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On Limiting Gibbs States
of the Two-Dimensional Ising Models

By

Yasunari HlGUCHI*

Abstract

We consider limiting Gibbs states in the two-dimensional ferromagnetic Ising model
at sufficiently low temperatures. We prove that every limiting Gibbs state corresponding
to a boundary condition such that AT+/JV~<0<3/5 on every boundary is /r, where N+
is the number of up-spins on the boundary and N~ is that of down-spins. We also prove
that for each 0>3/5, there exists a boundary condition such that 3/5 <CAf+/W~<$ on
every boundary, and the limiting Gibbs state corresponding to this boundary condition

§ 1. Introduction

It is conjectured in general that every Gibbs state is a convex com-

bination of ff and ]UL~ in the two-dimensional ferromagnetic Ising models

while Dobrushin [1] has shown that it is not true in the three-dimen-

sional case. Indeed, this conjecture was proved for translationally invar-

iant Gibbs states by Gallavotti and Miracle-Sole [3] (at low temperatures)

and by Messager and Miracle-Sole [6] (up to the critical temperature).

The uniqueness of the Gibbs state at temperatures not lower than the

critical one was shown by Lebowitz and Martin-Lof [5].

In order to prove the above conjecture, it is enough to show it for

the limiting Gibbs states. Gallavotti [2] showed that the boundary con-

dition with up-spins in the upper half plane and down-spins in the lower

half plane gives us (jU.r -f/O/2 as the limiting Gibbs state at low tem-

peratures. Recently Abraham and Reed [9] proved that the above

boundary condition shifted upwards by a*j2n, where 2n is the length of

the side of the n-th box, gives us the limiting Gibbs state CajU
+ + (1

— Ca)jU~ (Ca is exactly given) at any temperature lower than the critical
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one. Also at the symposium in Oberwolfach in October 1976, Messager

and Miracle-Sole reported that the boundary condition with up-spins in

the upper half plane and arbitrary spins in the lower one gives us a

translationally invariant limiting Gibbs state.

In this paper, we will prove what we stated in the abstract. We

will also show that if the boundary condition is periodic on every boundary

with a period independent of the size of the box, and if N~~/N~<^6<^1

on every boundary, then we have pT as the limiting Gibbs state.

We will state our results in § 2 with the necessary preparation of

notations which are used throughout the paper. In § 3 we will show a

key lemma for the proof of the results. The proofs of our theorems are

given in § 4 and § 5.

§ 2. Results

Let Z2 be the two-dimensional lattice and ,6= { + 1, — l}^2 be the

space of all possible spin configurations on Z2. We assign J2 a product

topology. Let V be a finite subset of Z2 and dV= {x^ Z2\V; x is a

nearest neighbour of V} its boundary. For each ti)£=Q, the energy on

V with boundary condition a) is a real valued function Ey (•) on Sv

= {-{-!, -I}v such that

where y1* means the summation over all pairs {x, y} such that
x^A, y(=B

(i) x^A, y^B and (ii) x and y are nearest neighbours. The finite

Gibbs state on Qv with boundary condition o) is the probability measure

defined by

(1) PF -W=[Z?]- Iex

where

(2) Z? = 2 exp {-£;
ff^Sy

Py is also regarded as a probability measure on Q in the usual way.

Throughout this paper we consider

Vn= {x = (x\ x2} GEZ2; -7^ + l<x^"<;^J f = l, 2}

and denote P; = P°n, Sn=SVn for simplicity. We put dVn=Vn^\
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which does not change the definition of P". Our problem is to study

the limiting measure of P£ as n— >oo, i.e. the limiting Gibbs states. We

denote by jUL F and fjT the limiting Gibbs states corresponding to the bound-

ary conditions o)+ and a)~ respectively, where cO+ (x) = +1 and o)~ (x) = — 1

for all xeZ2.

Our results about the limiting Gibbs states are the followings.

Theorem 1. For any S<^3, there exists & (<?) GE (0, oo) such that

for any u)^@ 'with

(3) lim — XI max {a) (x) , 0} <d ,
7l->co fl XkEdVn

and for any jS>ft(5), P% converges weakly to jT as ;z->oo.

Theorem 20 For any 3<(?<<4, there exists some /?2(ff) e (0, oo)

and o)e$ such that

(4) lim — S max {a) (x) , 0} - S ,

P* converges weakly to jiY as «->oo for

Theorems 1 and 2 imply that d = 3 is critical for this convergence.

However for special o)GEifi, we have a sharper result. To state it, we

prepare

Definition 1. Let p be a positive integer and 5)EE { + 1, — 1}P. We

say that cO^S is periodic on dVn with the unit configuration a) if W

appears repeatedly on the boundarjr dVn clockwise. There may remain

less than p points on dVn, on which we let a) to be arbitrary (see Fig. 1).

? 9 '-'-+- ' +

Fig. 1. Example of periodic boundary condition u)= {—, —, -(-} (p — o)
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Theorem 3. For any 0<#<4, there exists &(£) e (0, oo) such

that for any /3>$3(5), P£ converges -weakly to fT as TZ->OO, if a) zs

periodic -with the unit W on every boundary for some coe{ + l, — 1}P

-with integer £>0, and if

(5) fim—

§ 3. Fundamental Lemma

To prove the theorems in the preceding section, we apply so called

"the contour method." For 0~^&n, ti)€=fi, we associate the pair (ff,u)\dVn)

with a set of connected bonds of dual lattice L of Z2, which gives the

separating lines between the regions of opposite spins (see Fig. 2) .
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Fig. 3.

These separating lines form some connected graphs in L. When a

vertex of L belongs to four bonds contained in one of the above graphs,

we separate this graph at this point as in Fig. 3. Then we obtain a

collection Cn (0", a)) of contours in
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(see Fig. 2) . Thus we have a one-to-one map from Qn into the set of

all collections of contours in Un for each fixed a). There may appear

tw^o types of contours ; one is closed and the other is open. Any open

contour starts from some point of Un\Un-1 and ends at another point of

C7n\ [/„_!. We denote the collection of closed contours in Cn(ff, a)) by

r n ( f f , a)) = {/i(0"» ^) » '"> rt (0"» o))} and the collection of open contours by

X ((T, a)) = {/l^ ((7, a)) , • • • , An(<7, a))}, where 5 depends on ;2, ff and a), and £

depends on ;z and a). Then it is easy to see that

where

and | An (ff, o>) I =

are the total lengths of closed and open contours in Cn (ff, a)) respectively,

and

Define On (to) = { An (ff, a)) ; ff GE £J and m, (a)) = min{|/f| ;

Note that

mn (a))

where

A7(o))= I] max{o)(x),0} and N~ (o>) = I] max { — a) (x) , 0}.

Lemma 1. For awy £>0, if 0>/9(e) =i log 3 ,
2s

/or

Proof. Let us fix ft)Gfi, ^>1, and yie0n(co) arbitrarily. First,

we will estimate the probability of the set {(T*EJ27l; X ((J, a)) =yi}. Take

any yi*e(5n(co) such that \A*\=mn(ti)) . Let (7j be the element of J2n

such that (i) An((?7l,u))=A, (ii) rn(ffx,a)=(f>,A=A,A*. Then we can

define a bijection T^^*: J2W— >J2n by
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G(x) if

ff(x) if x^D(A, A*),

where D (A9 A*) = {x e Yn; ̂  (*)

Note that

(6) \An (TAA*ff, a)) | + \rn (TA4»ff, o)) \<mn (a)) + \Fn (<r, a)) |

for any GEi£}n such that An (ff , tity = A. Hence we have

(7)

X

<---• -

On the other hand, it is not hard to verify that

(8)

Hence combining (7) and (8), we have

<Const. X 3(4+e)n e-mn as

for j9>/9(e) =— — — log 3, which proves the lemma.
2s

§ 4. Proof of Theorem I

We will begin this section with some definitions. Let n

and A^0n(u)) be given.

Definition 2. We say that pEzVn and q Ei Yn are ^-equivalent if

we can draw a curve in { (xl, xz) ^R2; ~ n — I/2<xi<n-\-3/2, i = l, 2}

from p to q without crossing A.

Put RA(x} ={y^Vn\y is ^-equivalent to x} for-reV"^ A contour

AGE A is said to be a defining contour of RA (x) if /I separates ^ (j:) from

a neighbouring region JR^ (y) .

The boundary QVV is decomposed into four natural sides;
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and

At = { (x\ x2) GE dVn ; x2 = ?z

We denote the origin by 0.

Definition 3. Let A be a subset of dVn. We say that RA(ff)

touches A if there exist x^RA(0) and y^ A such that (i) . randy are

nearest neighbours and (ii) the bond connecting x and 3* does not cross A.

Proof of Theorem 1. It is enough to prove the theorem for

Let o)G:J2 be a boundar}^ condition satisfying the condition (3).

Let us fix 0<£<Cyx(3 — d) and a sufficiently large ?7>0 such that

W (o>) < (5 + e) w- Take /?>/? (e) , where 0 (s) is given in Lemma 1. We

divide 0n(o>) into three parts: 0^ (a)) = {A e 0n (a)) ; ̂  (0) touches only

one side of dVn}, 02
n(o)) = {A^0n(o))\0l

n(o)) :, A has a contour from one

side to its opposite side in C/A^-i} and 0J (a)) =0n (ft))\{0i(o)) U

Then we have

E I].

We treat 0^ (a)) in different ways according to the following two

cases of the boundary condition CO. Divide dVn into four parts:

and

Boimdary conditions are classified into

Case 1; 2 max{o)(x) , 0}< (2 — e)» for all z,
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2; E max {a) (x) , 0} > (2 — e) n for some z".

However Ol
n (a)) and 0* (a)) are studied in the same way for all a),

Let us put J7n= {4e0n(a>) ; \A\>mn(a) +£n}. By Lemma 1, P; ({ff

eJ2n; ^in((T, o>) G_£n})->0 as TZ-»OO for all a).

Now consider A^On (a)) . Then jR^ (0) touches only one side, say

A*. There exists a defining contoun A of -R^ (0) form (n + 3/2, hi) to

(w + 3/2, AO such that U|>2rc + |&i — /z2|. Reversing the spins in i?4 (0) ,

we obtain the inequality \A\>mn(ti)) +2n. Hence ^eXn and so

(9) H ^({(Tefln;(T(0) = +l,4 l((r,a))=^)->0 as ;z-^oo.

Next, consider A ̂ 01 (co). If jR^(O) touches the minus boundary,

i.e. -R^(O) touches the set {x<=dVn\ ti)(x) = — 1}, then putting DA(Q)

= jR^(0)\{j:e^(0);(r(x) = -l for all (TeJ2n such that An(ff, a)) =A}9

we have

(10)

from FKG inequality.* We will show that A^_CnifRA(Q) touches the

plus boundary. Since A^02
n(a)), there exists a contour ^ from one side

to the opposite side of Un\Un-1. If A has more than one such contours,

then \A\>4n>Nn (o>) +»>wn(o)) +^z and so ^ie J?n- So we can assume

that A has only one such contour L We can also assume without loss

of generality that A is a contour from (w + f, hi) to ( — ̂  — J, A2) such

that the origin lies below A. In this case, note that

UI>W1+ S max{o)(a:),0}+ E max { - a) (^) , 0}
^G9Fn' tfGSF^

if ft)(o:/) = -l and a)(a:'/) = +l, and

o)(^),0}+ E max{o)(.r),0}

if ft)(^/) = +l and <o(x") = ~l, where ^K^I^^^K;^ lies above A}

9^7 — {x£idVn\x lies below A} and ^', x" are the points such that

(i) x'<=dVn and ^eSV^, (ii) x' and .r" are nearest neighbours. If

See e.g. [10].
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A is not a defining contour of J^(0), then |^4|2>4?z and so A£z£n, If A

is a defining contour of RA (0) then o)(X) = — 1 and ti)(x") = -fl since

-Kyi (0) touches the plus boundary. It is easy to see that |A|^>2?z4- (/if

l-/i2~) and XI max{ — (0(jr), 0}> 4ft-f7i1 -\-hz — N+ (to), where A~=max
•rG9Fn"

{ — /z, 0}. Hence M|>6// — N+ (ft>)>6« — (5 + e)w>»2n(o>) + 9e» and so A

€E J?n. Thus, we obtain

(11) 2 P,T({<T,= £

as 71-^-00.

Now we consider (%(o)) in two cases.

Case 1: X] max {o)(x) , 0} < (2 - £);z for all i. If
*sai

-^^(0) touches two or four sides of dVn. Assume that RA (0) touches

the plus boundary. If RA (0) touches four sides of 9V"n, we have \A\

>N;((D) = 8n-N+((o')>5n>mn((ji))+2n and so A^X^ If RA($)

touches two sides of 9Vn, say AJ, and A2
n, then there exists a contour

Ae.'f from (^ + l , / Z i ) to (7i2, — ̂  — ̂ ) such that the origin lies below A,

where j/zj, |/zz|<?7. Then it is easy to see that |Al>2;j-f- i/zj + |A2| and

M\ {A} I > (£/; - Af - /Z.J) H + AT+ (a)) - (2;z -t- h, -hz- (en - /if - /z?)"1 ) , where

h+ = max{/z, 0} and h~ = max{ — h,0}. Therefore we have

\A \ > N+ (o>) + 2 (£?z - Af - 7i2
+ ) ^

and so A^£n. If RA(ty touches the minus boundary, then the same

argument as the one showing (10) gives us

Thus we obtain

(12) £
/<eC7 l8(a))

n ; A (<7, to)

as ;?— >oo.

Let us take the subsequence {n1} such that o) satisfies the condition of
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case 1 for each ri '. Then combining (9), (11) and (12) we have

IiiP»-,({(reflll;(r(0) = +l})<^-({(7efl; (7(0) =
n'~ >oo

which implies

(13) Km pn», ({<re anl <r(0) = +1}) =/r ({c^ £; <r(0) =
7l'-

Case 2: 2 max {a) (.r) , 0} > (2 -— e) ;z for some i. We assume z = l.
*e*J

Define Si= { (x\ xz) ̂ dVn- x\ xz> - (5 + 3e-2);?} ̂ Bl
n. Let ̂ e0i(o>)

If A has a contour from A]\B\ (or Ai\Z?i) to Ai\B\ (or Ai\5i respec-

tively), then |^|>(ff + 3e)7Z>N+(ft))+2erc>ran(a))+2erc and so yiej?n.

Even if yi has a contour from dVn\B\ to 5^ we have

\A | > (8 + 3e - 2 + 2 - e) ;?> N+ (c

and so JeJ?n. Remove the above two kinds of yd's from 0J(o)) and

denote the remainder by £Pn(o>). For yie£Pn(o)), let ^i be the collection

of all contours in A starting from dVn\Bn and £Pn (co) = {A; A^ £Pn(ft))}.

Take ^effn(f t)) . I f^ i (O) touches the set {*e9yn\#i; ft)(;r) = +1},

then (i) yl has a contour /i0 from Al, to A^ such that the origin lies

below A, or (ii) A has not such contours. Estimate U0| in the case of

(i) and estimate the length of contours from A2
n U A3

n to A2
n U Al in the

case of (ii) . Then we have

\A\>4n- (Nj (o>) - (2-e

and so A<^£n. Thus, we obtain

— V1

where ^ ~ (a)) - { J e £P (to) ; J?2 (0) touches the set {x ̂ dVn\B
l
n ; a) (

= —!}}. For yTe^-(co), we have

- P| ~ Co (<r (0) = + 1) P; ( Jn (tr, CD) - J)

where to (x) =o)(x) for ^^8^,= -1 for x^dDz(ty\dVn. Using FKG
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inequality, we have

P&xw (ff (0) = + 1) <P^ (ff (0) = + 1)

where

+ 1 for

1 for x(£[JBl
n.

71=1

Hence we have

S PB-(ff(0) = + 1,4^,0)=^)
-4e0*(a>)

<P^ (ff (0) - + 1) P; (An (ff, a>) e 0; (o>) ) + o (1)

as n->ooy which together with (9) and (11) implies

r (ff (0) = + 1) P: (An (ff, a) e 02
n (co) )

.- (4, (ff, a>) eOi(o))) +o (1)

because P;- (ff (0) - + 1) <P^ (ff (0) = + 1) .

On the other hand P^8'^ converges weakly to jU~ as n— >oo for

sufBciently large /? (see Appendix). Taking the subsequence {??;/} such

that a) satisfies the condition of case 2 for each ??", we have

Km P;. (ff (0) --fl) </r ((T (0) = + 1)
n"->oo

which implies

(14) lim Pn*.(<7(0) = +1) =/«- ((7(0) - +1).
n"-*oo

The above arguments apply to any x £E ^2, and hence we obtain

(15) limP;((7(^) = -hl)=^-((T(j:) = +l), ^eZ2 .
n— >oo

The weak convergence of P% to /r follows from FKG inequality and

(15).

§ 5. Proofs of Theorem 2 and Theorem 3

First, we will prove Theorem 2. Let us fix 3<(J<4 and /3>/?(5 — 3)
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arbitrarily, where $(•) is given in Lemma 1. Define a) by

1 + 1 if -i^i|
«(x)= 2

(— 1 otherwise

Fig. 4.

Then it is easy to see that lim — N£ (o>) =d, and mn(a)) =3n (see Fig. 4).
n->oo 71

Let Sn — {(JE:.@n\ An ((7, a)) contains contour /Us((7) which connects A and

B}. Lemma 1 implies that P£ (Sn) — >1 as ;? — >oo. Take ff^Sn. If ^AB(^)

intersects the line L = { (x1, x2} ^R2; ^J = 0, ̂ 2>0}, then U^

+ ((J — 3)}n and so \An(ff, co) |>(J?7. Again from Lemma 1, we have

P £ ( { f f G S n ; l A S ( f f ) intersects /J.})->0

as n— >oo. Therefore

^B((rf<B, (0) touches the plus boundary} ) ->1

as n-*oo. Using FKG inequality we have

as ;z-^oo. Hence, as in the proof of Theorem 1, we can deduce that

Pn converges weakly to /Ji+ ', which completes the proof of Theorem 2.

Next we will prove Theorem 3. Fix any d such that 0<C?<4.

Assume that &>eJ? is periodic on every boundary with period /> and the
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unit configuration o)GE { -fl, — 1}P. It is obvious that

lim — JV+ (0) = JL ]Tj max {a) (z) , 0} .
7i->co 7? ^) i = l

We will denote this value by S (a)) . The assumption of the theorem is

that § (o))<>?. If A^0n(o)) has a contour A from one side to the opposite

side of Un\ [/„_!, then it is easy to see that M|>|/ln(cO~, a)) I + 2;7>wn (ro)

4-2w, where (D~^^r, is the restriction of o)~ to T^, i.e. o)^(.r) = — 1 for

all .reVn. Hence Lemma 1 implies that

(17) P* ({(Te J2re; An(ff, a)) has a contour from one side to the opposite

side of t/A^-i.})->0

as 77— >oo for /9^>/9(2), where / ^ ( - ) is given in Lemma 1.

From (17) we have

(18) P;({ff^Sn\RAn<ffl0)(0) touches the plus boundary})

as ;/~>oo for ^>/9(2), where £ = TQ- Since Un(o)-, a)) | =NJ (a)) < (S

+ e)n= (4 — 9e) ?z, we have

(19) 8w — (5 + e) w = 4« H- 9£;z>772n (^o) + 9en .

Then (18) and (19) imply that

J?^ ( t f i t f )(0) touches the minus boundary})-^!

/ 9 \as n-*oo for /9>/?(9s) = /9 (— ^-(4 — 5) j . Using the argument as in the

proof of Theorem 1, we can prove that P® converges weakly to fiT as

n-+oo for $>$( ~ (4 — 5) j. Thus, we have proved Theorem 3.

Appendix

In the proof of Theorem 1, we left over the verification of the

weak convergence:

(A.I) limPa
n^ = u~

for 2<d<C3 and sufficiently large /3>0. It was told that (A. 1) can be

shown by the same idea as in [9]. But for the completeness, we will
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give here a sketch of a proof of (A. 1) by our method. We appeal to

Gallavotti's formula of representation of P%(8'^ and estimations of numbers

of paths of the random walk. For the simplicity of notations we write

a = d-2 + 3a and a) = a>(<J , e ) . Note that 0<a<l.

Let

Any A^0n(o)) consists of only one contour; A=

Lemma A. 1. lim PI (Xn (ff, o>) fl Wn=^0) = 0 .

Proof. We have Gallavotti's formula (cf. [2])

exp
(A. 2) P* (4 (<r, a)) = A) = - -

for any /Ie0n(o)) where 71 denotes a finite set of closed contours which

are connected with each other. We denote also by F the union of con-

sisting closed contours as sets in Rz. The function <pT satisfies the esti-

mate*

for any p^L. Hence we have

(A. 3)

Combining (A. 2) and (A. 3) with Lemma 1, we obtain

(A. 4)
I] S exp(- /9+flG?))W

PSWnCtr, «) n T7B^^)<^^»^^p±-s^- _— -+0(i)
X] exp(-/3-o03))|A|

|xi = (2-t-2a)n

as ;z— >oo for any @^>@(0) where 0>0 is an arbitrarily small constant.

The numerator in the right hand side of (A. 4) is rewritten into

* The original proof of this estinate in [2] is not correct. But one can get this estimate
by careful computation along the same line as that of the original one. There is
also another proof by Gallavotti and others in Lecture Notes in Physics, vol. 20,
Springer.
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(A. 5) £ (2+ E^ (;>) exp(- ,3 +£ (/?))£
P<EWn k = y-{ la)n

where R* (/>) is the number of possible contours X e On (o>) such that

h~E3p and \X\ =k.

It is obvious that Rn(p) is smaller than the number of possible

paths of the simple random walk in L which starts from rl = (— - an + ^,

7^- f f ) at time 0, passes through p and ends at rz— (^ + f, — an-\-^) at

time k. Let Td(q,p) denote the number of paths of the random walk

which starts from q = (q1 + i, <£ + i) at time 0 and ends at p = (p1 -f i,

^2-f|) at time c/, where d—\pl — ql\ — \pz — qz\ is non-negative and even.

Then we have

(A. 6) R* (p) <£' 1^ (r,, />) 7^ 0-,, /»)

where y1/ denotes the summation over all ^ and ^2 such that

)n—p1-{-p2 and dz— (\-}-a) n-\-p1 — pz are non-negative and even.

On the other hand, we have

(A. 7) T*(q,p)=J_

s

1)l (2t2)l

^^j! m2! (d

where 2" denotes the summation over all SL and s2 such that
an(l 52 ~ l^2 — (f 1 are non-negative and even, and ti= (st— \pl

i|=|^-g', z = l, 2.

Apply the estimation (A. 7) to (A. 6) and then use the Stirling

formula. Tedious calculations lead us to the estimation that the numer-

ator of the right hand side of (A. 4) is less than exp n\&e~lA(ff) (1-fa

+ (2 + 2f l ) ( f f (0) - /9)+21ogj ( l+a+ |LVl+Ji+ 0yi + 0(l)], where
I \ 2 / \ a 2a/ J

= exp ( — /? -f $(/?)). On the other hand, we can see easily that the

denominator of that of (A. 4) is greater than

Const. x2 (242a) / l<T ( '* * w » < 2 i 2 f l > y ^ w .
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Thus we obtain

<exp n {Be'1 A (£) (1 + a + 0) + 4 (1 + a) ff (/?)

as ?z-*oo, where F(0, <z) = (l + a + -^-} (l-f — + ^-V2-(1^tt). It is easy
\ 2 / \ a 2a/

to see that there exists 0a>0 such that F(6, a) <1 for 0<0<0a. Since

A(/?)-»0 and 5(/?)->0 as £->oo, we obtain

for sufficiently large /?>0.

Lemma A.2. LetY=p=p1

2" '

(A. 8) lim PI (4 (er, a)) n Y =^0) - 0 .

Proof. Divide F into two parts Y,,1 = { (p1 -f- 4, ̂  -f-1) e F; -

<0} and Yl={(pl + ̂ pl + li)^Y;pl<-an}. Applying the same tech-

nique as in the proof of Lemma A. 1, and noting that

(an + pl)l (n - pl}\ \an + p1/ (an + n) I (an)l nl '

for

we obtain

(A. 9) Pr^Cff .^n

as n->oo, where G (6 , a) = (1 + a + 0) 1 + ±^L} 2~(1+a) .
\ a /

In the same way as above, we also obtain

(A. io) PI (/u (<r, a)) n i7!̂ )

<exp 7i JS^-1 A (/9) (l + a + —0) + 2*-1 (1 +
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4(1 +a)

-log 2 + 2 3 0 9 ) ) + o ( l ) + o ( l ) ,

as ?i-*oo. For sufficiently small Q and large /?, the right hand sides

of both (A. 9) and (A. 10) converge to 0 as n-*oo. This implies (A. 8).

Now it follows from Lemmas A. 1 and A. 2 that

P;({ff^Gn',RAn<ff,ri(a;') touches the plus boundary} ) ->0

as ;z— >oo for sufficiently large /3^>0 and any fixed xEzZ2. This implies

the convergence (A. 1) as in the proof of Theorem 1.
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