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Closedness of the Douady Spaces
of Compact Kahler Spaces”

By

Akira Fujiki*

Introduction

Let X be a complex space and Dy the Douadv space of compact
analvtic subspaces of X. For every point d& Dy, we denote by Z; the
corresponding analytic subspace of X. Define the subspace, Dy, of Dy e
by Dy= U D,, where D, are the irreducible components of Dy .4 such
that for s‘:)me de D, Z, is reduced and pure dimensional. Then the main
purpose of this paper is to show the following: If X 7s a compact
Kéhler space, then every connected component of Dy is compact (The-
orem 4.5). Further if X is a compact complex space whose reduction
Xiea is a meromorphic image of a compact Kéhler space, then every
irreducible component of Dyyeq is compact (Theorem 5. 3).

In algebraic geometry the corresponding results are wellknown. In
fact, if X is a projective analytic space i.e. the one embedded in some
projective space (or more generally a meromorphic image of such and
hence a Moisezon space), then Dy is a disjoint union of projective analytic
spaces (resp. compact Moisezon spaces) (cf. [1] and [10]). In particular
every connected component of Dy is compact in these special cases. Note
that the problem in this generality still remains open in the general case,
though in most applications the results obtained here would be sufficient.

Now for the proof, instead of Dy itself, we first fix our eves on the
‘Chow variety’ of X whose existence in the analytic category has recently
been established by Barlet [3]. We denote this space by B(X). Then

our proof is roughly divided into two steps: 1) we show the compactness
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of the connected components of B(X) when X is compact and Kihler,?
and then 2) using the generic flatness theorem for proper maps due to
Firsch [6] and Hironaka’s flattening theorem [14] we reduce the problem
to the case of B(X) via the natural map p:Dy—>B(X). Let me explain
the step 1) more in detail. First note that every point of B(X) cor-
responds to an effective compact g-cycle on X for some ¢==0. which in
turn may be considered as a current of dimension 2¢ on X. Then we
show that a) the natural topology of B(X) is equivalent to the one
induced by the weak topology on the space of currents on X (Prop. 2.3).
Combining this result with a result of Harvey and Shiffman in [12] on
the closedness of holomorphic cycles we show that b) every bounded set
on B(X) is relatively compact (Prop. 2.10). Finally we show that c)
if X is Kahler, then every connected component of B(X) is bounded
(Prop. 4.1). Then 1) follows immediately from b) and c¢). Note that
in the course of our proof c¢) is the only point at which we need the
Kahlerian assumption.

In the subsequent paper [8] we shall give an application of the
results of this paper to the automorphism groups of compact Kidhler mani-
folds, which was the original motivation for this investigation.

We now give a brief explanation on the organization of this paper.
After some preliminaries on C*-forms and currents etc. in § 1 we introduce
in § 2 the space B(X) according to Barlet [3] and prove a) and b)
stated above. In §3 we reduce the case of Dy to that of B(X) via
the map § mentioned above. Here we have to treat also the relative
case as it is needed in the reductions in §5. Next in §4 we prove c)
together with a generalization to compact complex spaces which are mero-
morphic images of compact Kihler spaces. In the final section we prove
our theorems in its full generality, which involves the relative Douady
space, Dy,s(€), of the quotient analytic sheaves of a coherent analytic
sheaf & on X with X a complex space over .S, by a series of reductions
to the case of Dy.

Conventions. In this paper all the complex spaces have a countable

base for the open sets and hence paracompact. Complex spaces are not

2 This has also been shown by D. Lieberman independently.
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necessarily reduced unless otherwise stated. Let X = (X, Oy) be a com-
plex space. Then X4 denotes the underlying reduced subspace, the re-
duction, of X. Usually a complex analytic subspace of X is simply called
a subspace of X. An analytic subset (resp. a subvariety) of X is by
definition a reduced (resp. and irreducible) analytic subspace of X. An
open subset of X is called Zariski open if it is the complement of an
analytic subset of X. Let S be a complex space and X a complex space
over S i.e. there is a fixed morphism f:X—S. Then if 7T is another
complex space over S we write X;=X X T and f7:X;—7T for the natural
projection. Similarly if & is a coherent analytic sheaf on X, we denote
by &7 the pullback of & on X; by the natural projection X,—X. If
T={s} is a point we write X; (resp. &;) instead of X, (resp. &).

§ 1. Preliminaries

1.1. Let X be a complex space. We shall define on X the sheaf A%
(resp. A%Y of germs of C*m-forms (resp.C* forms of type (p,q))
with direct sum decomposition *) A%Z= @ A%? and the differentials
d: Mg A3 (resp. 0: A AZ™ and 0 AZI>AZW) with d=043.
First we consider the case where X is a subspace of a domain V

in C"=C" (2, -, 2,) with the ideal sheaf Y=y Then we define
Ax= A% by Ax=Ay/(I+I9) Ay, where I={f; f€I}, f being the
complex conjugate of f. Next define the A,-submodule, A%, of A
by Ar=3IMdz,+3 IAdzs+ AdI + AdI, A=Ay, where AdYJ
={3h,dg, h,e A and g,€YJ} and similarly for AdY. Then put A%
= Ap/ A NAp~!, m=1. These form naturally an Ax-graded algebra
Ax. Further define the Ay-submodules, A%Y p+g=m, of A% by
20 = {pe A% ;3 ApL inducing ¢}. Then it is immediate to see
that we have the direct sum decomposition *) above. Moreover the usual
differentials d (resp.® and 8) on A2 (resp. Ag?) is easily seen to induce
the one on A% (resp. A%Y) with d=0-+0. On the other hand the natural
complex conjugation on AP induces a C-antilinear involution on A%. In
particular we can define the real forms on X as those left fixed by this

involution,

In the general case take an open covering U={U,} of X with an
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embedding j,:U,—V, for each «, where V, is a domain in some C"=.
Then we see readily that the sheaves {j¥ AT, w,} (resp. ¥ A%%y,) and the
differentials {j*d,} (resp. {j¥0.} and {j%0,}) naturally patch together
to define the sheaves A% (resp. A%? and the differentials d (resp. 0 and
), globally defined on X, with natural direct some decomposition *) above
and with d=8-+08. Similarly the notion of real forms can also be globali-
zed. Note that even if X is reduced, the above definition is a little different
from that of Bloom-Herrera (cf. [15]), though both coincide with the
usual definition on the nonsingular points of X. Quite similarly we define
the space of continuous forms on X, and its direct sum decomposition
into (p,q) components as above. Next let f: X—Y be a morphism of
complex spaces. Then there is a natural homomorphism f*: Ay — Ay
such that if g: Y—Z is another morphism, then f*g*= (gf)*.

We denote by A% . the space of C* m-forms on X with compact sup-
ports. Then the convergence in A%, is defined as follows. Take a
locally finite open covering 11={U,} of X with an embedding j,: U,—V,
for each a as above. Let {0,} be a partition of unity subordinate to the
covering 1I. Taking U suitably we may assume that the support of g,
is compact for each &. Then we say that a sequence {¢,}, ¢.<A%.,
n=>1, converges to ¢, A% . if the supports of @, are contained in a fixed
compact K and for each « there exists a compact set K, in V, and a
representatives @, of 046, 7#=>0, with support contained in K, such that
B na—@ 0o uniformly on K, with all the derivatives of their coefficients.
It is easy to see that this definition is independent of the choice of I
and {0.} as above.

Next we define the space, Dy, n, of currents of dimension 7 on X as
the vector space of complex valued continuous linear forms on A%, m=>0.
The boundary operator b: Dy ,—>D% -1 is then defined by & ()
(0) =a(dw) for all we A% and a D% .. We put on Dy, the weak
topology which is defined by the weak convergence of the sequences of the
elements of Dy , i.e. &, & D%, ,, n=>1, converges weakly to o, & DY, if for

every wE A% &, (0) converges to ().

1.2. We refer the definitions about semianalytic sets and their elemen-

tary properties to [13]. Let C be a semianalytic set of dimension 7 on
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a complex space X with a fixed orientation on its m-simple points. Then
Herrera in [13] showed the following: 1) (integration on semianalytic
sets). For every continuous m-form, y, on X with compact support, the
integral X of y on m-simple points of C can be defined, in such a way
that it defines a current of dimension 7 on X, denoted by c¢[C]. 2)

(Stokes formula) we have the formula
b (c[C]) =c[bC],

where bC is the boundary of C as a set which is again a semianalytic
set with the natural orientation on its (72—1)-simple points induced from
C. If Cis a complex analytic subset of X with its natural orientations
on the nonsingular points, then the above results are due to Lelong (cf.
[15,3.1]). In particular ¢[C] is then &-closed.

Let ¢=0 be an integer. A holomorphic g-cycle, or simply a g-cycle,
is a locally finite sum, A=) n,A,, where n,EZ and A, are subvarieties
of X of dimension ¢. For a g-cycle A we denote by | Al the set J A, and
call it the support of A. This is an analytic subset of X. WZ call A
effective if 7,220 for all . A is called simply a compact g-cvcle if
A is effective and |A| is compact. Now for every holomorphic g-cycle
A=3"n,A, on X we define a current, [ A]E D%.45, by [A]=2] nac[ Al
This is welldefined, since the sum is locally finite. We of‘:en write
c[A]l () = j;x for every continuous 2g-form y on X. We denote by
Cre(X) (resp. C;(X)) the set of all the currents of the form c[A]
with A an effective (resp. compact) g-cycle on X.

We recall the notion of boundedness of a subset of C,(X) (cf. [15]).
First {or any domain V in C*"=C"(zy, --*, 2,) we call the 2g-form on V,

v,=(V—1/2) qzlj dz;, \d%;,/\ -+ \dz; /\dz,

the summation being over all the g-tuples I= (4, -+, 4,) with 1<z, <--
<7,=<n, the volume 2¢-form associated with the standard Hermitian metric
on C". Then for every element A=Cr* (V) we call j"()q the volume
of A and denote it by vol(A). ‘

Definition 1.1, 1) Let V be a domain in €C*. Then a subset E
CC¥ (V) is called bounded if sup vol (A) < +oo. 2) Let X be a com-
A€E
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plex space and E a subset of C,(X). Then we call E bounded if there
exists an open covering 1= {U,} with an embedding j,:U,—V,C C" for
each « such that for all « the sets, E,={c[j.(A|y)]; A€ E} are bounded

in C*(V,) in the sense of 1), where V, is a domain in C"e.

1.3. Let M be a real connected C* manifold of dimension 2¢ and 7%
the cotangent bundle of A7 Suppose that A4 is oriented and £ any
volume element on M. Then every real C* 2g-form y on Al can be
uniquely written as y=A& for a unique real C* function 1 on M. Then
we call y positive if 1 is positive at every point of M. This definition
is in fact independent of the choice of the volume element and depends
only on the orientation of M. On the other hand, for y as above we
write |y|=[212 with || the absolute value of 2. Then |y| also is in-
dependent of the choice of £. Let Y be a connected complex manifold
of complex dimension g. Then Y has the natural orientation compatible
with its complex structure. Thus for every real C* 2¢-form on Y we
can speak of its positivity and of |yl.

Let G be a domain in €C" and y a real C (g, ¢)-form on G. Then
we call y positive if for every open subset U of G and for every con-
nected complex submanifold Y of U of complex dimension ¢ ¢*y is positive
on Y, where ¢: Y—U is the inclusion. The positive forms can also be
characterized by the following infinitesimal condition (cf. [23, Lemma
2.2]); x is positive if and only if for every point xEG and every element
$E /\Tq,, of the form ¢= (v —1) %,/\&, - e,/\&, with e,, -, ¢, linearly
independent vectors in T§,,, we have y; (¢) >0, where T is the holomor-
phic tangent bundle of G and T}, is its fiber at x. We shall list some
elementary facts on positive forms. 1) The volume 2g-form v, defined
in 1.2 is positive. 2) Let y be a positive (1,1) form on G. Then the
g-th exterior product y? 1=<q<7m, is again positive. 3) If y; and y, are
two positive forms on G, then for every relatively compact subdomain U
of G there exist positive constants ¢; and ¢, such that ¢, <y,<lcsy. i.e.

ye—Ciy and ¢,y —7y, are positive (cf. Stoll [23, p.98]).

Definition 1.2. 1) Let X be a general complex space and y a real

C~(q,q) form on X. Then we call y positive if there exists an open
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covering 1={U,} of X with for each & an embedding j,: U,—G, of U,
into a subdomain G, in €'« and a C* positive form, y,, of type (g, q)
on G, such that j¥y.=xly,. 2) A C* positive (1, 1)-form on X is called
a hermitian form on X. Further a hermitian form y is called a Kdhler
Sorm if in the above definition all the y, can be taken to be closed.

A complex space with a Kihler form is called a Kdhler space.

Remark 1.1. 1) Using partition of unity we can always construct
a Hermitian form on every complex space X. 2) The above definition
of a Kihler space coincides with that of Moishezon in [16] because of the
fact that every real closed C*(1,1) form y on a domain G is locally
written as y= vV —=103¢ for some C* function ¢ and yx represents a Kdhler
form if and only if ¢ is a strictly plurisubharmonic function.

By virtue of 1) and 3) above on positive forms we get easily the

following lemma.

Lemma 1.1. Let X be a complex space and y a real positive
C= form of type (q,q) on X with ¢>>0. Let E be the subset of Cy(X)
such that J|A| is contained in a compact subset of X. Then E is
bounded z']l”lecfnd only if the set {Lx; AEE} is bounded.

1.4. Let f: X—S be a proper morphism of complex spaces and & a
coherent analytic sheaf on X. Suppose that Sis reduced. Then by Fri-
sch [6] there exists a dense Zariski open subset U=U(&,f) of S such
that & is flat over s&S if and only if s€U.

Let /:X—S and & be as above. Then a flattening of £ is a com-

mutative diagram

such that 1) ¢ is a surjective, proper and bimeromorphic morphism which
gives an isomorphism of ¢~ 1(U) and U with U=U(E,f),2) Xz=XXsS,
and f5 (resp. dy) is the natural projection, and 3) & =¢%€ modulo fs-
torsion (cf. [14, (4.2.1.)7] for the definition) is flat over S. In case
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E=0y let X be the subspace of X5 corresponding to the quotient sheaf
& =0y of Oy, ie. the strict transform of X in Xj and f: X—>S the
induced morphism. Then we call f a flattening of f and ¢ the flattening
morphism. By Hironaka [14] for every f and & as above there always

exists a flattening of &.

Lemma 1.2. Let f:X—S be a proper morphism of reduced cont-
plex spaces. Then there exists a Zariski open subset U (resp. V)
of X (resp. S) such that for every x€U (resp. s€V) X, (resp. X;)

is nonsingular at x (resp. generically reduced).

Proof. The result is more or less well-known. For the simplicity
of arguments here we use the resolution by Hironaka. Let ¢: S—S (resp.
¢ X —X) be a resolution of S (resp. a resolution of X5, rea composed with
the natural projection Xjrq—>X). Let F:X-—>S be the induced map.
Then there exists a Zariski open subset V of S such that f is smooth
at every point of f~'(V). Let E (resp. F) be the nowhere dense
analytic subset of S (resp. X) such that ¢ (resp. ¢)) gives an isomorphism
of S—F and S—¢(E) (resp. X—F and X—¢(F)). Let V=¢(V N (S
—E) =¢(V)nS—¢E)) Gesp. U= (S ()N X=F) =71 (V)N
(X—¢(F)). Then it is easy to see that this V (resp. U) has the
desired properties. Q.E.D.

Lemma 1.3. Let f;X—>S and V be as in the previous lemma.
Suppose that X is pure dimensional and S is irreducible. Suppose
Sfurther that every irreducible component, X;, of X is mapped surjecli-
vely onto S. Let wy (resp. wg) be a positive C* (1,1)-form on X
(resp. S) and R=wy+f*ws. Let n=dim X, m=dim S and q=n—m.
Let i(v)=§ w%, veV, where [X,,]Z; X, with X,, irreducible

[X,]
components of Xyrear 1hen we have the inequality

L.Q’Z L A(v) ol

Proof. Let ¢: 8-S, UF X—X and f: X—58 be as in the proof of

the previous lemma. Let wz=d*ws, wg=¢*0y and @=w;z+ f*oz=¢*Q.
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Then we have j o= j‘”gn' On the other hand, f V=¢"1(V) and 1(®)
x 5
= j 0y, vV, with [X;] defined as above, then 1(¥) =4(¢(v)) and
[X3]

jl(’v) 0§ = jj (¥)w¥. Hence it suffices to show the lemma when X and
v v

S are nonsingular and fis smooth on /' (V). In this case using the local

coordinates we easily see that

(o= 5 [oxnro= [oxnrros= (105,
= v
Q.ED.

I{ fis fat in Lemma 1.2, then more precise result can be obtained.

Lemma 1.4. Let f~X—S be a proper, flat and surjective mor-
phism of complex spaces. Suppose that X is pure dimensional and S 1is
reduced and irreducible. Then the following conditions are cquiv-
alent.

1) There exists a point s&S such that X; is reduced.

2) The set U={s=8;X, is reduced} is nonempty and Zariski open
in S.

3) X is reduced.

Proof. The equivalence of 1) and 2) immediately follows from a
result of Banica [2] which says that U in 2) is Zariski open in S.
Next we show the equivalence of 2) and 3). We put n=dim X, m
=dim S and g=sn—m. Since f is flat, X, is pure g-dimensional for every
sesS. We put S,(X) ={x € X; depth, X <k} (resp. S;(f) ={zxEX;
depth, X;,<<k}) and B,(X) = {x;dim, S;(X)=k} (resp. B,(f) ={x;
dim,S; (f) N Xpmy=Fk}). Let A={xreX;X is not reduced at x} (resp.
Ar={rcX; X, is not reduced at x}). Assume that ¢g>>0, since the
result is well-known if ¢=0.

We first consider the case where .S is nonsingular and X is generi-
cally reduced for every s=S. Note that in this case X also is generically
reduced. Since f is flat and S is nonsingular, we get that depth,X
=depth yX,+m for all s&€§ and xreX,. Hence S;(f) =S; ,(X) for
every 22=0. On the other hand, by Houzel’s criterion cited in [2] applied
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to our pure dimensional case, combined with Serre’s criterion of reduce-
dness (c.f. [2]), it follows that A= U B,(X) and A,= U B,(f).
n—1zkzm g-12k20
Suppose first that U in 2) is empty so that f(4;) =S. It follows then that
(B, (f)) =S for some 0<k,<g—1. By the definition of B, (f), we
get that dim B, (f) >m +k,. This in turn implies that By, ., (X) 7@ by
virtue of the equality Sy, (f) =S,-» (X) mentioned above. Hence A+#d.
This shows that 3) =2) in our special case. Conversely, if A=, then
B, (X) #O for some m<k<n—1. Since B, (X)CB,_,(f) fore very m
<k<n—1 as follows easily from the definitions of these spaces and the
above equality, we have that @B, _,, (f) £ A, Inshort, if S=Uin 2),
then X is reduced.

Next we consider the general case. Let V be any nonempty Zariski
open subset of S such that V is nonsingular and X is generically reduced
for every s&S. For example take V to be the set of smooth points of
U in case 2) and use Lemma 1.2 in case 3). Then applying the former
half of the above consideration to the morphism fly,: X;—V, X,=F"1(V),
we obtain easily the implication that 3)—2). Conversely assume that
2) holds. Then by the latter half of the above consideration we conclude
that Xy is reduced. It remains to show that under this condition X is
actually reduced. Let T'=f(A)CS—V. Suppose that T5@ and take
a point t&T. Let H={z||z|<{1} be the unit disc and A: H—S be a
morphism of H into S such that A7'(T) ={z=0}. Let fy: Xyg—H be
the induced morphism. Then it is easy to see that X, is not reduced
and Xy—h"1(0) is reduced contradicting the flatness of f;. Hence T=9
and X is reduced. Q.ED.

Lemma 1.5. Let f:X—S be as in Lemma 1.2. Define V=1{s
eX;f is flat at every point of X, and X; is reduced}. Then V is

a dense Zariski open subset of S.

Proof. Let V; be a dense Zariski open subset of S such that f is
flat at every point of X;. Then by a result of Banica quoted above V
is Zariski open in V;. Moreover by Lemma 1.2 and the proof of the
previous lemma we see easily that it is demse in S. Let T=V,—V.

Then it is enough to show that the closure T of T in S is an analytic
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subset of S. Let f: Xs—S be a flattening of f with the flattening mor-
phism ¢: S—S. Then by the above lemma there exists an analytic subset
T of § such that Xjis reduced for &3 if and only if 5&€S—7. Then
since ¢ gives an isomorphism of ¢*(V,) and Vi, it follows that ¢(T) NV,
=T. Hence T is a union of some of the irreducible components of ¢ (7"

and hence analytic. Q.ED.

§ 2. Barlet Space and Its Boundedness

2. 1. First in 2. 1-2. 3 we recall some of the constructions due to Barlet
[3] of the universal {family of compact g-cycles on a complex space. Let
S, be the symmetric group of degree k. For every integer =1 let S,
act on (€M% by the formula 0 (z, -, Zx) = (Towy, ***» Tewy), Where I,
¢ and 6€S;. Then as is well-known the quotient, sym*(C")=(C")*/S,
has the natural structure of a normal affine algebraic variety. In fact
using the elementary symimetric functions of x; Barlet gives a natural
embedding, s:sym” (") —E, where EZéEj and E; are the vector spaces
of polynomials of degree j on C. -

For 2= (z;, -:-, 2,) €C" we put ||z :sqpizi[. Then define the norm
|-l on E by ||P|=sup|P(z)|, PEE. Lzet B=DB; be the polydisc of
radius R>0 with cenﬂil at the origin of € ie. B={z&l; |z|<R}.
Then sym*B=(B)"/S, is naturally regarded as an open subset of sym*(C").
In fact there is a suitable relatively compact open subset Up of E such
that sym*B=s"'(U) [3, p.16].

Given a polydisc U in €? and a complex space Y we denote by
H(U.Y) the space of all the continuous maps f: U—Y which are holo-
morphic on U, where U is the closure of U. Then in the above notations,

we have the natural inclusions
H(U,sym*B) CH(U,Uz) CH(U, E).

Here we note that H(U, E) has the natural structure of a Banach space
with respect to the sup norm and H (U, Ug) is its open subset. More-
over H(U,sym*B) is a Banach analytic subset of H(U, Uy) and in parti-
cular has the natural induced topology (ci. [3, p. 27 Prop. 4]).

We define the support of an element f& H (U, sym*B), denoted by
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suppf, as follows; suppf={(x,b6) €UXB; b=>b, for some (b, -, b;)
ern (f(w)}. Here n: B*—>sym*B is the natural projection. Now suppose
that we are given an analytic subset, X, of C?X " defined in a neigh-
borhood of U X B. Then we denote by GZ'Z the subset of H (U, sym*B)
consisting of those elements whose supports are contained in X. This is

again a Banach analytic subset of H (U, Ug)[3, p. 27, Prop. 4].

2.2. Let A:i n,A, be an effective g-cycle defined in a neighborhood of
UXB. Let Ula=ble any neighborhood of U in €? such that A is defined
on U XB. Then we say that A defines a ramified covering over U,
if each A, is finite and surjective over U, under the projection p,:U, X B
—U,. In this case let k, be the degree of A, over U, and put k=2m ka.
Then we call £ the degree of A over U,. Now if A is such, t}:ei it

determines an element
ffe H(U, sym*B)

as follows; let p,=pils,: A;.—>U, and U, be the dense open subset of
U, such that paly1py: 22’ (U7) =U] is an unramified covering of degree
k. for every «. Then for every uc U, we have p;'(w) ={(u, b%), -,
(u,b%,)} for some b5 B. Then we set fY (u) =7 (b) for uc U,, where
b= (b}, -, b}w v, BE e b}t” v, O™, ...’b;cnm’ e BT ...,b;cnm) EB", E;-tuple
(&%, -+, b% ) being repeated 7, times. Then it is easy to see that fr
extends to a holomorphic map fZ: U,—>sym*B. Finally we define f{ to
be the restriction of f¥ to U. Note that if |A| is further contained in
an analytic subspace X in U, X B, then supp £ CX and hence ff €GY'3.

Conversely, if we are given an element f< H(U,sym*B) (resp.
GY'®), then for every polydisc U, with UogU we can define a unique
effective g-cycle A (resp. with support in X) on Uy X B which defines a
ramified covering over U, of degree £ with f=f%° (cf. [3, p. 25 Prop. 3]).

Let X be a complex space and A a compact g-cycle on X. Let V
be an open subset of X with an embedding j:V—U, X B, where U, (resp.
B) is a polydisc in €? (resp. €C"). We call such a quadruplet (V,J, U,, B)
admissible for A if j(ANYV) defines a ramified covering over U, in the
sense defined above. Thus by the above if (V,j, U, B) is admissible

for A, then to every polydisc U with UC U, we can associate an element
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ffEH(U> sym*B) by f{ :ij(AnV)-

Now let S be a reduced complex space and Ag= {A,=> 1S A%; s&S}
a family of compact g-cycles on X parametrized by S. We call Ag an-
alytic if [or every admissible quadruplet (V,j, U,, B) as above and for
every polydisc U of U, with UcC U, the map, F:SXU->sym*B, defined
by F(s,u) =f% (4) is an analytic map.

Let (Aweq) be the category of reduced complex spaces and morph-
isms. Define a contravariant function F: (Ameq) = (Sets) by F,(S) =the
set of analytic families of compact g-cycles on X parametrized by S. Then

the following theorem was shown in [3].

Theorem (Barlet). F, is representable for every ¢=0. Namely
there exists a reduced complex space B,(X) and an analytic family,
{4,; 6= B,(X)}, of compact g-cycles on X parametrized by B,(X),
such that every analytic family, {A;;s&S}, of compact g-cycles on
X as above is induced by a unique morphism h:S—B,(X) from this
ie. A,=A,e for all s€S8S.

We call B,(X), ¢=0, the Barlet spaces of X and {4,;6=B,(X)}
the universal {amilies of compact g-cycles on X. We also write B(X)
=1]B,(X) and call it the Barlet space of X.
a0

2.3. Let A be any compact g-cycles on X, where X is as in 2. 2.
Then we may write A=A, for a unique point & B,(X). We want
to describe a system of fundamental neighborhoods of &, in B,(X). First
we take a finite open covering V= {V,} <., of |A] in X, with an embed-
ding j,:V,—U, . X B, of V, into the product of polydiscs U,,&C% and
B,C = for each «a such that (V,,j,, Ui, B,) is admissible for A in the
sense defined in 2. 2. Suppose further that there exists for each « an
open subset U, of U, with U‘,,,g U,,, such that j;'(U,X B,) is again an
open covering of |A| in X. Let us call a set of quintuplets Q= {(V,,
Jas Uiy Ba, Uy) b, with the above property admissible for A.

Then to every set of quintuplets admissible for A as above we can
associate an element f, (Q) E];[ H(U,,sym*B,) by f4(Q) =TI f£. With

these preparations we can now state the following lemma which follows
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directly from Barlet’s construction [3, Chap. III].

Lemma 2.1. For every set of quintuplets, Q= {(Va, ju Uia, Bas
U }icass, admissible for A let W=W(Q) be defined by

W={bcB,(X);Q is admissible for A,}.

Then W is an open neighborhood of b, in B,(X) and the natural map
$=6(Q): W—II H(U,, symzB), defined by ¢(6) =f4,(Q) =11/&x, is a
homeomorp/zisnaz onto a finite dimensional analytic subset of [|H(U,,
sym*B,). Moreover, W(Q) form a fundamental system of nZiglzbor-
hoods of by, in B,(X) when Q runs through all the set of quintuplets

admissible for A as above.
We also need the following local version of the above lemma.

Lemma 2.2, Let A=A, be as above. Suppose that (V,j, U, B)
is a quadruplet admissible for A. Then it is also admissible for A,
Sor all be B, (X) sufficiently near to b,.

2.4. Recall that every compact g-cycle A defines a current c[A] of
dimension 2q on X (cf. 1.2). We may now consider ¢ as a map, ¢: B, (X)

— D% sn_s which is obviously injective and whose image is by definition

C,(X).

Proposition 2.3. The map ¢ gives a homeomorphism of B, (X)
onto Cy(X), where C,(X) is given the weak topology.

The continuity of ¢ has essentially been proved by Stoll in [23].
Since the situation is not quite the same, however, we shall give here the
complete proof following his line. For the proof we need a series of
lemmas. In order to avoid interrupting the main line of arguments we

defer the proof of the following lemma until the end of this section.

Lemma 2.4. Let U, (resp. B) be a polydisc in C*(resp. C"). Let
Ay be an effective g-cycle and A,, m=1, a family of effective g-cycles
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on U X B. Suppose that for all m=0, A, are ramified coverings over
U, of degree k so that ff c H(U,sym*B) are defined, where U is any
polydisc in C* with UgUl. Suppose further that fi converges to
fL in H(U, sym*B) as m—co. Let (zi, -, 2,) be the coordinates of
C? and g any continuous function on U XB. Put y=gdz;/\---/\dz,
Ndz/\--/\dg, (xy=¢, if ¢q=0). Then we have the convergence

J 1> jv %, M—>00,
AnN (U xB) A,N (U xB)

To state the next lemma we recall the notion of clear coordinates.
Let W be the polydisc of radius 7>>0 in C"=C" (24, -, 2,) and ¢=0 an
integer. Then for every g-tuple I= (i, -+, 2,), 1=d,<---<7,<Zn, let py:
W—Wr={(zs,, -+, ;) €C% |2z;,|<r} be the natural projection. Let A
be an effective g-cycle defined in a neighborhood of W. Then we say
that W is clear for A if for every g¢-tuple I as above, the induced map
PII1A|3,A1—>W1 is a finite morphism. The following lemma is due to Stoll
[23, Prop. 1.3.].

Lemma 2.5. Let V be a domain in C" containing the origin,
and A an effective g-cycle on V. Then there exists a unitary (linear)
change of coordinates of C" such that with respect to the new coordi-
nates the polydiscs W, of radius r are clear for A for all sufficiently
small r>0.

Let y be a continuous form of type (q,¢) on a domain V of C"
=C"(21, ", 2,). We call y unmixed with respect to the coordinates (z;,
-+, %,) if i is written on V in the form X:IZ wdzs, /\dZ:, /\ - N\dz;,/\dZ;,
where y; are continuous functions on V and I runs through all the g-
tuples I= (4,, **-,7,) with 1<4,<---<7,<#n. Using Lemma 2.5 the fol-
lowing two lemmas can be proved quite in the same way as Lemma 3. 4

and 3.6 respectively in [23].

Lemma 2.6. Let W= {(24, -+, 2,) EC"; |2;|<r} be the polydisc
of radius r in C". Let A, be an effective q-cycle (resp. An, m=1,
a family of effective q-cycles) defined in a neighborhood of W with
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q>0. Suppose that W is clear for all the A,, m=0. For every gq-
tuple 1= (i, =+, 1,), 1<i,<---<i,<n, we can then define elements fir
e H(W, W), where I' is the (n—q)-tuple complementary to I. Sup-
pose that for every I,fo converges to f,?:’ as m—oo. Then for every
continuous unmixed form, y, of type (q,q) defined on W we have the

convergence

[ o[ gmoes
AnNW A,NW

Lemma 2.7. Let the notations and assumpiions be the same as
in Lemma 2.5. Suppose further that |A, =U, X {0} and ¢>0. Then

for every continuous form v defined on U, X B we have the convergence

j i X, M—>00,
(UxB)N4p (UxB)N4,

Next we give two lemmas needed in the proof of the continuity of ¢

Lemma 2.8. Let V be a domain in C" containing the origin.
Let A, be an effective q-cycle on V and A,, m=1, a family of effec-
tive g-cycles on V. Suppose that c[A,] converges weakly to c[ A,] as
m—>oo. Then there exists a linear subspace, P, of complex dimension
n—gq of C" such that if P’ is the linear subspace orthogonal to P with
respect to the standard Hermitian metric on C", then for some poly-
discs U, of P’ and B of P, U, X B. considered naturally as a subdomain
of C", is admissible for A, for all n=0.

Proof. For ¢=0 and g=n the assertion is trivial. So we assume
that 0<g<n. For any subset E, of V let A*(E,) be the k-dimensional
Hausdorf measure of E, (cf. [15,2.4]). Set E=U|A,|. Then A"
(E)<3 A" (lA:]) =0. Hence by [20, Lemma ZEDZ.] there exists a
comple:?olinear subspace, P, of dimension n—gq of C" such that PNE is
totally disconnected. Thus to finish the proof it suffices, up to the usual
arguments, to show that E is closed in V. So let £ be a point in the
closure, E, of Ein V with the sequence, {x,}, of points of E converging

to x. Suppose now that x& E. Take for each £ an m,=>0 such that



DouADY SPACES OF COMPACT KAHLER SPACES 17

r.€|An). We may assume that m;—oo for k—co. For any point a
=" let B,(a) be the ball of radius » with center a. Then take >0
sufficiently small so that B,(x)CV and B,(x) N Ay=¢. Let 0 be a C*
function with compact support in V and =1 on B,(x). Put y=pv, with
the volume 2¢g-form v, (cf. 1. 2). Then by our assumption le':xe j‘on
=0. On the other hand, for sufficiently large &, B,;(xx) &B,(x,). Hence

= 1= j 24, while by [4, Lemma 3 v
j‘Amkx_-. Avnkr'llir/z(xk)lC AminBryaa v 14 ] AminBr/aas) |
Zc(r/2)* for some positive constant ¢ independent of k2. This is a
contradiction. Hence E=E as desired. Q.E.D.

Lemma 2.9. Let U, and U (resp. B, and B) be polydiscs in C*
(resp. C") with UCU, (resp. BCB,). Let A,, m=1, be a family
of effective q-cycles on U, X B. Suppose that A, are ramified cover-
ings over U, of a fixed degree k so that in particular the associated
elements f2 e H(U,sym*B) can be defined. Then there exists an ef-
Sfective g-cycle A, in UXB and a subsequence {m;} of {m} such that
A, is a ramified covering over U of degree k with that associated
element fl = H(U,sym*B,) and that f,fful converges to f¥ in H(U,

sym*B,) for j—oo.

Proof. We regard sym”®B, as an analytic subset of an open set in E
as in 2.1. Then with respect to some basis of E each ff is represented
by an N-tuple of bounded holomorphic functions (fp, **, fny) defined on
U, where N=dim E. Since A,, are all defined on U, X B; we may assume
that f,,; are defined and holomorphic on a polydisc " DU. Then by the
generalized Vitali’s theorem [11,I. A 12] we can find a subsequence {m,},
of {m} such that for each ¢ f,, converges to a holomorphic function f;
defined on U’ uniformly on U. Then for the map F: U—C" defined by
F=(f), F(U)Csym*BCsym*B,. Then as was remarked in 2. 2 there
exists an effective g-cycle A, as in the lemma such that F has the form

F=f7 as an element of H(U, sym*B,). Q.E.D.

Proof of Proposition 2.3. 1) continuity of ¢. Let b, m=1,2, -,
be any sequence of points of B,(X) converging to a point b,&B,(X).
Let A, =A,, m=0, be the corresponding compact g-cycles on X. Let
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x be any continuous form with compact support on X. Then it is enough

to show that for m—>oco we have the convergence

® e[41 @) = [ a>elAl = |2

Note that since A, are holomorphic cycles, we may here assume that
x is of type (gq,q). Based on the above lemmas the proof of (*) is
formally quite analogous to that of Stoll in [23] as mentioned above
(cf. the arguments in Lemma 2.3 Theorem 3.8 in [22]). Now the
assertion follows immediately from Lemma 2.4 if ¢=0. So we assume
that ¢>>0. Take and fix any €>0. Let |Alsne be the set of singular
points of |A,|. Consider first the following assertion. (**) We can find
an open covering {U, V} of X with the following property; let {1y, i,} be

any partition of unity subordinate to the covering {U, V}. Then we have

a) j |2zx|<<e/3 for m=0 and m>0 and
U

b) 5\ lvx—f /lyxi<e/3 for m>0.
ANV 4NV {

We first see that (**) implies (*¥). Indeed, we have for m>0

|
ij %~ j 1 gf | 2] + j um+” Ay — f Ayz|<e. This
. 4 ety yReY A 4007

proves (¥). Here jv [Aox| =22 nﬂj\ |¢5Agy]|, where A,=)] ngAgz and
4,NV 8 4g

tg: AgNU—U is the inclusion, and similarly for Lmnvlluxl (cf. 1. 3).
We use the similar notations also in the following.

Now we show (**). First we show the existence of a neighborhood
U of |Aglsing With the property a) above. We take and fix finite open
coverings B’ ={V.} and B={V,}, a=1, -, &, of |Aplsmg in X with V,
C V. such that for each « there are 1) an embedding j,: Vo—Dj of V,
into a domain Dj in C"s, 2) relatively compact subdomain, D,, of D,
with j7'(D,) =V, and 3) a continuous 2¢-form, %., of type (g,¢) on
D, with j¥%.=xiv.. Let {¢.} be any partition of unity subordinate to
the covering ¥ and for each « take and fix a continuous function @,
on Df, with support in D,, 0<3,<1, and with j¥%,=¢,. Let (2f, -, 2%)
be the coordinates of C" and form the volume 2¢ form v,.=
(V—1/2)* Y dzi \d=i \ -+ \dzi \dZE, as in 1.2. Then there exists a con-
stant ¢,>0 ;uch that |Fa¥el<c.,v,s0on D, (cf. 1.3.3)). Next take and fix
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a continuous function g, with compact support on D}, such that 0<g,<1
and ¢g,=1 on D, Then obviously we have |@.ial<c.0avq
Now writing A, .,=A,NV, and A,,,a Ja(Anm,e) we consider the

following assertion: (”) For each @ there exists a neighborhood U, of

|Avoyalsing in D, such that L 0oV q,a<E/6kc, and j‘ GaVyq,a
Ay, oNT Ay, onla

<e/6kc, for m>0. Note that from these inequalities

- gavq a
Am dnvl

it follows immediately that J~ 0oV q,a<6/3kc, for m=0 and m>0.

A, aNT o

We shall see that (”) implies the existence of U. In fact let U,=j;"(U,)
k

and U= JU,. Then U obviously covers |Aqlsng. Moreover we have
a=1

that
O [ ead= [, 1Gad=Se. [, | 0we.<e/3k and hence
Am, aNU o AN e maNUa
k
[ Jaori= =1 lZ%hiZj [6tal <&/3 for m=0
AU 4nN\T Ann a=1

and m>0, which is a) of (¥¥).

We turn to prove (7). We take and fix one & {or the moment and
suppress the suffix . Set C=supp(gv,) N iﬁolsing, where supp denotes
the support. Then C is compact in D’. Hence we can take a neighbor-
hood |T,| of fAvoising in D’ such that L gv,<e/6kc,. Next we take
a finite open covering {U,, ---, U,} of Col'n D’ such that each U, is
clear for A, possibly after a unitary linear change of coordinates. The
existence of such U, follows immediately from Lemma 2.5. Then by
Lemma 2.2 U, are also clear for A, for m>0. Note that we may
assume that U; are all contained in U, Let {0;} be the partition of
unity subject to the covering {U;}. Finally let U’ be a neighborhood
of |Aylsmg such that U’ Nsupp qugi[)lﬁi, and put U=0"U ('LTJ U).
Then this U satisfies the condition of (—”). The proof is quite anz:l_c:gous
to (1) once we note the following; by Lemma 2.5 and the fact that any

unitary change of coordinates leaves invariant v, we have for any 7>0

1
jl 09U, — L pig'vql<77 for m>»0, i=1, ---, r, and obviously
A NT AoNU;

Lf uﬁ-qu=o' Hence we omit it.

It remains to find VC X such that together with U it satisfies the
conditions of (**). Let U’ be a neighborhood of Al with U'CU
and V'=X—U". Let us take a set of quintuplets (V,, J,, Uis, Ba, Us),
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a=1, -+, d’, admissible for |A,| with the following properties; for =1,
c,d, 1) Ve=7i'(U,XB,) covers V' and V,N|Alsing=9 and 2) j,(V,
N[A]) =U, x{0}. Put V= CJ Ve. Then clearly |A,|JCUU V. Let {4y,
Ay} be as in (**) and {¢.} abzlthe partition of unity subordinate to {V3}.
We may assume that for every & we are given a continuous 2¢-form
of type (4, ), %a (resp. continuous functions g e A7 e J,) such that
j:f%a':xlvd (reSP-j:szU.a:lt/lVa, jsz,a:ZVlV,g j*$a=‘/’a)- Then by Lemma
Lm'a$aZV’uZ“— LMJ;J?,“Z“ <e/3d for m>0. From this
b) follows easily as (1). This completes the proof of (**) and hence

2.7 we have

the continuity of c.

2) The continuity of ¢™': C,(X)—>B,(X). Suppose that c[A4, ], n=1,
converges weakly to c[4;,], b.€ B(X), n=0. We show that &, converges
to byin By(X). Write A,= A4;,, n=>0. First for every point £ X we shall
find a quadruplet (V,j, U;, B) admissible for A, for all #=>0 and with
x€V(cf 2.2). Fix a neighborhood W of x and an embedding j:W—G,
where G is a domain in C™. We write A,(¢)=j(WNA,). Then by
Lemma 2.8 after a suitable linear change of coordinates of €™ we can
find polydises U;E€? and BCC™ such that U, X B is relatively compact
in G and A,(j) are all ramified coverings over U;, where m=g¢g+7 and
C"=C*X{C". Let k, be the degree of A, over U,. Let (2, ", 2,) be
the coordinates of €? and put y= (V=1)%dz,/\ - \dz,/\dz/\ - /\dZ,
considered as a (g, q)-form on U, X B and on U, alternatively according

to the occasions, where 0 is a non-negative continuous function on U,

with support in U; and #0. Then we have j‘ x=k,,j x#0. On
4,() v,

the other hand, since L L= x for n—oo, k,=Fk for n>0. If we
put V=;"(U;xB), then"m(V, j,A;}jl), B) has the desired property.

Now for every point x& X take such a quadruplet (V,, ., U, B:)
and a polydisc U, in U,, with U,CU,, Take a finite number of points
x, -+, £g=X such that j;il(UxiXB“) covers |A,|. Then (Vi jz; Utz
B,,, U,,) is an admissible set of quintuplets for A4, and A, for n>0
(cf. 2.3). Then by Lemma 2.1 it is enough to show that for each
i, f¥#: converges to fZ=: in H(U,, sym*:B,,), where %; is the degree of
A, over Uy,. To show this we drop the suffix x;. Suppose the contrary
so that there exists a neighborhood N of fI in H(U,sym*B) and a
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subsequence {7;} of {n} such that fAU,LkEENfor all 2. By Lemma 2. 9 there
exists a convergent subsequence of {7;}, which we may assume to be
{n,} itself, such that fzk converges to fza in H(U, sym*B’) for a larger
polydisc B"2B. Taking B’ instead of B we may assume that B=5'.
Then by the continuity of ¢ established above A4, (j) converges weakly
to A, (7) as well as to Ay(j). Thus A, () =A4,(), since the limit is

unique. This is a contradiction and hence the proof is complete.

We call a subset ECB,(X) bounded if ¢ (E) is bounded in C,(X)

in the sense of Definition 1. 1.

Proposition 2.10.” Let E be a bounded subset of B,(X) such
that U|A,| is contained in a compact subset K of X. Then E is
€E

relatively compact in B, (X).

For the proof we need the following deep result of Harvey and
Shiffman [12, Theorem 3. 9].

Theorem (Harvery and Shiffman). Let V be a domain in C".
Let {A,}, n=1, be a bounded family of effective g-cycles on V. Then
there is a subsequence of {A,} which converges either to an effective
qg-cycle Ay, on V or to 0 with respect to the weak topology. Further
if there is a point x €V which is a limit point of the sequence {x,}
with x,&|A,|, then the above limit is not 0 and in fact xS |A,l.

For the last statement see the proof of [12, Theorem 3.10] or of

Lemma 2.8 above.

Proof of Proposition 2.10. It is easy to globalize the above theorem
of Harvey and Shiffman to obtain the fact that every bounded sequence
{c[A,]} in C,(X) has a subsequence which converges either to an effec-
tive g-cycle A, on X or to 0. Now suppose that A, E for all n. Take
a point x,€ A, for each n#. Then there is a subsequence of {x,} con-

verging to a point £ < K since K is compact. Then by the above theorem

3 cf. 2).
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the limit is a g-cycle A,. Finally since |4,/ €K, A, is compact. This
shows the relative compactness of the set C(E), since C,(X) has count-

able topology. Then the proposition follows from Proposition 2. 3.
Q.E.D.

We end this section with the proof of Lemma 2.4. Let U, B, U, ¢
and y be as in the lemma. First in general let AZi n,A, be an effective
g-cycle on U; X B which is a ramified covering ofa&;gree kover U, as in
2.2. Let ff€H(U,sym*B) be the corresponding element. Then we
define a continuous function on U, Tr.g, called the trace of g with respect
to A, as follows. First define a continuous function § on Ux (B)* by
g (u, (by, -+, b)) =Zm g (u,b;). Then since ¢ is invariant under the natu-
ral action of the sly_rlnmetric group S, on UX (B)*, there is a unique
continuous function § on U X sym*B such that §j=7*g, where 7 =idy X7:
U x B*—U X sym*B with 7: (B)*—sym*B the natural projection. Finally

we put
(Trag) @) =g (u,f4 (@)).

Note that Tr,g depends only on the restriction of g on [Al.
Set Tryy=Trsgdz/\"--/\dz/\dz;/\ --/\dZ,. Then we show that

@ [ = | Tran.

For this we go back to the definition of £ in 2.2. Let U, be as in
2.2. Then for every uc U, NU we have f{ (u) =n(b) with b= (4}, ---,
Lo oo BT, -+, BT ) in the notation there. Hence if u€ Ui N U, it follows

m ko
that (Trag) () =g (e, fZ (W) =g, w(0)) =D 1, 2 g (u, b5). Hence
a=1 j=1
[,rra= [ Traz=3n j g, b - Ndz NDEN - AdE,
U 1781812 a Ny j
on the other hand, since p,|,s'wh: P (Ul) = U] is unramified, it easily
follows that

[, 0@ Bz paz= | = .
uinv 4,

4. UINT)xB

Then combining the above two equalities we get (2).

Now we come back to the proof of Lemma 2. 4. By assumption £
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converges uniformly on U to ££. Then by the definition of Tr,g, Tra,g
converges uniformly on U to Try,g. Then the lemma follows immedi-

ately from (2) by the definition of Tr,y.

§ 3. Property BP and bpP

3. 1. We recall the definition of the multiplicity of a complex space.
Let Y be an irreducible complex space, i.e. Yiq is irreducible, and ¢
=dim Y. Then we can find a Zariski open subset U of Y and an integer
m=>1 with the following property: For every point x&€U let j=j,: U,
—V, be any embedding of a neighborhood U, of x in U into a domain
V,in €= such that j(U,) ea= V, N (C* X {0}). Thenif 7:7(U,) =7 (U,) rea
is the map induced by the natural projection m,: C**"=—C", then O, is a
free Oj(prea-module of finite rank m by 7*. For a proof see [3, Ch.V
§1]. The integer m is clearly independent of U and hence an invariant
of Y. We call m=my the multiplicity of Y.

Let X be a complex space and Y a compact subspace of X of pure
dimension q. Let J be the ideal sheaf of Y in X and J=NQ; be any
irredundant primary decomposition of 4 (cf. [22]). Let Y; be the sub-
variety of X corresponding to Q;, and m; the multiplicity of the irreducible

complex space (Y;, ©,/0Q;) defined above. Then we define a compact
g-cycle [Y] by,

[Y] :Zi m;Y;,

where the summation is taken over all the irreducible components of
Yrea- Since (; is unique for such Y; [Y] is well-defined. We call [Y]
the compact g-cycle associated with Y. Note that the notation is com-
patible with that of Lemma 1. 3.

The following lemma which we need later is found in [3, Théoréme

1, p.38] up to a slight improvement.

Lemma 3.1. 1) Let {A;;s&S} be an analytic family of com-
pact q-cycles of a complex space X parametrized by a reduced com-
plex space S. Then the set W defined by W={(s,x); x| A} is an
analytic subset of SXX and the natural projection f:W—S is proper.
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Let W= U;W; be the decomposition of W into irreducible components,
and put f;=flw,, Then for every j there exists an integer n; and a
dense Zariski open subset V of S such that for every sV, A, is
given by As:Z ;[ W], where we regard W, naturallv as a subspace
of X={s} XX.’

2) Conversely, let S be a reduced complex space and W an analytic
subset of SXX. Let f: W—S, W=UW,; and f;: W;—>S be as in 1).
Suppose that f is proper, each fiber 2f f has pure dimension q and all
the f; are surjective. Then if S is weakly normal, then for every
k-tuple of positive integers (my, -+, n,) there exists an analytic family,
{A,}, of compact q-cycles of X parametrized by S such that for some
dense Zariski open subset V of S, A,=> m[W;] for s€V.

Proof. In view of the proof of [3, Théoréme 1] we have only to
show the existense of V as stated in 1) of the above Lemma. We shall
take as V any dense Zariski open subset of S such that W, is generically
reduced. Such a V exists by Lemma 1. 2. By Frisch [6] we may further
assume that f is flat over V. Now since |A,|=W;eq, we may write
ASZ%S, Ne Wy for some 7,,>0, where W,, are irreducible components
of W/iiled. For any s€V and any W,, take a nonsingular point w& Wj,.
Then since f is flat at w, f is smooth at that point. Let U be the dense
Zariski open subset of X defined by U= {x<f (V) ;f is smooth at x}.
For any point x&€ U let Wy, the unique irreducible component of Wy,
passing through x and #n,=n;,, Then by the definition of analytic fam-
ily it is obvious that 7, is locally constant on U. Hence it is constant,
say n;, on UNW; for every j. Since for s€V, W,,NU=+D for all «

as we have seen above, this proves the lemma.

We call WESXX and the morphism f: W—Sin 1) associated with
the analytic family {A4,}.

3.2. Let f:X—S8 be a morphism of complex spaces. For every reduced
complex space T over S with the structure morphism «:7—S we mean
by an analytic family of compact g-cycles of X/S parametrized by 7" an
analytic family of compact g-cycles, {A;}, of X parametrized by 7 such
that for all ¢€T f(IA]) Ca (). Let (Anea/S) be the category of re-
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duced complex spaces over S and S-morphisms. Let Fg i (Astrea/S)
— (Sets) be the contravariant functor defined by Fg ,(7T) =the set of
analytic families of compact g-cycles X/S parametrized by 7. Starting

from the Barlet’s rcsult in 2.2 we easily show the [ollowing.

Proposition 3.2. For cvery q=0, Fs, is representable in

(Asnrea/S) -

Proof. We first make the following general remark. Let g:X—Y
and h:Y—Z be proper morphisms of reduced and irreducible complex
spaces. Suppose that every fiber of /1g has pure dimension ¢—>0 and that
g is surjective. Then every fiber of /1 has pure dimension ¢’, where ¢’
=dim Y—dim Z. In fact this follows easily from the upper semiconti-
nuity of the dimension of the fibers of ¢ and /7, shown by Remmert.

Now let B,(X) be the Barlet space of compact g-cycles of X and
{4,; 06 B,(X)} be the universal family of compact g-cycles parametrized
by B,(X). Let WCB,(X) XX be the associated analytic subset and
%: W—B,(X) the natural projection. Put f=idXJf: B,(X) X X—B,(X)
XS, Let W=Ff(W)CB,(X) XS and 7n: W—>B,(X) the natural projec-
tion. Let B’ be the union of those irreducible compouents, B,, of B, (X)
for which the induced morphism W, — B, has relative dimension zero i.e.
dim Wy, =dim B, since the map is surjective. Let W’ =Wy and 7’ =nrlp..
We show that 7’ is a finite morphism. It is enough to see that
dim 7771 (5) =0 for every b&B’. Let W, be any irreducible component of
W and W, any irreducible component of W which is mapped onto W; by
F. Let fi=F|w, and 7i=7"lp,, Then every fiber of f; has pure di-
mension q. Hence we can apply the above remark to the morphisms
Fo: W,—» W, and 7n’: W,—B’ to see that every fiber of 7} and hence of
7’ has pure dimension zero as desired.

Let v: B—>B’ be the normalization of B’. For every irreducible com-
ponent, B,, of B let k=F, be the degree of the induced finite morphism
Fo: Wp,—>B, Let 01 SX:-- XS (ktimes) —sym®S be the natural projec-
tion. Then we can define as in 2.2 (cf. also [3,p.25]) a morphism
Qo Be—>sym*S such that (¥) W, =supp ¢, ={(b, s) €B,XS;s=s, for
some (s;, -+, ) €05 (@a(@))}. Let L be the diagonal in SX - XS ie.
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4i=A{(s, -+, 5);sES} and 4,=0,(4;). Then define C,=v(p;'(d:)) with
reduced structure and C=UC, By (*) and the definition of B’ it fol-
lows easily that C coinsidesa with the set C'={b& B, (X) ;7" (d) consists
of a single point}.

Now we set By=Wgyra On B, we have the natural analytic
family {A;; b€ B,} of compact g-cycles of X/S defined by A;=A.e.
We show the universality of this family. Let {A,; £€T} be any analytic
family of compact g-cycles of X/S parametrized by a reduced complex
space T over S. Then by the universality of B,(X) we have the unique
morphism /&:T—B,(X) such that A,=A,,. Let a:7T—S be the struc-
ture morphism. Then since f(|A,]) =a(z), by the above characterization
of C we see that h factors through C. (Note that |[A,u|= Wi .rea.)
Thus if we put A=hXa: T—CX.S, then we see readily that % (T) € B,.
Moreover it is clear that A,= A}, for all z€7. Finally by definition B,
is reduced and has the natural projection to .S as a subspace of CX.S with
respect to which % is an S-morphism. This shows the universality of our

family {A;;b< By}. Q.E.D.

We denote the space B, obtained in the above proof which represent
the functor Fg, by B,(X/S) and call it the relative Barlet space associ-
ated with X/S. As the above proof shows we have the natural projection
7:B,(X/S) —»B,(X) which is a homeomorphism onto the subspace C.

3.3. Let S be a complex space and X a complex space over S. We
recall the definition of the Douady space, D=Dy,; of X over S. First
let T be a complex space over S. Then a flat family of a compact
subspaces of X parametrized by 7" over Sis a subspace Y of X; which is
proper and flat over T wia the natural projection Y—T. Let (Ax/S)
be the category of complex spaces over S and S-morphisms. Let F:(Ax
/S) — (Sets) be the contravariant functor defined by F' (T") =the set of flat
families of compact subspaces of X parametrized by 7" over S. Then
Douady in [5] showed that F is representable, the generalization to the
relative case being due to Pourcin [17]. Namely there exists a complex
space D over S and a subspace Z of X, which is proper and flat over

D such that for every YC X, as above there exists a unique S-morphism
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h: T—D with Y=2Z;: =ZXpT, where T is over D by h. In particular
the points of D4 correspond bijectively to the set of all compact subspaces
of X. We put D=Dy,s (resp. Z=Zy,s) and call it the Douady space
of X over S (resp. the universal family associated with X/S). If S
reduces to a point, then we write Dy (resp. Zy) instead of Dy,s (resp.
Zxs). Then we have the natural embedding j: Dy,s—Dy[17].

For every integer ¢ we define
Dy,s.q = {d & Dy,s rea; Zs has pure dimension g}.

Then by the flatness of Z over Dy,s, Dx,s.; is the union of irreducible
components of Dy,. Now to every d&€Dy, we associate a compact
g-cycle 0,(d) of X by 0,(d) =[Z;] (cf. 3.1), considering Z; naturally
as a subspace of X. We may then regard 0, as a map 0p:Dy,s,,—>B,(X).
Define 0": Dy,s5,,— B, (X) XS by 0'(d) = (0,(d), m(d)), where 7: Dy,s—S is
the natural projection. Then we see immediately that o’ factors through

B,(X/S). The resulting map

()q - pX/S, q : DX/S. q_'>Bq (X)

is called the Barlet map associated with X/S. In fact Barlet proved
in [3, Théoréme 8] the following

Theorem (Barlet). For every g==0. p, is a morphism of complex

spaces.

Combining this theorem with Proposition 2.3 we get easily the fol-

lowing

Corollary 3.3. Let f:X—S be a proper and flat morphism of
reduced complex spaces. Suppose that every fiber of f has pure
dimension q=0. Then for every continuous 2q-form, y, on S the function

A(s) = j ¥ is continuous on S.
[x:1

Remark 3.1. More precisely one can directly show the following.
Let f: X—S be a proper morphism of reduced complex spaces. Suppose
that every fiber of f has pure dimension ¢ and that every irreducible

component of X is mapped surjectively onto S. Then the following con-
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ditions are equivalent. 1) For every continuous 2¢g-form yx on X the
function A(s) = J is continuous. 2) For every s&.S there is a dense
Zariski open subsE;ﬂUS of X, such f is flat at every point of U,. (For
related results see Stoll [23, Theorem 3.8] and King [15, Theorem

3.3.2].)

3.4. For every ¢==0 define the subspace, EQ=EX,S,q, of Dy, by D,
=UD,, where D, are those irreducible components of Dy,s, for which
thewinduced map Zp,—>D,, Z=Zy,s, satisfies the equivalent conditions of
Lemma 1.4. We set Dys=][Dy,s, For simplicity, here we introduce
the following terminology. )

We say that X has the property B,P(resp. D,P) over S if every
irreducible component of B, (X/S) (resp. Dy,s,) is proper over S. If X
has the property B,P for all ¢=0, then we say that it has the property

BP over S. Further if S is a point, we omit ‘over S

Proposition 3.4. Suppose that X has the property B,P over S.
Let EQ:EX,S,(I—)BQ (X) be the restriction of the Barlet map to EX,S_.Z.
Then 0, is proper. In particular X has the property EQP over S.

Proof. Let B, be any irreducible component of B,(X/S) which
intersects with the image of E=EX,S,Q. Let {4,,b=B,} be the cor-
responding analytic family of compact g-cycles of X over S. We define
inductively a descending sequence, B,2B,2:-2DB;::, of reduced sub-
spaces of B, by the following requirement; let f;:W;—B; be the morphism
associated with the family {A4,;6=B;} (cf. Lemma 3.1), and U, the
dense Zariski open subset of W; defined by U;={b&B;; W, is reduced
and f is flat at every point of Wy} (Lemma 1.5). Then B;,,=B;—U..
Now let D, be any irreducible component of D such that 0,(D.) &B,,
and V,={d€D,; Z; is reduced}, where Z=2Zy,;. Note that p, is injec-
tive on V, by the definition of the Barlet map. Let 7 be the minimal
index such that p,(V,) %B,.;. Then p,(V,), and hence p,(D,), is con-
tained in B,,. Take any irreducible component B, of B,, which contains
0.(D.). Let Wy,=Wjg , and fra: Wye— B, be the induced map. Take
a flattening fma: W a—>Bny of fne with the flattening morphism ¢: Bne
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—B,, (cf. 1.4). Then since WW is naturally the subspace of Xz ,
=XX Bna by the universality of Dy, we have the unique S-morphism
t: B,o—>Dy,s such that TV,,,a=Z§M:=Z><DX,SEM, where B, is over Dy
by . On the other hand, note that since f,, is flat on U,.=B,e— Bn.:
by our construction, 7 gives as isomorphism of ¢~'(U,,) and U,. Let
deV, be any point with d=0,(d) €Upe Then since Wi q is reduced
by our choice of U,, we have Z;= W, , considering both sides naturally
as a subspace of X. Hence t-¢"*(d) =d. This implies that ":(Em,,) nv,
207  (Upe) NV, which is a nonempty Zariski open subset of D, by our
choice of m. It follows that T(Em)gDa, since B, is irreducible. Fi-
nally since B,. is proper over S as well as B, and 7 is an S-morphism,
7 must be surjective. Hence D, also is proper over S. Moreover as
is clear from the above proof we have the following commutative diagram

of proper bimeromorphic S-morphisms

T Bm“
aL
D,x__—> B,..
Let D; be another irreducible component of D with 0, (Dg) N By==0.
Then take 7’ and an irreducible component B,.; of B, as for D,.
Then since P, gives a bimeromorphic morphism of D to B,., we infer
readily that B,,.;#B,, Now let K be any compact subset of B,(X/S).
Then there are only finitely many irreducible components of B, (X/S)
which intersects with K. For each such irreducible component, say B,,
there are only finitely many B,, as above with B,, N\ K==¢. And finally for
each such 72 there are finitely many irreducible components of B, inter-
secting with K. From this combined with above remark it follows then
easily that p;'(K) is compact in D. This shows the properness of 0q-
Q.E.D.

We can drop the pure dimensional assumption in the above proposition

(cf. the remark below).

Lemma 3.5, Let f: X—S be a proper morphism of complex

spaces of relative dimension q=0. Let D, be any irreducible com-
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ponent of Dysreq such that Z,=Zp, is reduced. Then there is an
analytic subset Y of D®s=Dy,s,X s XsDxs0 and a generically sur-
jective meromorphic map v: Y—>D, (i.e. ©(Y) contains a dense Zariski

open subset of D,).

Proof. Let Z,; 0<i<gq, be the union of all the irreducible com-
ponents of relative dimension 7 of Z,. By Frisch [6] there is a dense
Zariski open subset U of D, such that Z,; are all flat over U. Then
by the universality of Dy, we have a unique S-morphism 74;: U—Dy/s;
such that (Z,;) = (Zx,s)y. Since Z; are reduced, the image of #; are
in fact contained in Dy,s. Define A=h,X g+ X sho: U>D®s. Let A be
the minimal analytic subset containing A (U).

On the other hand, let Z ; be the pull back of Zy; to D@5 via
the natural projection D®s—Dy,s; Put Z9= UZ®. Then again by
Frisch there is a dense Zariski open subset W lof A such that Z@ is
flat over W. By the universality of Dy, we have a unique S-morphism
T:W—Dy,s such that Z® = (Zy,s) w. By the minimality of A, UN A" (W)
#@, and by the construction we see readily that thA=identity on U,
=UNA*(W). In particular t(W)C D, and it contains a Zariski open
subset of D,. Finally that 7 extends to a meromorphic map from A

follows from Lemma 5.1 below. Q.E.D.

Remark 3.2. Lemma 5.1 implies more generally that if X has

property D,P over S, then Z, in the above lemma is proper over D,.

§ 4. Closedness of Barlet Space in the Kihler Case

4.1. We begin with the following proposition.

Proposition 4. 1. Let S be a complex space and X a complex
space over S. Suppose that there exists a closed positive C* form
2 of tvpe (q,q9) on X with ¢>0 (cf. Def. 1.2.). Then every con-
nected component of B,(X/S) is locally bounded in the sense that for
every connected component, say B, of B,(X/S) a subset E of B, is
bounded if z;LéJLlAbl is contained in a compact subset of X.
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Proof. Let B, be any connected component of B,(X/S), and {A4;;
b= B} be the associated family of compact g-cycles of X parametrized
by B,., Then by Lemma 1.1 it is enough to show that the function
(D) = L.Q is bounded on B, Since 2 is continuous on B, by Proposition
2.3, to p;ove this it is enough to show that for every irreducible com-
ponent of B, it is constant. Let B; be any irreducible component of B,.
Then again by continuity we have only to show that A is constant on
some Zariski open subset of B;. Now by Lemma 3.1 the set W= {(b, x);
x& A} is an analytic subset of B, XX. Let 7:W—X and f:W—B, be
the natural projections. Let W;, 1=<j< s, be the irreducible components
of W. Then by Lemma 3.1 there exists a dense Zariski open subset
V, of B, and a positive integer 7, for each j such that A,=>] n;[ W]
for every b€ V.. By Lemma 1.5 restricting V, if necessary we may
assume that W, is reduced for every 6V, Finally put V=V;N B/*,
where Bf is the set of nonsingular points of B,. We show that 1 is
constant on V. Let &, and b, be any two points of V. Then we connect
b, and b, by a peicewise real analytic curve in V. Namely we take
a finite number of points ay, ---,a; of V with a;=b, and a,=>5, and real
analytic embeddings A;:[—V, 1<{<k—1, with A;(0) =a; and A;(Q) =a;.4,
where I is the interval [0,1]. Here a map A:I—V is called a real
analytic embedding if for some >0 A extends to a real analytic embedding
of (—e¢,1+¢) into an open subset of V. We then show that *) 1(a;)
=2(ai+,) for all i. Let h;(I)=1I;, and f;=flw, Then fijij‘l(L-) is
obviously a semianalytic set in W with boundary f;*(a;) Uf;!(a;1). Give
a suitable orientation on I;. Then we consider the semianalytic chain
CiZ; n;1; on W whose boundary as a semianalytic chain is given by
£0C =3 nf (@)~ 5 maf (@) = 5w Wie, 1= 5 2 W, 1= Au,— A,
Here the] third equalitjy comes from 1he fact thatj Wj,, are all reduced.
Now let @=7*2. Then by Stokes formula on semianalytic sets (cf.

1.2) we have the equality 0= j d.!?:j 2= jA 2— 2. This
C; a;

ac; Aagyy

shows *). It follows that 1(&;) =A(b,) as desired. Q.E.D.
Let S be a complex space and X a complex space over S. For every

integer k>0 let symiX be the Ath symmetric product of X over S.

Namely it is the quotient analytic space of X Xg-+- X ¢X (k-times) by the
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natural action on it of the symmetric group S; of degree k. We shall
omit the proof of the following lemma which one proves easily according

to the definitions.

Lemma 4.2, There is a natural isomorphism B,(X/S)= [1

k=1

sym5X.

Theorem 4.3. Let S be a complex space and X a complex space
proper over S. Suppose that there exists a closed positive C° form,
R, of type (q,q) on X. Then every connected component of B,(X/S)
(resp. Dy,5,) is proper over S.

Proof. Let B be any connected component of B,(X/S) and «:B
—S (resp. m:X—S) the natural map. Let K be any compact subset of
S. We show that a™'(K) is compact. Suppose first that ¢g=0. Then
by Lemma 4.2 a™*(K) is isomorphic to a subspace of sym k7™'(K) for
some k>0 and hence is compact. Next suppose that ¢>0. Let {A4,;
b= B,(X/S)} be the universal family. Then be“L-Jl(K)[A,,I is contained in
the compact set 77'(K). Hence by Proposition 4.1 a™*(XK) is bounded
and then by Proposition 2.10 it is relatively compact and hence compact
in B,(X/S). Finally the properness of Dy, follows from Proposition

3. 4.

Remark 4.1. The above theorem answers a certain question asked

by Siu in [21, 3. 3].
4.2. We relativize the definition of a Ki#hler space as follows.

Definition 4. 1. Let f:X—Y be a morphism. We call fa Kdihler
morphism, if there exists an open covering U= {U,} of X and a system
of C* functions, {p.}, each defined on U, such that for every y&Y 1)
P is strictly plurisubharmonic when it is restricted on U,N X, and simi-

larly p.—#5 is pluriharmonic on U,NU,N X,

Remark 4.2. 1) Note that if f is Kihler and p, are as above,
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then {+ —100p,} give a real closed (1.1)-form o globally defined on
X. We call such an o a relative Kahler form for f. If fis a constant
map, then w is a Kihler form on X and X is a Kéahler space in the
sense of Definition 1. 2.
2) By definition it is clear that every subspace of a Kihler space is
again Kihler. In particular every projective variety is Kéhler. On the
other hand, we remark that if X is not projective, then X can be non-
Kihler even if X,q is Kdhler. An example can be given using an ex-
ample of Moisezon [16, § 2].

In the following lemma we give some of the most elementary facts on

Kihler morphisms.

Lemma 4.4. 1) Let f: X—>Y be a projective morphism. Then
f is Kdhler.
2) Let f: X—>Y be a proper Kihler morphism. Suppose that Y is
Kéhler. Then for every relatively compact subdomain G of Y, f'(G)
is Kdhler.

Proof. 1) follows directly from the definitions and the details will
be omitted (cf. the proof of [6, Lemma 2]). We show 2). Let wy be
a relative Kihler form on X and wy a Kéhler form on Y. Then we infer
readily that there exists a positive constant M such that wy+ Mf*n, is
a Kiahler form on f7'(G) (cf. the proof of [6, Lemma 2]). Q.E.D.

Theorem 4.5. Let f:X—S be a proper Kéihler morphism. Then
every connected component of the relative Barlet space B(X/S) (resp.

D;,5) is proper over S.

Proof. Let B be any connected component of B(X/S) and «:B
—S8 (resp. m:X—S) the natural projection. Let U be any relatively
compact Stein open subset of S and hence is a Kahler space. Since the
problem is local on S, it is enough to show that «l4un is proper.
First by Lemma 4.4 2) n7'(U) is Kihler. Let w be a Kdhler form on
773 (U). Then w'is a closed positive C* form of type (g, g) on 7' (U).

Then almost as in the proof of Theorem 4.3 we can show that for
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every compact subset K of U, o *(K) is compact. Q.E.D.

Remark 4.3. There are examples of compact non-Kihler manifolds
with non-compact irreducible components for Dy, and hence also for B(X)
by Proposition 3.4. Here we shall give one of them. For another ex-
ample see [8,4.7].

We use an example of an algebraic surface, .S, found in [19, p.164].
S is a rational elliptic surface over a complex projective line P* which is
obtained by blowing up nine general points on the complex projective
plane P?, and with a fiber preserving automorphism of infinite order,
9. In fact g restricted to general fibers of the elliptic fibering of S
gives translations of infinite order on them. Moreover the exceptional
curves of the first kind, E;, =1, --:, 9, obtained by the blowing up are
sections to this fibering i.e. mapped biholomorphically onto P'. Now let
C be a nonsingular elliptic curve with a fixed system of generators,
{a, B}, for the fundamental group 7;(C). Define the homomorphism p
7, (C) >AutS by o(@) =g and 9(B) =e. Then corresponding to o we
have in a usual manner a fiber bundle f: X—C with typical fiber S with
constant transition functions. Take a point #& P! and identify S with the
fiber X,. Let E be one of the E;,. Let D, be the irreducible component
of Dy containing the point corresponding to the subspace ECSCX. We
show that D, is non-compact. Assume the contrary. Let Z,= (Zy)p, be
the universal family restricted to D, and 7,: Z,—X the natural projection.
Since by our assumption Z, is compact, T'=7n,(Z,) is an analytic subset
of X by a theorem of Remmert. On the other hand, by our construction
we see readily that X, NT = Uzg’" (E), where g™ (E) is the image of E
by the automorphism g™ on 132‘———5'. Hence U g™ (E) must be an analytic
subset of S, which is a contradiction since g™ (E) N F consists of infinite
number of discrete points of F by what we have said above, where F
is a general fiber of the elliptic fibering of S. In particular X is not
Kihler, though it is not difficult to verify this directly.

4.3. We now generalize Theorem 4.4 in the absolute case to a more
general class of complex spaces, namely, that of reduced compact complex

spaces which are meromorphic images of compact Kihler spaces. We sum-
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marize some elementary properties of this class, say &, in the following

lemma.

Lemma 4.6, Let X be a reduced compact complex space and
Ye&. Then
1) Xe@& if and only if it is a holomorphic image of a compact
Kiihler manifold.
2) If X is isomorphic to a subspace of Y, then X &.
3) If X is a meromorphic image of Y, then X=&.
4) If there exists a Kihler morphism f: X—Y, then X&&.

Proof. 1) Let Xe@. By definition there exists a surjective mer-
omorphic map f: X—X, where X is a reduced compact Kihler space.
Then by Hironaka [14] there exists a projective bimeromorphic morphism
9: X;—X such that fg is a morphism. In fact let X’ be the graph o
fin XXX and p: X’ X the natural projection. Then by [14, Cor. 2]
there is a projective bimeromorphic morphism ¢: X,—X such that g X,
—X’ is a morphism, which is the desired one. Then taking a resolution,
QI:XI—>XI, which is a projective morphism if necessary, we may assume
from the beginning that X is nonsingular. On the other hand, by Lemma
4.5 X, is Kidhler. This proves the necessity. The sufficiency is obvious.
2) We may assume that X is a subspace of Y. By 1) there exists a
morphism A: Y;—Y with Y, a compact Kdhler manifold. Then X is a
holomorphic image of a Kihler space A7'(X). 3) Let A: Y;—Y be as
in 2). Then X is a meromorphic image of Y; and hence X&®. 4) Let
h: Y=Y be as in 2) and fy: XX,Y,—Y, the induced map. Then fy, is a
Kéhler morphism since f is one. Then by Lemma 4.5 2) X XY is
a Kihler space. Hence X is a holomorphic image of a Kihler space

X XY, via the natural projection XX ,Y,—>X. Q.E.D.

Remark 4.4. The author understands that Hironaka once posed
the following problem: Let f:X—Y be a proper surjective and flat mor-
phism of reduced complex spaces. Then is Y Kihler, if X is Kihler?
The affirmative answer to this problem together with the flattening theo-
rem of Hironaka would imply that the class & is in fact nothing but that



36 AKIRA Fujiki

of compact complex spaces bimeromorphic to compact Kihler manifolds.

Lemma 4.7. Let f:Y—>X be a proper surjective morphism of
reduced and irreducible complex spaces and U={xcX;f is flat at
every point of Y,}. Let ¢ be a Hermitian form on X and gq=dim X
—dim Y. Then the function, v(u) = j ¢%, which is continuous on U by
Corollary 3. 2, is locally bounded otfxz’u]X Sfrom above and below by

positive constants.

Proof. Take a flattening f: Y-X of f with flattening morphism
g:ff~—>X. Let ¢ be the pullback of ¢ on Y by the natural map . Y-Y.
Then by Corollary 3. 2 the function, ¥ (x) = J~ 3% is continuous on the
whole space X. Hence for any compact sui)ys:gt K of X, ¥ has the
maximum M and the minimum 72=>0 on ¢~ !(K). On the other hand,
since ¢ gives an isomorphism of ¢g7'(U) and U, it follows that ¥ (x)
=v(g(x)) for xeg™(U). Hence m<v<M on KNU. It remains to
show that m>0. In fact by the definition of flattening the map 7 re-

stricted to each fiber of f is an embedding into X and hence ¥ must be

positive at every point of X ie. m>O0. Q.E.D.

Proposition 4.8. Let S be a complex space and X (resp. Y)
a complex space proper over S. Suppose that Y has the property BP
over S (¢f. 3.4). Then in either of the following two cases X also
has the property BP over S.
1) X is a subspace of Y.

2) There exists a proper surjective S-morphism h: Y—X.

Proof. Let B be any irreducible component of B, (X/S), ¢=0, and
7w: B—S (resp. &: X—S8, f: Y—S) the natural projection. Let {A4,; b= B}
be the associated analytic family of compact g-cvcles of X over S. Let
K be any compact subset of S. Then we have to show that 77 (K) is
compact. By virtue of Lemma 4.2 as in the proof of Theorem 4.3 we
may assume that ¢>0. Let W= {(b,z) €eBXX;zx<|A4,|} and f: W—B
the natural projection. By Lemma 3.1 W is an analytic subset of BX X.
Let £ be any Hermitian form on @ '(X). Then we shall show: %) The
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Sunction 2(b) = j‘ 22 is bounded on w7 (K) NU for some dense Zariski
open subset U oj: B. By the continuity of 2 on B (Cor. 3.3) this
would imply that A(#) also is bounded on 7 *(K) NU=n"'(K)NU
=7"'(K). Then since |A4,| are all contained in the compact subset
a ' (K) for all ben™'(K), by Proposition 2.10 77 *(K) is compact.
Hence it remains to show %) above.

In the case 1) we have the natural S-nclusion B(X/S)CS B(Y/S)
induced by the inclusion XC Y. Then B is contained in some irreducible
component B’ of B(Y/S). By assumption B’ is proper over S. Let
7’: B’—S be the natural projection. Take a Hermitian form £ on g7 (K)
which induces @ on @ *(K). Then 1 (&) = L 7 is bounded on 7' (K)
and hence 1 is bounded on 77!'(K). This shoirvs x) for U=B.

Next we show 2). First we show how to reduce the general case to
the case where W is irreducible. Let W, 1<j<{s, be the irreducible
components of W and f;=flw,: W;—>B. Then by Lemma 3.1 1) there
exists a Zariski open subset V of B and a positive integer #; for each
j such that A,,=Z_nj[VV,b]. Let V, be the set of nonsingular points
of B. Then by L]emma 3.1 2) there exist a Zariski open subset V, of
V; and for every j an analytic family {A{; &< B} such that Af=n;[ W;,]
for all 6 V,. It is clear that these families are over S in the sense
of 3.2, since the original family is. Then by the universality of B, (X/.S)
we have the unique S-morphism ;: V,—B,(X/S) such that A=A,
veV, Let B; be any irreducible component of B,(X/S) which contains
7;(V,). Let W} be the analytic subset of B;XX associated with the
family parametrized by B;. By the definition of B; we see readily that
W are irreducible. Assume that 77'(K) is compact with 7;: B;—S the

natural projection. Then the functions 27(0) = | £¢ are bounded on
4p
771 (K) and hence 1;(v) = f j.Q“ are bounded on 7 '(XK) NV, There-
4y

fore 1(v) = Luﬂ":Zj} L”!.Qq=; 2;(v) is bounded on 7' (K) N (VN V)
as desired. Hence we may assume that W is irreducible.

First note that B(X/S) =B (Xia/S) by the definition of B(¥).
Hence replacing X by X.4 we may assume that X is reduced. Let ¢
(resp. £) be a Hermitian form on Y (resp. X) and w=¢+A*2. Then
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» is a Hermitian form on Y. Then we have to show that A(6) = j‘q.Q“
is bounded on some dense Zariski open subset of 77'(K) N B. First,Afor
every integer p=>0 let X,={xreX; dim Y,=>p} and take the minimal
g with |A,|&£X,.,; for some b€ B. Then since W and B are irreducible,
there exists an irreducible component, say X, of X,. which contains all
of W,, b= B. Then replacing X by X; and Y by a suitable irreducible
component of A7'(X;) we may assume that X and Y are irreducible and
¢’ =dim Y—dim X (cf. the arguments in the proof of 1)). Next take
a Zariski open subset V and a positive integer z such that A,==n[W,] for
all b€ V. Let W= (hXidg) "(W)CYXB and f: W —B the natural
projection. Let U,={b&B;f is flat at every point of W; and W, is
reduced} and U, the set of nonsingular points of B. Set U=U,NU,N V.
This is a nonempty Zariski open subset of B. Then since f7 =fw, is
flat, every fiber W, of f4, u<€ U, has pure dimension ¢’. Then by Lemma
3.1 2) there is an analytic family {4;;5< U} and a Zariski open subset
U, of U such that A; =n[W,] for every b U,.

We shall see that the family {A;} is bounded on 7' *(K) N U with
7’': B(Y/S) —S the structure morphism. Namely we show that there ex-
ists a constant ¢>0 such that x(b) = L la)“'gc for all uen’*(K) NU.
Since « (|A4,]) =7 (d) for all b€ B and /lb is an S-morphism, it {follows
that for uc U, B(IALD) =B(W.) =Bh (W.) =h(|A.]) =a(|A.]) =7 (@),
where h=hXids Thus {A,;ucU} is in fact an analytic family of
compact q’-cycles of Y/S in the sense of 3.2. Then by the universality
of B(Y/S) we have a unique S-morphism t: U—B(Y/S) such that A,
=A,q for all ueU, where {A,;6'=B(Y/S)} is the universal family
for Y/S. Let B’ be any irreducible component of B(Y/S) which contains
7(U). Then since B’ is proper by our assumption, the continuous func-
tion #' (6") = j ,¢q' is bounded on 7’7'(K) N B’. Hence the function
() =4 (‘L'(u))Aualso is bounded on 7#7'(K) N U as desired.

On the other hand, by Lemma 1.3 we have the inequality x(6)
= L v, () £% where v,(x) = o
subsebt U, of |As|. Then sinc[ez[W;]:[Y,,], it follows that v, (x)
= #?, independent of 4. The right side of this equality is nothing

Yz
but the restriction to U, of the function v defined in Lemma 4.7. Hence

¢%, defined on some Zariski open
1
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there exists a constant ¢’>>0 independent of & such that v, (x) >¢’ on

7-1(K) NU,. Then it follows that ¢=u () >c’ j Q=c’A(8), beU.
4p

Hence 2(&)=c/c¢’ on UNzn'(K). Q.E.D.

Remark 4.5. We need 2) only in the case where fis Kihler. In
that case the proof is essentially simpler since the function v, (x) defined
in the proof is then constant. In particular Lemma 4.7 is unnecessary

though it seems to be of independent interest.

Theorem 4.9. Let X be a compact reduced complex space which
1s a meromorphic image of a compact Kihler space. Then X has the
property BP and DP i.e. every irreducible component of B(X) (resp.

EX) is compact.

Proof. Let h: Y—>X be a surjective morphism with Y a compact
Kihler manifold (c.f. Lemma 4.6 1)). By Theorem 4.5 Y has the
property BP. Then by Proposition 4.8 2) X also has the property BP.
The property DP then follows from Proposition 3. 4. Q.ED.

§ 5. Final Reductions

5.1. Let S be a complex space and X a complex space proper over S.
Let & be a coherent analytic sheaf on X. Then the relative Douady
space, D= Dy,s(E), associated with (X/S, &) is the complex space over
S characterized by the following universal property; there exists a quo-
tient analytic sheaf, R =E4s(R), of &p on X, with the quotient homo-
morphism, z=1uy,: Ep—>R such that it is flat over Dy,s(€) and that for
every complex space 7' over S and every quotient homomorphism #’:
Er—Y for some coherent analytic sheaf & on X flat over T, there exists
a unique S-morphism t: T—Dy,s(€) with t*u=u'.
R itself, the universal quotient of &. The existence of such Dy,s(£) and

Then we call #, or

hence of Ry,s(&) was shown by Douady in [5] when S is a point, the
generalization to the relative case being due to Pourcin [17]. If £=0y4,
then as usual we identify Dy,s(Oy) with Dy,s so that Z=2Zys is the
subspace of Xp,,.0p corresponding to Ry,s(Ox) (cf. 3.3).
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Notation. If D, is an irreducible component of Dy,s(&€), then we
often write X,, Z,, €., R, etc. instead of X, Z,, Ep,, Ry, etc.

Let X be a complex space and B a locally closed analytic subspace
of X. Then B is called Zariski locally closed if B is a Zariski open
subset of some analytic subspace B, of X. In that case there exists
the minimal such B, which we call the analytic closure of B in X.
Next, let X and Y be complex spaces. Then a meromorphic map from X
to Y is an equivalence class of morphisms f: U—Y defined on some dense
Zariski open subset U=U(f) of X such that the graph /'y of fin UXY is
Zariski locally closed in XX Y. Here two such f;: U;—Y, 7=1, 2, is cal-
led equivalent if f;=f, on U,NU,. We denote a meromorphic map defined
by a morphism f: U—Y as above by f: X—Y, and call the analytic closure
of I'; in XX Y the graph of f. If both X and Y are complex spaces
over S, then a meromorphic map f: X—Y as above is said to be over S,
or an S-meromorphic map, if f is an S-morphism. Suppose further that
there exists an S‘morphism «: Y—X. Then an S-meromorphic map f:
X—Y is called a meromorphic S-section if af =:d,; We call an S-meromor-
phic map f: X—Y weakly defined if there exists a proper S-bimeromor-
phic morphism #4: X —X such that f% is a morphism, or more precisely the
meromorphic map fh: X—Y defined by fh on f'(U) is represented by
such. It is easy to see that in this case if fis generically surjective and
X is proper over S, then Y also is proper over S. Finally we note that
the above definitions are all independent of the particular representative
f and depends only on the meromorphic map f which f defines. In

particular it makes sense to speak of a graph of a meromorphic map.

Lemma 5.1. Let S be a complex space. X a complex space
proper over S, and £ a coherent analytic sheaf on X. Let T be a
reduced complex space over S. Let u: &—>F be a quotient of £ on Xz
and U any Zariski open subset of T such that &F is flat over U.
Let h: U—>Dy,s(E) be the morphism induced by the universality of
Dys(E). Then h defines a weakly defined S-meromorphic map h:
T—Dy,5(E).

Proof. Take a flattening, f7: Xs—7T, of F induced by a proper
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bimeromorphic morphism ¢: T—7T. Let & be the 'y modulo Sr-torsion
[14, 4.2.1]. g is a quotient of &, on X, and is flat over 7. Hence
by the wuniversality of Dygs(&) we have a unique S-morphism t:
T—Dy,s(€) such that g%ﬁi, where T is over S by (#-¢ with 8: T—S.
Moreover t=~h-¢ on ¢ '(U). This shows that A is S-meromorphic and
is weakly defined. Q.ED.

The purpose of this section is to prove the following theorems.

Theorem 3.2. Let f: X—S be a proper Kéihler morphism and &
a coherent analytic sheaf on X. Then cvery irreducible component
of Dy,5(E)ea is proper over S. In particular if X is a compact Kdihler
space, then every irreducible component of the Douady space Dy eq s

compact.

Theorem 5.3. Let X be a compact complex space such that Xiea
is a meromorphic image of a compact Kiihler space. Let & be a
coherent analytic sheaf on X. Then everv irreducible component of
Dy (&) is compact.

Our proof of Theorems 5.2 and 5. 3 consists in reducing the problem
in three steps (Lemmas 5.8, 5.9 and 5.7) to the case of D, for which

we have already proved Proposition 3. 4.

5.2. The purpose of this paragraph is to formulate and prove Lemma
5.7 below. Let X be a complex space and & a coherent analytic sheaf
on X. For every integer r=>0 let Grass,(&) be the Grassmann variety
of locally free quotients of rank » of £ (see [11, V.2] for the definition).
Let «: Grass,(€£)—X be the natural projection and u: @*&—%, the
universal locally {ree quotient. Suppose now that X is reduced. Let u:
E—F be any quotient of £ on X, ie. a quotient analytic sheaf &F of &
with the quotient map «#. Then there exists a dense Zariski open subset
U of X such that & is locally free of finite rank, say /7, on each connect-
ed component U; of U. Assume that »=7; for some r and all 7. Then
by the universality of #, we have the unique section sy: U—Grass, (&)

such that sfu,=wu. Moreover it is well-known and easy to verify that
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sy extends to a unique meromorphic section s: X — Grass, (&) (cf. [18,
Prop. 3.4]). We call this s the meromorphic section associated to # and

denote it by s=s(z) or by s=s(¥) with # understood.

Lemma 5.4. Let X and & be as above. Then the map u—s(u)
defined above gives a bijective correspondence between the set of tor-

sion free® quotients u: &—F and that of meromorphic sections to «.

Proof. First we show that u: &> is uniquely determined by s (z),
if & is torsion free. So let #;: £—;, i=1, 2, be the torsion free quo-
tients of & with s=s(u) =s(u,). Let &F; be the kernels of #,. Assume
first that F1CF;. Then we have the natural surjection u,: F,—%, with
uptt,=u,. Let U be the Zariski open subset of X on which sis defined.
Then by our assumption #, =u, on U so that the kernel of «;, has support
in X—U. Since ¥, is torsion free, it must then vanish identically. Hence
w,=u, on the whole X. In the general case let ¥’ =%F;+F; and
G=E/Y4’. Then clearly s=s(<). Further by the above arguments it
follows that ;=% =%, and hence u, =u,.

Next take any meromorphic section s:X—Grass, (£). We show that
there exists a torsion free quotient #: &S with s=s(x). Let X be the
graph of s in X X Grass, (£) and 5: X —>Grass, () (resp. 0: X—X) the
natural projection. Let #%,: $¥*a*& —5*Y, be the pull-back of the universal
quotient #, by 5. Taking the direct image by ¢ and noting that c=as,
7%, defines a homomorphism 04#,: 0x0%E =0, 5*¥F, Let 71: £—0,0%E be
the natural homomorphism. Define & = (6,%,)7(€) and u: &—F to be
the natural map. Then we see easily that s=s(&). Finally replacing
G by F/Tor & with Tor & the torsion part of & if necessary, without
affecting the condition s=s(¥), we may assume that & is torsion free.

Q.E.D.

Lemma 5.5. 1) Let f:X—>T and f: X' —T be proper morphisms
of complex spaces. Suppose that every fiber of f has pure dimension
q=0 and T is reduced. Let Z be a subspace of XX 1 X'. Define the

9 F is called torsion free if for every x€X and every non zero divisor a€0g,, the
homothety F,—>%; induced by a is injective (cf. EGA I 7.4.7).
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subset M,, of T by My={t€T; Z, is the graph of a meromorphic
map from X, to X;}. Then M, is a Zariski open subset of T.

2) In 1) suppose further that f is flat and there exists an S-morph-
ism ¢q: X' —X such that fg=f". Then the set M defined by m={¢t&T;
Z, is the graph of a meromorphic section to §,=¢lx;} is Zariski locally
closed in T.

Proof. 1) Let 7#: Z—X be the natural projection and ¢:OQy—msO,
the natural morphism. Define A,={reX;dimz '(x)=>1} and A,=
supp (mx0z/tO%). Set A=A, U A,. Let Ny={¢t=T; dim A,>q}. By Rem-
mert N, is an analytic subset of 7. We show that U=T — N, coincides
with M, We first note that (740z/t0x) @Oy, =7x0,Q (Ox,/t.0x,)
=7,04/60y, where 1,=7z:2Z,—X, and ¢,: Ox,—m, Oy, is the natural map.
hence by Nakayama x & A, if and only if 7,0, =0y, This implies that
x & A if and only if 7' is defined at x and 7, is isomorphic at z=7n;"(x).
Then since every fiber of f has pure dimension ¢, we see readily that
U coincides with the set {¢t&71;x,:Z,—X, is bimeromorphic} and hence
with M,.

2) Let I' be the graph of ¢ in X'XX. Put Y=pr {(XxXI)N (Z
XX)}, where prig: XX X' X X—>XXpX is the natural projection.
Since pry; is proper, Y is an analytic subspace of X X 7X. Let A XX X
be the diagonal and define N={t=T;Y,C.4}. Then since the natural
map 4—S is flat, it follows immediately {rom [17, Prop. 1] (putting
E=0, and F =0yn, there) that N is an analytic subset of 7. Finally
put V=M,NN. Then by 1) it suffices to show that V=27 In fact
one sees easily that both coincides with the set {z& M,; gs, =identity on
some dense Zariski open set of X, on which s, is defined}, where s, is

the meromorphic map corresponding to & M,. Q.E.D.
Lemma 1.4 and a modification of its proof vield the following lemma.

Lemma 5.6. Let f:X—S be a proper and surjective morphism of
reduced complex spaces and R a coherent analytic sheaf on X which
is flat over S by f. Suppose that X is pure dimensional, and S is

irreducible. Then the following conditions are equivalent.
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1) There exists a point s&S such that R, is torsion free as an QOy,-
module.

2) The set U={scS; R, is torsion free} is dense and Zariski open
in S.

3) R is torsion free on X.

Proof. We shall show that the set U in 2) is Zariski open in S,
which would establish the equivalence of 1) and 2). First we recall
a general fact. Let & be a coherent analytic sheaf on a complex space
Y on pure dimension n. Let S,(¥) ={y<Y;depth, ¥k}, #=>0, which
is an analytic subset of Y. Suppose that supp coincides with Yieq.
Then the following conditions are equivalent (cf. EGAIV 5.7);1) & is
torsion free, for every yeY 2) &, has no embedded primes 3) dim,S; (&)
<k for all 2B<n—1. Now returning to our situation let S;(R,f)={x
€X; depth, R;,, <k} and B, (R, f) = {x; dim,S; (R, f) N X;y=>k}. From
the flatness of R it follows immediately that either of the three
conditions implies that supp®R =X so that suppR;=2X; qa for all s&8S.
Hence by the equivalence of 1) and 3) above our assertion follows from
the analyticity of B, (R,f), which in turn is a consequence of that of
S (R, f), shown by Banica in [2], and the fact that the set {x;dim,7T
NX;»=Fk} is analytic for every analytic subset 7" of X as was noted
in [2]. The equivalence of 2) and 3) can be proved almost analogously
to that of 2) and 3) of Lemma 1.4. In fact, let z=dim X, m=dim S
and g=n—m. Suppose that ¢>0, leaving the case ¢=0 to the reader.
Now for any smooth point x& X with f(x) a smooth point of S we have
depth, R =depth, Ry +m, so that S, (R, f) =Siin(R) for every 2=>0
at xz. Let B,(R) ={x;dim,S,(R)=Fk}. Then as in the proof of Lemma
1.4, for x€X as above A(R) =
if A;(R)= kU B, (R, /) does.n—Then by the above mentioned equi-
valence it foolslof:r: that 3) implies 2) and 2) implies that R is torsion free
on f'(U) for a Zariski open subset U of smooth points of S. Then the

U B (R) vanishes at x if and only
1>k2m

rest of the proof is done as in the last part of the proof of Lemma 1. 4.
Q.E.D.

Lemma 5.7. Let X and S be reduced and irreducible complex
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spaces and f:X—S a proper and flat morphism. Let & be a coherent
analytic sheaf on X and Y=XX Grass, (&) for some r>0. Then for
every irreducible component, D,, of Dy,s(E) e such that X, is reduced
and R, is torsion free of rank r on X, (see 5.1 for the notations)
there exist an analytic subseil, E,, of Dy, and a weakly defined S-
bimeromorphic map v: E,—D, Moreover if X—S is a Kihler mor-

phism, then E, is proper over S.

Proof. Let m: Grass,(€)—>X be the natural projection. Let
s=s5(R,) : X,—Grass, (£,) =Grass, (&), be the meromorphic section cor-
responding to R, by Lemma 5.4. Then the graph I of sis a subspace
of X,Xp,Grass,(&).=Y, On the other hand, by Frisch [6] there exists
a dense Zariski open subset U of D, such that /" is flat over U, where
I' is naturally over U as a subspace of Y,. Then by the universality
of Dy,s we have a unique S-morphism /: U—Dy,s such that I'y=2Zp,
where Z=2Zy,s and U is over Dy, by h. In view of Lemma 5.5 1),
restricting U if necessary we may assume that for every point d€U, s
defines a meromorphic map s;: X,e—>Grass, (£,) s =Grass, (€.4) such that
I’y is its graph. Further since s is a section, s, also is a meromorphic
section to mq: Grass, (£.)a—>Xea.

Let M={d< Dy,s; Zy,s3 corresponds to a graph of a meromorphic
section to ma: Grass,(€)z—Xz}. By Lemma 5.5 M is Zariski locally
closed in Dy,. On the other hand, by what we have seen above we get
that R (U) & M.

Let M be the analytic closure of M in Dys. Then ZgCYr=Xy
X zGrass, (€5) is easily seen to be the graph of a unique meromorphic
section sg: Xz—Grass, (Ex). Let M, be the minimal analytic subset of
M containing A (U) and s,=sg|xz, One sees readily that Z, is reduced
so that MIQDY/S.

Let u: E5,—F be the torsion free quotient of £y, corresponding to
s; by Lemma 5.4. This is welldefined since Xy, is reduced as follows
from Lemma 1.4. Let W be the Zariski open subset of M, such that
& is flat over W. Then by the universality of Dyg(€) there is a
unique S-morphism 7: W—Dy,s(&) such that ¥, =R, where W is over
S by 7. We show that i gives an S-bimeromorphic map of U to M,
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and tits inverse. We take a nonempty Zariski open subset U; (resp. W")
of U(resp. W) such that X,=X,, (resp. X,=Xy ,) is reduced and
R, (resp. &F,) is torsion free for every uc U, (resp. wE W;) (Lemmas
1.4 and 5.6). Set W, =W, N M. Then for every uc U, (resp. we W))
the meromorphic section s,: X,—>Grass, (£,) (resp. si,: X,—>Grass, (€,))
corresponds to R, (resp. &F,) in the sense of Lemma 5. 4 on the reduced
space X, (resp. X,). Put U,=hA"'(W;) NU,, which is nonempty by our
choice of M,. Then by the above remark combined with the isomorphism
Renew =Frw we infer readily that ¢/ is the identity on U, In particular
t(W)CD,. Then if we set W,=77'(U) " W,, by a similar reasoning
together with the isomorphism [, = Zs.y we see that Ar is the identity
on W, This proves our assertion. Finally putting E,=M,, ¢ is weakly
defined by Lemma 5. 1.

Next suppose that X is Kihler over S. We show that M, is proper
over S. Let #: Y>XX X with #=idyXgr, 4 the diagonal of XXX
and 4=7%"'(4). Then as is clear from the proof of Lemma 5.5 Zm;z?ﬁl.
In other words, we may consider M, naturally as a subspace of Djs.
Since 4 is projective over 4 and 4 is S-somorphic to X, by Lemma 4. 4

together with Proposition 3. 4 we see that M, is proper over S. Q.E.D.

5.3. Let X be a complex space and &€ be a coherent analytic sheaf on
X. Let A(L) be the sheaf of annihilators of & on X. This is a
coherent sheaf of ideals of Oy Let supp& be the support of €. Then
we define the subspace, S(€), of X by S(&) = (supp&, Ox/A(E)). Let
S be a complex space and suppose that X is over S with the morphism
f: X—S. Then we write dim&€/S=dim supp& —dimS and if £ =04, then
dimX/S=dimO,/S.

Lemma 5.8. Let f:X—>S and & be as in Theorem 5.2. Then
for every irreducible component D, of Dyxs(E)rea with dim R,/D,
=g=0, there exist 1) an irreducible component, T of Dy, rea Stich that
Zr is reduced and dim Z;/T =q, where Z=1Zy,s, 2) a finite number of
coherent analytic sheaves, &, 0tk<n, on Zp, 3) an irreducible com-
ponent By of Dy, (Ey) for each k such that (Zr)p, is reduced, and
finally 4) a bimeromorphic S-morphism h: ByX p++ X ¢B,—D,.
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Proof. Let 4 (resp. ) be the ideal sheaf of S(R,) (resp. suppR.,)
in X,. Define R;=Y9"R,/I*"*'R,., k=0, where J°=0=C0y, By de-

finition we have the following exact sequences on X,
0->R,>R/I*N"R->R/I*R—-0, R=R,.

Now take 7>>0 sufficiently large so that §DJ"*' on the general fiber
of S(R,)—>D,. By Frisch [6] we can find a nonempty Zariski open
subset U of D, such that /Y and R, 0<k<n-+1, are all flat over U.
Moreover restricting U if necessary we may assume that J29""' on
FY(U). Note that by the above exact sequences we see that R/J*R
also are flat over U for 0<k<<n-+1. Since O/ is flat over U, by the
universality of Dy,s we have a unique S-morphism ¢: U—>Dy,s such that
(suppR.)y=Zy. Let T be any irreducible component of Dy, eq contain-
ing ¢(U). Then since Zy= (suppR.)y is reduced and Zy is flat over 7,
Zrp is reduced (cf. the proof of Lemma 1.4 noting that the former condi-
tion implies that Z; is reduced in a neighborhood of p»7'(¢(U)) with
p: Zy—T the natural projection).

Now let J, be the ideal sheaf of Z; in X; and &, =9t/ JeE .
We consider the relative Douady space, D,=Dy,,+(£;), associated with
the pair (Zy/T,Er). Then since (&) y=IC€y/ I €y and R, are flat
quotients of the latter over U, by the universality of D, we have a
unique T-morphism 7,: U—D,, i.e. m,7, =¢ with 7m.: D,—7T the projection,
such that Rz, r(E&x)v=(R:) v Let B be any irreducible component of
Dy req containing 7, (U). Then in the same way as for Z; one sees easily
that (Zr) g, is also reduced. Define t=1, X p-++ X 47 U>B=B, X p*+- X B,.
Then by the above exact sequences together with the flatness of R/ J*R
over U we infer readily that ¢ is in fact injective.

Next we construct a family of quotients of &, parametrized by B.
Let Ryy=(Ryzr(Er))s and J the ideal sheaf of Zp in Xz Then
we shall define inductively the following successive quotients, &z—>R ™
—e >R of £ on Xp which fit into the following commutative diagram

of exact sequences

Oﬁﬁgg/ﬁ-l—leg‘—)63/jk+183'_>83/jk83"90

! { {
0> Ry — R® - RED 0
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with the vertical arrows surjective. First put R®=R . Next assume
that 2>0 and R are all defined for j<<k Then R® can be defined
uniquely by the commutativity of the above diagram. We set R=Re,
Then & is naturally the quotient of &z on Xz, Moreover by the second
line of the above exact sequences together with the flatness of Ry, we
see that & is flat over B. Then by the universality of Dy,(E) we
have a unique S-morphism %: B—>Dy,s(&€) such that ﬁ%ﬂg, R=RxE).
On the other hand, by our construction we see immediately that At =1id.
It follows then that A(B)S D,. Analogously we see that tA is the identity

on A7'(U). Hence h is bimeromorphic. This proves Lemma 5. 8.

Lemma 5.9. Let f; X—S and £ be as in Theorem 5. 2. Suppose
that f is flat, X is reduced and dimX/S=q. Then for every irreduci-
ble component D, of Dx,5(E)rea Such that X, is reduced there exist
1) a finite number of irreducible components, T; 1<i<m, of Dy
such that Z;= (Zy,)r, are reduced and irreducible, 2) for each i a
subvariety, Y;, of Dxyr,(E)reas Xi=Xr, E:=Er, such that either
dim R/ Y:<q or S(R;) =Z,, with Z,= (Z,) v, reduced, and R; is torsion
Jree as an Oz -module, where R;= (Rx,r,(E:)) v, 3) an analytic sub-
set, N,of Y=Y, X g+ XsY,., and finally 4) a weakly defined generically

surjective meromorphic map h: N—D.,.

Proof. Let u,: £, R, be the universal quotient restricted to D,.
Let R, be the kernel of #,. Take an irredundant primary decomposition,
g{;:,ﬂth, of R in &,[22]. Let ¥;=&,/0; and V; the subvariety
of X,:Ecorresponding to 0;. Then by Frisch [6] there exists a Zariski
open subset U of D, such that &; and Oy, are flat over U for all 4.
Note that since f is proper, we may assume that V;Nf*(U)#£9 for only
finitely many 7, say, for z=1, ---, m. On the other hand, since V, are
flat over U, by the universality of Dy,s there exists a unique S-morphism
@;: U= Dy, such that Z,= (V;),. Let T; be any irreducible component
of Dy,s which contains ¢;(U). Then the reducedness and irreducibility
of Z; follows from those of Zy= (V;), and the flatness of Z; over T as
in the proof of the previous lemma. Since (;)y is the quotient of
(€D v=(€,) v and flat over U, by the universality of Dy, r,(£;) we have
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a unique 7;-morphism t;: U—Dy,,r,(€;) such that (F;)y= (R*)y, where
Ri=Ry,r,(E:). Let Y; be a minimal analytic subset of Dy, r,(€:)rea
containing 7; (U) and R;= (R,

Let T=T X g XgTp, 9=¢1 X g*** X s :U=T,and Y=Y, X g+* X Y.
Define a T-morphism 7: U—Y by t=1,Xg Xglm, where U is over T
by ¢. Now let g\éi be the pull-backs on X5 of R; by the natural maps
Xy—>Xy,. Then we have the natural quotient maps g;: 5y——>§éi. Let Qi
be the kernel of g¢; and SZ::é’Y/r_in. Let N be the minimal analytic
subset of Y which contains ¢ (U). L Let W be the nonempty Zariski open
subset of N such that &y is flat over W. Then by the universality of
Dy,s(E) we have a unique S-morphism A: W—Dy,s(€) such that Fy
=Ry, R=Rzs(€). Then by our construction we infer readily that
ht is the identity on ¢™'(W), which is not empty by our choice of N.
In particular we have A(W)CE D, and it is dense there. Finally by Lem-
ma 5.1 % defines a weakly defined surjective S-meromorphic map %&: N
—D,.

We now show the property of R; stated in 2) of the lemma. Since
dimX/S<q, it is clear that dimR;/Y;<_q. Suppose that dimR;/Y;=q for
some z. Then since (&F;)p= (R y= (R;)y, we also have that dimF,;/D,
=g. Then X, being reduced, supp &;=7V; coincides with an irreducible
component of X,. Since &¥;is primary, &; then turns out to be a torsion
free Oy,module. Therefore noting that &; is flat over U, by 3)—2)
of Lemma 5.6 there is a dense Zariski open subset U, of U such that
F;., is torsion free as an Oy, ,-module for every u=U, Hence in virtue
of the relations (%) y= (R v and Zy=(Z) = (V) v, Rircw, u U, is a
torsion free Oy, ., my-module, and Z. is reduced, it being flat over T3.
Also X;= (X)) v; is reduced since it is flat over Y; and (X,) v=Xyp is
reduced, where U is over Y; by 7;. Moreover since q=dimVi/Du=dimZ'i
/Y, =dimX,/Y;, Z; is an irreducible component of X; From these facts
and the minimality of Y; it follows that supp®R;=2Z; and hence S(R)=2Z;
since X, is reduced. Finally torsion freeness of R; as an Oz-module

follows from Lemma 5.6 2)—3). Q.E.D.

Proof of Theorem 5.2. Let D, be any irreducible component of
Dys(€)rea- Then we prove the theorem by induction on ¢=dimR,/D.,.
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Firstly if ¢g= —1, then R,= {0} so that D,=.S and hence proper over S.
So assume that ¢=0. Then by Lemma 5. 8 it suffices to show the pro-
perness of ByX - X B, in the notation of that lemma. This in turn
follows {rom the properness of T over S and B, over T for all £ Since
Zr is reduced by 1) of the lemma, the properness of T follows from
Lemma 3.5, Proposition 3.4 and Remark 3.5. We shall show that B,
are proper over 1. First by 1) and by the definition of By in 3) of that
lemma, taking X=Z;, S=T, £=§&, and D,=B, we can reduce the
problem to the case where f is flat, X, is reduced and dim X/S=gq.
(Note that Z;—7T is a Kihler morphism.) Then we can apply Lemma
5.9 to see that it is enough to show the properness of N over S in
the notation of that lemma. By 3) and the definition of Y in that lemma
this follows from the properness of Y; over 7; and 7 over S in the
notations there. Since Z; are reduced, by Proposition 3.4 T are proper
over S. As for Y;if dim R,/Y;<q, then noting that X;—7; is a Kdhler
morphism, and applying the induction hypothesis to an irreducible com-
ponent Y7 of Dy, r,(€;)rea which contains Y; (we still have that dimRy;/Y7;
<q, Ry;= (Rx,1,(€))Y; by the flatness of Ry;), we get that Y; and
hence Y; is proper over 7. So suppose that dim®R;/Y;=¢q. In this case
S(R)=Z, and R, is torsion free as an O3, module by 2) of that lemma.
Hence we can consider Y; as a subspace of Dzi,Ti(é_’i). where gi:é)i
®@‘\'i@zi. Thus taking X=2;,, S=T;, D,=an irreducible component of
Dy,,r,(€;) containing Y;, and 6’:5’-1, we can reduce the problem to the
case where f: X—S is flat, dim X/S=g¢g, X and S are reduced and irreduci-
ble, X, is reduced, and R, is torsion free on X,. (In fact use Lemma
1.4 (Lemma 5.6) to get the reducedness of X, (torsion freeness of R,)
from that of Z;(R;).) Then we can apply Lemma 5.7 and the proper-

ness of D, follows immediately from that lemma. Q.E.D.

Finally the proof of Theorem 5.3 is quite analogous and so we only
indicate the necessary modifications. First in view of the above proof,
especially Lemmas 5.8 and 5.9, we have to consider also the relative
form of the class &, which we shall define as follows. Let f: X—S be
a proper morphism of complex spaces with X reduced. Then we say

that f belongs to the class # /S, denoted by f& & /S, if for every point
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s&.S there is a neighborhood U of s in § and a proper Kihler morphism
h: Y- U with a surjective U-meromorphic map ¢: Y—X. Then we actu-
ally prove the theorem in the following form; let j: X—S be a proper
morphism with f&€% /S and &€ a coherent analytic sheaf on X. Then
every irreducible component D, of Dy,s(&)eq is proper over S.

For this purpose first one formulate and prove the relative form
of Lemma 4.6 almost as in the absolute case. From this it follows that
X has the property BP and hence also DP almost as in the proof of
Theorem 4.9. Finally one sees easily that the last assertion of Lemma
5.7 is then still true even if we assume that f& % /S instead of being
a Kihler morphism. Then the rest of the proof is quite the same as

above.
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