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On the Fixed Point Algebra of a UHF Algebra
under a Periodic Automorphism of Product Type

By

Akitaka KISHIMOTO*

Abstract

We study the fixed point algebra %° of a UHF algebra U under a periodic auto-
morphisin @ of product type. We show an example of 2% which is simple and has more
than two tracial states and we characterize the case where A* has only one tracial state.
Next we show that %“ is a UHF algebra if and only if % is generated by an infinite
family of mutually commuting a-invariant type I, subfactors whose fixed point algebras
are abelian and by a UHF subalgebra of %* which commutes with the former (where p
denotes the period of ).

§ 1. Introduction

E. Stormer [7] showed that the even CAR algebra is isomorphic
to the CAR algebra itself. The CAR algebra is the UHF algebra of
type (2") and the even CAR algebra is the fixed point algebra of the
CAR algebra under a specific periodic automorphism with period 2.

In this note we study the fixed point algebra 9* of a UHF algebra
9 under a periodic automorphism « of product type with period p, where
« is of product type if I is the C*-tensor product of finite type I factors
A, and « is the product of o, &Aut A,. The case studied by Stermer
corresponds to p=2 and ¥, of type I,. In general A* is not necessarily
a UHF algebra. In Theorem 4.4, we give several equivalent conditions
that 9% is a UHF algebra. In particular, this is the case if and only
if (U, ) is isomorphic to (WU,@U,, (Ra,) where U, is a UHF algebra,
¢ is the identity map and (,, @,) is the following specific example:

Let M be the full pXp matrix algebra and e;(i,j=1, -+, p) its
matrix units. Let a be the periodic automorphism of M with period p

implemented by the unitary exp(2mip~'Zkey). We let A, be the C*
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tensor product of countably infinite copies of M and ¢, the corresponding
product automorphism of a.

The other main result in this note is the characterization of the
case where ® has a unique tracial state, given in Theorem 3.10. One
of the characterizations is that ¥* contains sufficiently large UHF subal-
gebras in the following sense: For any ¢>0 there exist a projection e
of A* with r(e) >1—e¢, a UHF subalgebra B with e as identity and
a sequence {e,} of projections of B with r(e,) —>7r(e) as n—>co such
that any x of UA* has a sequence {x,} CB satisfying |e,xe,—x,|—0
as n—>o00, where 7 is the unique tracial state of L.

It has been shown in [6] that 2A® is simple if and only if the
invariant I'(a) is equal to Z,=Z/pZ.

The three situations for 2“ mentioned above have the following
mutual relations: If A* has a unique trace, then A“ is simple (c.f.
[6, Th.2]) but the converse does not hold as is shown in Remark
3.12. If A= is a UHF algebra, A* has the unique trace, as is well

known, but the converse does not hold (see Remark 4.5).

§ 2. Invariant I' (@)

Let G be a compact abelian group and let (,, G, &™) be a sequence
of C*-dynamical systems, i.e. ¥, is a C*-algebra with 1 and a™ is a
continuous homomorphism of G into Aut 2, Let A be the infinite
C*-tensor product of A,, n=1,2, ---, and let &, be the automorphism
Ra,™ of A for each geG. Then (A, G, ®) is a C*-dynamical system.
The I'(«) is defined to be the intersection of Sp(a|B) where B runs
over all non-zero «-invariant hereditary C*-subalgebras of 3 [5].

For each tEG let N, be the set consisting of z such that Spa™ >z
Let H be the set of ¢ such that the cardinality of NV, is infinite.

Lemma 2.1. I'(@) contains the subgroup generated by H.

Proof. Let x be a positive element of UA* with ||x| =1. Then there
are a positive integer # and a positive element z, of (®,"U,)* with

|zo] =1 and |x—x]|<<27'. For any non-zero y & @51 Uy, xyx does not
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vanish since [.oyx|| = | zoyo| — | xoyxe—zyz| = |v] — | zoyzi — 232 || Z |3
—2|x—x| |y >0. Thus Sp(a]zAx) contains Sp(Ry, &™), in partic-
ular the subgroup generated by H. Now it is easy to complete the
proof (c.f. Lemma 4.1 in [4]).

In the following sections we take as 9, a finite type I factor. The
existence of minimal projections of X),"U, in (®,"A,)* for any n<oco

obviously implies

Proposition 2. 2. [I'(«) is the subgroup generated by H when
N, are finite type I factors.

In addition we remark that /'(«) is a closed subgroup of G in

general [5].

§ 3. Fixed Point Algebra

Let 2, be a finite type I;, factor (d,=>2) and let &, be a periodic
automorphism of ¥, satisfying «,?=¢ where ¢is the trivial automorphism
and p is a fixed positive integer. Then there exist matrix units e; of
¥, and a function ¢, on X,={1,2, -, d,} into Z,=Z/pZ such that
«, is implemented by the unitary exp[Z2;i2mp "0, (7)) e{?] where ¢,(j) is
any representative in Z of class ¢,(j) €Z,.

Let A be the infinite C*-tensor product of U, n=1,2, -+, and «
be the corresponding product automorphism of «,. Then « is, of course,
a periodic automorphism of the UHF algebra 2 such that a®=¢ Now
we assume that a has period p and we want to describe the fixed point
algebra which is an AF algebra [1, Lemma 5. 3].

Let A(n) =R7U,, and let A0) =C-1. Then A(n)® is the direct
sum of at most p finite type I factors. We construct each factor by the

following procedure [1, Lemma 5. 2]: Fix t=Z, and set
S, (n) ={(, ) €M"Xn X II,"Xon; 2" O (1) =210 (Gn) =12}
For each (i,7) €8,(n) let e(i, ) = e, e, Then {e(i,j)} forms

matrix units of a finite type I subfactor of A(n#)* which we denote by
M, .. Then
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Ql(n)a: @ Mn.t .
teZ,

The embedding of A (n)* into M,,,, is as follows:

Gnyy

@ Mn,t—-(ﬂmx(j) = @ ng+ Mn.tfs
i=1 s€Z,

where 7, denotes the multiplicity of M, , , in M,,;,: the number of
{7:¢0n1(G) =s}. We know that 2U® is generated by the increasing se-
quence A (n)“

Let x,(n=0,1,2, ---) be a random variable with values in Z, such
that x,=¢ occurs with probability »,/d,.,, i.e. P(x,=¢t) =n,/d,.,. Sup-

pose that the family {x,} are mutually independent. For m=<n, let
n
S(m,n) =3 x; .
Jj=m

Denoting by /" («) the invariant /7 of the action of Z, on U by
teZ,—a', we can easily show on the basis of Proposition 2. 2, the follow-

ing:

Proposition 3. 1. ['(«) =Z, holds if and only if for any positive

integer m and any t< Z, there exists an n=m such that P(S(m,n)

=¢)>0.

Now we consider a stronger condition on {x,}:

Condition 3. 2. For each positive integer m, S(m, n) converges in
distribution, as n—oo, to a random wvariable which takes each value

with equal probability, i.e. lim P(S(m,n) =t) =p~* for any tZ,

In other words the condition is satisfied if and only if for any non-
zero tE Z, and any positive integer m,

lim {exp i27p~'tS(m, n) >= lim f[ {exp i2mp~'tx;»)=0

where { - > denotes the mean.

Proposition 3.3. If {t&€Z,; 2,cnyd,”' =0} generates Z,, then Con-
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dition 3.2 is satisfied (where N, is defined in section 2). In particular if
I'(a) =Z, and {d,} is bounded, then Condition 3.2 is satisfied.

Proof. let t&Z, be nonzero. Then there is an s&Z, with
exp 12mp~'ts=~=1 such that X,cy,d, '=oc0. Then

[<exp i2zp~'tS (m, n) Y| < 1 {1 —2d,;7'(1—d;™) <1 — cos 2;3-[>} 12

<1 {1—(2d,)‘1<1—c052£>}

where the products are taken over {j& N,:m<j<n}. The right hand

side converges to zero as n—oco if and only if Yicy,d;"'=oc0. Q.E.D.

Before going into discussions of our main result in this section we
first show that Condition 3.2 does not depend on the choice of (U,, a,),
n=1,2 . Let B(n) be an increasing sequence of «-invariant finite

type I subfactors of 9 such that A=B(z). Then we have

Proposition 3.4. Let A=JA(n) =UB(n) be as above. Then
there is an automorphism 0 of N with Qo =0l such that for every
positive integer n there exists a positive integer m such that

0(B(n)) cA(m) and WUtn) CO(B(m)).

The proposition implies that {x,} defined through (») satisfies
Condition 3. 2 if and only if {x,} defined through B(n) satisfies Condition
3.2. Thus we have our assertion.

The proof of Proposition 3.4 is the same as that of Lemma 2.6
in [1] if we show that the unitaries #; and wv; there can be chosen in
A* This will be easily shown if we prove the following lemma cor-

responding to Lemma 2.3 in [1].

Lemma 3.5. Let B be an a-invariant finite-dimensional sub-
algebra of W such that a|B is inner. Then for all >0 there exist a
unitary operator ucU* and a positive integer n such that |lu—1|<e
and uBu*CA().
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Proof. We may assume 1%B. By applying Lemma 2.3 of [1] to
A*=UA®)* and B* we may assume that B*C A (1) * for some 7, Let
{f{9}%-1 be matrix units for B such that (fPfL = 0405, P, [P =f{P* and)
a () =exp{i (e (2) — ¢ (1)) 1P with suitable functions ¢, (k=1, -+, m).
Then for any 0>0 we can find an integer #=>n, and a family {g{?} of
matrix units in W (z) such that | —¢| <6 and i =¢% (c.f. Lemma
1.10 of [2]). Let

b—1
gif=p § exp{il (i (/) — e D)} ' (¢f9)-

Then ¢;{? €W (n), a(gif) =exp{i(Vu (D) — U} g™, fiPg0 =gii91)
=gi{ and | —gif?) <6. If 0 is sufficiently small, the partial isometry e}

obtained from the polar decomposition of ¢;{*, which is an element of (1),

satisfies a(eff) =exp{i(¢p (1) —¢e ()} el and |f —elP<e. Let u=
2. 2:ef2f% . Then u satisfies the above conditions, Q.E.D.

Let v be the unique tracial state of A and let (7, H., &) be the
GNS representation of 9 associated with 7. Let & be the automorphism
of the factor M=, (A)"” such that &om.=m.o. Then it is shown by Con-
nes [2, Th. 2. 4. 1] that M?® is a factor if and only if I'(@) =Sp&(=2,).
Since £, is separating, M% is isomorphic to M?%|[M*82.]. Thus, as M*®
=, (A", we have:

Lemma 3.6. Let (M=rn.(N)",&) be as above. Then 7 is a
Sfactor state of N* if and only if I' (&) =Z,.

Since 7. is faithful, we have that I'(@&|m.(A)) =I'(a). Let B be
a non-zero &-invariant hereditary C*-subalgebra of 7.(). Then there
is a projection e of M® such that eMe is the weak closure B of B
(c.f. [5]). Since Sp(@|B) =Sp(@|B) the definitions of ' (&) and I"(a)
imply:

Lemma 3.7. I'(a) cl' ().

Let C(Z,) be the space of real valued functions on Z, Let T,
and T,/ (=1, 2, ---) be the linear transformations on C(Z,) defined by



FixeED POINT ALGEBRA OF UHF ALGEBRA 783
(T.f) (&) =d., ' Z5f (e + (7)) ={f(+x0-1) D ;
(T g) () =d, 259 (2= 0. (7)) =g (2 —2n-1) > -

Then we have

2iez, (TWf) 1) 9 (@) = ez, f (&) (T 9) (B).

Lemma 3.8. There exists a one-to-one correspondence between
the set of all tracial positive linear functionals v’ of A* and the set of
all sequences {f,} 5, of positive functions of C(Z,) satisfying Tufn=Ffo

(n=1.2.--+), where the correspondence is given by

3.1) £@O = [Ldue ()

for M, ,#(0) with £, being any minimal projection of M,, Fur-
thermore v’ (1) =£,(0) holds for any pair ©' and {f,} which satisfy
(3.1) and there exists a constant M such that |f,|-<M for any n
and for any {f.} satisfying the above condition and f,(0) =1.

Proof. Since 7/ (f,™) does not depend on the choice of £, by the
property of the trace on M, ,, the mapping t’ = {f,(2); M, ,5~(0)} defined
" by (3-1) is well-defined. The component of a projection f,® =0 in
M, s is the sum of », orthogonal minimal projections of M, ,,,, which
implies that T,f,(8) =d, ' 2] t,(¢+ ¢, (7)) =fo-1(£) for {fo(£)} defined by
7’ through (3.1). The equlality (3.1) defines f, for sufficiently large 7
and so the relations T,f,=f,-1 consistently define a unique sequence {f,}
through (3.1).

Conversely let {f,} CC(Z,). be such that T,f,=f,-. Let t5 be
the unique tracial positive linear functional on W (n2)* satisfying (3.1).
Then T.f =f,-, implies that 7,/|N(n—1)*=7,_;. Hence {r,’} defines
the unique tracial positive linear functional t’ on A* such that /| (xz)°
=,

(1) =/, (0) follows from the definition.

To prove the last assertion, let g, be a function on Z, for each
n=0,1, 2, --+ such that g,(z) =7(e,"”) with ¢, being the identity of M, ,.
In particular ¢,(0) =1 and ¢,(z) =0 for ##%0. Then {g,} satisfies that
T gn1=gn (n=1,2, ).
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If n, is a positive integer such that Sp(a!(n,)) =Z,, then there is
0>0 such that g,,=>0. If ¢g,=>0, then ¢,.,(2) =<¢.(¢—x,)>=0. Thus
we know that ¢g,=>0 for all n=n,

Let {f,} be a sequence satisfying the condition and £,(0) =1. Then

2ifn(8) 9. () =21(8) (T2 gu-1) (2)
=5 (Tof2) () Guei (2) =2 0ei (8) @1 (8) .

Thus we know that X f,(2)¢,(£) =£,(0) =1. Hence f,(£) <0 ' holds for
all teZ, and all n=>n,. This completes the proof.

The trivial solution of T,f,=f,-; with f(0) =1 is {f,=1}, which

corresponds to the restriction of ¢ to A=

Lemma 3.9. Let K be a subset of t< Z, such that

lim [<exp 27ip~'tS(m, n) Y| >0

Sor sufficiently large m. Then K forms a subgroup of Z, and the
order of K is the number of extremal tracial states of U*. Further-
more the central decomposition of the restriction of v to W* gives all

extremal tracial states of -

Proof. For t=K, let {n;} be a subsequence of positive integers
such that

lim {exp 27wip~'tS (ny, n;) >0 ..
i

Then {exp 27ip'¢S(n;, n;)}; forms a fundamental sequence in the mean
of order 2 and hence of order 1. This implies that K is a group.

Let #, be a non-zero minimal element of KC {0, 1, :--, p—1} (which
devides p) and let {#n;} be as above for z{,&K. Let 1 be the limit of
exp 2mip 'S (n,, 7;) in the mean of order 2. Then A'=1 with g=p%",
the order of K. Hence we have a random variable S,, taking values
in Z, identified with {0, 1, :--, g—1} such that exp 27wig™'S, =4 Let o
be the quotient map from Z, onto Z,. Then o(S(#,7;)) converges to
S,,. For any non-negative function /%0 of C(Z)) let f,eC(Z,) be such
that
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(8.2) fu) ={f(o(8) +o(S(n,m—1)) +8,)>  if n=nm—1,
={f(0(2) +Su)? if n=n,,
={flo®) =S, n—=1) +8,)>  if n=n+1.

Then we can show that T, f,=f,_1. For example when n=>n,+1, (T,/,)(¢)
={f(o(2) +0(xp-1) —0(S(,n—1)) +S,)> due to the independence of
0(x,-y) with S, —0(S(n,n—1)). As f#0, f,#0. Thus by Lemma
3.8 we obtain a tracial positive linear functional 7, corresponding to f.

The transformation S on C(Z,) defined by (Sf) (2) =<f(¢+S,,)) is
not degenerate since {exp 2mwiq 'tSn, >0 for any ¢&Z, Thus, since f
eC(Z,) ,—rt,is affine, we have an injective linear mapping from C(Z,)
into the space of all continuous self-adjoint tracial functionals of A%
which is order-preserving.

Let ¢/ be a tracial state of A% and let {f,} be the corresponding
sequence in C(Z,) as in Lemma 3.8. Since {f,} is uniformly bounded,
we have a subsequence {m;} of {n;} such that f,,(#) converges, say to
S (&), for each t€Z, Let m(k) be a subsequence of {m;} such that
S(m,m(k)) converges in distribution, say to S,’. Then f,(¢) =<{f (¢
+38,")> follows from the property T,f,=f,-; and the independence of
{x,}. Since S, +¢ and S, have the same distribution due to the fact
that {exp 2rip~'tS,’> =0 for te£ K, we know that f,,=f,o0. Then we can
show that {f,} is obtained as in (3. 2) with f=f'|K. This implies that
the space of all continuous self-adjoint tracial functionals of 2* is order-
isomorphic to C(Z,).

Let 0; be a function on Z, such that 0,(2) =0 for ¢=~s and 0,(s) =1
and let f;=0,/(05)(0). Let 7, be the tracial state corresponding to f,.

Then t, are extremal tracial states of * and the following equality

holds:

(3.3) r= 2 (00:(0)7

since 2'(05)0(0) (f;)»(¢) =1 for any t=Z, and #. The decomposition
(3.3) of r is the central decomposition of 7. Q.E.D.

Now we state our main result in this section:
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Theorem 3.10. Ler (A=RV,, a=QRa,) and (M=z.()", &)
be as above. Then the following statements are equivalent:
(i) N* has a wunique tracial state;
(ii) rt is a factor state of A%
i) I'(a@) =2,
(iv) Condition 3.2 is satisfied,
(v) For any ¢>0 there exist a projection e of N* with t(e) >1—z¢,
a UHF subalgebra B with ¢ as identity and a sequence {e,} of
projections of B with t(e,) —>t(e) such that any x&WN* has a sequence
£, B satisfying |enre,—a,|—>0 as n—o0;
(vi) In (v) {e,} can be chosen so that ||[e,, x]||—0 as n—oo for any

re )’

If I'() #<Z,(=Spa), all the statements do not hold and hence are
equivalent since in this case the center of A® is not trivial [6, Th. 2].
Hence in the following we assume /I'(«) = Z,.

The equivalence of (ii) with (iii) is proved in Lemma 3.6 and the
equivalences of (i), (ii) and (iv) are proved in Lemma 3.9. The impli-

cation (vi)= (v) is trivial.

Proof. (v)= (i) Suppose that (v) holds for some e<{1. Let ¢’ be

a tracial state of A% For rced% we have

' (zx) =t (e,x) +7"' ((e—e,) x).

The first term of the right hand side tends to /' (e)7v(e) 'r(x) as n—>o0
since ¢/ (x) =7'(e)r(e) 't(x) for x=B by the uniqueness of a tracial
state of the UHF subalgebra . The second term is smaller than |x||
xt'(e—e,) =|x|t'(e)r(e) 't(e—e,). Thus we have 7/ (x) =7'(e)r(e) ™

~t(x) for reed. For any x and y of A* we have
' (xey) =7 (eyxe) =17 (e)v(e) 'r(eyxe)
=t (e)r(e) ‘v (xey).

This implies that "=t since A%A* is dense in A* by simplicity of A=
Q.E.D.
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Proof. (iv)= (i) If ¢.(2) =t(e,”) as in the proof of Lemma

3.8, we have

9u () = (T - T Ty 90) () =P(S(0.n—=1) =1).

! as n—oco. Hence for any

Then Condition 3.2 implies that ¢,(#) —>p~
>0 there are » and a projection e of A (n) such that r(e)>1—¢ and
t(ee, ") =p'v(e) for all t€Z, Set g,/ () =c(ee,"™) for m=n. Then
Tii10n’ =@m1 and hence g, () is constant for all m>n. Thus the AF

algebra e%%¢ is defined by the increasing sequence
Al (n)eced(n+1)%ec -

of the finite dimensional algebras where the direct summands of each
e (m)*e are of the same type with each other.

Now we complete the proof by applying the following lemma to
the system (edle, alede).

Lemma 3.11. Let (N,a) be as above and suppose that M,,
(teZ,) are isomorphic with each other and that Condition 3.2 is
satisfied. Then the statement (vi) in Theorem 3.10 holds with e=1.

Proof. As we have remarked above the lemma, the direct summands
of A (n)® are of the same type with each other, say of type I;,. Now
we shall construct a subsequence 7, of positive integers with 7,=1, an
increasing sequence of subfactors %, of type I, of A(#)* and a se-
quence of projections e, (k=2) of B, such that (e,) >1—Fk™"' and ex
=zxe, €B, for any x&€N (1) % If this is done, the UHF subalgebra
B=UB; and the projections {e;} satisfy the condition in (vi) of the
theorem.

Let B; be any full ¢(»,) Xq(n;) matrix subalgebra in A (n,)® Sup-
pose that we have {n}, {B;} and {e;} satisfying the above conditions
for k<<m. Let 1, (s) =c(e,""e,") for I=>n,. Then T7 h" =h", and

SO
hO(s) =(hP (s =S (R, [—1)> .

Hence there is an /=n,,; such that for all s; and s,,
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|htm (s1) =y © (s2) !<P—2(m +1)7.

Since ¢, and e, all belong to A (D)*NY,’ whose direct summands
are of the same type with each other, we have a projection ¢,, in A ()“
NY,  such that e ,<e, ™, t(e,"™ —e,,)<p '(m+1)"" and c(e,.e,")
are independent of s. Let e,.,=2¢,, and let B,,, be a type I, sub-
factor (with 1) of A ()® containing e, ,(¢t€Z,) and B,,. Since A (m,)“
is generated by B, and {e,""'} we have e, (x1,)%, 1B, and by
definition we have e,,;€ (A (#,)*)’. Thus we have constructed ,,,,
B,.: and e,.,; satisfying the conditions, This completes the proof bv

induction.

Remark 3.12 Let g be a positive integer such that ¢ devides p.
Then there is an example (A, &) where 9* is simple and has g extremal
tracial states. Let U, be a type I,. factor and let &, be the automorphism
of A, implemented by exp{27ip 'e,} where e, is a one-dimensional projec-
tion of A, if # is odd and e, is a g times #7’/2-dimensional projection
of A, if n is even. We consider the system (U=QRU,, a=Raw,).
Since P(S(m,m+2p) =¢) >0 for all t€Z, and m, we have I'(a) =2,
and hence A® is simple [6]. For any t€Z,

Kexp 2mip~'tS(m,n) = I _ [1+4 (2k+1) 2(exp 2mip~'t—1) |

m<2k + 1

X 27Y1+exp 2mip~'qt|.
m=2k<n

This implies that lim|<{exp 27ip~'tS(m,n) »|==0 if and only if t< (p/q) Z,.

Thus by Lemma 3.9 we have the assertion.

§ 4. The Condition for 2* to Be UHF
Keep the definitions and notations in section 3. For t€Z, let
A*({z}) be the set of x& U with a(x) =exp{27wip 't}x and let U] be
the unitary group of 2.

Lemma 4. 1. The following statements are equivalent:
@O A{IH) NU+3,
(i) A({1}) NA () NUFD for sufficiently large n,
(iii) A contains an a-invariant type I, factor M such that M* is
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abelian,

(iv) For sufficiently large n, A(n) contains an «-invariant type I,
factor M such that N(n) N M CA* and M*® is abelian,

(v) P(S(,n)=t) =p" for any t<Z, for sufficiently large n.

Proof. (iv) & (v) and (iv) = (iii) = (i) are obvious. (i)=>(ii) follows
from the fact that U,(A*({1}) NA ) NU) is dense in A*({1}) NAUL.
Suppose that (ii) holds. Let # be a unitary in A*({1}) NA(n), e a
minimal projection of the center of A (#)% and M the algebra generated
by e, =u*eu*'(k,l=1,---,p). Since e, forms matrix units for M and
M contains the center of [ (n)% it is easy to see that M satisfies the
condition in (iv). Q.E.D.

Proposition 4. 2. If one of the conditions in Lemma 4.1 is
satisfied, then e=1 is possible in the statements (v) and (vi) in
Theorem 3. 10.

Proof. This is easily seen from the proof (iv)=>(vi) of Theorem
3.10 and from Lemma 4.1(v).

Lemma 4.3. The following statements are equivalent:
(i) A*({1}) N contains a central sequence ;
(ii) There exists a subsequence mn, of positive integers such that
A*({1}) NA (72441) NA ()’ NUF£D;
(i) A contains a central sequence M, of a-invariant type I, factors
such that M,* are abelian ;
(iv) There exists a subsequence n, of positive integers such that
W (xs1) N (1) contains an a-invariant type I, factor M with abeli-
an M* satisfving N (ny1) NA ()’ MM A" .
(v) There exists a subsequence n, of posilive integers such that
P(SGyne 1 —1)=1) =p7 " for any t&Z, and k=1,2, - .

Proof. (iv) & (v) and (iv)= (iii)=> (i) are obvious (where {M,} is
called a central sequence if ||[x;,¥]| converges to zero as k—oo for

any bounded sequence x;E M, and any yE ). Suppose (i) and let
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be a central sequence of unitaries of A*({1}). Then for any ¢>0 and
n there is a % such that ||z, —x||<l¢/2 holds for some x;, €A NA(x)’.
Further there is an m>n such that [z, —x,|<e for some zx,&WU(m)
NA(»)’. This implies that there is an zeA(m) NA (7)) NA*({1})
with |, —xs|<le. If e is sufficiently small, the partial isometry obtained
from the polar decomposition of x; is a unitary in A“({1}). Thus we
have ()= (ii). The proof (ii)= (iv) is the same as that in Lemma
4.1, Q.ED.

Now we recall (,, @,) defined in section 1.

Theorem 4.4. Let (U, Z,, ) be as above. Then the following
statements are equivalent:
(i) AU® is isomorphic to I ;
(ii) A is a UHF algebra ;
Gi) (U, @) is isomorphic to (AR, (Ra,) where ¢ is the trivial
automorphism of a UHF algebra U, ;
(iv) One of the conditions in Lemma 4.3 is satisfied.

Proof. (i)=>(ii) is obvious. Suppose (ii)). Then by Lemma 2.6
of [1] there are an increasing sequence B(n) of type I subfactors of *
and a subsequence m, of positive integers such that A“=UB(2) and
An)*<B(n) cA@m,)s n=1,2, ---. Hence the proportionality P(S(x,
m,—1) =s—1t) of the multiplicity of M, , embedded in M, as s varies,
is independent of ¢t Z, This implies that P(S(n, m,—1) =t) =p~" for
any t€Z, Thus we have (ii))=(iv). If (iv) holds, we have (iii) by
using Lemma 4.3 (iv). Thus we have only to show that % is
isomorphic to A,

For the system (2(,, &,) we construct an increasing sequence B ()
of type I,» subfactors such that A@)*CPB) A (n+1)% Let B be
a subfactor of type I of A(n) and let e,"”, t=Z, be a set of distinct
minimal projections of the center of U (#%). Then A (n)® is generated
by B and {¢,”, t€Z,} and ¢,¢,""” is a minimal projection of A (z+1)=
NP’ for any ¢ and s in Z,. Hence there exists a subfactor B, (of type
I) of A(n+1)NY" such that By3e,™, t=Z, Let B(n) be the
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algebra generated by B and B,. Then AR)*CB») cA(2+1)* and
B(n) is a type I» factor. Thus UB () =UA(n)*=A* which completes
the proof.

Remark 4.5. There is an example (Y, &) where A% is not a UHF
algebra but has a unique tracial state.

Let %A, be a type I,., factor and let a, be the automorphism of ¥,
implemented by exp{27wip 2" 'ke,} where {e.},>"' is a family of orthog-
onal projections of ¥,. We consider the system (U=, a=QRca,).
Then (A, a) satisfies Condition 3.2 but ¥ does not contain a UHF
subalgebra of type (»"). By Theorems 3.10 and 4.4 this proves our

assertion.
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