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Closedness of the Douady Spaces
of Compact Kahler Spaces1'

By

Akira FUJIK1*

Introduction

Let X be a complex space and Dx the Douady space of compact

analytic subspaces of X. For every point d^Dx-> we denote by Zd the

corresponding analytic subspace of X. Define the subspace, Dx, of -D^,red

by Dx— U Da, where Da are the irreducible components of DXiTeA such
a

that for some d^Da Zd is reduced and pure dimensional. Then the main

purpose of this paper is to show the following: If X is a compact

Kdhler space, then every connected component of Dx is compact (The-

orem 4. 5). Further if X is a compact complex space whose reduction

XTed is a meromorphic image of a compact Kdhler space, then every

irreducible component of DXred is compact (Theorem 5. 3).

In algebraic geometry the corresponding results are wellknown. In

fact, if X is a projective analytic space i.e. the one embedded in some

projective space (or more generally a meromorphic image of such and

hence a Moisezon space), then Dx is a disjoint union of projective analytic

spaces (resp. compact Moisezon spaces) (cf. [1] and [10]). In particular

every connected component of Dxis compact in these special cases. Note

that the problem in this generality still remains open in the general case,

though in most applications the results obtained here would be sufficient.

Now for the proof, instead of Dx itself, we first fix our eyes on the

'Chow variety' of X whose existence in the analytic category has recently

been established hy Barlet [3]. We denote this space by B (X). Then

our proof is roughly divided into two steps: 1) we show the compactness
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of the connected components of B(X) when X is compact and Kahler,2)

and then 2) using the generic flatness theorem for proper maps due to

Firsch [6] and Hironaka's flattening theorem [14] we reduce the problem

to the case of B(X) via the natural map p:Dx-^B(X). Let me explain

the step 1) more in detail. First note that every point of B(X) cor-

responds to an effective compact g-cycle on X for some q^>0, which in

turn may be considered as a current of dimension 2q on X. Then we

show that a) the natural topology of B(X) is equivalent to the one

induced by the weak topology on the space of currents on X (Prop. 2.3).

Combining this result with a result of Harvey and Shiffmaii in [12] on

the closedness of holomorphic cycles we show that b) every bounded set

on B(X) is relatively compact (Prop. 2.10). Finally we show that c)

if X is Kahler, then every connected component of B(X) is bounded

(Prop. 4.1). Then 1) follows immediately from b) and c). Note that

in the course of our proof c) is the only point at which we need the

Kahlerian assumption.

In the subsequent paper [8] we shall give an application of the

results of this paper to the automorphism groups of compact Kahler mani-

folds, which was the original motivation for this investigation.

We now give a brief explanation on the organization of this paper.

After some preliminaries on C°°-forms and currents etc. in § 1 we introduce

in § 2 the space B(X) according to Barlet [3] and prove a) and b)

stated above. In § 3 we reduce the case of D% to that of B (X) via

the map p mentioned above. Here we have to treat also the relative

case as it is needed in the reductions in § 5. Next in § 4 we prove c)

together with a generalization to compact complex spaces which are mero-

morphic images of compact Kahler spaces. In the final section we prove

our theorems in its full generality, which involves the relative Douady

space, Dx/s(<£)> of the quotient analytic sheaves of a coherent analytic

sheaf S on X with X a complex space over 5, by a series of reductions

to the case of Dx-

Conventions. In this paper all the complex spaces have a countable

base for the open sets and hence paracompact. Complex spaces are not

2) This has also been shown by D. Lieberman independently.
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necessarily reduced unless otherwise stated. Let X~ (X, Ox) be a com-

plex space. Then XTed denotes the underlying reduced subspace, the re-

duction, of X. Usually a complex analytic subspace of X is simply called

a subspace of X. An analytic subset (resp. a subvariety) of X is by

definition a reduced (resp. and irreducible) analytic subspace of X. An

open subset of X is called Zariski open if it is the complement of an

analytic subset of X. Let S be a complex space and X a complex space

over S i.e. there is a fixed morphism f:X-*S. Then if T is another

complex space over S we write XT = XXST and fT:XT^T for the natural

projection. Similarly if G is a coherent analytic sheaf on X, we denote

by QT the pullback of 6* on XT by the natural projection XT^X. If

T= {s} is a point we write Xs (resp. <£?,) instead of X^ (resp. <?<«}).

§ 1. Preliminaries

I. 1. Let X be a complex space. We shall define on X the sheaf Jfy

(resp. e>?5-'9) of germs of C°°m-forms (resp. C°° forms of type (p, q))

with direct sum decomposition *) c^?2 — © <-^5* and the differentials
2H-g=m __

d:J%->Jl^1 (resp. d\Jly-*Jty1'* and d Jt%q-*Jlpxq+1) with d = d + d,

First we consider the case where X is a subspace of a domain V

in Cn = Cn (zh--',Zn) with the ideal sheaf J = JX, Then we define

JLX = JLQ
X by Jlz = Jlv/(J-{-3)JlV9 where J={/;/€=c?K /being the

complex conjugate of /. Next define the c_^F-submodule9 JVX^ of JLy

by Jl^^JJldzB + ̂ JJldzp + JldJ + JldJ, Jl = Jlv, where JldJ

= {Z^hTdgT9hT^Jl and grej} and similarly for JldS \ Then put <J§

= Jky / JVX f\J^v~^ , m>L\. These form naturally an c^-graded algebra

Jlx. Further define the o??F-submodules, ^?5-'a, p + q = m, of c^J by

J^xtx~ {</>^<-£x,x', 30^^?F;?. inducing 0}. Then it is immediate to see

that we have the direct sum decomposition *) above. Moreover the usual

differentials d (resp. 9 and 9) on ^Jly (resp. Jlfy1*) is easily seen to induce

the one on J%"x (resp. c^J'3) with d = d-}-d. On the other hand the natural

complex conjugation on Jly induces a C-antilinear involution on J^. In

particular we can define the real forms on X as those left fixed by this

involution.

In the general case take an open covering U— {Ua} of X with an
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embedding ja:Ua— >Va for each a, where Va is a domain in some Cn<x.

Then we see readily that the sheaves {Ja^A^u^} (resP- JJ^/'Jc^)) and tne

differentials {j%da} (resp. {j*da} and {/*9a}) naturally patch together

to define the sheaves J^ (resp. <_^?J9) and the differentials d (resp. 9 and

9) , globally defined on X, with natural direct some decomposition *) above

and with d=d4-d. Similarly the notion of real forms can also be globali-

zed. Note that even HXis reduced, the above definition is a little different

from that of Bloom-Herrera (cf. [15]), though both coincide with the

usual definition on the nonsingular points of X. Quite similarly we define

the space of continuous forms on X, and its direct sum decomposition

into (p, q) components as above. Next let f\ X—»Y be a morphism of

complex spaces. Then there is a natural homomorphism /*: <_£?-* <Jl°x

such that if g: Y— >Z is another morphism, then f*g*= (g/)*.

We denote by A^tC the space of C°° w -forms on X with compact sup-

ports. Then the convergence in AxtC is defined as follows. Take a

locally finite open covering U={t7a} of X with an embedding ja: Ua-*Va

for each a as above. Let {pa} be a partition of unity subordinate to the

covering U. Taking 11 suitably we may assume that the support of pa

is compact for each OL. Then we say that a sequence {0n}, 0neAj£>c,

wSjl, converges to (f)Q^A^iC if the supports of 0n are contained in a fixed

compact K and for each OC there exists a compact set Ka in Va and a

representatives (j)na of pa0n, nl>0, with support contained in Ka such that

0nQ:— >0OQ, uniformly on Ka with all the derivatives of their coefficients.

It is easy to see that this definition is independent of the choice of U

and {pa} as above.

Next we define the space, -Djr>m, of currents of dimension m on X as

the vector space of complex valued continuous linear forms on A^iC, ml>Q.

The boundary operator b: D'xtm— >-Di.OT_i is then defined by b (a)

(a) = a (dco) for all toeAJ'1 and a^D'x>m. We put on D^>m the weak

topology which is defined by the weak convergence of the sequences of the

elements of D^tm i.e. an^D^f7n, nl>~L9 converges weakly to aQ^Dx,m if for

every o)eAj fC 0^(0)) converges to o:0(o)).

1. 20 We refer the definitions about semianalytic sets and their elemen-

tary properties to [13]. Let C be a semianalytic set of dimension m on
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a complex space X with a fixed orientation on its m -simple points. Then

Herrera in [13] showed the following: 1) (integration on semianalytic

sets) . For every continuous m-form, ^, on X with compact support, the

integral 1 j of ^ on ;?2-simple points of C can be defined, in such a way
Jc '

that it defines a current of dimension m on X, denoted by c[C]. 2)

(Stokes formula) we have the formula

b(c\C\)=c\bC\,

where bC is the boundary of C as a set which is again a semianalytic

set with the natural orientation on its (m — Y) -simple points induced from

C. If C is a complex analytic subset of X with its natural orientations

on the lion singular points, then the above results are due to Leloiig (cf.

[15,3.1]). In particular c[C] is then ^-closed.

Let q^>Q be an integer. A holomorphic g-cycle, or simply a g-cycle,

is a locally finite sum, A = ̂  naAa, where na^Z and Aa are subvarieties

of X of dimension q. For a g-cycle A we denote by \A\ the set U Aa and
a

call it the support of A. This is an analytic subset of X. We call A

effective if ;za^>0 for all a. A is called simply a compact q-cycle if

A is effective and \A\ is compact. Now for every holomorphic g-cycle

A = ̂ 2 naAa on X we define a current, c[A]e£)^-t2g, by ^[A] = X3 naC\_A^\.
a

This is welldefined, since the sum is locally finite. We often write

c [A] (%) = I % for every continuous 2g-form ^ on X. We denote by

Cq°c(X) (resp. Cg(.X)) the set of all the currents of the form c[A\

with A an effective (resp. compact) g-cycle on X.

We recall the notion of bouiidedness of a subset of Cq(X) (cf. [15]).

First for any domain V in Cn = Cn(z1, • • • , zn) we call the 2g-form on V,

the summation being over all the g-tuples I— (il9 • • • , zg) with l^z"i<---

<^iq^n, the volume 2g-form associated with the standard Hermitian metric

on Cn. Then for every element AeCjoc(y) we call S vq the volume

of A and denote it by vol (A) .

Definition I. 1. 1) Let V be a domain in C71. Then a subset £

gCjoc (V) is called bounded if sup vol (A)< 4- oo. 2) Let X be a com-
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plex space and E a subset of Cq (X). Then we call E bounded if there

exists an open covering U= {£/«} with an embedding ja'Ua—>Va^CHa for

each a such that for all a the sets, Ea= {c\ja(A\u}~\\ A^E} are bounded

in Cl
q
c(Va} in the sense of 1), where Va is a domain in C"1*.

1.3. Let M be a real connected C°° manifold of dimension 2q and T"|f-

the cotangent bundle of M. Suppose that M is oriented and $ any

volume element on M. Then every real C°° 2<?-form ^ on J\l can be

uniquely written as % = A.fi for a unique real C°° function A on M". Then

we call x positive if 1 is positive at every point of M. This definition

is in fact independent of the choice of the volume element and depends

only on the orientation of M. On the other hand, for -/ as above we

write |%| = U|fi with |A| the absolute value of L Then |^| also is in-

dependent of the choice of Q. Let Y be a connected complex manifold

of complex dimension q. Then Y" has the natural orientation compatible

with its complex structure. Thus for every real C°° 2^-form 011 Y we

can speak of its positivity and of |^|.

Let G be a domain in Cn and ^ a real C°° (<?, g)-form on G. Then

we call % positive if for every open subset U of G and for every con-

nected complex submanifold Y of U of complex dimension q C*% is positive

on Y, where C: Y—»C7 is the inclusion. The positive forms can also be

characterized by the following infinitesimal condition (cf. [23, Lemma

2.2]) ; % is positive if and only if for every point x£=G and every element

(l>^/\*Tgia; of the form 0= (V — 1) ~qe1/\e1--eq/\eq with el9 ~-,eq linearly

independent vectors in TGiX, we have %;e(0)^>0, where TQ is the holomor-

phic tangent bundle of G and TGiX is its fiber at x. We shall list some

elementary facts on positive forms. 1) The volume 2g-form vq defined

in 1.2 is positive. 2) Let ^ be a positive (1, 1) form on G. Then the

g-th exterior product ^5, l^g^;z, is again positive. 3) If ^ and ^2 are

two positive forms on G, then for every relatively compact subdomain U

of G there exist positive constants c1 and c2 such that £i%i<Cx2<^2%2 i.e.

X2~~£i%i and C2%]—%2 are positive (cf. Stoll [23, p.98]).

Definition 1. 2. 1) Let X be a general complex space and ^ a real

C°° (<?> (?) form on X. Then w^e call ^ positive if there exists an open
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covering U={Ua} of X with for each a an embedding ja: Ua—>Ga of Ua

into a subdomain Ga in Cn<* and a C°° positive form, %a, of type (q, q)

on Ga such that j%xa
 = rXt\ua- 2) A C°° positive (1,1)-form on^is called

a hermitian form on X. Further a hermitian form ^ is called a Kdhler

form if in the above definition all the ^a can be taken to be closed.

A complex space with a Kahler form is called a Kdhler space.

Remark 1.1. 1) Using partition of unity we can always construct

a Hermitian form on every complex space X. 2) The above definition

of a Kahler space coincides with that of Moishezon in [16] because of the

fact that every real closed C°° (1, 1) form ^ on a domain G is locally

written as ^= V — ~Ldd(f) for some C°° function 0 and ^ represents a Kahler

form if and only if 0 is a strictly plurisubharmonic function.

By virtue of 1) and 3) above on positive forms we get easily the

following lemma.

Lemma I. I. Let X be a complex space and % a real positive

C°° form of type (q, q) on X -with <?>0. Let E be the subset of Cq (X)

such that U \A\ is contained in a compact subset of X. Then E is
A<=E ( r i

bounded if and only if the set \ I %; A^E> is bounded.

Io 40 Let f: X-^>S be a proper morphism of complex spaces and Q a

coherent analytic sheaf on X. Suppose that S is reduced. Then by Fri-

sch [6] there exists a dense Zariski open subset U=U(£9f) of S such

that 5 is flat over s GE S if and only if s^U.

Let f:X->S and Q be as above. Then a flattening of Q is a com-

mutative diagram

x,—>x
I

fs

such that 1) 0 is a surjective, proper and bimeromorphic morphism which

gives an isomorphism of $~l (IT) and U with U=U(g,f),2) X§ = XXSS,

and f§ (resp. 0T) is the natural projection, and 3) 8 = ̂ £ modulo f§-

torsion (cf. [14, (4.2.1.)] for the definition) is flat over S. In case
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S — 0X let X be the subspace of X§ corresponding to the quotient sheaf

<£ = 0x of Oxst i.e. the strict transform of X in X§9 and f:X^S the

induced morphism. Then we call f a flattening of /'and 0 the flattening

morphism. By Hironaka [14] for every f and Q as above there always

exists a flattening of Q.

Lemma 1. 2. Let f:X-*S be a proper morphism of reduced com-

plex spaces. Then there exists a Zariski open subset U (resp. V)

of X (resp. S) such that for every x^U (resp. s^V) Xf(x} (resp. Xs)

is nonsingular at x (resp. generically reduced).

Proof. The result is more or less well-known. For the simplicity

of arguments here we use the resolution by Hironaka. Let 0: S-^S (resp.

0: X-*X) be a resolution of S (resp. a resolution of X§iTed composed with

the natural projection X§>red-»X). Let f\X-*S be the induced map.

Then there exists a Zariski open subset V of S such that f is smooth

at every point of f~l(V}. Let E (resp. F) be the nowhere dense

analytic subset of S (resp. X} such that 0 (resp. c/j) gives an isomorphism

of S-E and S~(f)(E) (resp. X-F and X-0(F)). Let V=(f>(Vn (S

-£))=0(F)nGS-0(E)) (resp. U=t(f-1(V^(X-F»=f-1(V)n

(X—(j)(F}}. Then it is easy to see that this V (resp. U) has the

desired properties. Q.E.D.

Lemma 10 3. Let f\X—>S and V be as in the previous lemma.

Suppose that X is pure dimensional and S is irreducible. Suppose

further that every irreducible component, Xt, of X is mapped surjecti-

vely onto S. Let o)x (resp. cOg) be a positive C°° (1, 1) -form on X

(resp. S) and Q = o)x +/*fl)s. Let n = dimX, ;?2=dim*5' and q = n — m.

Let A(v)= I a)q
x, v<=V, -where [X,,] = ]T] Xaw with Xav irreducible

JCJM «
components of Xv,red. Then -we have the inequality

f £n> f ^(v
JX JV

Proof. Let 0: 5->5, $: X—>X and /: X->$ be as in the proof of

the previous lemma. Let a)s = (/)*a)s, u)x~^*&x and Q = 0)% + /*&§ =
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Then we have f ®n= f J2n. On the other hand, if V = 6~l(V) and l(v)
Jx Jx

= \ o)|, v^V, with [X5] defined as above, then 1 (v) = A (0 (i>)) and
Jc^tj:

I A (t;) 0)5 = II (?;) a)7?. Hence it suffices to show the lemma when X and
Jv Jv

S are nonsingular and/is smooth on f"1 (V) . In this case using the local

coordinates we easily see that

f f S " t f TO f

JX s + t = n JX X S== J JV

Q.E.D.

If f is flat in Lemma 1. 2, then more precise result can be obtained.

Lemma I. 4e Let f:X—>S be a proper, flat and surjective mor-

phism of complex spaces. Suppose that X is pure dimensional and S is

reduced and irreducible. Then the following conditions are equiv-

alent.

1) There exists a point s^S such that Xs is reduced.

2) The set U={s^S'7Xs is reduced} is nonempty and Zariski open

in S.

3) X is reduced.

Proof. The equivalence of 1) and 2) immediately follows from a

result of Banica [2] which says that U in 2) is Zariski open in S.

Next we show the equivalence of 2) and 3). We put n = dim X, m

^dim^S and q — n — m. Since f is flat, Xs is pure ^-dimensional for every

s^S. We put Sk (X) ={x^X; depth. X <; k} (resp. Sk (/) = {x^X-

depth, XM<,k} ) and Bk (X) = {x; dim, 5/c (X) ^k} (resp. Bk (/) = {x;

dinv$fc(/) HJX/te);>&}). Let A={x^X;Xis not reduced at x} (resp.

Af= {x^X\ Xf(X) is not reduced at x}). Assume that g>0, since the

result is well-known if g~0.

We first consider the case where S is nonsingular and Xs is generi-

cally reduced for every 5^5. Note that in this case Xalso is generically

reduced. Since f is flat and S is nonsingular, we get that depth.X

= depth A-X. + W for all s^S and jc&X,. Hence Sk (f) = Sk , „, (X) for

every &^>0. On the other hand, by Houzel's criterion cited in [2] applied
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to our pure dimensional case, combined with Serre's criterion of reduce-

dness (c.f. [2]), it follows that A= U Bk(X) and Af= U B k ( f ) .
n-l^fc^m G-l^fc^O

Suppose first that U in 2) is empty so that/(A/) =S. It follows then that

f(Bk9(f))=S for some Q<^kQ<,q-l. By the definition of Bko(f), we

get that dim Bko(f)^m + k0. This in turn implies that Bko+m (X) ^0 by

virtue of the equality Sko (/) =Sk^m (X) mentioned above. Hence A=^0.

This shows that 3) —>2) in our special case. Conversely, if A=^=0y then

Bki(X)^=0 for some m<J^<>n-\. Since Bk(X)^Bk.m(f) fore very m

<^k<^n — l as follows easily from the definitions of these spaces and the

above equality, we have that 0^=Bki-m (/) C Af. In short, if S=Uin 2),

then X is reduced.

Next we consider the general case. Let V be any nonempty Zariski

open subset of S such that V is nonsingular and Xs is genetically reduced

for every s^S. For example take V to be the set of smooth points of

U in case 2) and use Lemma 1. 2 in case 3). Then applying the former

half of the above consideration to the morphism f\xr: XV-*V, Xv=f~1(V),

we obtain easily the implication that 3) —>2). Conversely assume that

2) holds. Then by the latter half of the above consideration we conclude

that Xv is reduced. It remains to show that under this condition X is

actually reduced. Let T=/(A)CS— V. Suppose that T=^=0 and take

a point t(=T. Let H= {z\ |z|<l} be the unit disc and h\ H->S be a

morphism of H into S such that h'1 (T) = {z = 0}. Let fH:XH->H be

the induced morphism. Then it is easy to see that XH is not reduced

and XH — h~l(1S) is reduced contradicting the flatness of fH. Hence T=0

and X is reduced. Q.E D0

Lemma 1. 5. Let f:X—>S be as in Lemma 1. 2. Define V= {s

^X;f is flat at every point of Xs and Xs is reduced}. Then V is

a dense Z,ariski open subset of S.

Proof. Let Vi be a dense Zariski open subset of S such that f is

flat at every point of Xg. Then by a result of Banica quoted above V

is Zariski open in V1. Moreover by Lemma 1. 2 and the proof of the

previous lemma we see easily that it is dense in S. Let T=Vi — V.

Then it is enough to show that the closure T of T in S is an analytic
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subset of S. Let /: X§->S be a flattening of / with the flattening mor-

phism (j): S—>S. Then by the above lemma there exists an analytic subset

T of S such that X§ is reduced for s^S if and only if s^S— T. Then

since 0 gives an isomorphism of ^)~1(V1) and Vl9 it follows that 0(T) fl Vi

= Tr. Hence T is a union of some of the irreducible components of 0(T")

and hence analytic. Q.E.D.

§ 2e Barlet Space and Its Boniidednes§

28 1. First in 2. 1-2. 3 we recall some of the constructions due to Barlet

[3] of the universal family of compact g-cycles on a complex space. Let

Sk be the symmetric group of degree k. For every integer r^l let Sk

act on (€r)/c by the formula ff (xl9 • • • , xk} = (xff(1)9 • • • , x f f l k ^ , where xt

e€"~ and fi^Sk. Then as is well-known the quotient, sym*(Cr) = (Cr)k/Sk,

has the natural structure of a normal affine algebraic variety. In fact

using the elementary symmetric functions of xt Barlet gives a natural
k

embedding, s: symfc (C7) ->J5, where E = @Ej and £^- are the vector spaces
y=i

of polynomials of degree j on Cr.

For z= (zl9 • • • , 2;r) €E Cr we put ||2;|| =sup|2;f|. Then define the norm

||-|| on E by ||P ||- sup \P(z)\, P^E. Let 5-5s be the polydisc of
llsll^l

radius jR>0 with center at the origin of Cr i.e. 5= {2:̂  €r; ||z|K-^}-

Then sym^B = (B)k/Sk is naturally regarded as an open subset of symfc(Cr).

In fact there is a suitable relatively compact open subset UR of E such

that sym*S = 5-1(Uiz) [3, p. 16].

Given a polydisc £7 in <C9 and a complex space Y we denote by

H(U* Y) the space of all the continuous maps f: U—>Y which are holo-

morphic on C7, where U is the closure of U. Then in the above notations,

we have the natural inclusions

H(U, sym*S) C1H (U, UR} C-H(U, E) .

Here we note that H(U, E) has the natural structure of a Banach space

with respect to the sup norm and H(U, UB~) is its open subset. More-

over H(U, symfcjB) is a Banach analytic subset of H(U, UR) and in parti-

cular has the natural induced topology (cf. [3, p. 27 Prop. 4]).

We define the support of an element f^H(U,symkB), denoted by



12 AKIRA FUJIKI

supp/, as follows; suppf= { (u, b) EE UxB; b — bl for some (#1, • • • ,&*)

<^7l~~\f(u})} . Here n: Bk—>symkB is the natural projection. Now suppose

that we are given an analytic subset, X, of C3 X Cr defined in a neigh-

borhood of UXB. Then we denote by G*;| the subset of H(U,symkB)

consisting of those elements whose supports are contained in X. This is

again a Banach analytic subset of H(U9UR)[3,p.27, Prop. 4].

m

20 2. Let A = 2 naAa be an effective g-cycle defined in a neighborhood of
_ a=l _
UxB. Let Ui be any neighborhood of U in CQ such that A is defined

on L/i X B. Then we say that A defines a ramified covering over U^

if each Aa is finite and surjective over L^ under the projection p^.UiXB
m

—>£/!. In this case let ka be the degree of Aa over J7i and put k = J^ ka.
a=l

Then we call k the degree of A over Ui. Now if A is such, then it

determines an element

as follows; let pa—pi\Aa' Aa— >£/i and C/i be the dense open subset of

Ui such that Pa\p-l(u\Y- Pal(U(}-^>U( is an unramified covering of degree

ka for every a. Then for every u^U( we have pa l (u) ~ { (u9 bf) , • • • ,

(M,**a)} for some *?^B. Then we set /f(a) =TT(*) for aeDI, where

(if, • • • , i f c a ) being repeated ;2a times. Then it is easy to see that f%

extends to a holomorphic map f%: f/j-^sym*^. Finally we define f* to

be the restriction of // to U. Note that if |A| is further contained in

an analytic subspace X in t/iX-B, then supp/f£-X" and hence /JeGf/J.

Conversely, if wre are given an element fEiH(U9symkB^ (resp.

Gfc/J), then for ever}- polydisc C70 with UQ^U we can define a unique

effective g-cycle A (resp. with support in X) on UQXB which defines a

ramified covering over C70 of degree kwiihf=fA
r° (cf. [3, p. 25 Prop. 3]).

Let ^C be a complex space and A a compact c?-cycle on X. Let 17

be an open subset of X with an embedding j\V—>Ui X B, where C/i (resp.

B) is a polydisc in Cq (resp. Cr) . We call such a quadruplet (V,j, Uly B)

admissible for A if j (A fl V) defines a ramified covering over t/i in the

sense defined above. Thus by the above if (V.,j,UlyB} is admissible

for A, then to every polydisc U with U^JJi we can associate an element
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/I <= H(U, sym'B) by /f =ffom.

Now let 5 be a reduced complex space and As= {As = ̂ 2 naAs
a; s^S}

a family of compact ^-cycles on X parametrized by S. We call As an-

alytic if for every admissible quadruplet (V,j9Ui9E) as above and for

every polydisc U of L/i with UdU-^ the map, F:SxU-^symkB, defined

by F (s9u) —/As M is an analytic map.

Let (<^?«red) be the category of reduced complex spaces and morph-

isms. Define a contra variant function Fq: (c_^Ured) "^ (Sets) by Fq(S) =the

set of analytic families of compact ^-cycles on X parametrized by S. Then

the following theorem was shown in [3] .

Tlieorem (Barlet). Fq is repre sen table for every gf^0. Namely

there exists a reduced complex space Bq(X) and an analytic family -,

{A^\ b^Bq (X)}, of compact q-cycles on X parametrized by Bq(X),

such that every analytic family, {As\s^S}, of compact q-cycles on

X as above is induced by a unique morphism h:S—>Bq(X) from this

i.e. Ag = AhM for all

We call Bq(X), g^O, the Barlet spaces of .X"and {Ab;

the universal families of compact ^-cycles on X. We also write B(X)

and call it the Barlet space of X.

2. 3. Let A be any compact g-cycles on X, where X is as in 2. 2.

Then we may write A = Abo for a unique point b0 e Bq (X) . We want

to describe a system of fundamental neighborhoods of bQ in Bq (X) . First

we take a finite open covering V= {Va}i^a^g9 of \A\ in X, with an embed-

ding JaiVa—^UiaXBa of Va into the product of pol^^discs UlaClClla and

Ba^Cr<x for each cc such that (Va9ja, Ula, Ba) is admissible for A in the

sense defined in 2. 2. Suppose further that there exists for each Ct an

open subset Ua of Ula with Ua£^Ula, such that Jal(UaxBa) is again an

open covering of \A\ in X. Let us call a set of quintuplets Q={(Va>

Ja> Ula, Ba, Ua) } , with the above property admissible for A.

Then to every set of quintuplets admissible for A as above we can

associate an element fA (Q) e= II H(U» symfcBa) by fA (Q) = H/i- With
a

these preparations we can now state the following lemma which follows
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directly from Barlet's construction [3, Chap. III].

Lemma 20 I. For every set of quintuplets, Q= {(Va,ja,Ula, Ba,

Ua)}i^a^s, admissible for A let W= W(Q) be defined by

W= {b^Bq(X) ; Q is admissible for Ab} .

Then W is an open neighborhood of b0 in Bq (X) and the natural map

<{> = <{>(Q'):W^l[H(Ua,symk
aB), defined by 0(£) =A(Q) =U/Z"> is a

a a
homeomorphism onto a finite dimensional analytic subset ofJ^H(Uay

a
symkBa). Moreover, W(Q) form a fundamental system of neighbor-

hoods of bQ in Bq(X) ^vhen Q runs through all the set of quintuplets

admissible for A as above.

We also need the following local version of the above lemma.

Lemma 29 2e Let A = AbQ be as above. Suppose that (V,j, Ul9 B)
is a quadruplet admissible for A. Then it is also admissible for Ab

for all b^Bq (X) sufficiently near to b0.

2e 40 Recall that every compact g-eyele A defines a current ^[.A] of

dimension 2q on ^T(cf. 1.2). We may now consider c as a map, c: Bq(X)

~^D'x,2n-<2q> which is obviously injective and whose image is by definition

Proposition 2B 3, The map c gives a homeomorphism of Bq (X)

onto Cq(X), where Cq(X) is given the -weak topology.

The continuity of c has essentially been proved by Stoll in [23].

Since the situation is not quite the same, however, we shall give here the

complete proof following his line. For the proof we need a series of

lemmas. In order to avoid interrupting the main line of arguments we

defer the proof of the following lemma until the end of this section.

Lemma 20 4. Let Ul (resp. B) be a poly disc in Cq (resp. Cr) . Let

AQ be an effective q-cycle and Am, m^>l, a family of effective q-cycles
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on UiXB. Suppose that for all m^>0, Am are ramified coverings over

Ui of degree k so that/Am^H(U, symkB) are defined, -where U is any

poly disc in Cq with U^U^ Suppose further that f%m converges to

/AO in H(U,symkB^) as 77Z— »oo. Let (zly •••,%%) be the coordinates of

Cq and g any continuous function on UxB. Put ^ = gdz1/\"-/\dzq

(% = 0> if q~&). Then zue have the convergence

%-M
jAmr\(UxB) jA0n

m-

To state the next lemma we recall the notion of clear coordinates.

Let W be the polydisc of radius r^>0 in C71 = Cn (zj , • • • ,^ n ) and g2>0 an

integer. Then for every g-tuple 1= (il9 • • • , z g ) , l^Zi<"'<O"g^7*> let pf.

W-*WI = {(zil9 • • • , ziq) ̂ Cq; kis|<r} be the natural projection. Let A

be an effective g-eycle defined in a neighborhood of W. Then we say

that W is clear for A. if for every g-tuple I as above, the induced map

Ali^hl^-i'^Wi is a finite morphism. The following lemma is due to Stoll

[23, Prop. 1.3.].

Lentma 2e 5e Let V be a domain in Cn containing the origin,

and A an effective q-cycle on V. Then there exists a unitary (linear)

change of coordinates of Cn such that with respect to the new coordi-

nates the poly discs Wr of radius r are clear for A for all sufficiently

small

Let x be a continuous form of type (<?? q) on a domain V of Cn

= Cn(z1, - - y Z n ) . We call ^ unmixed with respect to the coordinates (zi9

• • • , zn) if % is written on yin the form % = ^i')Cidzil/\dzil/\'"/\dziq/\dziq,

•where yj are continuous functions on V and I runs through all the q-

tuples /= (il9 - • ' , iq) with l^z"i<-"<zq^». Using Lemma 2.5 the fol-

lowing two lemmas can be proved quite in the same way as Lemma 3. 4

and 3. 6 respectively in [23] .

Lemma 2e 6. Let W= { (zl9 • • • , *n) e€n; |^|<r> 6e ^e polydisc

of radius r in Cn. L^^ A0 be an effective q-cycle (resp. Am9 m>Jl,

a family of effective q-cycle s) defined in a neighborhood of W with
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g>0. Suppose that W is clear for all the Am, m^>0. For every q-

tuple I— (il9 • • • , z'g), l^z'jO^z'q^Tz, ^ve can then define elements f^

eH(W I y W//), where I' is the (n — q)-tuple complementary to I. Sup-

pose that for every /,/^f converges to fj* as m-*oo. Then for every

continuous unmixed form, ^, of type (q, q) defined on W we have the

convergence

%-»j£mr\w J^of
m-

Lemma 2. 70 Let the notations and assumptions be the same as

in Lemma 2.5. Suppose further that |A0! = t7ix{0} and g>0. Then

for every continuous form % defined on Ui^B we have the convergence

%-» %, m-*oo.
J(Z7-xfl)n4m J(UxB)r\A0

Next we give two lemmas needed in the proof of the continuity of c~l.

Lemma 2, 8. Let V be a domain in Cn containing the origin.

Let A0 be an effective q-cycle on V and Am, w^>l, a family of effec-

tive q-cycles on V. Suppose that c\_Am~] converges weakly to c\_A^\ as

m— >oo. Then there exists a linear sub space, P, of complex dimension

n — q ofCn such that if Pf is the linear subspace orthogonal to P voibh

respect to the standard Hermitian metric on €n, then for some poly-

discs Ui of P/ and B of P, t/i X 5, considered naturally as a subdomain

of Cn, is admissible for An for all n^>0.

Proof. For g = 0 and q = n the assertion is trivial. So we assume

that 0<C^<C^- For any subset EQ of V let hk (E0) be the ^-dimensional

Hausdorf measure of EQ (cf. [15,2.4]). Set E= U | An\. Then h2^1-
71^0

(E)^Hh2q^(\An\) = 0. Hence by [20, Lemma 4.2.] there exists a
«^0

complex linear subspace, P, of dimension n — q of Cn such that P H E is

totally disconnected. Thus to finish the proof it suffices, up to the usual

argtiments, to show that E is closed in V. So let x be a point in the

closure, E, of E in V with the sequence, {xn} , of points of E converging

to x. Suppose now that x^E. Take for each k an wfc2>0 such that
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AmJ. We inay assume that mk—. >oo for &— »oo. For any point a

let Br(a) be the ball of radius r with center a. Then take r>0

sufficiently small so that Br(x)^V and Br(x) r}A0 = (f). Let p be a C°°

function with compact support in lrand = 1 on Br(x). Put -% = pvq with

the volume 2g-form t;g (cf. 1. 2). Then by our assumption I %— > I %
J^mfc J^o

= 0. On the other hand, for sufficiently large k9 Br/^(x^)^Br(x^) . Hence

I %:> I %= I ^a, while by [4, Lemma 3] I ?^s
J^»ifc J^-Wi&n-Sr/aC^fe) J^m&n5r/2(^fc) *Mm&n.8r/2(#B)

>c(r/2)25 for some positive constant £ independent of k. This is a

contradiction. Hence E = E as desired. Q.E.D.

Lemma 28 9* Z/e£ £/i a?z^ [7 (resp. Bl and B) be poly discs in Cq

(resp. €r) -with t/CC/; (r^5^. BCJBO. L^^ AOT, m^l, ^^ a family

of effective q-cycles on Ui X B. Suppose that Am are ramified cover-

ings over Ul of a fixed degree k so that in particular the associated

elements f^E^IKJJ, symfcJ3) can be defined. Then there exists an ef-

fective q-cycle A0 in UxB and a subsequence {m.?} of {m} such that

AQ is a ramified covering over U of degree k with that associated

element f%^H(U, sym*^) and that flm] converges to f%0 in H(U,

symkB1) for j-

Proof. We regard sym^^j as an analytic subset of an open set in E

as in 2. 1. Then with respect to some basis of E each f%m is represented

by an AT-tuple of bounded holomorphic functions (/ml, --,fmN) defined on

U, where JV= dim E. Since A.m are all defined on L/i X Bl we may assume

that fmt are defined and holomorphic on a polydisc U' Z) U. Then by the

generalized Vitali's theorem [11, 1. A 12] we can find a subsequence {mj} ,

of {m} such that for each i fmji converges to a holomorphic function f{

defined on U' uniformly on U. Then for the map F: U-^CN defined by

F =(/,)» F (U) £sym*BCSym*J31. Then as was remarked in 2.2 there

exists an effective ^-cycle A0 as in the lemma such that F has the form

F=f£ as an element of H(U,symkB^. Q.E.D.

Proof of Proposition 2.3. 1) continuity of c. Let bm, m = I,2, • • - ,

be any sequence of points of Bq (X) converging to a point bQ e Bq (X) .

Let Am = Abm, m>0, be the corresponding compact (/-cycles on X. Let
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^ be any continuous form with compact support on X. Then it is enough

to show that for m—>oo we have the convergence

= f X-»*[Ao](x)= f%
jAn JA

Note that since Am are holomorphic cycles, we may here assume that

X is of type (q, q) . Based on the above lemmas the proof of (*) is

formally quite analogous to that of Stoll in [23] as mentioned above

(cf. the arguments in Lemma 2.3 Theorem 3.8 in [22]). Now the

assertion follows immediately from Lemma 2. 4 if q = Q. So we assume

that #>0. Take and fix any £>0. Let |A0|Sing be the set of singular

points of j - A f l l . Consider first the following assertion. (**) We can find

an open covering {U, V} of X with the following property; let {AUy Av} be

any partition of unity subordinate to the covering {U, V} . Then we have

a)
J4mrw

b) f AF%- f
JUmnF jA0r\v

for m = 0 and w>0 and

for m>0.

We first see that (**) implies (*) . Indeed^ we have for

i f % - f % < f l*irt l+ f l^%| + f AFK- fI jAm JAO JAmnu JA0nu JAmW JA

proves (*). Here |^%|=2]% \^^ul\, where -A0 =
J^oHF » jAff

. This

»Ap and

Cs: Aa^U-^U is the inclusion, and similarly for j Uz/%1 (cf. 1.3).
JAmnu

We use the similar notations also in the following.

Now we show (**). First we show the existence of a neighborhood

U of lAolsmg with the property a) above. We take and fix finite open

coverings «B/ = {K} and ^S={Va}9 a = l,~-,k, of |A0|8ing in X with Va

C V'a such that for each a there are 1) an embedding j'a\ Va-*D'a of Vf
a

into a domain D^ in C171", 2) relatively compact subdomain, Da, of D«

with ja1 (Da) = Va and 3) a continuous 2#-form, %a, of type (g, g) on

D^ with jj%a — % J F a . Let {(pa} be any partition of unity subordinate to

the covering ^B and for each OC take and fix a continuous function (pa

on IX with support in Da9 0^^a^l, and with j%<pa
 = (pa> Let (2:?, • • - , 2")

be the coordinates of CHa and form the volume 2q form t;g>Q: =

(V^/2)9 2 dz^/\dz^/\"'/\dzfq/\dz^q as in 1. 2. Then there exists a con-

stant £a>0 such that |^a%al^^a^g.« on Da (cf. 1. 3. 3)). Next take and fix
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and hence

a continuous function ga with compact support on D'a such that

and (7a=l on Da. Then obviously we have \<pa%a\^
cayaUq,a'

Now writing Am,a = Amr\Va and Am>a = ja(Amja) we consider the

following assertion: (") For each ex, there exists a neighborhood Ua of

A0,a|Sing m D'a such that I _ ^«t;Q>a<<£/6^(;a and 1 _ Qavq,a

~ L ^ Qa^q,a <^£/6kca for w>0. Note that from these inequalities

it follows immediately that I Qavq,a<^£/3kca for w = 0 and m>0.
J^m.an^a ' ^

We shall see that (") implies the existence of U. In fact let Ua = Ja1(Ua)

and U=\jUa. Then U obviously covers lA0 |Sing. Moreover we have

that

(i) f i i- f r ~ \<c f
« m,a a m,« a

and 77z>0, which is a) of (**).

We turn to prove (")• We take and fix one a for the moment and

suppress the suffix ot. Set C — supp(gVq) 0 \A0 Sing, where supp denotes

the support. Then C is compact in Z)'. Hence we can take a neighbor-
~ . ~ fhood IC/o! of iA0|sing in Df such that I gvq<^s/6kca. Next we take

a finite open covering {Ulf • • • , C7r} of C in Z)' such that each Ut is

clear for A0 possibly after a unitary linear change of coordinates. The

existence of such Ut follows immediately from Lemma 2. 5. Then by

Lemma 2. 2 [/<• are also clear for Am for w^>0. Note that we may

assume that Ut are all contained in U0. Let {pt} be the partition of

unity subject to the covering {Ui}. Finally let U' be a neighborhood

of |A0lsing such that C/ 'Hsuppg^^UC/i , and put U = U'(J (\J U^.

Then this U satisfies the condition of ("). The proof is quite analogous

to (1) once we note the following; by Lemma 2. 5 and the fact that any

unitary change of coordinates leaves invariant vq we have for any

L ^PiQVq- I
jAm^U JA0r\

for ra>0, z = l, • • - , r, and obviously

qV(i = Qm Hence we omit it.

It remains to find V^X such that together with U it satisfies the

conditions of (**). Let U' be a neighborhood of |A0iSing with U'^U

and V'=X—U'. Let us take a set of quintuplets (Va, Ja, Ula, Ba, Ua),
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a = I,---,d', admissible for |A0| with the following properties; for a = 1,

-,d, 1) VJ=J« l(Z7«XS«) covers V and VBn |4»L». = 0 and 2) ja(ya

n 14,1) = C7, X {0}. Put V= U VJ. Then clearly | A0\^U(J V. Let {*„,
a=l

AF} be as in (**) and {(pa} be the partition of unity subordinate to {V£}.

We may assume that for every a we are given a continuous 2#-form

of type ((?,<?), %a, (resp. continuous functions J.UitX9 ^v.a^a) such that

« = AFl7 t t,J*0« = 0«). Then by Lemma

2. 7 we have for m>0. From this
r „ „ r
I 0a^Fa%«-~ ! ^a^Vai

JAm,a jA0,a

b) follows easily as (1). This completes the proof of (**) and hence

the continuity of c.

2) The continuity of c~l: Cq(X)-*Bq(X}. Suppose that c[AbJ, n^l,

converges weakly to c[A&0], bn^Bq(X), ^2>0. We show that bn converges

to b0 in Bq(X). Write An = Abn, n^>Q. First for every point x^X we shall

find a quadruplet (V,j, Ul9 B) admissible for An for all nl>0 and with

x^V(cL 2.2). Fix a neighborhood W of x and an embedding j:W—>G,

where G is a domain in Cm. We write An(j) =j(WT\ A^). Then by

Lemma 2. 8 after a suitable linear change of coordinates of Cm we can

find polydiscs U1^Cq and BC^Cr such that JTiXjB is relatively compact

in G and An(j) are all ramified coverings over Ul9 where m = q + r and

Cm = CqXCr, Let kn be the degree of An over U^ Let (zl9 • • • ? ^ g ) be

the coordinates of Cq and put ^= (V — I^qpdz1/\---/\dzq/\dz1/\-"/\dzq

considered as a (g, q)-form on UiXB and on Ui alternatively according

to the occasions, where p is a non-negative continuous function on Ui

with support in L/i and ^0. Then we have 1 % = kn I r^O. On
J^a) J^

the other hand, since 1 %—> I % for ?z-»oo, kn = k for ^>0. If we
JUn(.7) j40(jF)

put V = j~l (Ui X B) s then (V9j,Ui9B) has the desired property.

Now for every point JCG-X" take such a quadruplet (VX9jX9Ulx,Bx)

and a polydisc Ux in C7la? with Ux^Ulx. Take a finite number of points

xl9 --,xd(=X such that j~*(UXiXBXi) covers |A0|. Then (T^.,j^, Z7lar<,

^arp f/rj) is an admissible set of quintuplets for AQ and An for n^>0

(cf. 2. 3) = Then by Lemma 2. 1 it is enough to show that for each

i,fAn
Xi converges to f^*1 in H(UXi, symktBXi), where kt is the degree of

AQ over Ulxt. To show this we drop the suffix xt. Suppose the contrary

so that there exists a neighborhood N of /j£ in H(U, syn^B) and a
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subsequence {nk} of {n} such that f^k $ N for all k. By Lemma 2. 9 there

exists a convergent subsequence of {T^}, which we may assume to be

{?2fc} itself, such that f%n converges to f£n in H(U, symfcJ3') for a larger

polydisc B'~^B. Taking Bf instead of B we may assume that B~Bf.

Then by the continuity of c established above Anie(j) converges weakly

to Ang (J) as well as to AQ (J) . Thus Ano (j) = AQ (j) , since the limit is

unique. This is a contradiction and hence the proof is complete.

We call a subset E^Bq(X) bounded if c(E) is bounded in Cq(X)

in the sense of Definition 1. 1.

Proposition 2B I0«,3) Let E be a bounded subset of Bq (X) such

that \J\Ab\ is contained in a compact subset K of X. Then E is
<=E

relatively compact in Bq (X) .

For the proof we need the following deep result of Harvey and

Shiffman [12, Theorem 3.9].

Theorem (Harvery and Shiffman). Let V be a domain in Cn.

Let {An} , ?/J>l, be a bounded family of effective q-cycles on V. Then

there is a subsequence of {An} -which converges either to an effective

q-cycle A0 on V or to 0 with respect to the -weak topology. Further

if there is a point x^V which is a limit point of the sequence {xn}

with .rne|Aj, then the above limit is not 0 and in fact

For the last statement see the proof of [12, Theorem 3. 10] or of

Lemma 2. 8 above.

Proof of Proposition 2. 10. It is easy to globalize the above theorem

of Harvey and Shiffman to obtain the fact that every bounded sequence

{^[An]} in Cq(X) has a subsequence which converges either to an effec-

tive g-cycle A0 on X or to 0. Now suppose that An^E for all n. Take

a point xn£zAn for each n. Then there is a subsequence of {xn} con-

verging to a point xE^K since K is compact. Then by the above theorem

3) cf. 2).
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the limit is a q-cycle A0. Finally since \A0\^K, AQ is compact. This

shows the relative compactness of the set C(£), since Cq(X) has count-

able topology. Then the proposition follows from Proposition 2. 3.

Q.E.D.

We end this section with the proof of Lemma 2. 4. Let t/i, B, U, g
771

and ^ be as in the lemma. First in general let A = 2 naAa be an effective
a = l

q-cycle on Ul X B which is a ramified covering of degree k over Ul as in

2.2. Let / f eH(U, symft.B) be the corresponding element. Then we

define a continuous function on U, TrAg, called the trace of g with respect

to A, as follows. First define a continuous function g on U X (5)fc by
TO

§f(#, (&!, • • • , & f c)) =^2 Q (u> bt) • Then since g is invariant under the natu-
i = l _

ral action of the symmetric group Sk on U X (B)fc, there is a unique

continuous function g on UXsymkB such that g = K*g, where n=iduXn:

UxBk->UXsymkB with 7T: (B)*->sym*S the natural projection. Finally

we put

(Tr^flr) («)=£(«,/?(«)).

Note that Tr^^ depends only on the restriction of g on \A\.

Set TrA^ = TTAgdz1/\"-/\dzq/\dz1/\'"/\dzq. Then we show that

(2) fz= f
JA JU

For this we go back to the definition of /f in 2. 2. Let C/i be as in

2. 2. Then for every u^.U(r\U we have f"(u} =n(b) with & = (&}, • • • ,

^11? •", £i\ •", £?m) in the notation there. Hence if u^U( fl f/, it follows

that (Tr^g) (u) = g (u, f? (u) ) = g (w, TT (*) ) = £] na ^ ^ («. *?) • Hence

f f f1 Tr^^ I / Tr^% = 2J 7za I ^ ^LjgC^j^D^-^iA'"/\dzq/\dzi/\ ••• /\dzqmJu ju'iftu a ju(r\u j
on the other hand, since pa p-1^'-Pa1(U'i)-:>U'i is unramified, it easily

follows that

f f fI / g(u,^')dz1/\"-/\dzq= \ f %= I %.

Then combining the above two equalities we get (2).

Now we come back to the proof of Lemma 2. 4. By assumption f%m
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converges uniformly on U to f£Q. Then by the definition of TrAg, TrAmg

converges uniformly on U to Ti*Aog. Then the lemma follows immedi-

ately from (2) by the definition of TTA%.

§ 3, Property BP and DP

30 1. We recall the definition of the multiplicity of a complex space.

Let Y be an irreducible complex space, i.e. Yreci is irreducible, and q

= dim Y. Then we can find a Zariski open subset U of. Y and an integer

w&^>! with the following property: For every point x^U let j—jx°. Ux

—>VX be an}^ embedding of a neighborhood Ux of x in U into a domain

V, in C9+r* such that j (Ux) red = Vx 0 (<C9 X {0} ) . Then if TT-.J (Z7,) -y (£/,) red

is the map induced by the natural projection nQ:Cq+rx-^Cq, then Ojun,x is a

free 0y(i7)redfX-module of finite rank m by 7T*. For a proof see [3, Ch.V

§1]. The integer m is clearly independent of U and hence an invariant

of Y. We call m = mY the multiplicity of Y.

Let J*sT be a complex space and Y a compact subspace of X of. pure

dimension q. Let Jf be the ideal sheaf of Y in X and <5= H Q* be any

irredundant primary decomposition of S (cf. [22]). Let Yt be the sub-

variety of X corresponding to Qiy and ?nt the multiplicity of the irreducible

complex space (Yi? OX/Q^) defined above. Then we define a compact

g-cycle [Y] by,

where the summation is taken over all the irreducible components of

Yred. Since Q{ is unique for such Yt, [Y] is well-defined. We call [Y]

the compact g-cycle associated with Y. Note that the notation is com-

patible with that of Lemma 1. 3.

The following lemma which we need later is found in [3, Theoreme

1, p. 38] up to a slight improvement.

Lemma 3« I. 1) Let {As\ s^S} be an analytic family of com-

pact q-cycles of a complex space X parametrized by a reduced com-

plex space S. Then the set W defined by W= { (s, x); x^ \ As\} is an

analytic subset of SxX and the natural projection f:W-^S is proper,
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Let W= \JjWj be the decomposition of W into irreducible components,

and put fj=f\wr Then for every j there exists an integer ?^j and a

dense Zariski open subset V of S such that for every s^V, As is

given by As = ̂  nj\_Wjs~], where zve regard W7-s naturally as a sub space

of X={s}xX/

2) Conversely, let S be a reduced complex space and W an analytic

subset of SXX. Let f: W-*S, W= U W5 and /}: W}->S be as in 1).
i

Suppose that f is proper, each fiber of f has pure dimension q and all

the fj- are surjective. Then if S is -weakly normal, then for every

k-tuple of positive integers (X, • • • ,%) there exists an analytic family,

{As}, of compact q-cycles of X parametrized by S such that for some

dense Zariski open subset V of S, As — S^E^a] for s^V.

Proof. In view of the proof of [3, Theoreme 1] we have only to

show the existense of V as stated in 1) of the above Lemma. We shall

take as V any dense Zariski open subset of S such that W, is generically

reduced. Such a V exists by Lemma 1. 2. By Frisch [6] we may further

assume that f is flat over V. Now since | As \ = Ws red, we may write
&s

As = ̂ nsaWStt for some nsa^>0, where Wsa are irreducible components
a=l

of Ws>red. For any se V and any Wsa take a nonsingular point zv^Wsa.

Then since f is flat at w, f is smooth at that point. Let U be the dense

Zariski open subset of X defined by U= {x^f'1 (Y) \f is smooth at x} .

For any point x^U let Wf{X)a the unique irreducible component of Wf(X)

passing through x and nx — nf(X)a. Then by the definition of analytic fam-

ily it is obvious that nx is locally constant on U. Hence it is constant,

say nj9 on C7H Wj for every j. Since for s^V, Wgar\U=£0 for all a

as we have seen above, this proves the lemma.

We call W^SxX and the morphism/: W— >S in 1) associated -with

the analytic family {As}.

3. 2. Let f:X—>S be a morphism of complex spaces. For every reduced

complex space T over S with the structure morphism a:T— »*Swe mean

by an analytic family of compact g-cycles of X/S parametrized by T an

analytic family of compact ^-cycles, {At}, of X parametrized by T such

that for all t^T f(\ At\) C<2 (£) . Let (JlaTeA/S) be the category of re-
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duced complex spaces over S and 5-morphisms. Let Fs,q: (<JL^

— >(Sets) be the contra variant functor defined by Fs,g (T) =the set of

analytic families of compact g-cycles X/S parametrized by T. Starting

from the Barlet's result in 2. 2 we easily show the following.

Proposition 38 2e For every <?^>0, FS,Q is repre sen table in

Proof. We first make the following general remark. Let g:X->Y

and h:Y—*Z be proper morphisms of reduced and irreducible complex

spaces. Suppose that eveiy fiber of hg has pure dimension q^Q and that

g is surjective. Then every fiber of h has pure dimension q\ where q

^dim Y — dim Z. In fact this follows easily from the upper semiconti-

nuity of the dimension of the fibers of g and /?, shown by Remmert.

Now let Bq (X) be the Barlet space of compact g-cycles of X and

{Ab; b^Bq(X)} be the universal family of compact g-cycles parametrized

by Bq(X). Let W^Bq (X) XX be the associated analytic subset and

?t: W-*Bq(X) the natural projection. Put f=idxf: Bq(X) xX-*Bq(X)

XS. Let W = f(W)C:Bq(X)xS and 7L:W->Bq(X) the natural projec-

tion. Let Br be the union of those irreducible components., Ba, of Bq (X)

for which the induced morphism W Ba~ >Ba has relative dimension zero i.e.

dim WBa = dim Ba since the map is surjective. Let W — WB' and n' = n\w.

We show that 7tr is a finite morphism. It is enough to see that

dim it'~l(J>) =0 for every b&B'. Let Wt be any irreducible component of

W and Wi any irreducible component of W which is mapped onto Wt by

f. Let fi = f\wt and rft=n'\Wc Then eveiy fiber of ft has pure di-

mension q. Hence we can apply the above remark to the morphisms

fi\ Wi~>Wi and TC' : Wt— >B' to see that every fiber of TrJ and hence of

TT' has pure dimension zero as desired.

Let v:B— >Bf be the normalization of Bf . For every irreducible com-

ponent, Ba, of B let k = ka be the degree of the induced finite morphism

ft a' WSa— >Ba. Let pk\ Sx "• XS(^-times) — ̂ sym**? be the natural projec-

tion. Then we can define as in 2. 2 (cf. also [3, p.25]) a morphism

(pa : Ba ->symfc5 such that (*) W 'Ba = supp <pu - { (by 5) e Ba X 5; s = $1 for

some (sl9 • • • , sk) ^pkL(<pa(zi))}. Let Jk be the diagonal in SX-'XS i.e.
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4t = { (s, ''', s) ; s e S} and Ik = pk (Ak} . Then define Ca = v ((p^1 (Ik) ) with

reduced structure and C= U Ca. By (*) and the definition of B' it fol-
a

lows easily that C coinsides with the set C" = {b^Bq (X) ; TT"1 (&) consists

of a single point}.

Now we set BQ=Wc.red- On BQ we have the natural analytic

family {Ab; b^BQ} of compact ^-cycles of X/S defined by A'b=An(b).

We show the universality of this family. Let {At; t^T} be any analytic

family of compact ^-cycles of X/S parametrized by a reduced complex

space T over S. Then by the universality of Bq (X) we have the unique

morphism h:T-*Bq(X) such that At = Ah(t). Let a:T-»Sbe the struc-

ture morphism. Then since f(\ AJ) =a (£), by the above characterization

of C we see that h factors through C. (Note that |Ah(0\ = Wf t ( t )fred.)

Thus if we put h =h X a: T-^CxS, then we see readily that h(T)^BQ.

Moreover it is clear that At = A'h(^ for all t^T. Finally by definition B0

is reduced and has the natural projection to S as a subspace of CxS with

respect to which h is an *S-morphism. This shows the universality of our

family {Ai;b(=BQ}. Q.E.D.

We denote the space BQ obtained in the above proof which represent

the functor Fs<q by Bq(X/S) and call it the relative Barlet space associ-

ated with X/S. As the above proof shows we have the natural projection

j:Bq (X/S) —>Bq (X) which is a homeomorphism onto the subspace C.

3* 3e Let S be a complex space and X a complex space over S. We

recall the definition of the Douady space, D = DZ/S, of X over S. First

let T be a complex space over S. Then a flat family of a compact

subspaces of X parametrized by T over S is a subspace Y^ of XT which is

proper and flat over T via the natural projection Y—*T. Let (c_^U/*S)

be the category of complex spaces over S and iS-morphisms. Let F: (Jl^

/S) —> (Sets) be the contra variant functor defined by -F(T) =the set of flat

families of compact subspaces of X parametrized by T over S. Then

Douady in [5] showed that F is representable, the generalization to the

relative case being due to Pourcin [17]. Namely there exists a complex

space D over S and a subspace Z of XD which is proper and flat over

D such that for every Y^XT as above there exists a unique ^S-morphism
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h: T—>D with Y=ZT: =ZxDT, where T is over D by h. In particular

the points of Z)red correspond bijectively to the set of all compact subspaces

of X. We put D = DY/s (resp. Z=Zx/s) and call it the Douady space

of X over S (resp. the universal family associated with X/S) . If S

reduces to a point, then we write Dx (resp. ZY) instead of DX/S (resp.

Zx/s) - Then we have the natural embedding j: Dx/s—^Dx[li7~\.

For ever}7" integer q we define

Dx/s.q
 = {d^Dx/s.red', Zd has pure dimension q} .

Then by the flatness of Z over DX/S, Dx/s,q is the union of irreducible

components of DX/S- Now to every d€=DAVSi(Z we associate a compact

g-cycle p0(d) of X by p0(d) = [Zd^ (cf. 3.1), considering Zd naturally

as a subspace of X. We may then regard pQ as a map po'.Dx/s.q-^Bq. (X) .

Define pf : Dx/s,q-^Bq (X) X 5 by p'(d) = (p0 (d) , 7T (d) ) , where n: DX/S-*S is

the natural projection. Then we see immediately that p' factors through

Bq (X/S) . The resulting map

Pq = PX/S, q ' Dx/S, Q -~>Bq (X)

is called the Barlet map associated tvith X/S. In fact Barlet proved

in [3, Theoreme 8] the following

Theorem (Barlet). For every gSjO, pq is a morphism of complex

spaces.

Combining this theorem with Proposition 2. 3 we get easily the fol-

lowing

Corollary 3. 3. Let f:X^S be a proper and flat morphism of

reduced complex spaces. Suppose that every fiber of f has pure

dimension q^>0. Then for every continuous 2q-form, ^, on S the function

% is continuous on S.= I
JL

Remark 3. 1. More precisely one can directly show the following.

Let /: X-^>S be a proper morphism of reduced complex spaces. Suppose

that every fiber of f has pure dimension q and that every irreducible

component of X is mapped surjectively onto S. Then the following con-
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ditions are equivalent. 1) For every continuous 2#-form ^ on X the

function A(s) = 1 is continuous. 2) For every sEiS there is a dense
Jtxsi

Zariski open subset U8 of Xs such / is flat at every point of Us. (For

related results see Stoll [23, Theorem 3. 8] and King [15, Theorem

3.3.2].)

3.4* For every q*^>Q define the subspace, Dq=Dx/s,q, of Dx/Siq by Dq

— U Da, where Da are those irreducible components of D^/s.q for which
a

the induced map ZDa—>Da, Z=Zx/s> satisfies the equivalent conditions of

Lemma 1. 4. We set Dx/s = JJ_Dx/s,q- F°r simplicity, here we introduce
g

the following terminology.

We say that X has the property BqP(resp. DqP) over S if every

irreducible component of Bg(X/S) (resp. Dx/Stq) is proper over S. If X

has the property BqP for all <?1>0, then we say that it has the property

BP over S. Further if S is a point, we omit 'over S\

Proposition 3» 4. Suppose that X has the property BqP over S.

Let pq:Dx/Siq-*Bq(X) be the restriction of the Barlet map to Dx/s,q>

Then pq is proper. In particular X has the property DqP over S.

Proof, Let BQ be any irreducible component of Bq(X/S) which

intersects with the image of D = Dx/Stq. Let {Ab, b^B0} be the cor-

responding analytic family of compact g-cycles of X over S. We define

inductively a descending sequence, ^o2-Si2""2^fc*"> of reduced sub-

spaces of BQ by the following requirement; let ft:Wt—*Bt be the morphism

associated with the family {A6;&e^} (cf. Lemma 3.1), and Ut the

dense Zariski open subset of Wt defined by Ui={b^Bi; Wib is reduced

and f is flat at every point of Wib} (Lemma 1.5). Then Bi+1=Bi — Ut.

Now let Da be any irreducible component of D such that pq (D^) £J50,

and Va= {d^Da; Zd is reduced}, where 2t — Zx/s. Note that pq is injec-

tive on Va by the definition of the Barlet map. Let m be the minimal

index such that pq(Va) §U3TO4-i. Then pa(Va), and hence pg(Da), is con-

tained in Bm. Take any irreducible component Bma of Bm which contains

pq(Da). Let Wma=WBma and fma: Wma-*Bma be the induced map. Take

a flattening fma: Wma-+Bma of fma with the flattening morphism $:Bma
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-^Bma (cf. 1.4). Then since Wma is naturally the subspace of Xsma

•=XxsBma, by the universality of Dx/s we have the unique ^S'-morphism

r:Bma-*Dz,s such that Wma = ZsM'. = Zy,Dxf8Bma9 where Bma is over Dx/s

by r. On the other hand, note that since fma is flat on Uma
:=Bma~Bm^l

by our construction, ff) gives as isomorphism of ^-1 (Uma) and Uma. Let

d^Va be any point with d — pq (cT) e Uma. Then since Wma,& is reduced

by our choice of Um, we have Zd = Wma,d considering both sides naturally

as a subspace of X. Hence r-(f)~l(d} = d. This implies that r(Bma) fl Va

^Pq1 (Uma*) H Va which is a nonempt}^ Zariski open subset of Da by our

choice of m. It follows that f(Bma)C^Da, since Bma is irreducible. Fi-

nally since Bma is proper over S as well as Bma and r is an /S-morphism,

r must be surjective. Hence Da also is proper over S. Moreover as

is clear from the above proof we have the following commutative diagram

of proper bimeromorphic /S-morphisms

Da > Bma .
P9

Let D$ be another irreducible component of D with pq (D0) fl BQ^0.

Then take m' and an irreducible component Bm,0 of Bm, as for Da.

Then since pq gives a bimeromorphic morphism of Dp to Bm,$ we infer

readily that Bm,0=£=Bma. Now let K be any compact subset of Bq (X/S).

Then there are only finitely many irreducible components of Bq (X/S)

which intersects with K. For each such irreducible component, say J50,

there are only finitely many Bm as above with Bm fl K=^=(f). And finally for

each such m there are finitely many irreducible components of Bm inter-

secting with K. From this combined with above remark it follows then

easily that pq
!(K) is compact in D. This shows the properness of pq,

Q.E.D.

We can drop the pure dimensional assumption in the above proposition

(cf. the remark below).

Lemma 3* 59 Let f: X—>S be a proper morphism of complex

spaces of relative dimension q^>Q. Let Da be any irreducible com-
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ponent of Dx/s,red such that Za = ZDa is reduced. Then there is an

analytic subset Y of D$/s = Dx/SjqXs-- XsDx/s,Q and a generically sur-

jective meromorphic map r: Y->Da (i.e. r(Y) contains a dense Zariski

open subset of Da} .

Proof. Let Za>i, 0^z<^#, be the union of all the irreducible com-

ponents of relative dimension i of Za. By Frisch [6] there is a dense

Zariski open subset U of Da such that ZUii are all flat over U. Then

by the universality of DX/S we have a unique S-morphism hi'. U-^Dx/s.t

such that (Za>i) = (Zx/s) v. Since Z^ are reduced, the image of hi are

in fact contained in Dx/s. Define h = hqXs-- X Sh0: U-*D$S- Let A be

the minimal analytic subset containing h(U).

On the other hand, let Z(qM be the pull back of Zx/Sii to D(x}s via

the natural projection D<£/a-*Dx/Sti. Put Z ( f l ) =UZ <
( « ) . Then again by

Frisch there is a dense Zariski open subset W of A such that Zi?) is

flat over W. By the universality of Dx/s we have a unique 5-morphism

r: W-^DX/S such that Z$ = (Zx/s) w. By the minimality of A, UT\ h~l (W)

=7^=0, and by the construction we see readily that rh = identity on CTi

= Ur\h~1(W). In particular r(W)^Da and it contains a Zariski open

subset of Da. Finally that r extends to a meromorphic map from A

follows from Lemma 5. 1 below. Q.E.D.

Remark 3. 2. Lemma 5. 1 implies more generally that if X has

property DqP over S, then Za in the above lemma is proper over Da.

§ 4. Closedness of Barlet Space in the Kahler Case

4e 1. We begin with the following proposition.

Proposition 4. 1. Let S be a complex space and X a complex

space over S. Suppose that there exists a closed positive C°° form

Q of type (q, q) on X with q^>0 (cf. Def. 1.2.). Then every con-

nected component of Bq (X/S) is locally bounded in the sense that for

every connected component, say B0, of Bq(X/S) a subset E of BQ is

bounded if U \Ab is contained in a compact subset of X.
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Proof. Let BQ be any connected component of Bq(X/S), and {Ab;

b£EBQ} be the associated family of compact g-cycles of X parametrized

by BQ. Then by Lemma 1.1 it is enough to show that the function

A (&) = I fl is bounded on 50. Since i is continuous on BQ by Proposition
JAb

2. 3, to prove this it is enough to show that for every irreducible com-

ponent of BQ it is constant. Let B1 be any irreducible component of BQ.

Then again by continuity we have only to show that /I is constant on

some Zariski open subset of Blm Now by Lemma 3. 1 the set W= { (b, x) ;

- r < E J A 6 l } is an analytic subset of BlxX. Let U'.W-^X andf:W-^B1 be

the natural projections. Let W}, l^/<Js, be the irreducible components

of W. Then by Lemma 3. 1 there exists a dense Zariski open subset

Vl of B1 and a positive integer n3 for each j such that Ab = ̂  nJ-^Wjb]

for every bt=Vi. By Lemma 1.5 restricting V1 if iiecessa^ we may

assume that W6 is reduced for every b^V^ Finally put V=Vir\B1*y

where B* is the set of nonsingular points of B1. We show that A is

constant on V. Let b1 and bz be any two points of V. Then we connect

bl and bz by a peicewise real analytic curve in V. Namely we take

a finite number of points al9 • • • ,#* of V with a1 = b1 and ^ = 62 and real

analytic embeddings hi'.I— >V, 1<^"<J& — 1, with 7z* (0) =at and A£(l) = <zi+1,

where J is the interval [0,1]. Here a map h:I-*V is called a real

analytic embedding if for some £^>0 h extends to a real analytic embedding

of ( — e, 1 + e) into an open subset of V. We then show that *) A(a t)

= A(flf+ 1) for all z". Let ht(T)=Ii9 and fj=f\wr Then 7y=/y~1(/f) is

obviously a semianalytic set in W with boundary f^(a^) U/}"1(ai+1). Give

a suitable orientation on /^. Then we consider the semianalytic chain

Ci = ̂ n,jlij on W whose boundary as a semianalytic chain is given by

Here the third equality comes from the fact that W}0fc are all reduced.

Now let @=TC*$. Then by Stokes formula on semianalytic sets (cf.

1.2) we have the equality 0= f dS = f S= f Q- { Q. This
JCi JdCi jAai jAdi^

shows *). It follows that A(*!)=A(*2) as desired. Q.E.D.

Let S be a complex space and X a complex space over S. For every

integer &>0 let sym|X be the k-ih symmetric product of X over S.

Namely it is the quotient analytic space of Xx §'" X $X (/fe-times) by the
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natural action on it of the symmetric group Sk of degree k. We shall

omit the proof of the following lemma which one proves easily according

to the definitions.

Lemma 4. 2. There is a natural isomorphism B0 (X/S) = H

Theorem 4. 3. Let S be a complex space and X a complex space

proper over S. Suppose that there exists a closed positive C°° form,

^j of type (q, q) on X. Then every connected component of Bq (X/S)

(resp. Dx/s,q) is proper over S.

Proof. Let B be any connected component of Bq (X/S) and OL :B

— >*S(resp. n:X-*S) the natural map. Let K be any compact subset of

S. We show that a'1 (K) is compact. Suppose first that # = 0. Then

by Lemma 4.2 a"1 (K) is isomorphic to a subspace of sym j^TT"1 (Jf£) for

some k^>0 and hence is compact. Next suppose that (?>0. Let {Ab'y

b^Bq(X/S)} be the universal family. Then U \Ab\ is contained in
sea-1 C.K)

the compact set n~l (K) . Hence by Proposition 4.1 a~~1(K) is bounded

and then by Proposition 2. 10 it is relatively compact and hence compact

in Bq (X/S) . Finally the properness of Dx/s follows from Proposition

3.4.

Remark 4. 1. The above theorem answers a certain question asked

by Siu in [21, 3. 3] .

4, 2. We relativize the definition of a Kahler space as follows.

Definition 4. 1. Let f:X-*Y be a morphism. We call /a Kahler

morphism, if there exists an open covering 11 = {Ua} of X and a system

of C°° functions, {pa}> each defined on Ua such that for every y^Y 1)

pK is strictly plurisubharmonic when it is restricted on Ua fl Xy and simi-

larly pa — p$ is pluriharmonic on U a f t

Remark 4. 2. 1) Note that if f is Kahler and pa are as above,
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then {*/— Wdf>a} give a real closed (1, l)-form a) globally defined on

X. We call such an o) a relative Kahler form for f. If/is a constant

map, then o) is a Kahler form on X and X is a Kahler space in the

sense of Definition 1. 2.

2) By definition it is clear that every subspace of a Kahler space is

again Kahler. In particular every projective variety is Kahler. On the

other hand, we remark that if X is not projective, then X can be non-

Kahler even if XreA is Kahler. An example can be given using an ex-

ample of Moisezon [16, §2].

In the following lemma we give some of the most elementary facts on

Kahler morphisms.

Lemma 4.4. 1) Let f: X—>Y be a projective morphism. Then

f is Kahler.

2) Let f: X-^Y be a proper Kahler morphism. Suppose that Y is

Kahler. Then for every relatively compact subdomain G of Y,f~l(G)

is Kahler.

Proof. 1) follows directly from the definitions and the details will

be omitted (cf. the proof of [6, Lemma 2]). We show 2). Let o)x be

a relative Kahler form on X and o)Y a Kahler form on Y. Then we infer

readily that there exists a positive constant M such that o)A- + Mf*o)y is

a Kahler form on/'^G) (cf. the proof of [6, Lemma 2]). Q.E.D.

Theorem 4. 5. Let f:X-^S be a proper Kahler morphism. Then

every connected component of the relative Barlet space B(X/S) (?~esp.

DX/S) is proper over S.

Proof. Let B be any connected component of B (X/S) and a: B

—.>S (resp. 7t:X->S} the natural projection. Let U be any relatively

compact Stein open subset of S and hence is a Kahler space. Since the

problem is local on S, it is enough to show that OL\a-i(U) is proper.

First by Lemma 4. 4 2) 7T"1 (U) is Kahler. Let a) be a Kahler form on

7T"1 (U). Then a)9 is a closed positive C°° form of type (q, q) on 7T"1 (U).

Then almost as in the proof of Theorem 4. 3 we can show that for
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every compact subset K of U, ct~l(K) is compact. Q.E.D.

Remark 4. 3. There are examples of compact non-Kahler manifolds

with non-compact irreducible components for Dz, and hence also for B(X)

by Proposition 3. 4. Here we shall give one of them. For another ex-

ample see [8, 4. 7].

We use an example of an algebraic surface, S, found in [19, p.164].

S is a rational elliptic surface over a complex projective line P1 which is

obtained by blowing up nine general points on the complex projective

plane JP2, and with a fiber preserving automorphism of infinite order,

g. In fact g restricted to general fibers of the elliptic fibering of S

gives translations of infinite order on them. Moreover the exceptional

curves of the first kind, Eiy z" = l, • • • , 9, obtained by the blowing up are

sections to this fibering i.e. mapped biholomorphically onto P1. Now let

C be a nonsingular elliptic curve with a fixed system of generators,

{a, /3}, for the fundamental group KI (C). Define the homomorphism p

•Hi (C) —»AutS by p(a£)=g and p(@)=e. Then corresponding to p we

have in a usual manner a fiber bundle f: X-+C with typical fiber S with

constant transition functions. Take a point &GE JP1 and identify S with the

fiber Xu. Let E be one of the Et. Let Da be the irreducible component

of Dx containing the point corresponding to the subspace EC^SC^X. We

show that Da is non-compact. Assume the contrary. Let Za= (Zy)Da be

the universal family restricted to Da and na: Za-^X the natural projection.

Since by our assumption Za is compact, T=7ta(Za) is an analytic subset

of X by a theorem of Remmert. On the other hand, by our construction

we see readily that Xuf]T= U gm (E), where gm (E) is the image of E
m£=Z

by the automorphism gm on Xu = S. Hence U gm (E) must be an analytic

subset of S, which is a contradiction since gm (E) fl F consists of infinite

number of discrete points of F by what we have said above, where F

is a general fiber of the elliptic fibering of S. In particular X is not

Kahler, though it is not difficult to verify this directly.

4. 3e We now generalize Theorem 4. 4 in the absolute case to a more

general class of complex spaces, namely, that of reduced compact complex

spaces which are meromorphic images of compact Kahler spaces. We sum-
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marize some elementary properties of this class, say ^, in the following

lemma.

Lemma 40 60 Let X be a reduced compact complex space and

Y^W. Then

1) X^=. & if and only if it is a holomorphic image of a compact

Kahler manifold.

2) If X is isomorphic to a sub space of Y, then X^W .

3) If X is a meromorphic image of Y, then X^&.

4) If there exists a Kahler morphism f:X-^>Y, then X 'GE^7 .

Proof. 1) Let X<^& . By definition there exists a surjective mer-

omorphic map f: X—*X, where X is a reduced compact Kahler space.

Then by Hironaka [14] there exists a projective bimeromorphic morphism

g:X1—*X such that fg is a morphism. In fact let Xf be the graph o

/in XxX and p:X'->X the natural projection. Then by [14, Cor. 2]

there is a projective bimeromorphic morphism g: Xl—^X such that p~1g: X1

—>X' is a morphism, which is the desired one. Then taking a resolution,

Qi'. Xi~^>Xl9 which is a projective morphism if necessary, we may assume

from the beginning that Xl is nonsingular. On the other hand, by Lemma

4. 5 Xi is Kahler. This proves the necessity. The sufficiency is obvious.

2) We may assume that X is a subspace of Y. By 1) there exists a

morphism h: Y1—>Y with Yl a compact Kahler manifold. Then X is a

holomorphic image of a Kahler space h~l (X) . 3) Let h: Yl-^Y be as

in 2). Then X is a meromorphic image of Yi and hence X^%?. 4) Let

h: YI— >Y be as in 2) and fY: XXYYi^>Yi the induced map. Then/Fl is a

Kahler morphism since f is one. Then by Lemma 4.5 2) XXYY1 is

a Kahler space. Hence X is a holomorphic image of a Kahler space

XxYYi via the natural projection XxYYi-*X. Q.E.D.

Remark 4. 4. The author understands that Hironaka once posed

the following problem: Let f:X-^Y be a proper surjective and flat mor-

phism of reduced complex spaces. Then is Y Kahler, if X is Kahler?

The affirmative answer to this problem together with the flattening theo-

rem of Hironaka would imply that the class & is in fact nothing but that
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of compact complex spaces bimeromorphic to compact Kahler manifolds.

Lemma 48 7* Let f-.Y—^X be a proper surjective morphism of

reduced and irreducible complex spaces and U={x&X;f is flat at

every point of Y^} . Let 0 be a Hermitian form on X and q = dim X

— dim Y. Then the function, v(u) = I 0* 'which is continuous on U by
JPVI

Corollary 3. 2, is locally bounded on X from above and below by

positive constants.

Proof. Take a flattening /: Y-+X of / with flattening morphism

g: X—*X. Let (f> be the pullback of <j) on Y by the natural map 71 : Y—*Y.

Then by Corollary 3. 2 the function, v (x) = 1 05
? is continuous on the

Jc?,3
whole space X. Hence for any compact subset K of X9 v has the

maximum M and the minimum m>0 on g'1 (K) . On the other hand,

since g gives an isomorphism of g~1 (U) and U, it follows that v (x)

= v(g(x)) for x^g~*(U). Hence m<^v<^M on KftU. It remains to

show that m^>0. In fact by the definition of flattening the map 7T re-

stricted to each fiber of f is an embedding into X and hence v must be

positive at every point of X i.e. ra>0. Q.E.D.

Proposition 4. 8. Let S be a complex space and X (resp. Y")

a complex space proper over S. Suppose that Y has the property BP

over S (cf. 3. 4) . Then in either of the following two cases X also

has the property BP over S,

1) X is a subspace of Y.

2) There exists a proper surjective S-morphism h: Y-^X.

Proof. Let jB be any irreducible component of Bq (X/S) , q^>0, and

7t: B-*S(resp. a: X-*S, /?: Y->5) the natural projection. Let {Ab; b^B}

be the associated analytic family of compact ^-cycles of X over S. Let

K be any compact subset of S. Then we have to show that 7T~ (K) is

compact. By virtue of Lemma 4. 2 as in the proof of Theorem 4. 3 we

may assume that #>0. Let W= { (b, x) <^BxX; x<= \ Ab\} and /: W-*B

the natural projection. By Lemma 3. 1 W is an analytic subset of BxX.

Let S be any Hermitian form on a~l (K) . Then we shall show: #) The



DOUADY SPACES OF COMPACT KAHLER SPACES 37

function /I (b) = I J29 is bounded o?i 7t~l (K) fl U for some dense Zariski
JAb

open subset U of B. By the continuity of A on B (Cor. 3. 3) this

would imply that l(b) also is bounded on 7T"1 (K) f! U=n~1(K) Pi U

= 7r~1(^T). Then since \Ab\ are all contained in the compact subset

a~l(K) for all b^Tt~l(K), by Proposition 2.10 7t~l (K) is compact.

Hence it remains to show #) above.

In the case 1) we have the natural S-inclusion B(X/S)^B(Y/S)

induced by the inclusion XC^Y. Then Bis contained in some irreducible

component B/ of B(Y/S). By assumption B/ is proper over S. Let

it' \ B'—>S be the natural projection. Take a Hermitian form Q on /9"1 (K)

which induces Q on a~l (K) . Then 1(6') = f Q is bounded on Ttr~l(K)
.W

and hence /I is bounded on 7l~l (K) . This shows #) for U=B.

Next we show 2). First we show how to reduce the general case to

the case where W is irreducible. Let W}, 1^/^s, be the irreducible

components of W and fj=f\w3' Wj—>B. Then by Lemma 3. 1 1) there

exists a Zariski open subset V of B and a positive integer % for each

j such that Ab = ̂ l?ij[Wjb']. Let Vi be the set of nonsingular points

of B. Then by Lemma 3. 1 2) there exist a Zariski open subset V2 of

T/i and for every j an analytic family {Al\b^B} such that A/ = 7

for all b€=V2. It is clear that these families are over S in the sense

of 3. 2, since the original family is. Then by the universality of B^ (X/S)

we have the unique iS-morphism r/: V2-*Bq(X/S) such that Ai:=ATj(V),

v e V2. Let JBy be any irreducible component of Sa (X/S) which contains
r/(^2). Let Wy be the analytic subset of BjXX associated with the

family parametrized by Bj. By the definition of Bj we see readily that

Wj are irreducible. Assume that nj1 (K) is compact with itj\ Bj-^S the

natural projection. Then the functions Ay (&) = I J39 are bounded on
JAb

nf(K) and hence A y ( v ) = I J29 are bounded on 7T"1 (X) f| ^2- There-
J'̂ y

fore A(v) = f ^ = 1] f ^9 = E */(*0 is bounded on ^(X) H (VR ̂ 2)
J4B y J,v J

as desired. Hence we may assume that W is irreducible.

First note that B (X/S) = B (Xred/S) by the definition of S(*).

Hence replacing X by XTed we may assume that X is reduced. Let 0

(resp. J2) be a Hermitian form on Y (resp. X) and 60 = 0 + /z*J?. Then
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(0 is a Hermitian form on Y. Then we have to show that A (&) = I Qq

jAt

is bounded on some dense Zariski open subset of it'1 (K) fl B. First, for

every integer p^>0 let Xp={jc^X; dim Yx^>p} and take the minimal

qf with \Ab\ij=Xq,+1 for some b^B. Then since T^and B are irreducible,

there exists an irreducible component, say X^ of Xq, which contains all

of Wb, b^B. Then replacing X by Xt and Y by a suitable irreducible

component of h~l (Xi) we may assume that X and Y are irreducible and

qf — dim Y— dim X (cf. the arguments in the proof of 1)). Next take

a Zariski open subset V and a positive integer n such that A6 = 7z[W&] for

all b^V. Let W/=(hXtdB)~1(W)^YxB and /': TF'->£ the natural

projection. Let U1={b^B;f is flat at every point of Wb and W'b is

reduced} and U2 the set of nonsingular points of B. Set U= CTi 0 C72 H V.

This is a nonempty Zariski open subset of B. Then since fu '=Lfwu' is

flat, every fiber Wu o f f u , u£=U, has pure dimension q'. Then by Lemma

3. 1 2) there is an analytic family {Ab\b^U} and a Zariski open subset

C70 of U such that Ai=n[W[~\ for every b^UQ.

We shall see that the family {Ab} is bounded onTr'"1^) H U with

TT': J3(Y/i$r) —>$ the structure morphism. Namely we show that there ex-

ists a constant c>0 such that ju(b)= o)q'<^c for all u^izf~l(K) C] U.
JAb'

Since a(\A6|) =jc(b) for all Z?e5 and h is an AS-morphism, it follows

that for u^U, ^9( |A;!)=/9(W r : )= |gS(WB)=/9A( |AJ)=a( |Ai | )=ff( t t ) .

where h=hXidB. Thus {A'u\u^U\ is in fact an analytic famil}^ of

compact g'-cycles of Y/5 in the sense of 3. 2. Then by the universality

of B(Y/S} we have a unique -S-morphism r: U-*B(Y/S) such that A^

= Ar(u) for all u^U, where {A6,; &
7 eS(Y/5)} is the universal family

for Y/S. Let B' be any irreducible component of B(Y/S) which contains

r(C7). Then since B' is proper by our assumption, the continuous func-

tion // (&') = I 05' is bounded on Tl'~l (K) fl Bf. Hence the function
JAu'

/l(u) =ju'(r(ii)) also is bounded on n"1 (K) H U as desired.

On the other hand, by Lemma 1. 3 we have the inequality fj. (b)

> I vb(x)Sq, where vb(x)= \ 09/, defined on some Zariski open
JAb JEW,']

subset Ub of \Ab\. Then since [Wi] = [!%], 'li f°Hows that vb(x)

= \ <j)q', independent of b. The right side of this equality is nothing
JiYxl

but the restriction to Ub of the function v defined in Lemma 4. 7. Hence
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there exists a constant £'>>0 independent of b such that vb(x)^>cf on

n-^K^nU*. Then it follows that c>v(K) >c' f S« = cfl(V)9 b<=U.

Hence l(b)>c/c' on U^it^(K). * Q.E.D.

Remark 4. 5. We need 2) only in the case where f is Kahler. In

that case the proof is essentially simpler since the function vb (x) defined

in the proof is then constant. In particular Lemma 4. 7 is unnecessary

though it seems to be of independent interest.

Theorem 4B 9- Let X be a compact reduced complex space -which

is a meromorphic image of a compact Kahler space. Then X has the

property BP and DP i.e. every irreducible component of B (X) (resp.

DX) is compact.

Proof. Let h: Y-+X be a surjective morphism with Y a compact

Kahler manifold (c.f. Lemma 4. 6 1)). By Theorem 4. 5 Y has the

property BP. Then by Proposition 4. 8 2) X also has the property BP.

The property DP then follows from Proposition 3. 4. Q.E.D.

§ 5e Final Reductions

50 1. Let S be a complex space and X a complex space proper over S.

Let Q be a coherent analytic sheaf on X. Then the relative Douady

space, D = Dx/s(S^9 associated with (X/S9G} is the complex space over

S characterized by the following universal property; there exists a quo-

tient analytic sheaf, $L = £x/s($l}, of £D on XD with the quotient homo-

morphism, u = ux/s: £D-^Sl such that it is flat over Dx/s(£} and that for

every complex space T over S and every quotient homomorphism «':

QT—>2r for some coherent analytic sheaf 3 on XT flat over T, there exists

a unique S-morphism T:T-*Dx,s(<S) with r% — ur. Then we call u, or

51 itself, the universal quotient of &. The existence of such DX/S(<S) and

hence of Slx/s(S} was shown by Douady in [5] when S is a point, the

generalization to the relative case being due to Pourcin [17]. If Q = Ox,

then as usual we identify Dx/s(0x) with Dx/s so that Z=Zx/s is the

subspace of XDx/s(0x} corresponding to 3ix/s(Px) (cf- 3.3).
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Notation. If Da is an irreducible component of Dx/s(£}-> then we

often write Xa, Za, £a, Sla etc. instead of XD&9 ZDa, <£Da, SLoa etc.

Let X be a complex space and B a locally closed analytic subspace

of X. Then B is called Zariski locally closed if B is a Zariski open

subset of some analytic subspace B0 of X. In that case there exists

the minimal such B0, which we call the analytic closure of B in X.

Next, let X and Y be complex spaces. Then a meromorphic map from X

to Y is an equivalence class of morphisms f: U->Y defined on some dense

Zariski open subset U=U(f) of X such that the graph Ff of fin Ux Y is

Zariski locally closed in XX Y. Here two such j^: Ut— >Y, 7 = 1, 2, is cal-

led equivalent if fi=f2 on Ul fl C72. We denote a meromorphic map defined

by a morphism /: C7— »Yas above by f: J*sT— >Y, and call the analytic closure

of /"/in X X Y the graph of f. If both X and Y are complex spaces

over 5, then a meromorphic map /: X->Y as above is said to be over S,

or an S-meromorphic map, if / is an iS-morphism. Suppose further that

there exists an iS-morphism a: Y— >X. Then an S-meromorphic map f:

X-*Y is called a meromorphic /S-section if af=idUm We call an »S-meromor-

phic map f:X—>Y "weakly defined if there exists a proper .S-bimeromor-

phic morphism h: X—>X such that fli is a morphism, or more precisely the

meromorphic map fh:X-+Y defined by fh on f~l (U) is represented by

such. It is easy to see that in this case if /is generically surjective and

X is proper over S, then Y also is proper over S. Finally we note that

the above definitions are all independent of the particular representative

f and depends only on the meromorphic map f which f defines. In

particular it makes sense to speak of a graph of a meromorphic map.

Lemma 5, 1. Let S be a complex space, X a complex space

proper over S, and £ a coherent analytic sheaf on X. Let T be a

reduced complex space over S. Let u: £T— >2r be a quotient of QT on XT

and U any Zariski open subset of T such that 3 is flat over U.

Let h: U->Dx/s(£} be the morphism induced by the universality of

DX/S(£) - Then h defines a zveakly defined S- meromorphic map h:

Proof. Take a flattening, ffiXf-^T, of 3 induced by a proper
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bimeromorphic morphism (j): T-^T. Let £F be the £Ff modulo fy -torsion

[14, 4. 2. 1]. £F is a quotient of ST on XT and is flat over T. Hence

by the universality of Dx/s(<S} we have a unique jS-morphism r:

T-*Dx,s(e) such that 3 = 3lf9 where T is over 5 by /?-0 with /?: T-*S.

Moreover r = h-(f> on 0"1 (C7) . This shows that /z is S'-meromorphic and

is weakly defined. Q.E.D.

The purpose of this section is to prove the following theorems.

Theorem 5, 2e Let f: X—>S be a proper Kahler morphism and £

a coherent analytic sheaf on X. The?i every irreducible component

of D;r/s (<?) red is proper over S. In particular if X is a compact Kahler

space, then every irreducible component of the Douady space Z>xred is

compact,

Theorem. 5. 3. Let X be a compact complex space such that Xred

is a meromorphic image of a compact Kahler space. Let £ be a

coherent analytic sheaf on X. Then every irreducible component of

s compact.

Our proof of Theorems 5. 2 and 5. 3 consists in reducing the problem

in three steps (Lemmas 5. 8, 5. 9 and 5. 7) to the case of Dx/s for which

we have already proved Proposition 3. 4.

5. 2. The purpose of this paragraph is to formulate and prove Lemma

5. 7 below. Let X be a complex space and Q a coherent analytic sheaf

on X. For every integer rl>0 let Grass r (6') be the Grassmami variety

of locally free quotients of rank r of & (see [11, V.2] for the definition).

Let a : Grassr (<£) — >X be the natural projection and «0: a*£— >2r
0 the

universal locally free quotient. Suppose now that X is reduced. Let u:

S-^3 be any quotient of £ on X, i.e. a quotient anal}-tic sheaf ff of S

with the quotient map u. Then there exists a dense Zariski open subset

U of X such that 2 is locally free of finite rank, say rl9 on each connect-

ed component Ut of U. Assume that r = rt for some r and all i. Then

by the universality of UQ we have the unique section 5^: U— »Grassr (<$*) u

such that SUUQ — U. Moreover it is well-known and easy to verify that
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sv extends to a unique meromorphic section 5: X—>Grassr (<£?) (cf. [18,

Prop. 3. 4]). We call this s the meromorphic section associated to u and

denote it by s = s(u) or by 5 = 5(20 with u understood.

Lemma 5.4. Let X and Q be as above. Then the map u->s(u)

defined above gives a bijective correspondence bet-ween the set of tor-

sion free® quotients u: <S—>3 and that of meromorphic sections to a.

Proof. First we show that u\ <S-^>3 is uniquely determined by s(ii),

if 3 is torsion free. So let ut: Q —>£F*, z = l, 2, be the torsion free quo-

tients of Q with 5 = 5 (X) = 5 (u2) . Let 3't be the kernels of u{. Assume

first that 3i^3z' Then we have the natural surjection u12'.
 <3\—>32 with

U12u1 = u2. Let U be the Zariski open subset of X on which 5 is defined.

Then by our assumption u1=uz on U so that the kernel of u12 has support

in X— U. Since 3l is torsion free, it must then vanish identically. Hence

IL^ — UZ on the whole X. In the general case let £P = 3{ + 3% and

3 = <S/3'. Then clearly 5 = 5(30. Further by the above arguments it

follows that 2r
1 = 2r = 2r

2 and hence ul=uz.

Next take any meromorphic section s:X-*Grassr(<S). We show that

there exists a torsion free quotient u\ <S-+S with s = s(u). Let X be the

graph of 5 in XxGrassr(<£) and 5: X—>Grassr (<£) (resp. o~: X-+X) the

natural projection. Let u0: 5*a*(?—>5*2r
0 be the pull-back of the universal

quotient tcQ by 5. Taking the direct image by <7 and noting that ff = QLs,

uQ defines a homomorphism (T^uQ: ff^ff*£-^>o'^s*Efo. Let r: <S->ff*ff*<S be

the natural homomorphism. Define 3=(6*u^)Y(G) and u:8—>3 to be

the natural map. Then we see easily that 5 = 5(2r). Finally replacing

3 by f?/Tor 2 with Tor 3 the torsion part of 3 if necessary, without

affecting the condition s = s(3), we may assume that 3 is torsion free.

Q.E.D.

Lemma 5» 5. 1) Let f:X—>T and f :X'—>T be proper morphisms

of complex spaces. Suppose that every fiber of f has pure dimension

q^>0 and T is reduced. Let Z be a subspace ofXxTX'. Define the

4) £F is called torsion free if for every x^X and every non zero divisor a^Oj[lX, the
homothety 2^5?* induced by a is injective (cf. EGA I 7.4.7).
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subset MQ, of T by MQ={t^T; Zt is the graph of a meromorphic

map from Xt to X[} . The?? M0 is a Zariski open subset of T.

2) In 1) suppose further that f is flat and there exists an S-morph-

ism g\X'-^X such thatfg=f. Then the set M defined by m={t<^T\

Zt is the graph of a meromorphic section to gt — Q\x't} is Zariski locally

closed in T.

Proof. 1) Let 7C: Z— >X be the natura] projection and C\

the natural morphism. Define AL = {x^X\ dim 7T"1 (x) ^>1} and A2 =

supp (n*0z/c0x}. Set A = A, U A2. Let N0 = {t e T; dim At^>q}. By Rem-

mert N0 is an analytic subset of T. We show that t/=^F— JV"0 coincides

with M0. We first note that (n*Oz/cOj®Oxt^X*0&(0Zt/CtOxJ

= KttOzt/CtOxt9 where ut = 7tZt : Zt — >Xt and Ct:0Xt-+TCttpZt is the natural map.

hence by Nakayama x $ A2 if and only if TC*Ozt — Oxt- This implies that

x $ A if and only if TT^1 is defined at x and nt is isomorphic at z = TT^1 (•£) •

Then since every fiber of f has pure dimension g, we see readily that

U coincides with the set {£<ET; nt:Zt-^XL is bimeromorphic} and hence

with A/0.

2) Let F be the graph of g in X' X TX. Put Y=prlt{ (XxT) H (Z

X X") } , where /T13 : XX TXf X TX->XX TX is the natural projection.

Since prn is proper, Y is an analytic subspace of XXTX. Let d^XXTX

be the diagonal and define N= {t^TiYtC^Jt} . Then since the natural

map J— »5 is flat, it follows immediately from [17, Prop. 1] (putting

6* — 0A and SF = 0Fn^ there) that N is an analytic subset of T. Finally

put V=MQr\N. Then by 1) it suffices to show that V=M. In fact

one sees easily that both coincides with the set {t^ MQ', gst= identity on

some dense Zariski open set of Xt on which s^ is defined}, where st is

the meromorphic map corresponding to t^M0. Q.E.D.

Lemma 1. 4 and a modification of its proof yield the following lemma.

Lemma 50 6. Let f:X-*S be a proper and surjective morphism of

reduced complex spaces and Si a coherent analytic sheaf on X -which

is flat over S by f. Suppose thai X is pure dimensional, and S is

irreducible. Then the follo*wing conditions are equivalent.
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1) There exists a point s&S such that Rs is torsion free as an Ox&-

module.

2) The set U={s^S; 3LS is torsion free} is dense and Zariski open

in S.

3) Si is torsion free on X.

Proof. We shall show that the set U in 2) is Zariski open in S,

which would establish the equivalence of 1) and 2). First we recall

a general fact. Let £F be a coherent analytic sheaf on a complex space

Y on pure dimension n. Let Sk(3) = {y&Y;depthy3<^k}, £>0, which

is an analytic subset of Y. Suppose that supp£F coincides with Y^.

Then the following conditions are equivalent (cf. EGA IV 5. 7) ; 1) ^ is

torsion free, for every y^ Y 2) 3?y has no embedded primes 3) dim2;/Sfc (3)

for all k<^n--l. Now returning to our situation let Sk(3l,f) = {x

; depth,3i/te)<:*} and Bk (&,/) = {x\ dimxSk (31, f) 0 Xf,x^k} . From

the flatness of 31 it follows immediately that either of the three

conditions implies that supp3l=X so that supp3ls=XSiTed for all se/S.

Hence by the equivalence of 1) and 3) above our assertion follows from

the analyticity of Bk(3l9f), which in turn is a consequence of that of

Sk(3L9f)9 shown by Banica in [2], and the fact that the set {x;dimxT

nXjwl^k} is analytic for every analytic subset T of X as was noted

in [2] . The equivalence of 2) and 3) can be proved almost analogously

to that of 2) and 3) of Lemma 1.4. In fact, let 77 = dim X, m = dimS

and q = n~m. Suppose that #>0, leaving the case q = 0 to the reader.

Now for any smooth point x£EX wiihf(x^) a smooth point of S we have

depthjr5l=deptha.5l/ea.)+w, so that Sk(3l9f) =Sk+n(3i) for every £>0

at x. Let Bk (31) = {x\ dim^ (.$,) ;>&} . Then as in the proof of Lemma

1. 4, for x^X as above A (31) = U Bk(SC) vanishes at x if and only
n-l^fc^m

if Af(SC) = U Bk(3l,f) does. Then by the above mentioned equi-
o^fc^g-i

valence it follows that 3) implies 2) and 2) implies that 31 is torsion free

on f~l (U) for a Zariski open subset U of smooth points of S. Then the

rest of the proof is done as in the last part of the proof of Lemma 1. 4.

Q.E.D.

Lemma 5. 7. Let X and S be reduced and irreducible complex
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spaces and f:X—»S a proper and flat morphism. Let Q be a coherent

analytic sheaf on X and Y=XxsGrassr (6?) for some r]>0. Then for

every irreducible component, Da, of D^/s(S)red such that Xa is reduced

and SIa is torsion free of rank r on Xa (see 5. 1 for the notations)

there exist an analytic subset, Ea, of DY/s and a -weakly defined S-

bimeromorphic map r: Ea->Da. Moreover if X->S is a Kdhler mor-

phism, then Ea is proper over S.

Proof. Let TT: Grassr (<?) —>X be the natural projection. Let

3 = 3(310) : Xa—»Grassr (<£«) = Grassr (<?) a be the meromorphic section cor-

responding to Ra by Lemma 5. 4. Then the graph F of s is a subspace

of XaX/)aGrassr (<?)« = Ya. On the other hand, by Frisch [6] there exists

a dense Zariski open subset U of Da such that F is flat over C7, where

F is naturally over U as a subspace of Ya. Then by the universality

of DY/S we have a unique /S-morphism h: U-*DY/s such that Tu—Z^

where Z=ZY/s and U is over DY/s by h. In view of Lemma 5.5 1),

restricting U if necessary we may assume that for every point dEL U, s

defines a meromorphic map sd: Xad-*Grassr (<£?a)d = Grassr (<Sa,d) such that

Fd is its graph. Further since s is a section, sd also is a meromorphic

section to 7t<t:Grassr(£a)d-*Xad.

Let M= {d&DY/s', Zy/s,d corresponds to a graph of a meromorphic

section to TTg: Grassr (c?)g—'>Xd}. B}^ Lemma 5.5 M is Zariski locally

closed in DY/s- On the other hand, by what we have seen above we get

that fc(C7)CM
Let M be the analytic closure of M in DY/s- Then Z%C^Y% = Xjs?

X jyGrassr (Sji) is easily seen to be the graph of a unique meromorphic

section s#: X^—>Grassr (£#). Let Ml be the minimal analytic subset of

M containing h(U) and s1 = s&\ni. One sees readily that Z^ is reduced

so that AfjCZ)^.

Let w: 5^—>SF be the torsion free quotient of Smt corresponding to

Si by Lemma 5. 4. This is welldefmed since X.%1 is reduced as follows

from Lemma 1. 4. Let W be the Zariski open subset of ML such that

EF is flat over W. Then by the universality of Dx/s(S) there is a

unique S-morphism r\ W-^Dx/s (<?) such that 3w=Slw, where W" is over
5 by r. We show that h gives an iS-bimeromorphic map of U to MI
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and r its inverse. We take a nonempty Zariski open subset CTi (resp. W)

of C7(resp. W) such that Xu = XaiU (resp. XVJ = XWi10) is reduced and

Slu (resp. 3W) is torsion free for every u^U-^ (resp. *w^W() (Lemmas

1. 4 and 5. 6). Set Wl = W/ f! M Then for every u^ U, (resp. w^ WO

the meromorphic section su\ XM—>Grassr (<?u) (resp. slw: Xw^Grassr(£w)^)

corresponds to jJiu(resp. £FW) in the sense of Lemma 5. 4 on the reduced

space ^(resp. Xw). Put Uz = h~1(W1) fl f/l5 which is nonempty by our

choice of Afj. Then by the above remark combined with the isomorphism

3irft(tt) = 2^(w) we infer readily that th is the identity on U2. In particular

r(W)£Z)a. Then if we set WZ = 'C~1 (C7) f! Wi, by a similar reasoning

together with the isomorphism 7\<W) = Zhr(w^ we see that 7ir is the identity

on W2. This proves our assertion. Finally putting Ea = M1, r is weakly

defined by Lemma 5. 1.

Next suppose that X is Kahler over S. We show that M1 is proper

over S. Let 7?: Y-*XXSX with n = idxXsn, A the diagonal of

and J = 7f~1(J). Then as is clear from the proof of Lemma 5. 5 -Z

In other words, we may consider Ml naturally as a subspace of DZ/S.

Since A is projective over A and A is /S-isomorphic to X, by Lemma 4. 4

together with Proposition 3. 4 we see that Af^ is proper over S. Q.E.D.

5. 3. Let .XT be a complex space and 5 be a coherent analytic sheaf on

X. Let <Jl (S) be the sheaf of annihilators of £ on X. This is a

coherent sheaf of ideals of Ox- Let suppc? be the support of £. Then

we define the subspace, S(£), of X by S(£) = (suppc?, OX/JL(6^. Let

5 be a complex space and suppose that J£ is over S with the morphism

/: X-^S. Then we write dim<S/S=dim suppc? — dimS and if £ = 0X, then

dimX/S=dimOx/S.

Lemma 5, 8. Let f:X-*S and £ be as in Theorem 5. 2. Then

for every irreducible component Da of Dz/s(£)red -with dim 3la/Da

= q^>0, there exist 1) an irreducible component, T of Dx/SiTed such that

ZT is reduced and dimZT/T = q, where Z=ZX/S, 2) a finite number of

coherent analytic sheaves, £k, 0<I£<^, on ZT, 3) an irreducible com-

ponent Bk of DZT/T(£k) for each k such that (Zr) Bk is reduced, and

finally 4) a bimeromorphic S-morphism h\ B0 X T"' X TBn—>D«.
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Proof. Let g (resp. JT) be the ideal sheaf of S(&a) (resp. supp5ia)

in Xa. Define 3lfc = Jk&a/J
k + 1£m £>0, where J° = 0 = 0fa. By de-

finition we have the following exact sequences on Xa

Now take ?z>>0 sufficiently large so that ^^^n+1 on the general fiber

of S(3la)->Da. By Frisch [6] we can find a nonempty Zariski open

subset U of Da such that 0/J and 3lk, 0<^k<^n + I, are all flat over U.

Moreover restricting U if necessary we may assume that §~^Sn^1 on

f~l (U) . Note that by the above exact sequences we see that Sl/3kSl

also are flat over U for 0<^<^z-fl. Since 0/3 is flat over [7, by the

universality of Dx/s we have a unique S-morphism <p\ U->Dx/s such that

(supp^Ra) cr^Ztf. Let T be any irreducible component of Dx/s,reA contain-

ing <p(LT). Then since Z^ = (supp^R^) f/ is reduced and ZT is flat over T,

ZT is reduced (cf. the proof of Lemma 1. 4 noting that the former condi-

tion implies that ZT is reduced in a neighborhood of p~1((p(U)) with

p: ZT-^T the natural projection).

Now let J0 be the ideal sheaf of ZT in XT and £k = Jk
Q<ST/J$+1£T.

We consider the relative Douady space, Dk = DZT/T (<Sk^, associated with

the pair (Zr/T,£fc)- Then since (£*) u = Jk£n/Jk^£iT and 3Lk are flat

quotients of the latter over U9 by the universality of Dk we have a

unique T-morphism rfc: U-*Dk, i.e. nkrk = (p with 7TA. : Dk->T the projection,

such that SlzT/T(Sk) u~ (3ik) u- Let 5fc be any irreducible component of

Dfcired containing r*fc (C7) . Then in the same way as for ZT one sees easily

that (ZT) Bk is also reduced. Define r = tl X T- • • X rrn: L/"— > JB = S: X r- • • X A»

Then by the above exact sequences together with the flatness of Sl/<3kSl

over U we infer readily that r is in fact injective.

Next we construct a family of quotients of £k parametrized by B.

Let 5l(fc) = (SlzT/T(£ic}} B and 3 the ideal sheaf of ZB in XB. Then

we shall define inductively the following successive quotients, £B-*3l(n)

— > ---- >!R(0\ of £B on XB which fit into the following commutative diagram

of exact sequences

4
51 w
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with the vertical arrows surjective. First put Si(0) = SI (0). Next assume

that &>0 and SIw are all defined for j<k. Then 5l(fe) can be defined

uniquely by the commutativity of the above diagram. We set 3i = 3l<n'tl\

Then 31 is naturally the quotient of SB °n XB. Moreover by the second

line of the above exact sequences together with the flatness of 3£(fc) we

see that £R is flat over B. Then by the universality of Dx/s(&} we

have a unique 5-morphism h\B-*Dx/s(£} such that Sl~3lBl SL = Slx/s(<£).

On the other hand, by our construction we see immediately that hr = idu.

It follows then that h(H)^Da. Analogously we see that rh is the identity

on h~l (U). Hence h is bimeromorphic. This proves Lemma 5.8.

Lemma 5. 9. Let f; X-*S and Q be as in Theorem 5. 2. Suppose

that f is flat, X is reduced and dimX/S=q. Then for every irreduci-

ble component Da of DX/S(£}™& such that Xa is reduced there exist

1) a finite number of irreducible components, T{, l<Iz<^w, of Dx/s

such that Zt= (Zx/s) Ti are reduced and irreducible, 2) for each i a

subvariety, Yiy of -D^/r, (£<) red, Xi = XTt, &i — QTv such that either

dimSli/Yi^q or S(3ti) =Zi9 ivith Zt — (Zi)yt reduced, and Sli is torsion

free as an Ozfmodule, where 3tt= {Slxi/Ti(Si)}Y^ 3) an analytic sub-

set, N, of Y= Y1XS-" X sYm, and finally 4) a weakly defined generically

surjective meromorphic map h: N-*Da.

Proof. Let ua: &a->3la be the universal quotient restricted to Da.

Let Sl'a be the kernel of ua. Take an irredundant primary decomposition,

3^a=^Qi, of 3i'a in ea [22]. Let 3t = Sa/Qt and Vt the subvariety
iei

of Xa corresponding to Qt. Then by Frisch [6] there exists a Zariski

open subset U of Da such that (Si and 0V{ are flat over U for all i.

Note that since / is proper, we may assume that Vt fl/"1 (U) =^=0 for only

finitely many /, say, for i = l, --,m. On the other hand, since Vt are

flat over U9 by the universality of Dx/s there exists a unique *S-morphism

(fi\ U—>Dx/s such that Zu= (V<)^. Let TI be any irreducible component

of DX/S which contains ( p t ( U } . Then the reducedness and irreducibility

of Zt follows from those of Zv= (Vi) v and the flatness of Zt over Ti as

in the proof of the previous lemma. Since (2^) u is the quotient of

(Si)u= (&a)u and flat over U, by the universality of DXi/Ti(£i) we have
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a unique Trmorphism rCi:U-^D^i/Ti(<Si) such that (2t) u= (Si1) u, where

3ii = 3lzi/Ti(Si)' Let Yt be a minimal analytic subset of Dx./T.(Si)red

containing Tt(U) and 5i<=(3l i)F i-

Define a T-morphism f.U^Y by r = Ti X s - - - Xsrm, where £7 is over T

by (p. Now let Sli be the pull-backs on XY of 3if by the natural maps

XY-^XYc Then we have the natural quotient maps <&: £Y-*3lt. Let (3*

be the kernel of qt and 3 = £Y/^Qi- Let AT be the minimal analytic
i

subset of Y which contains r(C7). Let W be the nonempty Zariski open

subset of N such that 3N is flat over W. Then by the universality of

DX/S(£} we have a unique /S-morphism h: W-^DX/S(G} such that 3W

= 3lw, Si — Slx/s(S} . Then by our construction we infer readily that

hr is the identity on T'1 (W) 9 which is not empty by our choice of N.

In particular we have h(W)^Da and it is dense there. Finally by Lem-

ma 5. 1 h defines a weakly defined surjective 5-meromorphic map h : N

->A,
We now show the property of 31 i stated in 2) of the lemma. Since

dimX/S<Lq, it is clear that dimSli/Y^q. Suppose that dimSli/Yi^q for

some z. Then since (2^)^ (SI1) v= (3lt) U9 we also have that dimS^/D*

= q. Then Xa being reduced, supp ff^ = Vt coincides with an irreducible

component of Xa. Since 3i is primary, 3t then turns out to be a torsion

free 0Fi-module. Therefore noting that Si is flat over U9 by 3) — >2)

of Lemma 5. 6 there is a dense Zariski open subset U0 of U such that

3i,u is torsion free as an 0FiiU-module for every u{=U0. Hence in virtue

of the relations (£?,-) v~ (SLj) u and Z^ (%t) u= (Vt) U9 SlitT(u-), u^UQ, is a

torsion free 0^£fri(M)-module, and Zt is reduced, it being flat over Tia

Also Xi=(Xi)Yi is reduced since it is flat over Yi and (X{)U=XU is

reduced, where U is over Yt by rf. Moreover since g^dimV^/D^dimZ^

/ YI = dim Xt/ Yi, Z^ is an irreducible component of Xif From these facts

and the minimality of Y^ it follows that suppSij^Zj and hence S(3li) =Zi

since Xt is reduced. Finally torsion freeness of 31 { as an 0^-module

follows from Lemma 5. 6 2) ->3) . Q.E.D.

Proof of Theorem 5. 2. Let Da be any irreducible component of

DX/S (<?) red- Then we prove the theorem by induction on # =
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Firstly if q= — 1, then 3la= {0} so that Da = S and hence proper over S.

So assume that q^>0. Then by Lemma 5. 8 it suffices to show the pro-

perness of B0XT'"^TBn in the notation of that lemma. This in turn

follows from the properness of T over S and Bk over T for all k. Since

ZT is reduced by 1) of the lemma, the properness of T follows from

Lemma 3. 5, Proposition 3. 4 and Remark 3. 5. We shall show that Bk

are proper over T. First by 1) and by the definition of Bk in 3) of that

lemma, taking X= ZT, S=T, & = <Sk and Da~Bk we can reduce the

problem to the case where f is flat, Xa is reduced and dim X/S~q.

(Note that ZT-*T is a Kahler morphism.) Then we can apply Lemma

5. 9 to see that it is enough to show the properness of N over S in

the notation of that lemma. By 3) and the definition of Yin. that lemma

this follows from the properness of Yt over T7- and T{ over S in the

notations there. Since Zt are reduced, by Proposition 3. 4 Tf are proper

over S. As for Yt if dim 5i*/Y*<#, then noting that Xt-*Ti is a Kahler

morphism, and applying the induction hypothesis to an irreducible com-

ponent Y\ of DXi/Ti (£i) red which contains Yt (we still have that dim£R.y;/F*

<(?, &Y't= OR*,/r« (<?*) ) H» by the flatness of Siy'J, we get that Y- and

hence Yt is proper over TV So suppose that dim5ij/Yz- — q. In this case

*S(.9if) — Zt- and .Sii is torsion free as an 0^f module by 2) of that lemma.

Hence we can consider Yt as a subspace of Dz.,T.(£i), where £i = &i

®OxiOzi' Thus taking X = Zi9 S=Tt, Da — an irreducible component of

Dzt/Tt(£t) containing Yt, and <£=<5i, we can reduce the problem to the

case where /: X-^-S is flat, dim X/S = q, X and S are reduced and irreduci-

ble, Xa is reduced, and 31 a is torsion free on Xa. (In fact use Lemma

1. 4 (Lemma 5. 6) to get the reducedness of Xa (torsion freeness of j&a)

from that of ^(5?.^).) Then we can apply Lemma 5. 7 and the proper-

ness of Da follows immediately from that lemma. O.E.D.

Finally the proof of Theorem 5. 3 is quite analogous and so we only

indicate the necessary modifications. First in view of the above proof,

especially Lemmas 5. 8 and 5. 9, we have to consider also the relative

form of the class W, which we shall define as follows. Let f: X—»S be

a proper morphism of complex spaces with X reduced. Then we say

that f belongs to the class *&/S, denoted by f£E%?/S, if for every point
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there is a neighborhood U of s in 5 and a proper Kahler morphism

h: Y-^U with a surjective C7-meromorphic map 0: Y-+X. Then we actu-

ally prove the theorem in the following form; let f:X-*S be a proper

morphism with /e *& / S and Q a coherent analytic sheaf on X. Then

every irreducible component Da of D,x/s(S)reA is proper over S.

For this purpose first one formulate and prove the relative form

of Lemma 4. 6 almost as in the absolute case. From this it follows that

X has the properly BP and hence also DP almost as in the proof of

Theorem 4. 9. Finally one sees easily that the last assertion of Lemma

5. 7 is then still true even if we assume that /"(E &/'S instead of being

a Kahler morphism. Then the rest of the proof is quite the same as

above.
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