
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(3.41) W^a^Vj, j=nlt -,», + »„

(3.42) bm^

Proof. We shall prove this lemma by induction with respect to k.

When k = Q, (3.40) and (3.41) are nothing but (1.6) of Assump-

tion A, and (3. 42) is (1. 10) of Assumption C.

Suppose that (3.40), (3,41) and (3.42) hold for £ = /-!. If we

put j=ni — 1 in (3.40) and j= ^ + 1 in (3.41), we have

(3. 43) 21
2n,

(3. 44) 2B2 (1 + —?—) <; - w2ai7i1^2A2 (1 - -
2;z2

From these inequalities together with (3. 42), we see that the hypothesis

of Lemma 1 holds. Then, since the hypothesis of Lemma 3 also holds,

we immediately see that (3.42) is valid for k — I. Next we define the

difference between Wj and aj, i.e.

(3.45) dlj=Wj-alj,

and prove that ^j^O, i.e. the second inequality in (3. 40), by using Lemma

5. The hypothesis of Lemma 4 holds, so that (3. 30) is valid. In order

to use Lemma 5, we need to show that P\(l,j)dl
j=p}>$, which cor-

responds to (3. 33). The inequality pj>0 can be proved as follows from

Assumption D:

(3. 46) P, (I, j) d] = P, (I, f) (W, - a j) = P, (I, j) W, ( =/,j)

_ _ A^L&iAl H i

6 / ff^t

ffl I At

j=l,2,..-,n1-l.

In view of the boundary condition
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(3.47)

from Assumption B, we have W j^La} by Lemma 5.

The other three inequalities can also be verified in the same way

with the aid of the following three inequalities:

l(l,j}(a\-Vj)>Q, j= 1,2,.- •,»,-!,

(3. 48) P2 (/, j) (a1, - W^ >0 , j = >», + 1, • • • , », + «2 - 1 ,

l. Q.E.D.

Lemma 6 asserts that, under Assumptions A, B, Cs D3 E and F, the

maximum principle in the sense of Lemma 5 holds for the present

scheme (3.6) locally at each k = l929--9m9 so that for stability we have

Theorem 1 (lumped mass system). U?ider Assumptions A, B9 C9

D, E and F, the scheme

(3.49)

is stable in the sense that the following maximum principle holds

locally at k = ~L929--9m:

(3.50) = ' =

min(a^ H n 2 , a^i2) rS^S^O, j=n1-i-~L9 • • • , 721 + 7Z2 —1.

Theorem 1 can be shown to hold also for the scheme of the con-

sistent mass system

(3. 51)

4-12 (i-0) u+iAU;-1
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.7=1, 2, •••,»!- 1; k = l,2,---,m,

(3.52) i _ 6 0 - + «2-j + lklL*_1+ 4 + 12 A2 -!

{4 -12 (i-
I

if we replace Assumption F by the following one. We define here

(3. 53) A™^ > Af1^ .

Assumption F (consistent mass system).

(3. 54)

(3-55)

3(1-0)

_ 1
3(1-0)

It is easy to see that for k = Q9!i9--9m

(3. 56)

§ 4» Convergence

In this section we shall show that the approximate solution {uly u2, sn}

converges to the solution {ul9 uz, s} of (1. !)-(!. 5) uniformly as j£-»0.
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For simplicity we shall confine ourselves to the case of the lumped

mass system with 0 — 1, i.e.

(4.1)

;+i = fl*-1, .7=1,2,

Now we make two assumptions for the limit J/-»0, ;? l5??2—>oo and

for the smoothness of the initial and the boundary data.

Assumption G.

in GiT&AtX* = —£_i— = constant,

(4.2) |
5j|f (5^7^AtAa == — constant.

Assumption EL

(4. 3) /!, /2 e C2 (x), gf l f g2 e C1 (^).

' Qi (0)=/!(0), -5̂ 1. (0=^^4(0),

(4.4)
V* (0) =/, (0) , -L. (0) = ffr- (L) .

We extend the approximate solutions {ul9 u2, Sn(f)} which are defined

only at the discrete points t — kAt to those defined also at the inter-

mediate values of t, i.e. kAt<^t<,(k-\-Y) At, as follows. First we define

sn(t) by means of the linear interpolation

(4. 5) sn (0 - sn (kAf) + a Asn ( (k + 1) JO , kAt<t<, (k + 1) J* ,
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where

t-kAt(4.6)
At

Accordingly, 0y (x, t) is also defined for any ta Next we extend as (t)

again by means of the linear interpolation based on a$ (kAt) and

aj((k-4-l) At) . Once a5(f) is extended, then Ui(x9 1} and u2(x9t) are

defined by (2.4). Note that the value of &i(x9f) at ./AiO^O'H- l)&i

is equal to that of the linear interpolation based on a5(f) and a j + l ( f ) .

In regard to the extended { s n ( t ) } , we have

Lemma 7. TAe functions {sn(t)\ form an equicontinuous uniformly

bounded family in 0<^

Proof. From Lemmas 6 and 3, we have bm<,sn(kAt)<LbM, k = Q 9 I ,

• • • , r a , so that by the definition (4.5) of sn(t) we see that sn(t) are

uniformly bounded. Similarly from Lemmas 6 and 1, we have

(4.7) \Asn(kAt)\^rAt, k = l,29-,m.

This inequality together with (4.5) implies the equicontinuity of {

Q.E.D.

According to this lemma, we can extract a subsequence from {sn(t)}

which converges. Namely, if we write this subsequence as {sn(t)} anew,

and if we let the limit function be Soo(0» then for any £>0 we have

(4.8) |*.(0-*-(OI<e

for sufficiently large n.

In the next step we regard the boundary function s(t) to be the

given function $„(£), which is uniformly Lipschitz continuous, and let

HI be the solution in D1 and uz be that in D2 of the heat equation

(1. !)-(!. 4) associated with the moving boundary $«,(£). Then, if we

consider the domains Dl and D2 separately, we can prove in the same

way as in the proof of § 4 of [7] that u1 and u2 converge uniformly to

HI and u2, respectively, as At-^Q, nlfn2-+oo under Assumptions A, B, C.

D, E, F, G and H. The only different point is that in [7] sn(t) and

SOD (£) are monotone while in the present case they are not monotone, so
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that Lemma 4 in [7] does not hold. We see, however, that the con-

clusion of Lemma 4 of [7] is also valid with A replaced by 2A1/bm in

Dj and by 2A2/(L — bM) in D2 if we remind of (4.7) and the discussion

about the inequalities (1. 17) in § 1.

What is left to be done is to show that the functions uly u2 and

sM(2) satisfy the Stefan condition (1.5). For that purpose we define

the second difference of a]:

(4. 9) \ /. o i. i.
./••„ aj_i — 2 a j - } - a j + l ._ 1 . _ iCj~~ K ~ ' J~71[ ' > ? / l ?/2

Then, by considering Dl and D2 separately, we can prove the following

lemma. For the proof see Lemma 5 in [7].

Lemma 8 (lumped mass system, 6 = 1). Under Assumption A,

B,C, £», £, F and H,

We can also show that the following inequalities are valid as in the

same way as in the proof of Lemma 6 in [7],

Lemma 9 (lumped mass system, 6 = 1). Under Assumptions A,

B. C Z) £ F and H,

(4.11)

Now we define a piecewise constant function

Then from (4. 5) we have

(4.13) Sn(0= f
JO
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From Lemma 8, on the other hand,

-M-(,n(0,0 and -M-
OX OX

exist, and are given explicitly as

_ a,... (A JQ + a {a..., ( (A + 1) JQ - a..., (A JQ }
5n (A JO + a K ( (A + 1) JO - *n (A JO }

(4. 14)

Define

(4. 15) C (0 = - * (^ (0 , 0 + ̂  (*. (0 , 0 ,
(7.T 0.T

then we have

Lemma 10 (lumped mass system, 6 = 1) .

(4.16) MO-

Proof. From bm<^sn (0 £S&M- and Lemma 9, we have in

q.,-1 (* JQ(4 17) M

Sn (AJO + a {sn ((A +1) JO - ** (kAt)}

x
s.((A+l)JO

We can verify a similar inequality in D2, and from these inequalities in

view of (4. 12) and (4. 15) we conclude (4. 16). Q.E.D.

We write
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(4.18) SB(0 = PCn(rMr + ("(Zn(r)-C,.(r))rfr.
Jo Jo

As At tends to zero the second term of the right hand side vanishes

according to Lemma 10, so that we have

(4. 19) 5co (0 = (" { - Kl^- (5co (r) , r) + *J^- (*„ (r) , r) Ur ,
Jo i dx ox }

(4. 20) ^2- = - ^4^- (5. (0 , 0 +*.-?*- (*- (0 , 0 .

This shows that ul9 uz and s^ (/) satisfy (1. 5) .

Finally, the assumptions for the Stefan data made by Cannon and

Primicerio [2] cover the assumptions in the present paper, and hence

the solution of (1. !)-(!. 5) is unique [2], so that we have the main

convergence

Theorem. 2 (lumped mass system, 6 = T) . Under Assumptions A,

B, C, D9 E, F, G and H, the approximate solution obtained by (2. 17) -

(2.21) converges to the solution of the Stefan problem (1. !)-(!. 5)

as At—*0, nl9 n2-*oo.

This theorem also establishes the existence of the solution of (1. 1) -

(1. 5) under Assumptions A, B, C, D and H.

§ 5a Improved Scheme

Although the scheme given at the end of § 2 is very simple and

easy to compute, the speed of convergence has been observed to be a

little slow. However, it can be remarkably improved with a slight

modification of the scheme. The idea is to revise Asn and sn at each

step immediately after the new data are obtained. The improved scheme

is as follows.

Initial Routine:
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K(0)=/i(^); j = 0,l,-,» l f
(5. 1)

[flj(O) =/,(^); y=«i+l, • • • , W i + *2,

(5.2) s»(0)=*.

General Routine:

Repeat the following process for £ = 1, 2, • • • , w.

( i ) Compute Asn ( (A - 1/2) At) and 5, ( (A - 1/2) JO using a, ( (k - 1)

and sn((k — 1) JO by means of

(5.3) J

(5.4) ,.*- J * ( ( A - 1 ) JO +
\ \ £, f ' £

( ii ) Compute Afv> ^, JVy, v = 1, 2 using J5n ( (* - i) JO and sn( (* - i) JO .

(iii) Solve the following linear equations for ai(kAt) and a2(kAi) :

(5. 5)

(iv) Compute Asn(kAt) and sn(kAt) using av(kAt) and 5n((/fe — i) JO

by means of

(5.6) JJn (^ JQ =

(5.7) 5. (A JO =

We can show in almost the same way as in that of § 3 that

Theorem 1 also holds for the stability of the improved scheme under

Assumption A, B, C, D, E and F. In the present case the arguments kAt of

h, h, @i, @2 in (3.3) and (3.4) should be replaced by (k — ̂ ) At. Then

it is easy to see that we have

(5.8) -
At

in place of (3. 14) , and
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(5.9) bm^

in place of (3. 19). In the proof of Lemma 3 we must derive

sn((l-—\At\<,bM fromsn((/-l)JO^*ir-M^^—M* in stead of
\ \ ^j / / £

(3.21). For this purpose we need ~F+(d)<,8 and —F^(—T,
£ Zi \ £i

<;—7+j£, which, however, follow from F+(8)<,d and F+ (?+At) <±Y+&t-
£i

Therefore at each step from (k — V) At to (k — — \At the scheme given
\ Zi '

by (3. 3) and (3. 4) is stable. Then we repeat the same reasoning once

more at the step from (k~—\At to kAt replacing <2n7-i by a1^^ and

tfn7+i by al
ni+l in (3. 12) and also replacing sn((l— I) At) by sn((l-~—\At

in (3. 13), so that we have (3. 14) and (3. 19). Hence we have

Theorem 1' (improved scheme). Under Assumptions A9B9C,D9

E and F the scheme (5. 1) - (5. 7) is stable in the sense that the maximum

principle (3. 50) holds.

In order to prove the convergence of the improved scheme, we

extend sn(kAt) defined at discrete points to a continuous function in the

following way:

sn(kAt) ' "'- "7- ' l

(5. 10)

a_ t-kAt
At

The extention of a^ (t), i.e. that of u\ and u2, to intermediate values of

t is exactly the same as is done in § 4. Then we can again extract a

subsequence from {sn(t)} that converges.

In the definition of c* of (4.9) we replace hv((k — T) At) by

zn(t) in Lemma 10 should be modified to be
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,
Sn(kAf)

2
(5. 11)

,n-i ((&+!) 4*) , fr^m-n

2

In regard to the extended solution 8j we have

(5.12) - K r L f o . C O . O

/, „ a,.-i (A JQ + a {a..-! ((<! + !) JQ - a,.-i
1

and hence the estimates we need for the proof of Lemma 10 become

\an^(kAt) + tt{flni-1((t+l) JQ -fl, t-iQfeJj
1 i sn (kAt) + 2a K ((k + i) JO - 5, (440 >

(5. 13)
+ a Kei ((A +1) JO^-j^i

) JO}

Sn ( (^ + i) ^0

which are shown to be valid in a similar way as that in § 4 using (4. 11)

in view of \Asn((k + %) Af)\<L?At and |As n ( (k-}-1) At) \<,?At. The

situation is the same for u29 so that for the convergence of the improved

scheme we have

Theorem 27 (improved scheme, lumped mass system, 0 = 1) . Under
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Assumptions A, B9 C, D, E, F, G and H, the approximate solution

obtained by (5. 1) - (5. 7) converges to the solution of the Stefan prob-

lem (1. !)-(!. 5) as J£-»0, nl9 ?z2->oo.

§ 6. Numerical Example

We applied the present method to the following problem:

(6.1)

(6.2)

!7i(0=l

(6.3)
f - -- ('cos Ttt + A) ;
j 8 \ 3 /

"I -02 (0 =

~ 4

(6.4)

(6.5)

The computation was carried out by means of the improved scheme

of the lumped mass system with 0 = 1. We employed two sets of

parameters:

(6.6) J* = 0.1. ^i=:^2 = 5,

(6.7) J* = 0.001, nl = n2 = lQ,

The data and the parameters satisfy all the assumptions we have

made, and the computation was actually stable. Fig. 3 shows the change

of sn(t) obtained using the parameters (6.6). It can be shown theo-

retically that s(t) approaches to 8/7 asymptotically in the present case.

It turned out that, even with the coarser mesh sizes (6. 6), the accuracy

of the result was good enough. In fact, the differences of ul9 u2 and



752 MASATAKE MORI

5 -

4 -

3-

2-

1-

I I i
0.9 1.0 LI' *" x

Fig. 3. The change of sn(f).

sn (X) with (6.6) and those with the finer parameters (6.7) are less

than 10~3 at the points corresponding to the mesh points of the solution

obtained with (6, 6) .
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