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The Squaring Operations in the Eilenberg-Moore
Spectral Sequence and the Classifying Space
of an Associative H-Space, I

By

Mamoru MIMURA* and Masamitsu MORI**

§ 0. Introduction

Let G be a compact, connected, simple Lie group. Let p be a prime.
Consider {G;p} the set of all compact, associative FH-spaces X such that
H*(X; Z,) = H*(G; Z,) as Hopf algebras over the Steenrod algebra A,.
(Remark that we do not require the existence of any map between X
and G inducing the isomorphism.) As is well known, X has the the
classifying space BX (see for example [8]).

The Eilenberg-Moore spectral sequence for X

(0.1) E,(X) =Cotory(Z,, Z,) = H*(BX; Z,),
where A=H*(X; Z,),

is a machinery to calculate H*(BX;Z,). When H,(G;Z) has no p-
torsion, it is quite easy to obtain H*(BX;Z,). In fact, Cotor,(Z,, Z,)
is a polynomial algebra and the Eilenberg-Moore spectral sequence col-
lapses. But when H,(G;Z) has p-torsion, it is, in general, difficult to
obtain the structure of H*(BX; Z,).

Let E; be the compact, l-connected, simple, exceptional Lie group
of rank j (7=6,7). Recently, Kono-Mimura [6] and Kono-Mimura-
Shimada [7] have determined the module structure of H*(BE;; Z,) (=6,
7). Their method was to calculate algebraically Cotor,(Z,, Z,) and then
to show the collapsing of the spectral sequence (0,1) for E; by making
use of the properties of E; as Lie groups.

The aim of this paper is to give a proof of the collapsing of the
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spectral sequence (0.1) independently of the properties as Lie groups,
namely, to show the collapsing of the spectral sequence (0.1) for X;
of {E;;2} (7=6,7). Our method is to make use of the relationship
between the defferentials and the two kinds of the squaring operations
in the spectral sequence, which was obtained by W. Singer [12].

We denote by E,H*(BX;Z,) the bigraded, associated algebra of
H*(BX; Z,) with respect to the filtration F’H*(BX:; Z,) in the sense
of Eilenberg-Moore, that is,

Ef*H*(BX: Z,) =F°"H"**(BX; Z,) /F"""H***(BX; Z,).
We shall use the convention to identify the elements in E,H*(BX; Z,)
with those in H*(BX; Z,), since E,H*(BX; Z,) =~ H*(BX; Z,) as mod-

ules.

Our results are stated as follows.

Theorem A. For any X, {E,; 2},
E,H* (BXs; Zy) = Zo[ ¥4, Y5, Y15 Yio> Yiss Yazo Yass y4s] /R,

as an algebra, where R is the ideal generated by (3.7).

Theorem B. (i) In H*(BX;; Z,) the following relations hold

mod decomposables.
S@*Vi=ys, STVe=v1, STVe=¥10, S@V10=1s,
Sq*y18= Y5, SGV3 =5 .
(ii) H*(BXs; Z,) is generated by vy, and yy, over A,

Theorem C. For any X, {E;; 2},
E,H*(BX;; Z,) =Zs[V4 Yo Yrs V10> Y11, Y185 Yios Vsas

Y355 Ves, Voo, Ver> Voo, yuz] /R »

as an algebra, where R is the ideal generated by (3.9) and (3.10).

Theorem D. () In H*(BX;;Z,) the following relations hold

mod decomposables.
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@ S&y:=vs, SAVe=¥r, S¢Ve=%10, STVie=Y11,
S&*Vie=¥1s, STVs=10, SAV1s=Yss, S¢'YV3s =35,
Sq”y3 =Yoo » SA'Voo=Yer » SGVes =Ye5 » S "Vos = Y11z -

(i) H*(BX;; Z,) is generated by v, and ys over A,

Needless to say, Theorems A, B, C, D give the module structure
of H*(BE;;Z,) (j=6,7) over A, These are simpler proof than those
of [6] and [7].

Remark. Let G, and F; be the compact, 1-connected, simple excep-
tional Lie groups of rank 2 and 4 respectively. Let X,={G,;2} and
X, €{F;2}. The structure of H*(BX;;Z,) (i=2,4) over A, is ob-
tained more easily by our argument. We leave them to the reader.

The paper is organized as follows. In §1 we recollect the Singer’s
results on the two kinds of squaring operations in the Eilenberg-Moore
spectral sequence. In § 2 we review that these operations coincide with
those defined algebraically on Cotor,(Z,, Z,) through the isomorphism
E,=Cotor,(Z,, Z,). In § 3 we calculate squaring operations on Cotor,(Z,,
Z,) for A=H*(Xs; Z,) and H*(X;;Z,). §4 and §5 show that the
Eilenberg-Moore spectral sequences for X; and X; collapse and this
leads us to our results. The final section, § 6, will be used to prove

a lemma which is used in §5.

§ 1. Sguaring Operations in the Eilenberg-Moore Spectral

Sequence

Let S, (T) denote the normalized singular Z,-chain complex of a
space 1" with all vertices at the base point. Put S*(T) =Hom(S,(T),
Zy).

Let X be a connected, associative H-space and BX the classifying
space of X [8]. A special case of the dual statement to Théoréme 3.1

of Moore [9] states that there is an isomorphism
(1.1) H*(BX; Z,) = Cotorgex)(Ze, Z,)  (or Extgx (Zs, Z,)).
Let K denote the coalgebra S*(X). Let C(K) denote the cobar con-
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struction of K, in which C*(K) =K®---QK (s-times) with K= Y K"
Then C(K) is a double complex with the external differential intgf.lced
from the coalgebra structure of K and the internal differential induced
from the differential in K. Let Tot C(K) denote the total complex
of C(K). Then Cotorg (Z,, Z,) is, by definition, the cohomology of

Tot C(K). The total complex Tot C(K) has a filtration such that
F'Tot"C(K) = 3 C*(K),

p+g=n
=>r

where the first index p is the external degree and the second one g is

the internal degree. This gives rise to a spectral sequence {E,} such that
(1 2) EZE’COtOl‘Ht(X;ZE) (Zz, Zz) = H* (BX; Zz) .

We call the spectral sequence (1.2) the Eilenberg-Moore spectral se-

quence for X.

Remark. This is dual to the spectral sequence
E*=Tor®%% (7, 7Z,)=H, (BX; Z,),

which is constructed in [9].

Now we recollect the Singer’s results [12] for our purpose. Singer
shows that products and squaring operations are defined in Cotorg.(x, (Z.,
Z,) as well as in H*(BX;Z,) and the isomorphism (1.1) preserves
them (Proposition 1.1 of [12 I], Proposition 7.1 of [12 II]). This en-
ables us to introduce products and squaring operations in the Eilenberg-

Moore spectral sequence.

Proposition 1.1 (Propositions 1.2, 1.3, 1.5 of [12 I]). In the
Eilenberg-Moore spectral sequence {E,} for an associative H-space X

the following properties hold:
(1) Each E.(r=2) is a differential algebra and products on E, deter-

mine those on E, (r=2).

(2) There are squaring operations
S¢*:E1—E™"*  (0<k<gq),

Sg¥:E P15 EP0N (F>q),
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and the squaring operations on E, determine those on E, (r=2).
(3) Let 0:F?H*"*(BX; Z,) >E.»? be the natural projection.
For uc FPH*"*(BX; Z,) and ve F"H*(BX; Z,), we have
1) wweF""H*(BX;Z,) and o(uwv) =ou)o(v),
i) if 0<k<q, then Sq*uc F°PH*(BX; Z,) and 0Sq*u=Sq"ou ,
i) 1f q=<lk, then Sq"ue F***""(BX; Z,) and 0Sq*u=Sq"pu .

The operation S¢*:E,*?—E, %" will be called a vertical squaring oper-

ation and Sq*:E>'—>EP*" %% 4 diagonal squaring operation.

Proposition 1.2 (Proposition 1.4 of [121]). Let ucE™" (r=2).

i) If k<gq—r+1, then d,Sq¢*u=Sq"d,u in E, .

i) If q—r+1<k<q, then Sq*u survives to EP""*, where t=2r
+k—q—1, S¢*du survives to EP* Y% and d,[Sq*u] =[Sq¢*d,u].

iii) If q<<k, then Sq'u survives to EF** % where t=2r—1,
Sq*d,u survives to EFPT027 2 gnd 4,[Sq*u] = [Sq*d,u].

Remark. We sometimes regard the vertical operation Sg*: E,»¢?
—E,»%%% is zero if £>q. In this sense the differentials commute with

vertical operations, ie., d,S¢*u=Sq¢"d,u in E, for every k=0 and r=>2.

§ 2. Squaring Operations on the E,-Term

Let X be an associative H-space. Put A=H*(X; Z,).

Proposition 2.1 (Theorem 2.2 of [10]).
E,=Cotor,(Z,, Z,) as algebras .

We recall the two kinds of squaring operations on Cotor,(Z,, Z,).
Let C(A) be the cobar construction of A. Let a=[z]lz,]
eC™?(A). Define an operation Sqg*y: C*?(A) -»CP***(A) by

(2.1) Sq*ve=2[Sq¢"x,|--18¢">x,], b+ +k,=k.

Then Sq¢"; commutes with the coboundary in C(A), since A is the coal-

gebra over the Steenrod algebra. Hence this induces

Sqg*y: Cotor4”?2—Cotor,» 17,



760 MAMORU MIMURA AND MASAMITSU MORI

Let B(A) be the bar construction of A, i.e.,
B'(A)=H.(X; Z) Q- Q@H(X; Z) (stimes).
There is a map with external degree 1=>0,
4;: B(A)—B(A)®B(4),
satisfying dd;+ 4d;d=4d;_,+T4;.;, (4-,=0). The cup-i-product
U: C?(A)®C1(A) »CP* 17 (A)

is defined by
(@ U B) () =(a®B) 4i(c) for asC?(4), peCi(A),

ceBr1i(A)
and satisfies

d(a U B =da U B+a Udst+ta Up+8 U a.

Then an operation Sg*y: C*2(A) —»C?***(A) is defined by

(2.2) S¢ra=a U a+da U a for acCri(A).

p—k p—k+1
This commutes with the coboundary and induces
Sq*p: Cotor,P?—Cotor L %22,

The construction of Sg*, is essentially due to [1]. The explicit formula
for the cup-i-product may be found in [14]. Especially, we recall the

formulae:

[xll"'!xs] LOJ [xs+1""'xs+r]:[xll"'lxs+7],

s
[‘rll"'lxs] L1J [xs(»ll"'!fﬁr] = Z; [‘TI""Ixi—l]ximxs*l
1=
e Pz lzin ],
[z,] - |z] U [x]|z] = [z |2],
s

where ¢ " (2) =21 2PR - Rzx", ¢T TV A>AR- Q@A (rtimes), is the
(r—1)-iterated diagonal map.

Proposition 2.2 (Propositions 7.2, 7.3 of [121I]). Through the
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isomorphism E,=~Cotor,(Z,, Z,),

i) if 0<<k<lq, then the vertical squaring operation Sq* on E,
coincides with Sq*, on Cotor,(Z,, Z,),

i) if q<k, then the diagonal squaring operation Sq* on E, coin-
cides with Sq* %, on Cotor (Z,, Z,).

Corollary 2.3. Let SNl lx,] €CP (A and 3 [xpl 1z, ]
=C"*(A) represent uc E,>" and ve E,"* respectively. Then

) D aielalag iz, ] ECPTU(A) represents uv e EP T

i) if 0<<k<lgq, then

ZI. ALZ[quk:x,'..-]S‘quxp} EFTMQH{(‘A)

Ky

represents SqFuc E2 0,

i) if g<k, then

2[1‘1|fo] U [xll"'!xp:l E€p+k—q,2q
p—kip

represents Sqtuc EFF 02

Proof. Immediate from Propositions 2.1, 2. 2 and (2.1), (2.2).
q.e.d.

Here we remark, for later use:

Proposition 2.4. As for the wvertical squaring operation, the

Cartan formula holds on E,, i.e.,

Sq* (uv) = Y Sq'uSq’v for u,vEE,
irj=k
and E, (r=2) inherits this formula.
Proof. We confirm this by Corollary 2.3, 1), ii), and Proposition

1.1, (1), (2), though this may be proved by the standard argument.
q.e.d.

Let ¢ be the diagonal map of A=H*(X; Z,). Let L be a quotient
coalgebra of A over the Steenrod algebra 4, with projection §: A—L.
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@’ denotes the diagonal map of L. Note that L is not equipped with
unit. Construct the tensor algebra 7T'(sL) with product ¢, where s is
the suspension, that is, the operation to make a copy with external degree
added by one. Let I be the two-sided ideal generated by (o (s0&s0)
op(Ker ). Let X=T(sL)/I The differential 4 on X is induced so
that d=og’os': sSL—>T (sL) is derivative. Then d(I) €I and dod =0,
and this is well-defined. X is the quotient of C(A) as differential alge-
bra with projection p: C (A)—>X such that p[z|---x,] =s0x,---s0x, (see
[11]). The (vertical) squaring operation on X is defined by

Sg*vx= 3  sS¢"x,--sSq*rx,, x=sx,52, T (sL)

ky+etkp=k

for £=0.

Proposition 2.5. The projection p: C (A) —»X preserves the opera-
tion Sq"y.

Proof. Immediate from Propositions 2.1, 2.2 and Corollary 2. 3.
g.e.d.

Corollary 2. 6. Assume that p: C (A) »X induces an isomorphism
on cohomology. Let Y sx,-sx,€X™? represent ucE>”". Then if
0<<k<q, the element

> sSq*ix, - sSqtrx, = XPUE

kytetkp=k

represents Sq*uc E, T,

Proof. Immediate from Corollary 2. 3 and Proposition 2. 5.
q.e.d.

§ 3. Squaring Operations on Cotor, for A=H*"(X,; Z,) and
H* (Xv; Z;)

Let X;€ {Es; 2} and X, € {E,, 2}.
By definition and [2], we have

H*(Xy; Z;) = Z, [xs]/ (x5*) ®A (x5, Xo, Z155 Z11, L),
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H*(Xy; Zy) = Zy[ x5, x5, 25] / (‘r34’ x5, x4") QR A(x15, Ziz, T3, Zar) .

The reduced diagonal map is given by Theorem 3.1 of [6] and
Theorem 1.8 of [7], namely,

(3.1) for Xo X, §(x:) =0 (:=3,5,9,17),
(3.2) for X, $ (1) = 2,Qxy",

$ (xn) =22 Q075"
(3.3) Jor X B (1) =275 + 285"

6 (-Tzs) :-55@1’92 +$17®x32 ’
5 (xyr) =2, Qxy° +x17®x52 .

The squaring operations on the elements are given by [2] and [13],

namely,

B.4) Jor X, X,  x5=8¢"x,, £,=3Sq'x;, £ =3S¢"%,, XTos=Sq"%:s,
(8.5) Jfor X, Loy = Sq"Zss,

(3.6) for X5 Xi.  x0=S¢xs.

Proposition 3.1. (i) Let A=H*(Xy;Z,). Then as an algebra,
E,=Cotor, (Z,, Zs) = Zs[ s, Yo, Y1, Y10, Viss Yz, Yass ¥ss] /R,
where the gradings of generators are given by
y.€(1,3), »%=(1,5), »=(1,6), yu= (1,9,
v (1,17), v = (2,30), yucs (2, 32), vs<= (2, 46),
(yE (4,)) means yEE,) and R is the ideal generated by
3.7 Y10 ViViss Yess Yo+ VieVas + Vissz -
(il) The following relations hold in E,:
STy = Yo, STYe=Y1, ST'Ve= Y10, STV10=Y15, ST V52 ="ss -
Proof. The calculation of Cotors(Z,, Z,) is purely algebraic, and
hence (i) follows from Theorem 2.3 of [6]. To determine the squaring

operations, recall the outline of their calculation. Let L= {x;, x;, x5, Z,,

Ty, L1, sy and denote the corresponding elements by sL = {a,, as, a;, ay,
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ais, bis, 02y Then by (3.4) we have
(3.8) Sq’a,=as, Sq'as=a:, Sq'as=ay, SQ®aw=as, S¢°bi5="0bu.

Form a differential algebra (X,d ) as in § 2. Explicitly X is isomorphic
to the polynomial algebra Z,[a., as, a;, @, as, 16, bs]. Then the projec-
tion p: C(A) —X induces an isomorphism on cohomology, i.e., Cotor,(Z,
Zy) =H(X,d). Each y; is represented in X as follows:

vii a; (1=4.6,7,10,18),
Yaz: bie, Vas: b, Vas: @by +abs .

Note that the squaring operations on y; follow immediate from Corollary

2.6 and (3.8). q.e.d.
We next turn to X.

Proposition 3.2. (i) Let A=H*(X;;Z,). Then as an algebra,

E,=Cotor,(Zy, Z,) = Zu[ ¥, Yo 1> Y105 Y115 V18> Y195 Yas> Vss»
Ves» Vars Yaa Yoo Y112] /R
where the gradings of generators are given by
y€(1,3), %=(@,5), »(1,6), y,=(1,9),
yne (@,10), ys= (1, 17), yue(d,18), yu<s (2, 32),
Vi E (2, 33), v = (3, 63), va<E (3,64), yu<= (4, 60),
Y€ (4,92), yi€ (4, 108),
and R [s the ideal generated by
3.9 VoY1 + Yo, Yoo+ VisVrs VioYie +Yisus -
Vit + 1997 Ve Ve Yi¥se+VeVas + VieVi s
V11Ysa + V1o¥ss + Yi¥a, Vie¥ss T VisVsss Y1l + Ve Ver 5
V153 + ViYer, YieVer, Vs +y§sye4 + YieYes + Vo Virz 5
V35 VisYes T ¥1iVes + Vr*Vise, Vos+ ViV + VisVes »

Yir + Viyue + YioYse »
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(3.10) V1¥es + Yeer + VigVss, YuVss + ViVer, Y1sVes + VisYer »
Vas¥er + Vi Y1z + Y1iV1eVee »
YsaVer + Ya5Ves» VesYer T YioV1uYuz + VieV1eVses >
VouYs + Vi ieVes + VoV 1rVes + Vo Vi Vurs -
(il) The vertical squaring operations in E, are given by
Sq*: =Y SA'Vs=¥1, Sq"Vs=Y10, SA'Vo=Y11 ,
SG°y10 =18, SA'Vis="Y19, SA'Vss =55, ST'Ves = Vo »
SgYe = Vs, ST Vo6 =112 -
Proof. The calculation of Cotor,(Z,, Z,) is the same as that given
by [7], although the relations (3.10) are dropped there. Recall the
outline of their calculation. Let L = {x;, x5, 5%, Xy, 5", L1y, Lo’y L15, Lagy Lary

and denote the corresponding elements by sL ={a,, a,, a;, ay, au, ass, @19,

b6y bos, bogy. Then by (3.4) and (3.5) we have
(8.11) S¢’a,=as, Sq'as=a:, Sq'as=a,, Sq'an=ay ,
Sqtay=a, Sq'as=ay, S@*bs=0b., Sq'by=0by.
Form a differential algebra (X,d) as in § 2. Explicitly
X=Z{ai, b} /1, i=4,6,7,10,11, 18,19, j=16, 24, 28 ,

where I is the ideal generated by all possible [an, a.] and [b,, 6,] and by
[as, b;] except (i,7) =(6,16), (10,16), (6,24), (10,28) and [as, &)
+a, [aw, bl +anar, [as, ] +anas, [aw, 6] +al. Then the projection
p: C(A) —»X induces an isomorphism on cohomology, i.e., Cotors(Z,, Z,)
=~H(X,d). Each y; is represented in X as follows.

(3.12) i a; (i=4,6,7,10,11,18,19)
Vas: Aigbigt+ @10bss+ Asbrs, Vs @rabis+ A1y + arbog
Yoo: @byt @isbis+ alsbus, Ver: aubis+ainbi,
vy b (=16, 24, 28).

Remark that the representative of ve in [7] is incorrect. Now the squar-
ing operations on y; follow immediate from Corollary 2.6 and (3.11).

q.e.d.



766 MAMORU MIMURA AND MASAMITSU MORI

Proposition 3.3. Sq¢'pys=ye in Cotors(Z,, Z,), and hence Sq*ys
=y in E,

Proof. Let C be a representative of v, in the cobar construction
C(A). The explicit form of C is given by

C= [x17'-1'15] + [xglxzs] —+ [xslxzvj + [1‘5.1:17'.2:52] + [x9x17|x32]
+ [xsxol2*].

Then Sg'py, is represented by C U C. By using the explicit formula
1

for the cup-l-product, we have
CcucC= [25*| 20| 22 ] + [25° |0 | 2] + 7,
where € Ker(p: C(A)—X). Hence
p(C U C) =anbis+abi.

Therefore C U C represents ¥y, and we have Sq',vs =vg in Cotor,(Z,, Z,).
1

The latter relation Sg¢®ys, =ye in E, follows from Proposition 2. 2.
q.e.d.

For later use we note
Lemma 3.4. S¢%¥e=3S0"Ve=S5¢"ve:=0 and Sq¢®ve,=v1s in E,.
Proof. Since Sq'b,;=Sq¢'b,;=0 for dimensional reasons and Sqg°by,

=g in X by (3.6), and since y, is represented by b, the lemma

follows from Corollary 2. 6. q.e.d.

§ 4. Collapsing of the Spectral Sequence for X

Let Xs€ {Es; 2} and put A=H*(Xy; Z,). Consider the Eilenberg-

Moore spectral sequence for Xj:
(4.1) E,=Cotor,(Z,, Z,) = H*(BX;; Z,),

where the F,-term is given by Proposition 3. 1.
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Theorem 4. 1. The Eilenberg-Moore spectral sequence (4.1) for
X; collapses.

This will follow {rom the following lemmas.

Lemma 4.2. The element y, survives, and hence so do ¥s Y,

Y105 Vis.

Proof. For dimensional reasons y, survives and so do the other

elements by Propositions 1.2 and 3. 1. q.e.d.

We need the following facts.
4.2) 1) 34520 in H*(BX:; Z,),
i) 9’0 in E,,
i) vy #0, v’y '#0 in E,,
iv)  ¥’w*s£0 in E;.

Proof is clear for dimensional reasons.

Lemma 4.3. The element v, survives.

Proof. Denote F?=F°H*(BX;; Z,). First note that Sg®y,s=y%5=0
in H*(BX;; Z,) by (4.2). Remark that y;; & F®. By Adem relation

Vis =S5¢"y1s = S*Sq"y1s + Sq""Sq'y:s -

For dimensional reasons Sg'y,s< F®, and hence Sq"Sq'y;s< F® by Proposi-
tion 1.1. Now assume that v;, does not survive, then Sg®yscF?®, and
hence S¢°Sq*®vise F®. This is a contradiction to yi,& F° Thus y; sur-

vives and furthermore we must have
Sqys = d F?®
q Yis=VY3 MO .

This completes the proof. q.e.d.

In the above proof we have shown
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Proposition 4.4. Sq°ys=y,; mod decomposables in H*(BXy; Z,).

Lemma 4.5. Sq¢'v,=35¢%,»=0 in E,.

Proof. Recall that yy, is represented by % in X (See the proof
of Proposition 3. 1) and Sq¢'b,;=0 for dimensional reasons. Hence Sg*ys,

is represented by
Sq*bls=Sq'b1eSq'bis=0 by Corollary 2.6.

Therefore we have Sg?y;, =0 in E, It is easier to see Sg'ys;=0.
g.e.d.

Lemma 4.6. The element vy, survives, and so does V.

Proof. We first show that v, & E,*® is a permanent cocycle. Con-
sider d,:E**—>E?""" (r=>2). For dimensional reasons the possible
elements to be killed by vy, are

E 2y yys=0, vy =0,
ES® 2998 yy10=0, vy,
EST 2y vy =0, ylye'yr, ¥,
E 35y yy, .
Put d;(vs) =aysy," with ac Z,. Applying S¢?, we have
0=d,(Sq’s) =Sq¢°d; (ys) =ay,’

by Propositions 1.2, 3.1 and Lemma 4.5. Then since y°5~0 by (4. 2)
we have a=0. Next put d,(¥s) =ay.’vs'y: + by y,’ with a, b= Z, Apply-
ing S¢', we have 0=d,(Sq'ys) =Sq'd:(¥s) =aylvsy,". Since v ysy,#0
by (4.2), we have a=0. Then applying S¢* to d,(vs,) =6y y,%, we have
0=d,(Sq*ys:) =S¢*d,(vss) =byysy,". Since yy5y,'#0 by (4.2), we have
b=0. Thus d,(vs;) =0. Finally put d;(vs) =ay vey; with a=Z, Ap-
plying S¢’,

0=4d;(Sq' (v3)) =Sq'dsys =ay’y;’ .

Since ¥,’y’0 by (4.2), we have a=0 and d;(vy) =0. Thus we have
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shown that v, is a permanent cocycle. Since vy, is not killed for dimen-
. ) o .
sional reasons, we conclude that y,, survives, and hence y.s =Sg"°ys; survives

by Proposition 1. 2. qg.e.d.

Now Theorem 4.1 follows from Lemmas 4.2, 4.3 and 4. 6.
Theorems A and B follow immediately from Propositions 3.1 and

4.4 and Theorem 4. 1.

§ 5. Collapsing of the Spectiral Sequence for X;

Let X;€{E; 2} and put A=H*(X;;Z,). Consider the Eilenberg-

Moore spectral sequence for X;:
(5.1) E,=Cotor,(Z,, Z,) = H*(BX;; Z,),

where the E,term is given by Proposition 3. 2.

Theorem 5.1. The Eilenberg-Moore spectral sequence for X

collapses.
This will follow from the following lemmas.

Lemma 5.2. The element vy, survives, and so do ¥s, Y1, Yies Y11,

Y18, V1o

Proof. The element y, survives for dimensional reasons, and so do

the other elements by Propositions 1.2 and 3. 2. q.e.d.

Lemma 5.3. The element vy, survives and so does ys;.

Proof is quite similar to that of Lemma 4.3, though the existence

of the element of degree 19 may make a proof a little bit complicated.
As an analogous result to Proposition 4.4 we can show

Proposition 5.4. Sq¢'°ys=y,, mod decomposables in H* (BX;; Z,).
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Lemma 5.5. The element yg survives and so does yg.

Proof. Denote F?=F°H*(BX;; Z,). By Proposition 3.3 the
relation Sg®y,, =y holds in E,. Hence the element yg survives to E, by

Proposition 1. 2, and we obtain
Vor = Sq*y5,=S89"S¢**y;, mod F*

in H*(BX;;Z,). Assume that vg does not survive. Then S¢%y,&F'
for dimensional reasonms. So yy=0 mod F*, which is a contradiction to

Yo EF®. Therefore yg survives and furthermore we must have

Sy, =ye mod F*. q.e.d.
In the proof we have obtained
Proposition 5. 6. Sq”yy=y mod decomposables in H*(BX;; Z,).
Lemma 5.7. d,(S¢'ye) =0 for i=1, 2, 4, 8 and for all r=2.
Proof. Immediate from Lemma 3. 4. g.e.d.

Lemma 5.8. The element vy survives and hence so do vy, and

Yii2-
(The proof will be given in § 6.)

Now Theorem 5.1 follows from Lemmas 5.2, 5.3, 5.5 and 5. 8.
Theorems C and D follow from Propositions 3.2, 5.4 and 5.6 and
Theorem 5. 1.

§ 6. Proof of Lemma 5.8

The proof of Lemma 5.8 given here is quite analogous to that of
Lemma 4. 3, although it is much more complicated. To prove the lemma,
it suffices to show that the element 7y, survives, since ¥,=3S¢"ys and

Y112 =39q"%ygs by Proposition 3. 2. For dimensional reasons vy, is not killed,
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and hence we need only to check that yg, < E,*® is a permanent cocycle.
Let S(n) be the set of monomials in E,**

6.1) VYV VY Yy

with

(6.2.n) 4a+6b+7c+10d+11e+18f+19g+34h+35i=n.

Note that the Z,module generated by S(z) is closed under the vertical
squaring operations. The set S(#) is ordered lexicographically from the
right, for example, v,y VYo > VsV Vie¥1s in S(65). Since there are rela-

tions

(6.3) Yoy 31091 =0, Ye¥19 -+ 3151 =0, Y1o¥19+ 1Y =0,
Vi yievr" =0, ¥ =0, ¥is=0, yr¥s+¥ess+ Y11 =0,
Y1Yse + VioYss T Yi¥is = 0, Y1aVas+ Vig¥ss =0,

the monomials of S(7) satisfying one of the following

(6.4) 1) c=1, d=1, i) c=1, f=>1, i) ex>1, f>1,
iv) e=3, v) e=>1, ¢=2, vi) ¢g=3, vii) e=>2, g=>1,
viil) ¢=>1, ¢=>2, ix) g=>1, h>>1,

can be reduced either to a trivial one or to a linear combination of the
other monomials of higher order. A monomial is irreducible unless it
satisfies one of the relations (6.3). Thus the set of the irreducible
monomials of degree n forms a Z,basis of S(n).

Remark that the first (possibly) non-trivial differential is
d . E 4,50___>E 4+7r,61-71
T T r b

since the elements v, (1=4,6,7,10,11,18,19, 34, 35) are cocycles. So

the following lemmas are clear for dimensional reasons.

Lemma 6.1. The irreducible monomials y,“v'vi*yvhyayhyleyhyts
are non-trivial in E>? for the following cases:
(1) p+¢<68 and p-+q+£65, when a>0,
(2) p+q=69 and 73, when a=0.
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Lemma 6.2. The non-negative integer solutions of the equation
(6. 2.65) and
(6.5) a+b+c+d+et+f+g+2h+2i=4+r

except the cases (6.4) gives a basis {m,;} of E "%

Using this basis, each element of E """ " is expressed as 3 kym,;
with %k, Z,. Explicitly we have l
(6.6) 1) B by vievss + Ry Vv + BVe ViV + £Viveyiovs

+ RsVaVeV 1oV Vas + ReYeVi' Vi Vs + Ry Vievisvi
+ keve' VioViaVis 1 ksVeViavy
i) By RS Vv Yes + ke Ve VioVss -+ kv vitves + R v
+ Ry Y™ V1uVsa + Re 6" Vo -+ Ravi VeV 1oVisVi
+ ke s VisYie + ReYr Viudis + ki Ve Vieyie
+knyyiovi
iii) EX: by yidss + ke iy Vas + ks Ve Vas + R Yuse
+ ks Y yi¥se + ko' V6 V1610 + R VY1 V1Yo
+ Ry V5" YY1 ¥1s + RoYs Vieyis + Froyi’Vs'Vievre
+ k1Y’ VioVis + RV " V1o + RisVe' ity
+ kLY Syeyion + RisysYiovi
iv)  E%: by yeyss + R yiys + Ry Ve yiyudie + RYSYeYinyie
+ kY Vs V1oVie + ReV VY Vi + By Vet VitV
+ Rsy ¥ V1o + ke Sy Vi + Ruoy v’ v Vi
+ Eu¥s"yiyi + ks Ve Yoy + kYo Vieyn
+ ke Ve Vi
V)  Ed%: By yiyuyie + Ry Sy yioie + Ry e Vi v
+ Ry Y6y + Ry yeyi i+ Reysys iy

+ kv SV + ke ve'yiovn + kY Ve iy
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+ Ry vy + RuyPYs vty + kv yn
+ kisye' v + Ry sy + kisysy,
vi)  E Ry Syioyie + Ry Y yie + ks vs i+ Ry Lysyivia
+ kY Yeyioyn + key Ve VioYu + ki Syeyityn
+ ks 'y vty + kv ve vu + kuys've + Ruytyeye®
+ by o'y + kisyiys've,
vid)  Eg™®: By, vevie + kv vy + By Syeyieyn
+ kY VY Y + Ry Ve + Ry Syeys’
+ kY ye'ye + ksytyve i,
vill)  Ey™ % kv, wiva 4 keyOvityn + kv ety
+ kv ve'yet + sy, ve' vy,
ix)  Ew*™: ky,yeyn + ke + ks vy,
x)  E %% by Bygy,.
The above elements are the candidates to be killed off by ys. That
is,
(6.7) d, (Ves) = ; km, ; with k< Z,
for d:E*®—>E """ (72>2). We will show that all the coefficients
k; are zero in the following way.

First we apply Sg' on both sides of (6.7). Since Sq¢'d,ye=d,Sq"Ves
=0 by Lemma 5.7, we have

Z k:Sq'm, =0,
where Sq¢'m. ; is calculated by Proposition 3. 2 and by the Cartan formula.

Then the linear independency of {Sg'm.;} by Lemma 6.1 implies that

k;=0. By this argument we get

Lemma 6.3. k; is trivial for
i=1,6,7,8,9 in (6.6.1),

i=4,6,7,8,10,11 in (6. 6.1,
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1=6,7,9, 10,11, 13, 14, 15 in (6. 6.1iii),
i=4,5,6,8,10,12, 13 in (6.6.iv),
1=2,4,5,7,8,9,11,13,15 in (6.6.v),
1=1,3,5,6,7,9,11, 13 in (6. 6. vi),
7=1,3,5,6,8 in (6. 6. vii),
i=1,3,5 in (6. 6. viii),
i=1,3 in (6. 6.1ix),
=1 in (6.6.x).

Then by applying Sq¢* on both sides of (6.7), we get by Lemma 5. 7
Z kiqunlr.z’ =0,
where the summation runs over Z not listed in Lemma 6. 3.

The linear independency of {S¢’m,;} by Lemma 6.1 implies

Lemma 6.4. k; is trivial for

i=3,4,5 in (6.6.1),
i=3,5 in (6.6.1i),
i=1,3,4,5,8,12 in (6. 6.1iii),
i=3,11,14 in (6.6.1v),
i=1,3,6,10,12,14 in (6.6.v),
i=412 in (6. 6. vi),
i=2,4,7 in (6. 6. vii),
i=4 in (6. 6. viii),
i=2 in (6.6.ix).

Corollary 6.5. (1) y'vivuyss and v'yhys are not trivial in

E 7,62

R

(2)  yivhys is not trivial in E*®,
13, 56

(3)  yiyiyiyu is not trivial in E,
(4) Y896V ViV ViV ViVse ViViVas ¥iV:°Vie are not trivial in E,*®.
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Proof. (1) and (2): The elements ygy;y,ys and v.yhys; are not
d,-images of yg, since k,=k;=0 in (6.6.1). So VVvyuys and ¥, “y5Yss
for a=3, 4 are not trivial, since d,=0 in these degrees.

(3) follows from that £,=0 in (6. 6. vii).
(4) follows from that k4, =0 for 7=1, 3, 4, 5, 12 in (6. 6. iii).
g.e.d.

Then by applying S¢* on the both sides of (6.7) we get the following

lemma by virtue ot Lemma 6.1 and Corollary 6. 5.

Lemma 6.6. k& is trivial for

=2 in (6.6.1),
i~ 1,29 in (6. 6.11),
i=1,2,7,9 in (6.6.1iv),
=2 in (6. 6. viii).

Corollary 6.7. y.'vivu, ¥ *ve¥ss and y'vs'yi*yiy are not trivial in
Erll,ﬂz.

Proof. This follows from that b =k, =k, =0 in (6.6.iv).
q.e.d.

Now we apply S¢® on the both sides of (6.7) and by Lemma 6. 1

and Corollaries 6.5 and 6.7 we get

Lemma 6.8. k; is trivial for
i=2 in (6. 6.1i),
i=2,8,10 in (6. 6. vi).

Thus we have shown that all %; are trivial. This completes the

proof of Lemma 5. 8.
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