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Notation

X: a complex manifold

Oy: the sheaf of holomorphic functions on X

Dy: the sheaf of holomorphic linear differential operators of finite
order on X

®y: the sheal of holomorphic vector fields on X
Dx[s]= Q_Y@C[s]

N: the set of natural numbers, Ny=N{J {0}

Z: the set of rational integers

g.c.d.=the greatest common divisor

l.c.m.=the least common multiple

Introduction

The purpose of this paper is to develop a general theory of b-func-
tions with emphasis on the detailed study of examples. A &-function
b;(s) associated with a local holomorphic function f(x) is defined to be
a generator of the ideal formed by polynomials in s satisfying
® P (s, z, D) f(x)™'=b(s)f(x)’,
for some linear differential operator P (s, x, D)= > s'P;(x, D).

0<G=m

The following is a famous example of the equality of this type for

n
a quadratic form Q(x) =) x,
i=1

g (s 1) (54 1)
@ Q=4+ D) s+ 2)0,
where

4=Y"D¢.

i=1

We note that the roots of &;(s) =0 are strictly negative rational
numbers.

It is well-known that b&-function b&,(s) plays important roles in
analyzing hyperfunction f*. In fact, define the gamma factor 7(s)

=1 I'(s+«;) when &6(s) =[] (s+a;). Then (1) turns out to be
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PG, z,D)— 2 _poi— L g

7(s+1) 7(5)

In view of this formula, we can readily see that f depends meromor-
phically on s and its poles occur only at —a;—vy, where vy runs over

the non-negative integers.

For example, the factor (5+£> in (2) has a relation with the

2
following facts that (1) the poles of Q% are located at —’—?Il—)), yE N,

(2) the local monodromy of Q7'(0) at 0 is (—1)"=exp(2ni(—2n/2)),
and (3) I(h) = fexp((i/h)Q(x))go(x)d:c behaves asymptotically like
I(h) =0(h™*, (h—0).

At this point, it should be remarked that &;(s) is an invariant of
the hypersurface f~'(0) finer than local monodromy (cf. §16 etc.).

We investigate b,(s) through the structure of Modules Jl =D [s]f*
and M=D[s]/°/D[s]f*"!, where D[s]=DRC[s]. Here s acts on
them as s: P(s)f*i—=sP(s)f*. Then, one can state (1) as “b,(s) is the
minimal polynomial of s in M.” JI admits as pecial operation £: P (s)f*
I-P(s+1)f"". The commutation relation tzs—sz=¢ plays an essential
role. This standpoint was established by M. Kashiwara and M. Sato.

This paper is organized as follows. In Chapter I, we introduce the
notion of [, s]-Modules, thereby &-functions being generally introduced.
General theory of these Modules are included in [32]. In Chapter 1I,
the structure of JI and M are studied. The author introduces a number
L(f), which measures non-quasi-homogeneity of f, and the notion of a
functions of simplex type. He also gives a good presentation of a
Module (s+1) % for f being isolated singularity with L (f) =2,3,
which is used in the next chapter. The methods to determine or to
estimate &-functions are investigated in Chapter 1II. The author gives a
join-formula for b&-functions in § 16. Various examples are found in
Chapter IV. In particular, some interesting explicit formulae are given
for two-dimensional case. The determination of A-functions of all the
canonical forms of isolated singularities with modality less than three is
performed by the author and it is included in § 20 for corank f=2 and
in [32] for corank f=3.
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A part of the results of this work was announced in [27], [28],
[29], [30], [34] and [37].

Historical remarks around the equation (1) is as follows.

I. M. Gelfand conjectured in Amsterdam Congress that the analytic
properties of £ could be well investigated by use of the desingulariza-
tion theorem. In fact, I. N, Bernstein-S. I. Gelfand [39] and M. F.
Atiyah [38] proved the meromorphic dependence of £ in s and discribed
its poles by the resolution theorem of H. Hironaka.

In 1961, M. Sato initiated a theory of &-functions for relative in-
variants on prehomogeneous vector spaces, in connection with the Fourier
transforms and {-functions associated with these spaces [23], [26].

On the other hand, I. N. Bernstein independently took the equation
(1) and proved an existence theorem of such &-functions which does not
vanish identically when f is a polynomial [7]. J. E. Bjérk succeedingly
generalized Bernstein’s result for analytic functions [8].

Since then much effort has been forcused on the general theory of
b-functions [12], [19], [27]. The author’s contribution has been done
since this stage. B. Malgrange pointed out a close connection between
bfunctions of f and the local monodromy of f~*(0) [16]. He proved
that, when f has an isolated singularity, the eigenvalues of local
monodromy are just exp(27v — 1) for roots e of b-function [17]. After-
wards, M. Kashiwara proved the rationality of the roots of b-function
for general f in a completely different way [14].

As for the analytic property of f% we note also that an important
result that f“ satisfies a holonomic system was proved by I. N. Bernstein
[7] in a special case and by M. Kashiwara-T. Kawai [10] for any f.
More generally, analytic property of f*xz for holonomic « is studied in
[7] in a special case and in the author’s subsequent paper [32] for
general cases.

The b-functions associated with prehomogeneous vector spaces are
well-investigated and they are determined by many people. The micro-
local calculus finds its good application in the area of &-function theory,
and that theme will be fully treated in M. Kashiwara-T. Kimura-M.
Muro [41].

The author is grateful to Dr. M. Minami and Professor T. Kawai
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for their critical reading of the manuscripts. He would like to express
his hearty gratitude to Professor M. Sato and Professor M. Kashiwara
for their [ruitful advices, enlightening discussions and constant en-

couragement.

Chapter I. Generarities

In this chapter, we study the basic features of general D[z, s]-
Modules and &-functions associated with them, which are indispensable
to later chapters. The author develop the general theory of such &-

functions and Modules in [32].

§1. 9D[t,s]-Modules and b-Functions

Let C[¢,s] be the associative algebra over € with generators s and

t and defining relation
ey ts—st=t.

Set D[t,s]=DRC[¢,s]. A D-Module M is called a D[s]-Module
(respectively chft, s]-Module), if MDOsM (respectively MDs M,
MDet M) holds. In this chapter, all Modules are D [¢,s]-Modules
unless otherwise stated. Since #s = (s+p)¢ in view of (1), Ker,
Coker # and Im#* are D[t s]-Modules along with a given D[z s]-
Module.

Definition 1.1. Lez L be a D[s]-Module. If s<€Eudy(L) has
the non-zero minimal polynomial, we denote it by dr(s), and say
“d.(s) exists” “b-functions” for a D[¢t,s]-Module I, are defined
by bg,,(s) =dgwa(s), v=1,2---.

Usually, by, is abbreviated as by. As is easily seen, by, exist if
and only if by exists,

It should be remarked that if _L is a holonomic 9 [¢,s]-Module
d(s) exists, since Zudy( L), (x€X) is finite dimensional and Zudy (L)
is coherent [13].

Standard example of 9[¢, s]-Module is constructed as follows. Let
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f be a holomorphic function on UC X, let .L be a coherent 9-Module
and let # be its section over U. We denote the annihilator of z by J,
that is; J={Qc D|Qu=0}. Define the ideal J(s)CD[s] by the

condition that

P(s,z,D)e J(s) il and only if
f"‘P(s, x, D+%grad f> eC[s]®Y, for some .

We denote by JI the Module D[s]/4(s) and by f*u the class
(I1mod J(s5)). N=D[s]fu is a D[¢,s]-Module with actions of £ and

s given by,
1:P(s)l=>P(s+1)f, s:P(s)—>P(s)s.

The map ¢ is injective in Jl. In fact, if P(s+1)f e J(s) then
f’”P<s+ 1, x, D+%grad f>f=2 Q;s’

for some m and Q;€Y. The left-hand side equals to

f"‘“P(s—i—l, x, D+ ’H];l grad f),

and the right-hand side can be rewritten in the form

2R (s+1)7

for some R;e. Therefore,
f”‘“P(s, z, D+ %grad f) =31 Ry,

which implies P(s) € Y (s).
The 9-Module 9 Fu is coherent, and if # is a holonomic section,
9D ffu is subholonomic (see [32]).

Definition 1.2. With a non—zero polynomial p(s), we associate
a number w(p) €N, in the following manner (w(p) is called the
width of p.)

1) If p(s) €C* then w(p) =0,

k
i) If p(s)=1lG+a+i)% acs, ce,7#0 then w(p) =F+1,
1=0
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i) If p(s) has the form
10 =1-k[ p;(s), where each p;(s) is of the form in ii),
=1

2, =Tl (s+a;+0)%?, and a;#a; mod Z (j+j’); then
w (P) =max w(P;).

Theorem 1.3. If d.(s) exists, then t““H_L=0. Furthermore

if we assume that t is injective or surjective, then L =0.

Proof. we have
0=d,(s) LDd,(s)t*“O [,
and by virtue of (1),
0= 70 1 (5) L =d.r (s + w0 (d)) 29D L
It follows from the definition of w(d ) that
g.cd.(dr(s),dr(s+w(ds))=1.

Hence the assertion follows. When # is injective or surjective, it is

obvious that L =0. Q.E.D.

A coherent 9-Module . is called holonomic (resp. sub-holonomic)
if £atg (L, D) =0 for i<<n (resp.i<<n—1). This condition is equivalent
to codim.S\':S'(.,C)Zn (resp. codim.S\'/S(,,E)Zn—l). L is called purely
subholonomic if £} (.L, D) =0 for i=n—1. It is known that for any
coherent 9-Module, &x25 (L, D) (resp. £x57 (L, D)) is holonomic (resp.
sub-holonomic) and Zafg(.L, D) =0, i>n. Let W be an irreducible
component of .§,/S'(,f). Then the multiplicity of _L at a generic point
x, of an irreducible component of .S\'./S'(,f) can be defined (which is
denoted by m, (L)), and has the additivity, that is, if

0 L1 Ly _L3<0,
is an exact sequence of coherent 9-Modules, m,, (L) =m, (L,)

+mg, (Ls).

Corollary 1.4. Let Jl be a sub-holonomic 9D[t,s]-Module such
that t: J1— I is injective. Then, T is purely sub-holonomic.
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Proof. Consider the exact sequence

0T/t N NET 0.

Set L =8xt5(I1, D). Then _L is holonomic and the long exact sequence

of £x¢ gives us the surjection _,E—;,E—»O. Therefore L =0 by virtue
of Theorem 1. 3. Q.E.D.

Proposition 1.5. Upon the conditions in Corollary 1.4, by exists.

Proof. Consider an irreducible component W of S\é(m). Since

¢t is injective, the multiplicity of JI/¢Jl at a generic point of W vanishes.
N

Therefore codim SS(J1/tJl) = n which implies that J1/¢J1 is holonomic.

Thus b5 exists (and so does by, by the argument after Definition
1.1). Q.E.D.

The conditions in Corollary 1.4 are satisfied for Jl=D[s]fu, il
one of the following two conditions holds.

i) f is arbitrary holomorphic function, z=1.

il) f is quasi-homogeneous, YDu is holonomic,
In the present paper, we restrict ourselves to case i). We investigate
case ii) in [32], where the detailed structure of &5 ,(s) and the relation
between Jl, and 9 f*u (a¢=C) are also discussed. The existence of
ba(s) for 1=9D[s]f'u with general f and Du being holonomic can
be derived from that of case ii), following the technique in § 3 of [14].
(See [32])

§ 2, b-Functions of Holomorphic Functions

Let X be a complex manifold of dimension 7z, and let f(x) be a
holomorphic function. Hereafter we make use of the notations f;=0//0x;,
a=>, Of;, for brevity.

The b-function of £, which we denote by &,(s), is defined by,

b;(s) =by(s), where IJ=D[s]f".

Here, Jl is a special case of D[s]f°u for u=1. We also define

bs.,(s) =by,(s). The existence of them will be assured later by Theorem
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1.8.

It follows from the above definition that there are P(s) and
P,(s+v)eD[s], such that
1 P()f 7 =b,(5)f",

(2) P,(s+0) " =b,.()S",
and b,(s) and b;,(s) are minimal among such polynomials in s.

When we emphasize the point x& X into consideration, we use the
notation by .(s). Furthermore given a compact set KCX, we set
b;x(s) =lem. & . (s).

zcK

If f(z)0, then % Fi=f*. Hence b, (s) =1.

If /'(z) =0, setting s=—1 in (1), we know (s+1)|&;.(s).

If f(x)=0, grad f(x)=£0, then b&,,(s)=(s+1) by %le“l

1
=(s+1)f° (e.g. when f;(x)=0).

Therefore, our main concern is with &, ,(s) at a singular point of
S0,

If v is in a sufficiently small neighborhood of x, &,,(s)|6.(s) by
@1). For g(x) €0, g(xy) 0, we have by, . (s) =bs,,(5). Because, if
P (s, z, D) f"* 1 =b,(s)f",

g P (s, x, D— (s+1)grad log 9) (g£) "' =0b;(s) (91)°,
and vice versa. Thus, &,(s) is an invariant of the hypersurface {f =0}
independent of the choice of its defining equation.

For later convenience we list up basic notations in o-function theory.

Definition 1. 6.
D g6 =P eD]PE/ =0,
Jo=DNY ), I={Xe0|Xfe0/f},
M=/, Tl=(+1) M, TN.=N/(—c)IN.
i) W={(x,sgrad log f)[s€C, f(x) #0}"**CT*X,

Wo={(z,8) € W|f(z) =0} U {(,0) |z X}.

Proposition 1.7. J1=D[s]/9 (),
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M=D[s1/(J () +D[s1f). H=D[s1/(Gls]+D[s]a+OF),
Na=D[s1/ () + D[] s—)) =D/ (I (5) |s=a) -
Proof. The isomorphisms of JI, M and Jl, are easy to verify.

That of F is proved as follows. Let P(s) be such that P(s) (s+1)f*
=Q(s)f**!. Setting s=—1, we have Q(—1)=>_q;(z, D) D,. Hence,

P(s) s+ 1) = ((s+ D R() + 3 a:(z, D) D) f*+
=(s+1) (R f+2 a:(x, D)) S
P(s) € J[s]+D[s] (a+Of). Q.E.D.

If grad f(x)=0, f(x)=0 at xr= X, we can assume f=ux, Then
Ds1f* = DY DIs] s— D) + 32 D[s1D,=D/Y) DD,.  Therefore,
L§:S'(37)={(x, §)|&=--=6,=0} :2W in a neig}jﬂ—_)i)rhood of x. Since
.S\':S'(jl) is an analytic set, we have S\S'(ETZ)DW.

We state the fundamental theorem of M. Kashiwara.

Theorem 1.8. 1) Jl is sub-holonomic and S\S'(fﬁ) =W. i) b,(s)

exists and all the roots of b;(s) =0 are strictly negative rational.

For the proof of this, we refer the reader to M. Kashiwara [14].
The existence of &,(s) can be derived from i) and Proposition 1.5. See

also [32].

Corollary 1.9. M, H and T, are holonomic. More precisely,
N ~
SS(H)CW N (F7(0)), SS(T) W NSing £~(0) and SS(N) CW,.

Proof. For, t gives an isomorphism on W\ f~'(0) in the exact
sequence 0—>f77-t>32—>ﬂ4—>0, LS\':S'(ﬂ]’l) is contained in f~'(0) MW and

hence a holonomic set.
Since fDi—fis€ 4(s), SS(NH)CWN (F7(0) U (§=0)).
SS () CSS (M) N (fi=0, Vi). Q.E.D.

When f is locally reduced, K. Saito proved the following:
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Theorem 1.10. & is a reflexive Oy-Module. Let X;=> a;;(x)D;
i=1 -, n, be elements in . Then X, -
of G, if and only if det(a;;) =gf, g€ OF%.

X, is a locally free basis

3

Corollary 1.11. Suppose dim X=2. Then G has locally free
basis X, X, (X;=>)ayD;) and anan—anan=gf, 9€0%. Converse-
ly, if two wvector fields X; in G satisfy the above formula, they form
a basis of G.

For the proof of these, we refer the reader to IX. Saito [21]. When
f is the square of the fundamental anti-invariant of a Coxeter group,
considered as a function of fundamental invariants, & is a free module.
This was pointed out by K. Saito [21]. For the determination of the
structure of & and the microlocal structure of D[s]f*, we refer the
reader to T. Yano [33] or T. Yano-J. Sekiguchi [35], [36]. They
proved that the holonomic system 9 f* has multiplicity 1 on all the
irreducible components of .S\{S'(Qf“), and determined a basis of &
concretely.

Corollary 1.11 was also noted by M. Sato and M. Kashiwara (not
published).

Chapter II. Structure of the Ideal J(s)

In this chapter, we shall restrict our attention to the structure ol
g (s). First of all, we introduce a number L (f), which measures the
non-quasi-homogeneity of /. We further define a class of functions
called a convergent power series of simplex type, which plays an im-
portant role in later applications. In the case of such a function, cor-
responding 4 (s) countains a distinguished element (cf. Theorem 2.15).
In §§ 6, 8, we shall determine the structure of J(s) upon the following
two conditions that 19 L(f)<<3 and 2° the singularity is isolated.
Section 8 is concerned with a delicate phenomenon about 4(s), and

given are counter examples against Sato-Kashiwara conjectures.

§ 3. Total Symbol
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For the later purposes it is appropriate to modify the notion of
order of an element of 9[s] by regarding s as element of order 1. To

be more precise, we define

Definition 2.1. Given P(s)=31s'P;(x, D) D[s], max (j+ord P;)
is called the total order of P and denoted by ord”(P(s)). Let
[=o0rd"(P(s)). Then we call

0" (P) (s, z, &) =31s'0,;(P)),

the total symbol of P. It follows that 6" (P) is a function on Cx T*X
having homogeneous degree [ in (s,€). For an ideal J(s) in D[s],
we define its total symbol ideal by

07 (I () ={0"(P)|[PeI(5)}.

Let 4 be an ideal in Op.x[s] and S be a subset of Cx 7T*X. Then
we denote by V(YJ) and J(S) the null set of 4 and the ideal of

functions that vanish on S, respectively.

Definition 2.2. i) We define
SS[s1(L) =V (@™ (I (),
Sfor a D[s]-Module L=D[s]/I(s). More generally we define

SS[5](.0) = Qﬁsm (D[sTw),

for finitely generated 9D[s]-Module L =D[s]u+ -+ D[s]u, 1ii) Let
f be a holomorphic function. The subset W[s] in CXT*X is defined
by

W [s]={(s, z, s grad log f)|f=#0, s€ C}lo="e,

Proposition 2. 3.
SS[1 () = WT].

Proof. Let P(s) € D[s], ord"P=m. Then
P(s) = () u0"(P) (f, x,df)f* ™+ (lower order in s),
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Therefore, if P(s)24(s), then ¢"(P)eIJ(W[s]). Let p(s, z,¢)
eJ(W[s]). We shall prove that 3/, 3P (s) € 4 (s) such that " (P(s))
=p(s,x, &) From this, 2.3 follows. Define the function on CxX
(¢, x) by f’(¢, x) =tf(x), and the function on T* (Cx X) by q(¢, z, 7, §)
=p(tt,x,§). Since p(s, z,sd log f) =0, we have q(t, x, %, sd log f>

=0. Howerver, <';—, sd log f> =sd  log f’. Hence, ¢ vanishes on

W’'={(, x, sdu  log £)|tf+#0, s€ C}**", By Theorem 1.8, we have
§f§(f}2’) =T’ where JN'=Deex[s1Ff =Deoxxf’', whence there are
leN and Qe 4, such that ¢(Q) =¢'. We write Q, for the 0-th homo-
geneous part of Q with respect to £. Then obviously it follows that

Qy(tD,, x, D,)f"=0

and 0(Qy) =¢'. Finally define P(s, x, D,) =Q(s, x, D,). Then, we
readily have P (s, z, D,)f*=0 and ¢"(P) =p". Q.E.D.

The above Proposition 2.3 amounts to saying that ¢7(4(s))
CI(W[s]). There are examples of f for which this inclusion relation
are a strict one (cf. §8). A necessary condition for p to belong to
6" (4 (s)) will be given in the following (1°, 2°, 3° below).

Let p(s, x, &) €Opx[s] be a homogeneous function of degree m in

(5,8): (s, x, &) =!Zs’""'aj,a€“. In the sequel, we use the notation
ar=s

R[p] G0, 89) = 31 “(DEF) () - (D) (5, 2, )

Ro[p] (s, 2,8) =p (s, z, €)
and
?(s, z, D) ZJZ_ (s—7) m~ij:]_ﬂj,aDa-
Let P(s) be an element in D[s] with ord”(P(s)) =m. Then,
P)ff=als, o)/,

where a(s, ) is a polynomial of order not greater than m in s with

coefficients in ). We use the notation

(order less than m+1 in s)
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for a(s,z)f*™. Let a’(s,z) be a polynomial of order less than = in

s with coefficients in . Then the formula of the form
als, D"+ a’ (5, 2
is denoted by
a(s, ) f*"™+ (lower order in s).

First concider a homogeneous function p(x, §) = D a,§% not depend-
k

la|=

ing on s. Then we have
#(@, DVF*= (9,0 (5, N F* + 3(5) nRa[B] (=, AP 74

+ (lower order in s).

From this, we have for p(s, x, §) =2 s" “pi(x, §) with the degree
of p, in & is just k&,

p(s, 2, D) f'=(8)n (X " tu(x, df)) ™
#3050 en (5= B) s Ra[ 2L
+ (order less than m—3 in s)

=©wt(f,z,d )"
+ O moki[ 2] (f, 2, df) 7

—© m—le[%] (f, z, df) f*™*

0%p
+ (s) m—BRll: b5

=+ (S) m-—ZRZ[p] (f’ x’ df)fs—m+2

|5,z apeemse

—2(s) m_st[g—f] (f. z, df)F+ms

+ (S) m—3R3[P] (f’ z, df)fs—m+3
+ (order less than m—3).

Now assume conditions:

1° p(f, z,df) =0,
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2° Ri[p](f,z,df) e @+ ON™".

With the aid of the condition 2°, there is a homogeneous polynomial p’

of degree m—1 such that

P (F,a, df)=R(p](f, x.df).

P(s)=p(s, x, D) —p' (s, x, D).
Then

POF = @ns(RLp] ~R[ZL]| ~R[#1) (£, , df)

+ (order less than m —2).

Thus we have the following theorem.
We define ideals ¢; /=23, -+ by

a={Rilq] (f, z, df) |hog. dem;, 1a (s, x, §) =L, a (f, z, df) =0}.
Note that

aC (a+0N"* 0 Ofi).

Theorem 2.4. Let p(s,xz, &) €0Or.x[s] be a homogeneous poly-
nomial of degree m in (s,§). Then, to impose the condition 1° and
2° is equivalent to ensurc the existence of an operator P(s) which

has the following propertics.
o7 (P(s)) =2,
P (s)f*= (order less than m—1 in s).

Assume 1° and 2°, and set

R(@) = (R#] - R[] -R[21) (£, 5, dP),

N

with p’ iniroduced just before this theorem. Then there exists P’ (s)
such that

ar (P (s)) =1,
P’ (s)f*= (order less than m—2 in s),
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if and only if the following condition 3° holds.

3° R(x) € (a+0N)™ "+ cns.

Corollary 2.5. 1) If P(s), ord"P=1m, satisfies

1 6"(P())ed™(J6)),

2 P =s"""'Qx) fF ™"+ (lower order in s),
then Q(x) € (a+0OFf)™
2) When pi(s,x, &) =as’+ O] a:i&) s+ ai;6:8; satisfies p.(f, x, df)
=0, there exists P(s) € §(s) such that ¢"(P)=p, if and only if

2l aiifiea+0f.

§ 4. The Numbers L(f) and I(f)

Let f€0Oy such that V(a) CV (f). We denote by /(f) the degree
of integral dependence of f over a, whose existence is assured by the

presence of
Theorem 2.6 (H. Hironaka). f is integral over a.®

1
Corollary 2.7. There exists P(s) €. s'""'P;(z, D) in 4(s) such
that ord™P=1, Py(z, D) =1. ”

Proof. The p(s,z,&) in Theorem 2.6 belongs to J(W[s]). It
follows then from Proposition 2.3 that there exist £ and P(s) € 4(s)
satisfying

07 (P(s)) =p".
Obviously, this P(s) is an anounced one. Q.E.D.

We write L(f) for the minimum of ord”P where P(s) € 4 (s)
which is of the form specified in Corollary 2.7. We have L(f)=1

when and only when f is quasi-homogeneous.

* That is, there exists p(s, x, §) €0xl[s, £], homogeneous in (5,€) and p(f; z,df) =0,
(5,0, 0) =stee?,
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Proposition 2.9 (K. Saito [22]). When f has an isolated singu-
larity, the condition L(f)>2 is equivalent to the condition

det< a%c )ea+0r.

;0 ;

§ 5. Functions of Simplex Type

Let f(x) be a local holomorphic function at 0= C", f(0) =0. We
fix a local codrdinate and expand f into convergent power series. The

support of f in this codrdinate is defined to be
supp (f) = {a €Ny a,#0 in f=3 a,x%.

The set of subsets S of supp (f), satisflying S+ Ny Dsupp (f) has the
minimal element, which is denoted by inl(f). This set can alterna-
tively be described in the following way. Define the order relation <

on Ng by
a<a’ if and only if a,;<«f, Vi.
Then inl (f) is characterized by
1° vYBResupp (f), 3asinl(f) such that a<f,
and
2° Va,a’ (a#a’) €inl(f), there is no relation a<la’.

Thus we can write f(zx)= 2 a.(x)x% a,(0)=~0, and for any z%,
acin l(f)

x¥, a, o €inl (f), x* is not a divisor of x*.

Incidentally, the following proposition holds.

Proposition 2.10. If inl(f)={a®, ---, a™} forms a set of
vertices of (n—1)-simplex, f can be transformed to Y y*® by an ap-

propriate coérdinate change (x)—(y).

Proof. Let A be the matrix ( : ) Then it follows from the
a(“)

bl ].Og ag
condition that A is invertible, Set | ! |=A"Y , where a;s are
b, \log a.,
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f=21a;(x)x=®, and set y;=exp(b;)z;. Then f(z(y)) =Z"1 ye .
i=1
Q.E.D.

In this case, f can be considered to be weighted homogeneous with

weight

(Tl, e Tn) — (1’ N 1)5A“1_

Definition 2.11. When inl(f) = (@9, a®, ---, a™) forms a set
of wertices of n-simplex, we call that f is of simplex type.

In the sequel, we fix some coérdinate system, and use the phraze,

b2

“of simplex type” to mean “of simplex type in that codrdinate”.

Proposition 2.12. Let f be of simplex type. Then, by an ap-
propriate change of codrdinate (x)— (y), there is found a jfunction
g (), g(0)#0, such that

F@(3)) =g L 9.

a® 1
Proof. First note that A’=| : ) is invertible in this case.
a™ 1
In fact, if it were not so, {&®, ---, @™} should lie in some hyperplane.
b, log a,
We set b:n =A""! log' - yi=exp(b;)x; and g(y) =exp(d). Then
b log a,
f@) =g 2 y=®, Q.ED.

It is thus found that the &-function of f at O is equal to that of

n
> cxe® for any ¢, C*.
i=0

Theorem 2.13. Let oy, -, a, N\ (0) form a set of wvertices of
an n-simplex. Then, by an appropriate change of subscripts, if neces-
sary, one can determine I; j=1, 2 3 uniquely which satisfy the follow-

ing:
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Li=A{a, -, Qe_ry, Li=A{Q, -, Asa}, Li={ax, -, A}

There exist natural numbers Ly, -,y such that

1 Lo® 4 o4 L@ VL L™ 4 LD
and
2 Lyt lea=lot -+ Ly

Proof. Since a’s form a simplex in Ny, there exists a unique

relation for 3, =Q
(3) Boct® + - + B =0

up to a constant multiple. Superscripts of & are so chosen that the
following conditions for £ and £ (0<k<k<<n) are satisfied: 1° The
coefficients (8, -+, B¢—1 are non-zero and fx=---=8,=0. 2°f,, ---, Bx_, have
the same sign each other and (8, -+, Bx_, have also the same sign which

is opposite to that of S, -+, Bk—1, and 3° |Bo+ -+ Be_i| >|Br+ -+ + Be_1l.
(This is really an inequality because if this is an equality, {&®@, ---, @~}
must lie in some hyperplane.)

Let us tentatively assume 3, -+, 8x_1<(0. Then equation (3) becomes
(“D)o) a® + ..+ (__ Bk_l) a®-D :Bkam + - +3/C_1“(/6—1>.
We choose rational numbers 7, -+, 74_; so that 0<y,;<<(—f;) and

ot e =Bt B

We can cancell denominators in this equation by multiplying some natural
number N. We set [;= Ny, for (0<:<k—1) [,=Ng; for (k<i<g—-1).
Then, it is easy to see that condition (2) of 2.13 clearly holds and

condition (1) thus follows from the very choice of 7,’s. Q.ED.

Definition 2.14. Let f be of simplex type. Then we divide
inl(f) into three subsets according to Proposition 3.13, inl(f)

=1,UI,UI;, and superscripts of & are also chosen as indicated there.

We say that “a vector field X is associated with a hyperplane 7 (x)
=17, if X=>a'z;D; and h(x) =3 a‘z;. If inl(f) is a simplex, there
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exists for each vertex a® the unique face of that simplex which does
not contain «”. Let h;(x) =1 be its defining equation, and X; be a
vector fleld associated with it. When #;(x) is of the form £;(x)
=2 a%x;, we put ¢;=> a‘a{’—1. Then it holds that
7
ija(f) — (1+ Cj) xa(]) ,
ija(l) :xa(i), Z#J.
Hence we have
Xj (Z xu(i)) — (Z xa(t‘)) +ija(j)'
The following theorem says that J (s) contains a noteworthy element
in it.
Theorem 2.15. There exists an element P(s)=P(s,x,9) in
9 (s) which has the form
P(s)=Pir(s) - Pr_1(s) +Q(s, z, ¥,

with
lj~1
P;(s)= ,1;[0 (s—X;+vej),
and
Q(,0,9) =0, ord"Q<ord”P.
Thus
ord"(P) =ly+ -+l =L+ -+l =1,

and

L) =L.

We used the notation
P= (I, -+, ¥n) = (@1 Dy, -+, . D,).

To prove 2.15, we here prepare two lemmata.

Lemma 2.16. Let f be of simplex type. Then, there exisi
L;(s,z,9) of total order one which has the form
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LiGs,z,9) = (s—X;) +1;(s,z,9),
with
1;(s,0,9) =0,
and satisfies

L;(s,z,0)/° = (—a%e;) zVsf* .
Here, we write ay=a,(0) (+0), when f=3" a,(x)z+®.
=0

Proof. It follows from the definition of X; that
(f=X,;f)=—a%c;xz*? + 3 bix*®, biesm.
We regard these as equations in 2*® and get the solution
—aje;xo=(f=X;)+ 2 i (f —Xof), cjem
Then, L;(s, x,?) is given by
Li(s,z,0)=(s—X,) +21¢5(s—Xo).
Q.E.D.

Lemma 2.17. Let P and Q satisfy the equations
P(s, z, ) f* =)z (x) 7,
Qs, z, NS =q(s) 2 (x) ™,

Jor some analytic functions ¢ and ¢, and polynomials in s, p and q.
Then,

Q(S“"l, £, U —CK)P(S, £, ‘&)fs
=) (s)q(s—l) s ﬁ(p(pfs-l—m_[_ p(é) e Z ]i"'gg (Q(u) (S—'Z, , 0)]0;4) .
Here we have used the notation

RO=| (D) (Z a9, when R(s,z, D) =X a.D".

The proof is straightforward.
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Proof of Theorem 2.15. Let us set
Q;()=L;—(;—1),z,¢—(;—Da) -
o Li(s—1, z,9—a ) L;(s, z, 9).
It follows from Lemmata 2.16 and 2.17 that
Q;(s)=P;(s) +q;(s, z,})
with ¢; (s, 0, %) =0, and
Q; (5)f*= (= aje;) 12t ()0, f* 7.

Since X x*? =2+ for k=j, we have

Q) Q) Qe =TT (—ase)) 5™ 11",

0u(8) - Qar(f' =TT (—aye ) 5a™ (s), £

k-1 £=1
On the other hand, z% 1 fivides ¥ v by (2) of 2.11. Hence, if
we put

2 S e
0

P () =04 () - Qpr(s) —cz 2 ¥ Qu(s) - Quir(5),

where
k-1 , k-1 .
c= 1;[ (—ajcey) 1/11 (—ayeh,

P(s) turns out to belong to 4 (s) and has the required properties.
Q.E.D.

An important example of function of simplex type is the following.

Example 2.18.
Fl@) =3 abapneea,

for 1<m;<n;. Let us put ¢=> %—1. When ¢=0, f is weighted
i

homogeneous. When ¢=20, there are two cases:

i) For ¢<0, I,={a}, where a®= (my, -, m,), L={a®, - a™},

where a®= (0, ---, 7, ---,0), I;=@. In this case X,=3 %0” X;=X,
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——:Tl‘}i and ¢cy=c, ¢;=— (n/my)c, 1<i<n.
i
ii) For ¢>0, the convention of superscripts in 2. 13 tells I,= {a®, ---,

a® b} and I,= {&™}. Tentatively, we change the superscripts in such

a way that I,={a®, ---, a™}, I,={a®}. Then all operators become of
the same form as in 1).

In both cases, we can take [/=min(;) where Ni=%jﬁ]n,-. The

i 7=

proof is omitted.

We finally note that in Example 2.18, the P(s) in Theorem 2.14
is given by

D PG =1 G=Xotve) +Q(s), i ¢>0

p=0

i) P(s)= ,I:[le () +0(),

14—
P,(s) = ’r_[:(s~X,.+»cj), d <o,

In particular we can take /;=1, I=n if n,=nm; (Vi).

§ 6. Generators of J(s)

In this section, we give a way of explicitly determining §(s). We
always assume that f has an isolated singularity.

The ideal Jo=49(s) N9 previously defined is determined by

Theorem 2. 19.
502 % Q)Xij, Xij =fiD;~f;D:.

To prove this, we begin by stating an algebraic lemma (cf. [12]).

Lemma 2.20. i) The following conditions 1 through 3 on g;
(i=1, ---, n) are equivalent.
i—1
1. g, is not a zerodivisor of O/> 9,0, i=1 .-, n, where we
j=0

understand ¢,=0.
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2. @a /o’ is isomorphic to O/aléy, -+, §,] under the homomor-

=0
phism §;—q;, where azi g:0.

3. Each homogeneo;:'lcomponent of the kernel of Da’<O[¢,, -+, §,]
is generated by §.5;—0;&; as an O[&]-module. ii) Ifliifn-prz'mary ideal
a of O is generated by n-elements @y, -+, O, (G, -, 9s) satisfies the

conditions in 1i).

This lemma is the one known in the theory of local rings. When
(g1, -+, gn) satisfies one of the conditions in Lemma 3.2 i), it is called
an (O-sequence.

We remark that when f has an isolated singularity, a=>_ Of;Dm”
holds for large N (actually, we can take N =pg=dim @/a). Thus
(A, -+, fn) makes an O-sequence.

Next, choose an element P(x, D) from 4, with ord P=m. Then
the equation

0=P(x, D) =0,(P) (x,df) () nS* ™+ (lower order in s)
readily yields 0,(P) (x,df)=0. Since (fi, '+, fn) is an O-sequence,

0n(P) (x,8) =20 q:(x, &) (fi€; =13
by 3 of Lemma 2.20. Thus, choosing Q;;€ 49 such that ¢7(Q;;) =q:j,

we have

Ol‘d (P—Z Qi,i (x, D)Xij) <7ll .
Hence by induction on ord” (P), we complete the proof of Theorem 2. 19.
Q.E.D.

When f is quasi-homogeneous, the relation s —X,€ 4 (s) holds with
a vector field X, such that X,f=f. Then for any P(s) =2 s'P;(x, D)
e D[s], P(s) and P;(x, D) X{ are congruent modulo J(s). Hence

4 N=D/Y,,
®) M=D/(Gs+ DS).
Next, since J,CDa and fea, we have

6) ﬁ:@/@a
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by use of Proposition 2.2 i).

When f is not quasi-homogeneous, there are a,(x,§) =] a, (x)§;
such that

a, () f +a,(z,df) =0,
where (a,(x), -+, a,(x)) are the generators of a:f. Set
A, (s, z, D) =a,(x)s+a, (z, D),
where a; (x, D) =Y a,;(x)D;. Then we have the following:

Theorem 2.21.

9) N (Ds+ D) .—_i} DA, G, z, D) + .

Proof. The proof will be carried out by induction on /=ord P(s)
where P(s) € J(s). The case [=0 is trivial. There are three cases
when P(s) =Q0s+ R.

1. If 67(P)=0,_,(Q)s, then Pf*=0 yields 0¢,_,(Q) (x, df)f=0.
Hence

01-1(Q) (=, &) € 23 O[E] (fis5 =550,
and we can lower ord”(P) by subtracting from P a suitable element in
Jo-s.

2. If o7 (P)=0,(R), then, ¢,(R) (x,df)=0. The proof in this case
reduces to that in 1, if we replace J,-s in 1 by Y,.

3. If 6] (P)=06,_,(Q)s+0G,(R), then
Q) 0:-1(Q) (x, df )f+0:(R) (x,df) =0.

Denote ¢,_,(Q) (z,8) = 2 awé® Then the statement 2 in 2.20 and
la|=T—1

(7) vield awy/=a. Thus we can find 5, --- 6! such that
Ay=2,68(x)a,(x).
v
Hence,

P (s)=P(s) =2 b (x)D*) A, (s, z, D)

is either of total order less than [ or reduces to the P(s) in case 2.

Obviously, Yo-sC> DA, + Y, since a: fDa. Thus we have com-
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pleted the proof of Theorem. Q.ED.

We now proceed to the determination of the structure of 4(s) when
L(s)=2. Since s*+ As+Be& J(s) in this case, every element in D[s]
is congruent to an element in PDs+ 9 modulo J(s). Therefore we

obtain the following:

Corollary 2.22. When L(f)=2, J(s) is generated by Y, to-
gether with A,(s,z, D) and s*+sA+ B.

Modules JI, M and T are generated by two elements [ and 3,
where the bar indicates the residue class of the element without bar.

Their structure is characterized by the following theorem.

Theorem 2.23. Modules 91, M and H have following pre-

sentations.

) When L(f) =1,
@

(8) O—Ne-De9
)
f (n)+1
(9) O Me—De—D¥ ",
~ (f)
(10) 0T eD5 .

i) When L(f)=2,

6 (@re)

(11) 0N Pr " @D+
X“‘O
a, a,
<1> F 0
S (U (")+r+2
(12) 0 M e— Pre— @ @) 72

(13) O% «— 2(___Qn-rr+1.
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Remark: We can easily show that the sequence

QOO
oo

<N
Q

v

Oe—ﬁ(—@h——a@“””

is exact. It is the absence of f; and f in the right column of the map

in (13) that plays an important role in the following sections.

Proof of Theorem 2.23. We first note that sequences (8), (9)
and (10) are direct consequences of (4), (5) and (7)., Sequence (11)
is derived from Theorem 2.20. Let us try to prove (13). Sequence
(12) can be proved in a similar way.

First, suppose P14+Q5=0. Then there are R;(s) and S(s) such
that

(P+Qs)f =2 Ri()fif + S,
where the first term of the right-hand side can further be written

Ri(s)fif'=(Ri(s) s+ 1) + R (=) fif*

=R () Dof* '+ R (= 1) fif".
Second, set 8’ (s) =S(s) + > Ri (s)D;. Then, by making use of
((s+ 1)+ (s+1) A+ B) f*+'=0,
we find S; and S, 9 which satisfy
S ()= (S, +S:s) /.
Hence we have
(P+Qs)f =2 R(=1)Jfif"+ (Se+Sus) /.

Next set 07(s"+sA+B) =5+ Q) aif)s+ Q) ai;§:i§;). Then, 3] as;fi;
=31bifi+bf for some b; and b by Corollary 2.5. Since f2+ (3] a:fi)f
+3 ai;ififi=0, we have

fs+2 aifDi+30 afiD;e 9 (s).

It follows that

sfitt= [Z (a;+b; —Zi: ai;iD)fi— Q0 alDi—b)f1)°.
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Consequently, there are R; and S 4 such that
(P+Q9)f = QI RS +SfH.
This formula and Theorem 2.20 implies (13) since J,C9a. Q.E.D.

When dim X=2, the statement in Theorem 2.21 can be made
simpler with the aid of Corollary 1.11. First note that f(x, x;) is
locally reduced since we assume aDOm”.

When L(f)=1, 4(s) is generated by s—X, and X, (or & is
generated by X, and Xj,).

When L(f)=2, a:f is generated by two elements anounced in
Theorem 1.10 since so is 4. Let a:f=0a,;+0a;, and A,(s, z, D)
=a,(x)s+ (a,(x) D;+ a,,(x) D,). Then X, must be represented by A,
and A,. Since (ay, a,) is also of an O-sequence, the relations between

a, and a, are generated by the following trivial relation:
(—ay) a,+ aa,=0.

Since Jy=49DX,,, we obtain
Ay —aAv=0X,,

where ¢(0)=£0. Now we restate Theorem 2. 21 in the form:

Theorem 2.24. Suppose dim X=2. Then,
2
J& N (Ds+ D) =Zl DA,(s, z, D),

where ASs, x, D)=a,(z)s+ (a,(x)D;+ a,,(2)D;) with a:f=00a,+ Oa,.

(When f is quasi-homogeneous, we understand a;=1 and a,=0.)
Conversely, if there exist in () (Ds+ D), A, and A, with

above form such that det Ifzn a”]=(of, @ (0)=~0, then they generate

Qo1 Az
I N Ds+9D).
§ 7. “Fundamental Conjecture” —Counter Examples—

Let p(s, z,&) belong to Ox[s,§] and be homogeneous in (s, §) in

such a way that
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p(f,x,df)=0.

It follows from Proposition 2.3 that there is an integer [ such that
p'ed’(J(s).
In connexion with this fact, M. Sato and M. Kashiwara once con-

jectured in [12] that for such p, at least one of the following three

statements should hold.
RS1 ped’(Y(s)).

RS 2 There exists my&N for which the following holds.
»e067(J(s)), if deg p=>m,.

RS 3 There exists ¢(x,§) which is homogeneous in & such that

q(0,8) =0 and that gped”(J(s)).

However, they fail to hold in general, as is shown later.

It should be remarked that RS 1 is true for f being of isolated
singularity with L (f)<2. In fact, if p(f,x,df) =0, after dividing
p(s,x, &) by s—> a;x;&; or $+0,(A)s+0,(B), one can use the argu-
ment of the proof of 2.18 or 2.20 to find the required operator P(s).

Proposition 2.25. 1. Let f satisfy RS1. Then, there exists an
operator P(s) such that

P()fi=b(s)f® with ord P=degb.
2. Let [ satisfy RS2. Then, there are P,(s) and vy such that
P,(s+v)f=b,(s)f* with ord"P,=degb,.

Corollary 2.26. Assume that f has an isolated singularity at 0
and that L(f)<<2. Then one can find a “b-operator” P(s) such
that ord” (P) =deg b.

Proof of Proposition 2.25. Assume ord”P>d=degb. Then,
0" (P()f—b(s))=0"(P(s)S.
Thus ¢ (P(s)) (f, x,df)=0. By RS 1, there exists an operator P’(s)

* Such an operator is called a “b-opepator” in the sequel.
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in 4(s) such that ¢7(P’(s)) =06"(P(s)). Set P”(s)=P(s) —P’'(s+1).
Then, ord?P”<ord™P and P” (s)f**'=0(s)f°. Proceeding in this way,
we finally reach the stage that ord”(P” (s)) =deg b.

The Proof of 2 is much the same. Q.E.D.

Proof of Corollary 2.26. This can be directly proved by Pro-
position 2.25.1 and the argument preceding it.

We can also prove this Corollary by the aid of concrete process of
determining operator P (s) and by the simple fact that “If an ideal J in
9 is generated by elements {a,, -, ay} in O, (ay, -, ar) forms an in-
volutory basis of 47. See p. 161 and p. 163.

The following gives us a counter example against RS 1 and RS 2.

Example 2.27. f(x)=%(x"+y“+z") —Ti—(xyz)’”

n=bm—2, m=>2.

This is of simplex type. We set c=~3nﬁ—~l (<0),

Xo=—7lz—(xD,+yDy+zD,), X1=X0—%DI etc.,, and p=1— (xyz)™*".

Let (7, j, k) be a permutation of (1,2, 3) and define the vector field
X3, for example, by

X123= ;1 (ym.-—lz'hn—lDz+xn-m-lzm—lDy_i_xn—-Zm—-lyn—m—lDz)'
Other operators are defined according to the permutation of variables.
X, ;. satisfies
Xijkf= xim—lyjm—-lzkm—l X
We can verify the following:

1 a an_l-—-xm—l (yz)mzf;, xm—-lyZm—lzsm—l me—lyn—m—l’

b

n+2m—1, m—1

x y* iz

2n+m—1
B

etc.
2 a:f=(z"ly" 2" (y2) ", etel)

3 dimO/a=3n*(m—1)+3n—1,
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dim O/ (a:f) =3n(m—1)*— (m—1) (m*—8m +1) +1,
4 a+0f= o, [0, fer (xy2)™),
5 {@+af): f}/ (@ f)= "7, (xy)™, ).

Statements 1 through 4 hold even when 2=>3m +1.
The structure of 4 (s) is as follows.

- - c -
Xij, ‘rm ly'hn. I(S—X;;) _E(xmymn lDI+zX231)’

(" ™= (y2)™ (s—X,) —;:L—x""" (eD,) etc.
are generators of J(s) N (Ds+ D). L(F)<3 is guaranteed by the ex-
istence in J(s) of the operator
(—X) (—=X,) s—X3) — (xy=2)" ™ (s—Xy+2¢) s—Xop+¢) s—Xyp).

The operator in 4 (s) with the leading term (xy)™7's* is

(x)™ (s—Xy) s—Y,+¢) + (;%);MMDID?,—}— (%YT
where

1'3=X0—%(ID,+ yD,),

T — (xy) n—4m+1xn—5m+2X123 . ){321 + % { (xy) n—-Amzn-.;m-Ll
x ((8m —1) (y2)™+ (3m —2) 2" ™) Xan
+ (m—1) rimtynoimagn—inpp L.

The situation for £ (a®*+af):f* is delicate. We have

(=X =X £=(£) 02 s 6=,

\m

and

Qf =z"(yz)™ s (s—1) f— m;l 2™ (yz) mis £
s 1 n—3m—1,2m—-1_m-1
Q=X123X132+?$ % 2z

N {Bm—1) X+ Cm—1) y" "X}
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Then setting
2
.P(S) = ptm—2 (S—X2> (S—Xs) — <77%> (yz) n—5m+2Q’
we obtain
(14) P(S)f": (ﬁ)zm___l_xmﬂ(yz) n—msfs_1'
m @
On the other hand

2" (y) " (2" = (yR) ™, -, (vR) ™) =a+ Of.

For, if 2™ %(yz)" ™ea+ Of, we consider both sides mod ™! and have
(v2)"™e (y* !, 2" o,, which is impossible since m=>2. Therefore,
(14) gives a counter example against RS 1 by Corollary 2.5, 1). We

can find, however, following three operators.

2 —_—
P (s) _ <£> 771(‘0 1 yn—3m+lzn—4m+1X123’

ym {xZ’"“"’(s—XZ—M) (s—Xy) — (\%)2(3,2) MMQ}

me

2
c\*m—1 9 n_
- <—> ™" "D,,
m @

and

g™t {.r"‘"z <s —Xs—————(m —D C) (s—X,) — <i> : (v2) "‘5’"+2Q}

me m

2 —_—
_ <i> m 1 xm—2y'n—sz.
m @

Their total symbols are zo”(P), y™ 67 (P), and 2™ 6" (P). Moreover,

we can choose an element in 4 (s), whose total symbol is §™'g”(P).

Set
m—1 ] 1 '
Spz= 3 (m—1),Dp1~9 = gm-1-7,
= 0
R(s) =Spn_s(xzyz)"™"

2
x 6= Xt o) (=X + (&) T 2y ormngmx)
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or when #>5m—1, set

2 p—
R(5) = () Sucsarin ey oonn [ 173 yrongnoin,

2m
+ {xszms < X+ % (Bm—1)y" X+ x"im

X (2m—1) (xz)™+ (m—1)y™™™) Xm}].

Then,

{(D?‘lx““z—i— So o™ 1) (s—X3) (s — Xy)

Dz () Q) ~R )

is an element in J(s). Thus (14) cannot be a counter example against

RS 3.

But there are no element in 4 (s) with its total symbol 7":{%¢7(P).
In fact, if Dy¥D2P(s)+ R’ (s) € J(s), ord"R’<I;+1,+2, then

2
DyD¢P (s) = <%> (m=1)flflex™ 2 (y2) "™ (8) 11,40 T
+ (lower order in s)
implies
rm—? (:\12«') 'ﬂ—mf;, 22 = (a + @f) Iy+la+1 ,

by Corollary 2.5, 1). If this formula were true, there should be a

homogeneous polynomial F (2, -, ¢,) of degree /;+/,+1 with coefficients
in O, such that

2" () fE=F (fo, fu, fr (RY2)™).
Considering both sides mod x™', we conclude that
y('n—-l)(l1+l)—m+lz(n—1)(lg+1)—7n+lE (@wyn—l_‘_ @yzzn—l) LitlaHl
But this never occurs. Thus (14) also serves a counter example against

RS 2. Set

2
P (s) =%<xm"2 =X (= X) = (£) 92" X wXun) ¢
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where

.9’=s+c—2—§— .
7

Then the following operator belongs to J(s).

’ 771_1 4 g n—5m 1 4 m— m—1_n—-2m-—
P/ P =L (2] (v om0 X (£ ) antymoigoins

X {(m—=2)z"(s—Xp) + ()" "+ 2"y™) (s — Xo)}

+%‘r2m—4y2m—22m—2{(2m_3) ym22m+ (n“l' 2m _1) ™

+ (et m—1) Ty (s X) (s—Xs)].
Thus (@7 (P))*ed”(J(s)).
The following gives a counter example against RS 1, 2 and 3.

Example 2.28. f=2’(x+ty)—y° t:a parameter. This is a u-

constant deformation of x*—y® (4=20). Set
1 1 4 1
Xy==—xD,+=yD, X,=—zxD,+=yD,.
"% 577 ST a5 57

For ¢£0, 4(s) N (Ds+ D) is generated by

t 'y’
(a) (6x+5ty) <S—Xo+i%yD,>—¥—D“
and
, 2 2 £
(@) y'<s~Xo+ﬁyD,>—§équ,
where

3,5 \ —1 4 4
X34=_1_‘<1___5_L1.> <(6.22) - (5ty) i Drv'—stu>-
5 6* 6x+ 5ty 6

We set

1 :

P =<—X + 2t yp, M) (s— x4+ L D,)
©) = (5= Xot155¥ 15><s " 1807

53t4

~®I<S_XI_I15> <t(s-—X1) ——élngy>.
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Then

4£

(15) P()fi=ks(xy)'f', k=m6‘3‘;-

We can verify by direct calculation that

(16) (zy)*&a+OF,

Formula (16) shows that (15) displays a counter example against RS 1.
We can also show that this is a counter example against RS 2 by the
same way as in 3. 24, considering D)P(s) and mod z'.

Lastly, we show that this is a counter example against RS 3. Our

argument relies on the following general proposition.

Proposition 2.29. 1. Let f have an isolated singularity at 0
with [(f) =2, and let P(s) satisfy ord”" (P)=m=>2, and

an P(s)ff=s""a(x)f* ™"+ (lower order in s).
If there exists Q(x, D) €9 such that ¢(Q) (0, &) =0, and
7" (Q(z, D)P(s)) 0" (4 (),

then a(x) €a+Of when m=2, or a(x) €a when m=>3.

Especially when m=2, if (17) gives a counter example against
RS 1, then it is also a counter example against RS 3.
2. More generally, if I(f)=22>2 and ord"P=>1, a(x)ca+Of*7,
when ord” (P) =1, or a(x) €a when ord” (P) >2.

Remark: This proposition is useful only when m=ord” (P)=1(f)

and I(f)+1. Since, regardress of the existence of Q, we see
a(x) € (a+0F + 23 0f1p) (a+ 0™ .

Thus a(x) €a when ord P=L(f) + 2.

Proof. Since f’ea*+af, we can show by induction on £ that
(@+0N* =a* " (a+0Of).
Now, if ¢ (QP) €0” (4 (5)),
18)  6.(Q) (z,df)a(x) € (a+ON)"*"=a""*(a+0Of).
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Therefore, since m=>2, there is a homogeneous polynomial p,(x,§) of

degree [ with coefficients in @™~ such that

0.(Q) (z, df ) a(z) + pu(x, df ) fea™™ "
By the aid of Theorem 2.19, 2 and m=2, all the coefficients of
a(x)0,(Q) (z, &) +fp(x, &) are in a. Thus

a(zx) €ata™f,

owing to the condition ¢ (Q) (0, §) ~0.
The proof of 2 is almost the same. Q.E.D.

We apply 2.29 1to (15). Then (16) implies that (15) is a counter
example against RS 3.
There is Q(s) € 4(s) which assures L (f)<3.

() Q(s):<s—X0+116> <s—Xo+%> <s——X0+1t§ny>

o't 4 1 1
_Fx<S—X1—"1—-5> <5"—X1—1—5-> (S—X1—55—tny>.

Therefore, our f has the property that 2=[(f)<L(f)=3. (cf. §8)
J(s) is generated by (a), (a’), (c) and the following operator:

(b) yP(s) —kXy.
Set
¢ 1 t 1
P(s) = [s— X, 4+ L D$+—><—X+~—— D,+—>
) <5 80”180 10
551 1 2 1
_‘)6_4x<5——X1+2—5><t<s—X1—{—2—5>—5—5ny>.
Then
, kt - t 1> / 1 >
P ()P (s) =" (s— X, +--yD,+ ) z(t s —X,) —— D,
(P () =T (5= Xot 109Dt )2t (5= X) — 2D,
35kt 25k 1
~ 2y (- X)) =X~ B a(s— Xt o) (s— Kot Ly D)

is an element in J(s). Thus (" (P))*ec”(J(s)).

We shall show later that several types of polynomials give us
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concrete counter examples against RS 1~3 (§18).
The next example satisfies [ (f) =3. Corresponding operator of total
order 3 fulfills conditions 1° and 2° in Theorem 2.1, but violates con-

dition 3°.

Example 2.30. f= lx’“ -i——lfy"z—tx"“ mal
7 7y

m 1 ny—m 1 .
L ="t - ¢t is a parameter. We assume
n, 1 ny(n,—1) ny

¢>0 and (72;—1) /5<m;<(n,—2) /4. Consider the following operator:

P(s) =(—X,+4c—ctx™D,) (s—Xo+2¢c—ctx™D,)

X (s—Xy—cta™D,) — mym, St g ™Mty T

X {x”“ (s—X;+c¢"+¢y) _3(”2_“2_)23,}

mst

X (s—=X,+¢") <x”‘“1(s——Xz)+ ¢ yD,).

MLy MLoL
It follows that
(19) P($)f =c(n—1) (ny—2)a(x)sf*

where
a (1) — _x3nllynz~—3+ (”2 _ 3) txdmlynz—ti i

Thus conditions 1° and 2° of Theorem 2.4 hold for ¢7 (P).

We prove that (19) serves a counter example against RS 1 and
RS 2 using condition 3°. Consider the operator DLP(s). If RS 2 holds
for 7 (P), the following must hold by condition 3°, for Z3>0.

(20) Sita(x) € (a+OF) "+,
Claim: ¢, ,COxm= DD L Oyma=s,

In fact, if q(f,x,df) =0, degg=1[+2, then
M ny—1 o), mp—3
q(zf,X,y;:c ! ,0>EO mod Oy™°,
1

Hence

al+2q
a0 530,006 Oz + Oy,
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Therefore the relation

—1 n—ag ™ Ny — ng—
Rl[q]E%——x : 2—0—;7(‘7; Lz, M O> mod Qy™~*

yields the Claim.
Considering both sides of (20) mod Oy™~* we obtain

2 mmDTIm e (0) D@D

This is impossible since 4m;< 7;—1. Therefore (19) is a counter ex-

ample against RS 2 (and RS 1 when [=0).

Quite generally, il (7, 7, m,) satisfies

n—1 SWI-;S ny—2 , .L ﬁ, 7122k+3,
k+1 k 2 74

eg. m=k+2, n,=k+3, m=1,

we can prove

Z<f)§[-’22]+1, L(f)<t.

Equalities holds for £=1,2, 3. See §19 types X, X§ and XFP.

§ 8. Generators of J(s) —continued—

In this section, we study the structure of 4 (s) when f has an
isolated singularity and L(f)=3. Our goal is Theorem 2.32. There
exist an operator Q(s) in J(s):

21 Q(s)=s"+Cs*+Ds+ E,

with ord” (Q) =3.
The case L(f) =3 will be divided into two cases: 2=/[(F) <L (f)
=3 and 3=I(f)=L(f). We call the latter “case (3,3)”. In the

former case, there is an operator P(s) =s*+ As+ B, ord” (P) =2 such
that

(22) P@)f =a(zx)sf*,

where
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a(x) €a+Of.
We call this case “case (2,3;a)”. It is easy to see the following:
If (6" (P)Yed"(4(s)), then
IWsh)'ce"(J6)).

Recall that it was enough to choose [’=2 in Example 2. 28.
Let (b;(x)) be a basis of an ideal (a*+af): f° Then, there are

operators
(23) B;(s) =b;8"+b}s+0b7, ord"(By) =2,
with

B;(s)f =0 (x)sf*".

Here, one may assume that b7 &a+Of for j=1,---,J and b7=0 for
j=J+1, -, J+J’. The {following congruence relation can be proved

in the same manner as in the proof of Theorem 2. 23.
(24) bysfH=b7F* mod D(a+0Of)f°.
Let ¢, be the ideal used in Theorem 2.4. Then

(25) cZCé 0b3

in view of the structure of J(s) N (Ds+ D) and the definition of (&;).
Set

(a+@f).b;”=;@ /j”,k and bj’kzblj/l’k'bj.

(when j>J, b;,=0;). Then, we can find operators B; ,(s) in J(s)
such that

(26) Bj’k (S) =bj,k52+ b;.ks—l‘ ;{.k’ OrdT(lek) =2,

In general, J(s) N (Ds’+Ds+ D) cannot be generated only by (Ds
+ DY N(Ds+D)) and X DBy, and we need operators of the
following type (cf. Example 2. 27):

@7 Ci(s) =ci(x, D)s"+¢; (x, D)s+¢/ (z, D),
with ord(¢;) >1.

As is easily seen, we can assume that
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ord” (C,) =ord(c;) +2=ord(c}).

Moreover, it can be proved by the method employed in § 6 that coef-
ficients of 0 (¢;) (x, §) belong to a: f°. Set

q(s,2,§) =07 (Q) =s*+ (X @) '+ (T aus§ef ) s+ 20 aunéib s
Theorem 2.4 shows
Rq) (f, =, df) =d (f, =, df),
where
q’ (s, z,€) =20 bi;€ 5+ (X0 bify)s, for some (byy,8:).
Define the operator Q(s) by
Q® =fs(s—1) + (X a:(Df —f)) (s—1)
+>a,;(D:D; f—D;f;—D;fy) +2 aijwD;Def;
=22 64D fi=2 bifi.
Then, Q(s) f*=0 entails
(28) Q(s) f'=R(2) f*,
where
R(x) = (Rlal = R 22|~ Ra'0) (f, =, df).
Making use of condition 3° of Theorem 2.4 and (25), we have
(29) R(x)=0 mod a+0Of+308},
and hence by (28) and (29),
(30) sfH=bf* mod (Ds+D)(a+0f)f,
where
bey Ob.
Now we investigate “case (2,3;a).” In this case, b;=1, J’ =0,

bl =a, J=1. We write b, (b, by and B,, respectively) for &, , (5], b7
and B, respectively), =12 --- q. Then we have the following

Proposition 2.31. In case “(2,3;a)”, it holds that
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I N (Ds'+ Ds+ D) =33 DB.(s) + 3] DAGs, 2, D) + .

Proof. Let T(s)=Qs*+Rs+S be an element of 4(s) with
ord”(T) =I. The proof is carried out by induction on /. If /<"1, then
the proof is straightforward. Assume [>2,

Case i) ord(Q)</—2. In this case,

(71—1(R)f+ 0, (S) =0.

Using the same argument as in Theorem 2. 21, we can lower ord” (7
by subtracting a suitable element in (Ds+ D) NFJ(s).
Case ii) ord(Q)=I[—2. In this case,

{(R-QA)s+ (S—0QB)}f*=—Q(a(x)sf*7).

Now that the operator in the left-hand side is of order 1 in s, and the
right-hand side is of order not greater than /—1 in s, there is an operator

R's+8 e (Ds+D)NG(s) such that
07 (R's+8") =0T ((R—QA)s+ (S—QB)).
Therefore,
0.-2(Q) (=, df) a(z) € (a+Of)*!

by Corollary 2.5. Then, applying the argument of Proposition 2. 20,
we conclude that all the coefficients of 6,_,(Q) (x, &) belong to (a+Of):
a(x). Then, choosing appropriate elements T, 9, we see that T (s)
—>1 TBy is of total order less than / or reduces to an operator dis-

cussed in case i). Q.E.D.

Remark: The proof also shows that
(31) (a+0Of):a(x)Da: f,
if we consider sA;(s, z, D) € 4(s).

The structure of . is given by the following theorem. Corre-

sponding theorems for J! and M are similarly given and we omit them.

Theorem 2.32. When L(f) =3, T has a Sollowing presentation.
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1) case (3, 3).

fi
f
b?
f
1 a, a,
S b/]{.k b;‘k bj.k
_\sY c; ¢ ¢
(32) 0e— M+—9* D
2) case (2, 3; a).
fi
f
o) i
s a, a,
—~ 52 b;: b;c bk
(33) 0« ﬂ g)s Qn-{-?-rr-fg

where we can set the row (g, h,0) either
g=0, h=f or g=a, h=0.
In this case, the following inclusion relation holds.

(34) (a+ 0 :aDa:fDa+0Ff+Oa

Proof. 1) case (3,3). Suppose
PI+Qs+Rs*=0, in .
As in the first step of the proof of Theorem 3. 23, one can assume
(35) (P+Qs+ R =DIR.fif*+ (Se+ Sis+ Ses®) 11,
for some R; and S;€ 9. Owing to (30), the right-hand side of (35)

can be rewritten as follows:
(36) LRSS+ (S + SIS+ T S .
On the other hand, (24) shows

7e4() + (Ds+ D) (a+0Of).

Thus (32) is proved.
2) case (2,3;a). The formula (24) yields

(37) fs=a mod J(s)+D(a+0Of).
Thus Proposition 2.31 and (32) proves (33).
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Next we prove (34). The first inclusion is (31). Using the formula
(22) under substitution s—>s-+1, we obtain
(38) S+ (A+D)s+ (B+HA+D))fr=a(s+1)f°.
We can eliminate s*f°*' and sf°*' in the left-hand side of (38) by use
of (30) and (37). Then we find
(as+ H)f*=0,
for some H e 49 with ord H<<2. Therefore, Theorem 2. 21 (or its proof)

proves

asa: f.
Q.E.D.

We remark that the similar argument of the last part of the proof

shows
(39) biea: f
for case (3, 3).

Chapter III. Determination of b(s)

In this chapter, we explain the method to determine or estimate &-
functions, and give some explicit formulae in §§ 15~17. The relation
with the local monodromy structure is also discussed.

1 [d

When we exibit b-functions, we sometimes use p(¢) =— ¢ —logb(s)
2rniJ ds

X t~°ds, where the path of integration encounters R, counter clockwise.
1 .

That is, if 6(s) =1] (s+a,)®, p () =2 cit*. Similar notations are used
i=1 =1

for b(s) and so on.

A. General Procedure

§ 9. Construction of Eigenvectors

One of the most effective way to seek factors of &-functions is the

construction of eigenvectors. Let [ be a 9)-Module and « be its non-
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zero section satisfying
1. There exists ¢ C such that
Q@u=0 for any Q(s) = 9(s).
2. fu=0.

Then, (s—a)|b(s). In fact, P(s)f**'=0b(s)f* yields Q(s) =P(s)f
—b(s)e4(s). Then b(®)u=P(ax)fu=0. Hence, &(a)=0.

Conditions 1 and 2 assure that the map JH—_L defined by fi>u
is a well-defined 9-homomorphism, and it is an eigenvector belonging
to eigenvalue & of the action of s in Homg (M, L). Since M is holo-
nomic, if we take a holonomic _L, Hoemgy( M, L) has finite dimensional
stalks [13], and the eigenvalues of s can be calculated. In this course,
there follows an important result. The following Theorem 3.3 is due

to Theorem 4.3 [12]. First note the following fact [13].

Proposition 3.1. Let X be a complex manifold and let Y be its
submanifold. Let L be a holonomic system on X. Then

1. There is a regular (in the sense of Whitney) stratification of
X, X=UX, such that SS(L)CUT%X andHomy(L, Bx.x) is locally
constant sheaf of finite rank. Such stratification is called regular with
respect to _L.

2. If S{S'(I) CT#X and Supp LCY, L is locally isomorphic to

a finite direct sum of Byx.

Definition 3.2. Let X=X, be a regular stratification with
respect to M. We denote by b'(s) the minimal polynomal of s in
D Homg(M, Bx, x)sny o€ Xa b(s) is similarly defined for .

codim X,=1

Theorem 3. 3.

o)) Lem. 395 11 2,
@) Lem. (395 I=I 5.

Proof. It should be noted that #°=5'=58'=1 and b'=s+1. We



THEORY OF b-FUNCTIONS 155

set ﬂ":fI bi(s) - M, and prove by induction that codim Supp M*>k.
Since SupFi%C{sz}, this is true for £=0.

Suppose codim Supp M*'=Fk. Let Y bea k-codimensional irreducible
component of Supp M . Then, there is a non-singular manifold Y'CY
such that codim (Y —Y”’) >k and S{S’(ﬂ’l"‘l) NTXxY' CT§EX. There-
fore M*'=(By,x)” by 2 of Proposition 3.1. S‘;nce b* (s) Homg (M,
Byix) =0, b (s) Homg (M, M*"),.=0. Then the commutative diagram

M

5" (s) l&

S g
TT5(s)
=5
shows M =0. That is, codim Supp M*>k. Lastly, we obtain H"
:ijobf(s)m=o.
Therefore (s) | H0 bi(s). Lem.(5%)|b was proved in the arguments

at the beginning of this section. The proof of (2) is almost the same.

Q.E.D.

As a special case, if f has an isolated singularity, b"(s) turns out
to be the minimal polynomial of s in J, and hence b(s)=(G+1o"(s).
Thus the determination of b(s) is reduced to the study of T in case
of isolated singularity.

At this stage, we note a simple but useful proposition.

Proposition 3.4. Assume f is a weighted homogeneous polynomial
with X,=Y] a;x;D; (isolated singularity or not) such that for a poly-
nomial p(x) €Clx], (Xo+2 a;) p(x) =0 yields p(x) =0. Then,

al/om_q; (%, th):;’l/m.@ ('—Wa ‘th)'

Proof. We have only to prove,
“If 4 B, satisfies X;;4=0 and f4=0, then f;4=0.”

We set 4=¢(D)0(x). Since &;f;(—D,)qg=§&:f;(—D,)q, there is an
r(§) such that [/;(—D;)q(§) =&+ (€). Using the condition f4=0,
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0=2" a; D¢ fi(—Dga(é)
=31 aiD§ir (§)
= (X @D+ Y a) 7 (€).
By the condition on X, we can conclude that (&) =0. QE.D.

M. Kashiwara conjectured that &(s) =]] &°(s) ([12]). This, how-

ever, fails to hold in general, as seen in the following.

Example 3.5. f=z'+y°z (cf. Example 4.20).
g (s) is generated by yD,—32D,, y*D,—32'D,, y’2D,—x'D, and
— (:L'D +yD,). The stratification is X=UX,, X,=X\{f=0}),
1—{f 0\ {x=y=0}, X,={x=y =0\ {0}, X;={0}. SS(j/l)——T
UT:XUT%X.

B(s)=s+1. B (s) =fI< _>. b"‘(s)z(s—i—%)(s-i——g—).

b*(s) can be calculated by the construction of eigenvectors z~**“2DLD%
0(x,y) Dbelonging to —(h+k+2)/3, h k=0,1. b5°(s) is known by
eigenvectors DiD%0 (x, v, 2), A=0, 1, which belong to —4/3 and —5/3.
On the other hand, explicit calculation of P(s) (cf. § 11) shows

5
s+1 Y ]
P@F =11 (s+2) £
where
10+ 1(5+2) (202D, + DD + (544 (s 2 2
P(s) =D.Di0+ 3) 3D,D,,y+DyD,>+ s+ 3><s+ 3)D,,
. 1 ]. 9 2
Q—§<—3—D,y +xDuD=>'
Thus 5(s) =fI <s+—g_>. In this case, both &%(s) and 4*(s) have a factor
y=2

(s—i—%), but &(s) has (5+§—> as a simple factor.

§ 10. Construction of Operators

If we can find P(s) € D[s] such that
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3) P(s)fi=06" (91,
b(s) is a divisor of #’(s). There is a systematic method to construct
such P(s) when f is a weighted homogeneous polynomial. This pro-
cedure was pointed out by M. Sato at the early stage of the theory of
b-functions. For the simplicity of explanation, let us assume that f(xz, y)
is a weighted homogeneous polynomial of 2-variables: X,f=f, X,=axD,
+ByD,.
Suppose one can find operators A(s) and B(s) such that

AG)fH=als) ™yl [,

B(S)f“lz a (S) xiyj+lfs .
Then,

(@D, A+BD,B)f**'=a(s) (@D,x+BD,y) (z'y’ f*)
=a(s) s+ GE+Da+ G+1)P) iy F°.
This process shows that i[ one has equalities
A; ) =a () fym i i=0,1, -, m,

then one can construct a P(s) € PD[s] such that (3) holds, and each
roots of &’ (s) is that of l.c.m.(a;(s)) or of the form — (awk+pl) 1<k, /7,
E+I<m+1. More generally:

satisfying 1. X,f=f for X,.=2 awx;D; a;€Q, 2. For all multi-
i=1

indices o, || =m, there exist P,(s) such that

Proposion 3.6. 1) Let f(xy, -, xw, ¥1, 1, ¥1) be a polynomial
k

(4) P.(s)ff=a,(s)x“f*, a.(s) €C[s].
Then,
®) b(s) ;m}ﬁll.;.lln. s+ awd -Lem. (2a(s)).

Assume further that ord"P,(s) =deg a,(s) in (4). Then, we can
find P(s) and b’ (s) in (3) such that ord"P(s) =deg b’ (s).
i) When f(x) is a weighted homogeneous polynomial with weight

(@1, -+, a,) and of isolated singularity,
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sZ+n—1
6) by () [(s+1) ;E;L I-Cél s+ 20 aws)
Shi=h

where p=dim O/a.

Proof. Relation (5) can be proved analogously as preceding argu-
ments. Last part of i) is obvious by the very construction of P(s).
When # has an isolated singularity, aDm®*, #=dim O/a. Therefore, (4)
holds for any a, ja! =4 with a,(s) =s+1. Q.E.D.

In the next section, we give the explicit formula for &; in case ii).
We present (6) here simply to show that our elementary procedure even
proves the existence of &, for some polynomials.

The estimate (5) is not the best possible one in general.

Example 3.7. f=z"+yz".

DD =+ DS

D, = (s+1)2"f".
Then,

2
<zm—1 (_‘Qﬁ) +i$n—2DyDi> fs-i-l: (S+ 1) <S—|- 1+ n— 1>$n—zzm—1fs+1.
n m n
Thus, all calculations are carried out about the monomials x'y’
0<i<zn-1, 0<j<m. And we have
b(s)| (s +1) Lem. (s+ﬁ+i>.
I<k<n-—-1 7

m
i<i<m

Since 0(f), y V"D 'D. 0 (x,2) and Di'Dr~'0(x,y,z) belong to
E 1

eigenvalues —1, — <—~+—> and — (i—l-l), this is the equality.
n m n

Example of this type can be found in § 21.

B. Isolated Singularities
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§ 11. Quasi-Homogeneous Isolated Singularities

Let f be a quasi-homogeneous analytic function with isolated singu-
larity at 0 C". In this case, a result of K. Saito [22] tells us that
we can find a suitable codrdinate transformation so that X,f = f with
Xo=i a;z;:D;, a;€Q*. We shall show that b is determined by (ay, -+, @,).

Xgplying the functors Aomgy (-, B,) and £*Q) - to the presentation

II (10) of %, there are two exact sequences.

0->F—>3B,,— B,

O—F*<Q < (2M".
Here,
F=Homg (T, Bp) = {4(x) € Bl f1(x) 4 (x) =0Vi}
F* =.Q"<§j’z =2/ a2 ~=0/a,

and they are dual to each other.

The action of s in F is X,, and that in O/a is XF=—-X,—>] a.

Since we can take monomials as a basis of 0/a, s is diagonalizable.
The following theorem was proved by Kashiwara-Sato-Miwa [19]. Here,
we give a simple proof of it.

As we have shown in §9, b(s)=(s+1)b(s), where b(s) is a
minimal polynomial of s in .;#amg(%, B,). We denote by B(s) the
characteristic polynomial of s, and by P(z), the associated trace-type

formula.

Theorem 3.8. P (&) =[] ‘1‘; .

Proof. Let {m;} 1<<i<py be monomials such that {m; mod a}
generates (O/q.

Claim:

@) Clzy, -+, 2,1 =CLfs, -, Fr] ® 2 Com,.

In fact, since (fy,---,fn) is algebraically independent, C[fy, ---,f.] is
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isomorphic to a polynomial ring. One can define the map from the right
to the left-hand side naturally. The inverse can be constructed as
follows. Take ¢(x) eC[xy, -+, x,]. Then, there are unique a;€ C such
that ¢ (x) =2 aym;+ 2 b, fi, since O/a is a vector space. We can re-

write further
; bifi= 2 (JZ agym;+ b1,

and a;; are uniquely determined since a/a’=(0/a[7T])® by Lemma
2.20. Here, (O/a[T])® denotes the y-th homogeneous part of O/a[7].
Using a’/a**'=(O/a[T])*, we can proceed further and find the unique
(as, aij, @iji, ---) such that

@ (x) =2 agm;+ 3 agmif;+ 2] asgpmififet .

When the weight of ¢ is d, this series terminates at most [2d] + 1 terms.

Consider the Poincaré polynomials of both sides of (7). Then,
[T A=) "'=T] (1 -9~ xq(?).
g(#) is nothing but tr(¢*: @/a). Therefore,
tr(27°: O/a) =tr (¢*+3%: O/a)

1—g-
1z

=111

ti—t¢
_ _ E.D.
ni—=: Q

Corollary 3.9. i) dim F=dim F*=p=[] 2-% .

a;
i) Let P(¢)= 21 qut* be the expansion into the polynomial with
EY=0)

fractional power. TT/zen,
b(s)=(+1) [l s+a).
@z 0

i) b(—n—s)=(—=)%(s), d=degh.
The proof is obvious.

We remark that the eigenvector belonging to -Y'!a; is 1 in O/a
and 0(x) in F, and that to — (#—2_ a;) is Hess(f) in O/a.



THEORY OF b-FUNCTIONS 161

Since H=9/Da, one can rewrite

b(Xo) =3 pi(z, D) fs.
Then, defining P(x, D) =3 p;(x, D) D,;, we obtain
P(z, D) f*'= (s+ 1) 2 pi(x, D) fif",
=(s+ DXy f,
=b(s) .

Put d= degd. If d=max(ord p;)>d, then 3 0,(p,)f:=0. There-
fore, by setting p;(x, D) =3 D%, (x) for 0,(p:) = a:.(x)E% we
obtain Y i (z, D)f;=0. Then

b(Xo) =23(ps—20)S:, ord(pi—p}) <ord p;.
Therefore, we can choose p;’s such that ord p;<<deg & and at least one
of them is an equality. Then

ord P=max (ord p;+1) =deg b .

Thus we again find Cor. 2.26. For example, when fFf=3z% 5(s)

7
=85+ —.
2

Z

b(X,) :% S Dyt %:% >3 Dm:% 31D

Therefore P(z, D) =% > Di=24.

NI

§12. L(f)=2

We use the presentation I1 (13). Applying the functor Homgy (-, B,.)
and 2" -, we have,
2

©)) 0->F—>B— B,
(10) 0 F* (") e (@)™ 7,
Here

F= Jr{@mg (%, @pg)

~[(9) e BuneF, a.@v o Dyu=0,15v=r],
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Fi={ucsB,.|(a+0f)u=0}.

The sequence (10) will be analysed later.

Set Fo={ve B, (a: f)v=0}. Since L(f) =2, we have fleaf
+a’ and hence F,CF,. Set y;=dim F;=dim O/(a+Of), #,=dim F,
=dim O/ (a: f). Then, u,+ y,=u=dim O/a, since

S
Coker (0—0/a) =0/(a+0f)

and

S

Coim(O—0/a) =0/ (a: f).
We choose a basis of F, and F; such that (u, -, #,,) is a basis of I,
and (uy, -+, %p,, Upyr1, **+, U,,) is one of Fy. If 3 e, (x, D)a,(x) =0,

(X e.(z, D)a; (z, D)) f*

=-s(XZ e (x,D)a,(x))f=0.

Therefore Y e,(x, D) a, (x, D) € 4, Da. Then we can solve the system
of equations for v;, 1<i<<y,,

a,(@)v;=—a, (x,D)u;, 1<v<r,

and v,’s are determined mod F,. Thus, <2>, 1<i<y, and <Zi>, 1<i<y,
£ B
forms a basis of F.

This can be summarized in

Theorem 3.9. Let f be a holomorphic function having isolated
singularity and of L(f)=2. Then Homo(, B,) is p-dimensional

and its basis is given by the form

o) (o o (o)

where (uy, -, u,,) forms a basis of {u€ B,,|(a: Hu=0}, (uy, -, tty,
Upysr, oy U) SJorms one of {u€ B,|(a+O0f)u=0} and v; satisfy

equations

a,(@)v;=—a, (x,D)u;, 1=y<r.

5(s) can be calculated as a minimal polynomial of
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() e

Let &;;, be the components of a matrix
{5 20
~B —Al) \by by
We have (bu, by (J; ) —5(s)f", and
s

(bll’ bl?) :Z (Ci’ 0) fl+ (C’ O)f+ 2 d,,(fll/, (JL" D) ’ (I’V("C)) >
by the presentation of J and the definition of b(s). Set
P(s,z,D)=>c*D;+ (s+1)-c.

Then, P(s, z, D) f**'=56(s) f°. This construction of P is applicable even
if L(f)>3, when J(s) is determined and &(s) is known.

We note that we can take P(s) such that ord?P=deg & (Corollary
2.26). This can be seen directly as follows. By the definition of &;;,
ord b,<d, and ord b,<d—1, where d=degb. Owing to the relation
bw=3"d,a,(z), we can choose ord d,<<d—1, by the same reasoning as
in p. 161. Then, ord(by—>d,a,(x, D))<d and hence we can take

max (ord ¢, ord ¢) <d owing to the relation

by—> d,a,(x, D) =3 c'fi+cf.

Therefore, ord”P (s) <d+1=deg b, and since the converse inequality is

obvious, this must be an equality.

Let u= (j,> e B,

Then u satisfies ( 0 1 > u=au, and yu€F if and only if 4
—B —A
satisfies
d’'=ad, fd=f4=0,
11) A, (a,z,D)4=0,
(12) (&®+Aa+B)4=0.

Therefore, we sometimes call 4 itself, instead of u=<AA> an eigen-
a

vector.
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Next, let u’:(j/}) and u=<AA> be root vectors belonging to an
a

eigenvalue «:

s-(u,u’y=(u,u’) <OL ;)

Then
4 =ad +4, f4=F4"=0,

(13) A(a,z, D)4 =—a,(x)4,

(14) (@+ Aa+B) 4’ =— (2a+ A) 4.

Conversely, if 4 is an eigenfunction and 47, 4” satisfy above formulae,

# and u’ are root vectors: Especially when

(15) (a: f)4=0
and
(16) 2o+ A)4=0,

u= ( AA> and ' = (3) form those belonging to an eigenvalue a.

We can also use I1(32). In this case, the isomorphism holds

(19) F*=(0/(a+0£)) ((1))93 ©/a: f) ((1))

as a vector space. The action of s is, under the above isomorphism,
s: — .
r <1 —A*/\r

§13. L(f)=3

First, we consider case (2, 3;a). Define the spaces of 0-functions

F, as follows:
Fi={ueB,|(a+0f+0a)u=0},
= {ue Byl (a: fu=0},
Fo={uc B, ((a+Of): a) u=0}.

The relation II (34) shows there are canonical inclusions:
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(20) F,cF,CF,.
Since dim F,+dim Fy=dim O/ (a+ Of), we have

3
S dim Fy=dim O/a=4.
i=1

Using the presentation II (33) with g=a and A=0, we obtain the
following theorem. The method of proof is similar to that of Theorem

3.9 and we omit it.

Theorem 3.10. Let f be a holomorphic function having isolated
singularity and 2=1(f)<L(f)=3. Then Homgy (ﬁi, B.) is u-dimen-

sional and its basis is given by the form

0. O\ 0 0 iUy [ Up, [
Uy u,! ‘vl Uy 7w, w,,

where (uy, -+, u,,) is a basis of F, for i=1,2,3 and (u, v, v'w) satisfy

the following equations:

’ ’
bk'Ut +bku,;=0 N
a,v;+ayu;=0,

bkwi"}‘b;vi“}‘ Zui=0 .

The action of s in F = Homy (%, B, is given by

u 1 7
s:(’v — . 1 v
w —E —-D —-C \w

Let ¢;; be the components of a matrix

Ci1 Crp Cy
= |Ca €2 Cy| .

\cy €3 Cas

1
1
~E -D —C

The presentation II (33) with g=0, A= f gives
(511, C1z, C13) =Z (Ct, 0,0)fi+ (¢4, €5, O) f+ Z dv(a':) a,, 0)
+ 22 ex(bx, 0%, i) .
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Define
P@)=>1c¢"Di+ (s+1)c;+s(s+1)ec,.
Then
P(s) f1=b(s) f°".
We remark that this b-operator P (s) can be so chosen that
(21) ord”(P) =deg b.

It should be noted that we cannot apply Proposition 2.25 since RS 3
(and hence RS 2 and RS 1 also) does not hold for f. The argument
to prove the existence of P(s) with (21) is similar to that for case
L(f)=2 (cf. p. 163) and we omit the proof.

The situation becomes complicated for case (3,3). Example 2.27
shows that fe&a: f, and there exist C,(s)’s in general. The detailed

discussion will be found in a subsequent paper of the author.

§ 14. Examples of Calculation

In order to demonstrate how to use the procedures given in the last
section, we calculate some examples. The following two examples are

L(f)=2,, and double root occurs.

Example 3.11. f=%(x4-i— yit e —xys =11, adn’, a:f=n.

We use the following notations. X,= (xD,+yD,+zD,)/4, X=X,
+xD,/4, X,=X,+yD,/4, X;=X,+=D,/4 and p=1—xy=.
g (s) is generated by X;; and following four operators.

2
~2

- X)) —
z(s 5) 49

(¥*D,+=D,+z*yD,),
1,'2 9 9
y(s—X,) — —4—(; (v*=D,.+2*D,+ zD,),
2
2= X)) =~ (Do 22Dy + 2Dy,
@

(s— X)) (s—X,) — cryP,P,— C_’;X: (Bs—X,+2Xy),
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where

P,="Y(y%D,+2'D,+zD,),
¢
and

P,= 1D, + 22D, +yD),).
@

Then, calculating eigenvectors, we have

oX)
0 ) = (_—5Dy6)’
4

(Di—6D,D,)0 \

D,o

o

0 0
el:(@)’ 62:<—6>’ -

Do Do \
65:(—_5&6)’ e"z(~3 sy €=
4

:4—7(D5—6DyDz)6

By the aid of this basis of Homg (j/[, B,.), the action of s can be written

(-1 3
1 -1
—5/4
5(61’ €, 63, T, 611) = (@1, €ay "7y 311) .'.
—3/2
~7/4
Therefore,

b(s) = (s+1)* +£< E( l).

()= (s+ )(s 4) s+4> s+4

Example 3.12. f=xy(x+y") (2*+y)

pn=13, a: f=m. X 1xDI+%yD,J, leéxDz—.L%yDy.

1:§-

Y (s) is generated by three operators:

z(s—=Y,) — y 72— 40y —9° D
(s—Yy) 30(4_13xy+9x2y2){(x y—9z’y)xD,

+2142"+ 5y +18x*y) vD,},

and similar operator, exchanging x and v~ in the above, and



168 TAMAKI YANO

1_1%” 1
s'—sA—B, A=——5———(xD,—i-yDy), Bz——_;—y—XlYl.
2(1—_ > 1-22
41'3’ 2 y

)
0
The operators can be chosen in another way (cf. § 19). <6) and (—T—}()‘)
2

D,Dlﬁ)
—D,D,0
belongs to —1. Others are D,0,---<>—2/3, D0, ---<>—5/6, D30, ---

-1, <D1Dy+%D§>6, > —T/6, (DgDy—D';,Jrz_l()Dz)a, c>—4)3,

form a root subspace belonging to an eigenvalue —1/2. <

Thus,

b(s) = <s+%>2<s+—§—> <s+—2—> (s+1) <s+_(75_> <s+%>.

C. Local Monodromy

§ 15. Relation with Local Monodromy

In the preceding sections, the equality dim F=dim @/a holds. This
is based on the deep connexion between the local monodromy and the
theory of &-function.

The local monodromy of f~!'(0) around O is a linear operator in
Hi(f~'(e)NU; C), where U= {x=C"||x|<e¢, | f(x)|<0,0<eLd<1}.
When f has an isolated singularity at 0, only H°~=C and H™'=C* do
not vanish,

In general, the local monodromy and &-function relate each other
through the hypercohomologies of relative differential form. Since we
have not yet completed the argument in general, we discuss here the
case of isolated singularity. In this case, the linear map in H™! is
usually called the local monodromy.

Professor B. Malgrange proved in [17],

Theorem 3.13. Let f have an isolated singularity at 0. Then,
exp (2ris) |7 is equivalent to the local monodromy of f~'(0) around O.



THEORY OF &-FUNCTIONS 169

Therefore, if we determine the action of s in F, we can also de-
termine the local monodromy of f~*(0). At this stage, it should be
emphasized that, as an invariant of f~'(0), b-function is stronger than
the Jocal monodromy. For example, let f; be a pg-constant family of
isolated singularities. Then, the local monodromy of f, and that of f;
are known to be equivalent. b-function, however, varies. This situation

is extensively analyzed in §§ 18, 19. Here we give an easy example.

Example 3.14. f=z2"+y"+:1z'y’. u=16.

For £=0, this is weighted homogeneous and

E(@:ﬁ[ﬂ(w%)
B(s) = <s+—25—> <s+%>2<s+—§—>3<s+ E>4(S+—>3<s+l>2<5+%)

- 3 % 3 4 3 2
S0 ) B 2 04
5 5 5 5 5 5
When £=0, DiD0 (x, v) is an eigenvector belonging to eigenvalue
—8/5, and 0 (x, v) is one belonging to —2/5. Whereas, when £5~0, the
former cannot be an eigenvector since f-D3D30(x, y) 0, and the later

belongs to two eigenvalues —2/5 and —3/5. Local monodromy does

not change since —3/5=—8/5 mod Z.

§ 16. Join Formula for b-Functions

Let f(x) and ¢g(y) be holomorphic functions with different variables.
Then. we can know the b-function of f(x)+¢(v) in terms of those of
f and g. Put n=dim X, m=dimY.

Theorem 3.15. Let f(x) €04 g(v) €0y, f(0)=g(0)=0, and

assume ¢ (y) is quasi-homogeneous and of isolated singularity. Then,
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brim(s) [Lem. (B (s—a) e R,).

Proof. We set h(x,v)=f(x) +9(), D=Dxyr, O=0x.r and Y,
be the vector field of quasi-homogeneity of g¢; Y=¢g. Then, the

following inclusion holds.
Claim:
(22) Ir() D4;(s—Yy).

The proof of this Claim is given at the last of this section.
Next, since a,+Oh=0-a,+0f+00-aq,, if we set

M =D[s1/(D[s14; (=Y + D[s1f + D[sla,+ D[s]ay),
there is a canonical surjection
(23) M~ Fp—0.
As we know, j\zg=‘@1’/=@yag:é F;, where F;=B,, n=dim Oy/a,
and s acts on each component se;:a:rlately,

stu—ou, us,;,

and B,(s) =] (s—a;). Since the action of s is that of Y, in ﬂg, we
have,

M= Dy QLG ADx[s1/ (Dal5) 85— ) + Dals] @+ Oxf N},

This proves b,(s) |Lem.(b,(s—a;)). Q.E.D.
J

Corollary 3.16. Upon the conditions of Theorem 3.15, we
Surther assume f (x) is of isolated singularity. Then,

brea(s) =Lem. (B (s —a) | Ry),

Byy(s) =1 By —a, where T (s—a) =B, (s).

Proof. In this case, h= f - ¢ has an isolated singularity at 0 X X Y.
M’ defined in the proof of Theorem 3. 15 satisfies SS (H’) € T% (X X Y).
We apply the functor Aomg (s, Boxxy) to (23) and have

(24) 0->Fy—F’,
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where F,= HAomy (_%,,, Booxxr), F’ =<—D J/MQ“,(%AHS_%, B,). Owing
i
to the Theorem 3. 13, the equalities

dim Fp=dim O/a,=dim Ox/a; X dim Oy/a,=dim F’
holds. Therefore, (24) is an isomorphism. Q.E.D.

Corollary 3.17. When f (x) has an isolated singularity at 0€ X,
k
the b-function of h(x,v)=f(x)+2.y: at 06X XY, is
i=]

bn (s) -—-%(s—{—%), B.(s) :E,<s+—§—>.

We note that there is an isomorphism, in Corollary 3. 16,
ﬂ,:)jzh H
by applying the functor Homg (-, Boyxxr) to (24). This isomorphism
can be proved (and hence also 3-16) directly, i.e. without using Theorem

3.13, when L(f) =<2, or, case (2,3;a).

In order to prove Claim in the proof of Theorem 3. 15, we prepare

Lemma 3.18. There are natural numbers ¢ j=0 such that

(n=3 () 1P W)+ Dy, 1=L.

Proof. We use the induction on /. When /=1, one can prove by

induction on /A that

h
(25) (Dr=323 ()7 () (s D
Then, it {ollows from the hypothesis of induction and (25) that

(Ia=31(=) e (B 4 (5+ D
=331 (B 2 (=) (= )5+ I+ Dy

=20 eP () jur SH I+ D) pji . Q.E.D.
7

¢ are determined by
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cP=0, j=*0, cP=1, I=0,1,---
cflhi=cP + i

Choose an operator of the form

P(s, =, D) =’§ (s—R) m_ipr(x, D) with p,(x, D) =[ 3 ap,D".

aj=k
We apply this Lemma 3.18 for (s—Y,—£) »_; in the following formula.
(26) P(s—Yoz, D) (f+¢)°
= zZ ) it =Y o= By m_wR:[24] (z, df) (f +g)° 7 **

=>k>0

=2.(s) k—z(Xj}(—)fcy) (m—E);(s—Yo—E+Dms_,)
X R[] (f + )"
=31() e ()P (m—E) ;(s—k+ D) mogy f"77
X R[] (f +g)t ™+
=21 m—y (=) 7P ; (m—E) ;™ IR, [ pp] (F +g) "™+
— S nrs (PR LT (D) [ OF, 7, d ) (£ ),

Similarly,

@7 P(s,x,D)f*
=S meres (VPR ZoaT ) | (F, 7, d )
Any P(s) € Dx[s] can be uniquely written as
P(s,%, D) =3} P,(s, z, D),
where
P,(5, %, D) =32 (5= ) st (@, D),
Do (x, D) =|a[2=k @y, aD®.

Then, the preceding equalities (26) and (27) say that the coefficient of
(De(f+9)* in P(s—Yo,z,D)(f+9¢)" and that of (5)of""* in
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P (s, z, D) f* are the same. Therefore, P(s—Y,, x, D) € 4;,,(s) when
P(G,x,D)e 4,(s). Q.E.D. of Claim.

Chapter IV. Results of b(s)

In this chapter, we investigate several examples of b&-functions.
Sections 18~20 are devoted to the study of non-quasi-homogeneous
isolated singularities in dim X =2, 3. We add some remarks in § 21,
about the b-functions of isolated singularities with modality not greater
than 2. Its detailed arguments in case corank (f) =3 will be found in

[32]. Examples of non-isolated singularities are given in § 22.

§17. Two-Dimensional Case

When the space dimension is 2, we can apply Theorem 2.24. As
is shown below, we find ‘‘explicit formulae” under some assumptions on
F. Let us explain the situation.

First, we assume that f is a locally reduced non-quasi-homogeneous

function at 0 C* such that
(@) a:f=(z"9".
Next, we assume that generators of 4(s) N (Ds+ 9)) are given by
Ay(s, z, D) =2"(s—X,) + Al (z, D),
and
A, (s, z, D) =y"(s— X,) + A; (z, D),
where Xy=awnxD,+ awnyD,, k=1, 2, a,;Q*, and they satisfy the
condition
(b) the weight of Af(x, D) (A;(x, D), respectively) is greater
than that of aya in X, (apdb in X,, respectively).

. ay a
Set A=[ u 12]. There are two cases.
Az A2g

1° rank A=1.

Assume (@, @) =c¢- (@u, @) c€Q. We write f in the following

form: f=f,+¢g, where f; is the sum of monomials in f which have
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minimal weight, say 7o, with respect to (as, @s). Then,
z*(fot ) =z (wfo+ Xag) — Al (z, D) (fo+9)
¥ (fotg) =y (cwfit+cXag) — Al (z, D) (fotg).

Comparing the terms with minimal weight in these formulae, we
have w=1 and c¢=1. Thus, X,=X,=X,=axD,.+p8yD,, f=fi+g,
Xofo=fo and ¢ has the weight greater than 1 with respect to X, This
shows that, when rank A=1, f can be considered as a higher order
deformation of weighted homogeneous polynomial. Since y'A,—xz“A,
:(/’(szy_"fny) > @(0) #0, we have
2 1>(a+Da+ (b+1)B.
2° rank A=2.

In this case, inequalities a;=~ay, apFas, holds in general. Then

the relation x*A,—y'A,=¢(f.D,—f,D,) again shows
l=(a+Day+ (b+1)ay,
=(a+1)an+ (b+1ay;.
That is, A can be written in the form

1

a+1 1
A= A= (a+1) ay— (b+1)ay) 1 +[1](6121,fl1z)-

b+1

Taking the determinant of coefficients of [il}, we have
2

f———c-x‘”’yb“—{-g, C?&O,

where ¢ is the sum of monomials whose weight are strictly greater than
that of xz*"y’*! with weight of X, or X,.

Moreover, we impose the condition

() L(NH=2.

Upon these conditions, we conjecture that the action of s is de-
termined by a, & and A. The explicit formulae for b-functions are given

as follows.



THEORY OF b-FUNCTIONS 175

Conjecture 4.0 (EEF).

1° rank A=1. A:[]‘](a’ﬁa). Then, 1= l—a 1-— /S”
1 «@ B

P( ) — ‘(t t) (t t) l—aa—bﬁ(l ) (l“ta ) (l—tbﬁ)

1= Q1- tﬁ) (129 (1—129)

Moreover, s is semisimple.

2° rank A=2.
1
:[f:5,]—_—(1~(a+1)a—(b+1)5) “rd 1 +B](a,/9)-

b+1

Then, =1+ 4 +2, and
a f

- _ peta’ (1 _Q,(L—Lba,)_ 1B+8 (1 _ t) (1 _ taﬁ’)
Po=t+ A-ma—y A a—y

Set d=g.cd. (a+1,0+1). Then, ——;— y=1 -, d—1 are non

3

semisimple eigenvalue of s of height two.

We call the formula and proviso about semisimplicity of s in 1°
(respectively in 2°) as “EEF” type 1° (resp. 2°).
The common case where formulae type 1° and 2° could cover

formally is the following.
. [ﬂ @8 and 1=(a+Da+G+1)A.

In this case, even though these two formulae seem very different, they
give the same result as directly seen. Of course, this case can never
occur according to the restriction (2).

We also conjecture that a second order operator showing that
L(f)=2 can be chosen in the following way
Type 1°
3 (s—Xo+c") (s—X,) +sA’+ B,

(;’:1— (a—i—l)a— (b'!"l)B,
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where each term in sA’+ B’ has strictly positive weight with respect to

X,. Note that ¢’ is positive by the inequality (2).
Type 2°
4 (6—X) (—X,) +sA’+B’,

where sA’+ B’ has strictly positive weight with respect to both X, and
X,.

Especially when a=56=1 in type 1°, we can also take

(s+1—a—B) (s—X,) +sA’+ B’ + (aD,A; +8D,A}).

We add some remarks to “EEF” type 1°.

According to the analysis in case 1°,
f=fo+ (higher weight), X,fo=f.

The first term of P,(¢) of type 1° is the same with P, (£). Since
there is a factor (1—¢) in the second term, P,(f) and P, (£) can be

expanded into the fractional polynomial of the form:

Pf(t)= Ztr-l_ Ztr,
rec

=
and
P, (&) =2t+ 3+
€€, =0
Note that
®) min Cy<min C

owing to the inequality (2), because min Co=a+f and min C=1-—a«a

—bgs.
There is a natural generalization of “EEF” type 1° to n#-dimensional

case. That is, if

@, a: f= (b, o, 200,

and first order operators associated to it are

(b) zfi(s—X,) + (higher weight),
with X,=>Y a;z;D;, and

©)n L(f)=2,
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then

. 15—t _— 1—¢u
6 P@)=T121 "L 4 sn-D-Zaai(]_ 4 )
(6) @ Hl—t"‘i ( )H—l—t“f

Moreover, s is semisimple.
We refer this formula with proviso as “EEF” type 1(,. There

are several cases where these conjectures can be verified, as we will
discuss later on.

Conditions (a), (b) and (c) are essential. In fact, types W%, and
W%, in § 21 satisfy (a) (with a=1, #=2) and (c) but violates (b).
P(#) is given in [32] and is different from both type 1° and 2°.

The next example satisfies (a) and (b) but violates (c).

Example 4. 1. f=~’%x"‘+%2(y~tx"“) (v + (ng— 1) gz™) ™",
t is a non-zero parameter. We impose conditions
(=1 /4<5m < (11,—2) /3, 1/n,<my/n,.
Then a: f= (™" 7' y), and first order operators associated with
it are the following: (m,=mn,—1)

v (s—X,+ (mymy—c)tx™D,) — cmt’x*™ D, ,

my\ np—5
xhtm (s — X+ (mymy—c) tx™D,) — cm,t? (v + matz™) Q

H

where
Q= (y + mptx™)*(D,— mmtx™'D,)

mltxml_

1
+ {(@*+ motz™) = (mytz™)*} D,

o=1—mmdtt ™ ™ (y + mutx™) ™5,

Owing to the inequality 1/7,<{m,/n;, we can check the condition (b).
However, condition (c) does not hold. In fact, 2=I[(f)<<L(f) =3 in
this case. P(¢) is given by the following and does not coinside with

formula type 1° or 2°.

. t(n,—Zm,)/n,

" —¢) (B —1) fimC=tmimn/m=yme (1 ) 1

P@) = —r T
A=)y (1 —¥m) 1—g™
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1 — gm=dm)/ny

1—(ny—3m;—1)/n;—2/ny _
+¢ 1-9 1= m

See type X5? in § 18 and [32].

§ 18. x™+ y'"'z + x"“y"“
In this section, we study the typical example
1 . .1 . .
S(z,y) ="am+ = ym—tx™y™,
7 71,

where ¢ is a parameter.

We can assume 1<<m;<#zn;,—1 owing to Proposition 2.10. In the
mi
7

When ¢=0, f is weighted homogeneous polynomial with weight
/1 1

=, ——>, and hence by Theorem 3.6, we have
\ny 7,

following, ¢ always denotes )

(¢m—2) @™ —1)
(L —2/™) (1 —gvm)

@ P@) =

When ¢=£0, f is of simplex type, and when ¢>0, f is a y-constant

deformation of

) Lamg Lyn
"y 7y

Therefore, the local monodromy of f is the same as that of (8). But
P(¢) is not given by (7) as is shown below. When ¢<0, b,(s) may
have double roots. Then so do the local monodromy. In the sequel, we

use the following notation.

X,=Yap,+1yp,, x,=C=m) p 1 p
7 71, 7y

M1y

Xz=v1~xDx+ (3, —miy) yD
7, N

First of all, we determine J(s) N (PDs+ D).

Proposition 4.2. a: f are 9(s) N (Ds+ D) are given as follows.

L 1<m,<n/2, 1<m,<u,/2: (™' y™)



above belong to J(s).

They are listed in the following table.
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. c _ 1 g1, mp2
x”“‘l(s—}xg) + ynz szx— an1 my lym OHLZ(S—XO),
710177258 77017725
1

_ c -
ymz I(S—Xl) + ™ "“D,,-— —
ML Mok 7L1725L

1/2 i m—1, ny/2< mym,—1: ("™ yrmmal)
MM (s — X)) — cty™ D, — mymattx™ Ty e (s — X))
yrm e (s XY — ctx™ D, — mymatt ™ My™ (s — X)) .

i+ 12my, ny—1>2m,:

xnl—Zmlyng—mg—l (S—Xo) .

((xnl—ml . mlty”‘?) , (xm-mx—ly"z*—?mz—l . ﬂl‘fﬂlztsljm,—nl—lym2~—1)) .

M (s— X)) —migy™ (s—X,),

yn2—2mg—1 {x'ﬂL—‘”H—l (S—X0> _ cty"”Dx}

. i _ c -
— mimatt i ™ l{y’”* s—X) +——a™ m‘Dy}.

LAY A

179

1y +1<2m,, 71,—122m,: a: ) and first order operators are the

same with those of case 3, if we exchange x and vy, and subscripts 1
and 2.

Proof. One can prove by direct calculation that the operators listed

+a,,(x)D,, and calculate d:det[a11 (zm]. Then, we have

g1 Ay
ct (1 — mymatt g?™—mytme=me) £ 2
. C (1_ 1 xnl_zm,yng—zmz>f 1
d= M MLoE MLt .
nctf -3
mactf 4

Thus they form a basis.

In general, L (f)<<min(#,, n,) (cf. Example 3.18).

The proof that they actually form a basis is

based on Theorem 1.10. We rewrite them in the form a,(x)s+ @, (x) D,

Q.E.D.

There are special types of functions for which L (f)<<2 holds.

indicate a<<7m:,<<b.

We denote a—& under m,, to
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Table 4.3
i) <0 my ma
1. Xi 1->(m+1)/2 1
2. X% (n+2)/2-> (2n,+1) /3 1
3. X 1 1> (#21+1)/2
4. X# 1 (n2+2) /2> 2m2+1) /3
5 S 2-n4/2 2-ns/2
6. S# 2->n,/3 (n2+1)/2
and (m+1)/2 2->n2/3
i) >0
7. Xo (ny—1)/2->n,—1 ne—1
and n—1 (n2—1)/2->n:—1
8. Xp (m—1) /3> (11 —2) /2 ne—1
and nm—1 (n2—1)/3—>n=—2) /2
9. Y n/2->n,—2 na/2->ns—2
10. YP 2/3)ni—>n1—2 (n2—1)/2
and (m—1)/2 (2/3)ne—>n—2
iii) Special cases of i) and ii)
11 X# . (n1+2)/2 1
12, X¥ . 1 (n2+2) /2
13, S (S%E) 2 2
4. Xp_. (n:—2)/2 nz—1
and ni—1 (n:—1)/2
5. Y _, (Y ) n—2 ne—2
S#. and YP _ appear only when min (7, 7,) =3.

Using the notations above we can state the following

Theorem 4. 4.

1) The function f enjoys the property 1A (2A,

3A, respectively) if and only if it has the property 1B (2B, 3B, re-

spectively).
A
1 Quasi-homogeneous
2 a:f=(z9"
3 a:f=(x,v)

a=1, b>1.

B

X, X3, X, or ¢=0.
X¥, X%,S,S%, Xp,Y,YP.

X1 miny X% mminy Seatn, Sthin

XBmaxs Yemax, ¥ Bax

2) When f has the property that a: f = (z*, y%), a=>1, b=>1, in 1) the
equality L(f) =2 holds.

Proof. 1): 1A. If fis of type X, and m,=n,—1, m;=>n,/2, then
use 2 of Proposition 5. 2. If my=n,—1, my= (,—1) /2, then use 3. If f
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is of type X, and m,=1, m;<n,/2, then use 1. If m,=1, m;= (n,+1) /2,
then use 3. The proof for the case X, can be done in the same manner.

2A and 3A. These can be derived from Proposition 5.2 by direct
calculation.

To prove 2), we list up second order operators, which certificate

that L (f) =2.

S: (=X (s—Xy) —

tzx"“z”“y""z"‘“ (—Xo+c) (s—Xy).
myms

Y: (s—X,+¢) (s—Xy) —mmtPrt™ Myt (s X)) (s—X,).
1

mymat®

x"“a’"‘<s——X0+c+—”ﬂ——1—>

7y Ny

S*: (—X) —X,) —

X {ynz—-mg—l (S—‘Xn) — Ctl’m'Dy} (m2= (n2+ 1) /2) .

Xt (s=X= 20 {6-X) +-C 2D, 0,

m,
1 2ny—38my ,,my—3 1 X
Wx y ¥ (s—xyt+¢) s—X,),
1
Q(S) = ]:; 4x2n1—3m,+1yn2—4<5_X0+C__:]_‘__*_i)
ﬂzlt 7, 7y

X {Inr—ml—l (S—Xo) _ (:tyDI} )
YP: (s—Xo+c) (s—Xo) — mimyfzmm

X <S—X1— el C"}‘ﬂ“"‘}") {ymz_l(S—XJ +——C JCﬂ‘——mlDy}

ny 7,y 7y M1 5L

(my= (n,—1)/2).

Xp: (s=Xot ot L) (- Xy~ 0tz ™D,) -0,
74

ny 7y

mymat’ "™ My (s — X)) (s—X),

- - c 1,1
AR R ‘(S—X2~————+—>
My My 7y

Q@)=

X {mltx’"‘“l (s—Xy) +—C—yD,} (my=n,—1).
My

The operator for X¥ is similar to that of X#. In view of these
operators, we can conclude that L (f) =2. Q.E.D.
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Note that second order operators in case 1), 3 can be taken in the
form (cf. 175)

(+1l—a—f) (s—X) +-.

For instance, in type Yy, mi=#n,—2, my=n,—2,

(12— 1) =X + T byt (- X) (5= X

ny Ny

2
+ %x”"’y""‘ {innl—‘ z*P;+ % yiP,+ <—%‘ + —%’) ———m‘Cm’xy (s—Xyo) }

ng—4 ng—4
—ct {y y %} ,
7 e

P1=:¢—1(yD:c+ m1txm—8Dy), P2=—-_61(m2ty”’_sDz+ny),

o=1—mmtiz™4ymt,
We exibit some special cases.
1. #,=3. Then f is quasi-homogeneous or L(f)=2: types X¥, Y,
Xp, S*,
2. n,=4. Then f is quasi-homogeneous or L (f) =2, except next three
cases.
® m=3; (ne—1) /3>my =2, my#n,/4.
They are case (2,3;a).
® my=1; my=n;—2 or 2(n,+1)/3. They are also (2, 3; a).
® mi=1;n,—3=m,>2(n,+1) /3, my=+3n,/4. L(f)=<3.
In general, following four types listed in Table 4.5 are case (2, 3;
a). (a+0f):a=(z",y)

Table 4.5 i)
my ma condition l a’
S## 2->n1/4 (n2+2) /2 m_ 1.1 mi—1
n ng 2
my 2
Xpa (n1—1)/3>(n.—2)/2 ny—2 —>— ny—2my—1
ny ng
my 1
X?b (711—’1)/4—)(711—2)/3 n:—1 _n">‘n_ n1—3mi—1
1 2
2 3
X4 2(n1+1)/3 1 RRLe! 1
ny N
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Same mnotations are used when we exchange x and y and subscripts
1 and 2.

The ideal a: f° and a(x) =x*y": are listed up in the following.
Table 4.5 ii)

_ | :
5 a:if ] I3 ‘ B
SH# i ™My, y DRy r™ n1—my [ (na—2)/2
XpB Tyt — ™ 2my ‘\ n:—4
XpP | ™l y—mpta™ 3m;y ns—3
X# l A e e T, my—2 np—2
e xbb b
N O ¢ X,
AN T
ny—2 o
Xb
Y
yb
___)éz X,
ny/
2n,/
X3
5=
(ny+1) /2 S*
’ ny/2 _]
(n,—1.:/2
2 \ Yb
XWX
S
na/3 :‘
n,—11/3
Sﬁ
X, \ X
ny/1 T
c=0
Sf»ﬁ
2
1 Xy
Xl | X JT 1 \
0 1 P n_l, ny "—;71 1? %-{-1 21‘, n—2 n—1 n,

3

Fig. 4.6
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The structure of J(s) in these four types and the determination of
b(s) is found in [32].

Note that Example 2.29 is of type XPP, and Example 4.1 is also
of type XPP if we performe the codrdinate transform X=zx, Y=y
— (ny—1)tx™.

The followings are proved to be L(f)=<3. We conjecture that
equality holds.

(m+2)/2<m,;<2n,/3, 2<my<n,/3. e.g. S¥¥,
2n/3<m<m—2, n/3<m,<(n,—2)/2. e.g. XF".

a: f is given by (afmmTly™el gmom™_gp gy™) and (M mTlymemEmel

™™ —mty™) respectively.

Theorem 4.7. When a: f= (z% v, “EEF” holds for f. Param-
eters are listed in the following table. Moreover, we can choose

second order operators as indicated in (3) and (4).

Type 1°.
lo4 8 a b
Y, ye 1/n, 1/n, ny—my—1 ny—my—1
Xr 1/n, 1/n, < 1 ny—2m,—1
n,—2m;—1 1
Xt (ny—my) /myn, 1/n, 2mi—n,—1 1
X# 1/n, (ny—my) /myn, 1 2my—ny—1
Type 2°.
S, S# a=m—1, b=my—1.
Ny— My -1_
M7, gy
A=
1 »n—m
7y VPR

Proof. Generators of J(s) were already discussed. In order to
prove that Z(s) is given by “EEF”, we determine eigenvectors and root
vectors of s in Homy (f/ﬁ, B,.) explicitly. Here, we performe this pro-
cedure taking as examples type Y and S. Calculation for other types

can be given similarly.
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We use the following notation:
(@)y=a(a—1)--(a—b+1),
[a]b—:a(a+1)(a+b—1)

(P())rea=1[(+a;), for a polynomial p(s) =1](+a;)®, &0,
ai#afy Z:/'&J

For the 0-functions, we use the notation
07, j1=DiDid (z, v).

Since indices 7 and j are complicated, we do not adopt the usual notation

P

Y : The generators of 94 (s) are
MM (s — X)) — mymatixFiy* (s — X,)} —cty™ D, ,
yre e (s — X)) — mymaptixFyF (s — X))} —ctx™D,,
(s—Xo+¢) s—Xy) —mmttahy* (s—X) s—X,),

k1=2m1—‘721, 137:27712—712.
z+1+j+1_

7, 7y

We set s;;= Define delta functions 4;,, 4i; and u;; as

follows.

di; =007, 71+ D ¢t ;0[i—Lky, j—1ks]
1>1

(=) “[i+1 GH1]
Ci,j—w(nﬂht) 71L s z<l)lk‘(‘7)”€"

di;=0[2, 7]+ X cih0[i—Lky, j—Lky],
>1

, (=) b+ . L[i—i—mﬁ-l] |:j+7’12+1] } )
ctly=——rtf— t )
sy O @m0

Ugg=diz+ (—)mTmEm (1) mst

’
. Ji%—m—m,,i—mz
(Z + ny— ml) ny—my—1

- (_)nz+m,+mz . (Z) m,t Al{—mllj+ng—7nz .
(J + ny— 7712) ng—my—1

Then, u;; where (0<i<sn,—2, 0<j<m,—1) or (0<i<m,—1,
0=<<j<m,--2) are eigenvectors belonging to eigenvalue —s;;.
When (0<<i<n,—m,—2, 0<j<n,—m,—2), 4, are also eigen-
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vectors belonging to —s;;—c.
Therefore,

P@) = @M —1t) (V" —1) ==y~ (ng—may
@A =z (A=)

tl/"l — t("x—mx)/nx) (tl/nz _ t("z—mz)/’ﬂz)
(1 —2™) (1 —2™)

b)=C TI  (G+s) TII (s+554+6))rea-

X (1—2) (

0<i<n;-2 0<i<n,—my—2

0<j<my—1 0<j<ny—mp—2
(ogigmlq

0<j<n,—2

S: The generators of J(s) are

xml—l{(S—Xz) _ thxyhz (S—XU)} + c ynz—szI s
7ML MMk

ymz—l{(s_Xl) _ 1 tzxnlyn, (S—XD)} + 4 xn;—mey ,

MM, MMyt

—X) (s—X,) — Myt (s— X+ ¢) (s—X,),

M Myt?

h1=n1_2n11, h,g-:nz'_‘zmz.

Set
st = (ny—m,) G+1) +mi(G+1)
mq7y ’
S%.zmg(i—*_l) + (,—my) (J+1)
ij .

M7ty

d=g.cd. (my, my), my=dm], my=dm;. si; and si; coincide for
i=rmi—1, j=rmj—1, 1<r<d. We denote this value r/d as s,.

We make use of the following delta functions, 0<:<zn,—2,
0<j<mn,—2.

4iy=00i, j1+ X eii0[i—1hy, j—1hi]

(@) 1, (J) 1n, (=) 11 H12 [ﬁ—l] 2

m
1,1 __ 1
Cij=

' (mymt®) U [di; + 1],

dgj=ﬂ<ﬂ_iir_1>_

g \ My my
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Similarly, we define 47; by exchanging 7 and j and subscripts 1 and

2 in the above formulae. Since dj;+1 =L12<Z +1 NEL b A 1\ and
7y \ My Ly
d,+1= _77_1_1<711—-z —1 LI 1) are positive when 0<i<<z,—2, 0<<j<s,
7y My miy
—2, they are well-defined.

Then,
— AL — A2 -
Ar-' Arm,’—l,rmz’—i— Armz’-l,rmg’—ly 1<_7 <.__d

are eigenfunction belonging to eigenvalue —s,.

For other values of (7, j), we set

- Tg+my+my
1 1 ]) - (—‘ : 1
U3 = Aij + ( ne ";2 " ) itmy,f—nytmy s
Mgt di; (2 + My) my—1

for 0<<i<nm;—2, 0<j<m,—2, and also set #?; for 0<i<<s#,—2, 0<j
<m,—2, in a usual manner.
Then, uj; and u}; are eigenvectors belonging to —sj; and —si;.
When d>>2, non-semisimple roots appear. We define the series ¢/

by the following recursion formula.
er=0

el G (=1 R G U —1) h)a, (=) "*ne

A

X (77;2”1—2) <’_[;+2z_1>g¢-1

_ij{c—;l_( 1 + 1 \)}Cfﬁ,
c r r

—+2/-2 —+2/-1

d d

[N | — L2
where ¢;= Crni_1rmj-1= Crmi-1,rmj-1-

Set
47 =3 eld[rm{ —1—1hy, rm; —1—1h,],
=1
" 1~L AP ”
=3 (= Zetjor 7, 7 1.
A/ AT
Then, u;=[dj,] and u,= _Ty form a root subspace belonging to
r d T

eigenvalue —% for 1<,<d-1.
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r

s(ur, wr) = (ur, uy)

N

Thus, b-functions are determined.

r= d i<mqy—2 i<n;—
j<n;—2 0<j<m;—2

5O =11 (+2) CIT G+st)_TT | G+5i) G+ D),

~ @yt _ __glmy—D)yay, Qg1+ a2 — __ ptma—1\ @z
By —pg A=) At ) =g Qe
(L — %) (1— %) 11— %) (1—2°)
Nyg— My 1
[1111 412]_ MmN, 7y
Ay Qs 1 m—m '
74 man,

(™™ —1) (z™™—1) (t—1)
@ =D (1)

1(T) =

is the characteristic polynomial of the local monodromy of #~'(0), when

g.c.d. ((ny—my), my) =g.c.d.(my, (ny,—my)) =1.

§ 19. Other Examples

In this section, we show four examples in 2-dimensional case and
two examples in 3-dimensional case. Interesting examples in 3-dimension
can be found in [32].

Reduced quasi-homogeneous polynomial in 2-variables is essentially

one of the following three types.
4+ y™, (" +y™), zy(Et+y™).

In §18, we investigated non-quasi-homogeneous functions derived from
the first type. Examples 4. 8~11 are dealt with those derived from the
second and the third type. In this section, we restrict ourselves to
the most typical classes, that is, those similar to ¥ and S in §18. It

should be noted that one can take
(xn,-»ml_}_ymg) (xml_}_ y"lg—M!)

instead of type S owing to Proposition 2.12. We adopt this form in
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Examples xS and xyS.
We exhibit generators of 4(s), and values of parameters in “EEF”
in Table 4.12. The determination of the action of s {for these examples

is similar to that for type Y and S and we omit the details.

Example 4.8. zY

f:_x(lxvl,_*_iynz_xmlynq)-
", s

7,/25m < n—2, n/2<m,<n,—1.
In this case,

u=(n,+1) (n,—1) +1.

Set
¢ = (mymy— (3= ms) (ma—m2)) / (m+ D,
k= ((mi+1) na—ms) /72,
k= {(mi+ 1) n,+ mi— (m,+ 1) mynyy /nym3,
g=1— fgtmmytn=n

and

Xo= (nyxDy+ nyyD,) /(n,+1) n,.

F (s) is generated by

2 5= X) = £ gy oD, (@ key ) D)
5= X)) = gy D, — (ke Ky D)

and

(5= Xo+¢) (s— X0) —-%xz"“_"’yz"‘*‘"?

X {2X,—X,—X;—¢)s+ X, X, — X+ Xc}.

Example 4.9. xyY

j‘: xy (x"x -+ y": _x’"xymz)
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125y —1, n/2<m,<m,—1, p=n+1) (n,+1).
Set

c=A{mymy— (ny—my) (nz—my)} /{(n;+1) (n,+1) —1}

and
Xo= (nxD,+ m;yD,) /{(n,+1) (n;+1) —1}.

J(s) is generated by

"™ (s — o)+ ym’(-s*Xl)

y" ™ (s —X) +— x’"‘ (s—Xy,

and

2
(s—Xo+¢) (s—X,) — %xmx—"xwr"z (s—X) (s—X,).
1t2

Example 4.10. zS
Sf=x@™+y™) (2" + "), u=m, n=y.
Milnor g= (m+1) (n+v) + (v—1) (m+ 41).
Set

n(u(n+v)+v)

c=np—ym, m’'=m+pu+1, k= .
y(m(n+p)+n)

O=yxD,+ uyD,, ¥=nxD,+myD,,
Xi=¥/{mn+y)+n}, X,=0/{n(n+v)-+v}.
Yi=0/ym’, Y,=¥/nm’.

J(s) is generated by

" (s—Y) — (s—xD,) — 2 zryr—(s— X))
mn V my
¥y i(s—X,) —kx" "y" (s—Y,) + cx D,,

y(m(n+y) +n)

and

(s—=Xp) =Yy —kx*"y" " (s—X,) s—Y>).
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Example 4.11. zyS
f=zy(@™+y™) (z*+5”), #=m, n=>y.

Milnor $=(z+1) (#+v) + (v+1) (m+p) +1.
Notations ¢, ® and ¥ are same as in 4.10. Set

=(m+p+) (n+v+1) -1,

kx,=m@+v)+m+n, kx,=p(n+y)+u+v.

ky,=v(+m)+u+y, ky,=n(m+p)+m+n,

X,=C/kx,, X;=0/kz,, Yi=0/ky,, Y=V /ky,.
9 (s) is generated by

2" (s—Y7) +%y"(s—xz>,

Yy
(5= X)) + ¥ an (s— Y,
Fx,

and

(s—Xy) (s—Yy) — L 2ty (s—X5) (s—Y5).

X 1kY1

One can apply “EEF” for preceding four examples by setting

parameters in the following Table

Table 4.12
Type 1° @ B a b
zY 1/(n1+1) ny/ {(n1+1) ns} ni—m ne—mse—1
zyY 1o/ {(m+1) (ns+1) =1} | 7/ {(ms+1) (na+1) —1} m—my | ns—ms

Type 2° A a b

xS n m m y—1
m@+n)+n m@+n)+n
i
m+p+1 y(m—+u)+y

zyS / n m m Y
m@@+y)+m+n  m(@a+y)+mtn
o
y(ut+m)+uty y(u+m)+uty
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Example 4. 13.

Tpqrt =_];x1’+ly‘1+_1_.z"—-a_zys
q s
U=p+qg+r—1. c=l+_1_+l—1, a: parameter
p q r

Xy=—aD.+ LyD,+ 22D, X==(@D.+yDy+2D.)
q r

X, =X,—czD,, X,=X,—cyD,, X;=X,—czD,.

XKoo= :{0-]: (¥ %" *D,+az"'D,+ a’zD,),

and X, etc. are defined by permutation of variables and {p, g, r}.

O= (%-—-.}).) 2’_3}(1’01'}(210'1‘ <T]‘;._%> yq—'aXlzo‘Xom

+ <l — i) 2" Xz Xios
3 r

0=a’— zPSyt-ipT =t

The generators of 4(s) are X;;’s and

y(—X)) —cx? Xy, 26—X5) —cyT Ko, x(5—X3) —c2" Xy,

—Xe+¢)(s—X) —_Zf_xp‘ayq‘az’“"’(s——%(Xn—i-X)) +acQ,
@

or

(—Xp) —X) — 2?7’y " Xy Xiao

—3,7r-3

P—3,,q
T Y 2 (Bs—X,+2X,), etc.
%

< 05> and (g) forms a root subspace belonging to eigenvalue —1.

Other eigenvectors are

AP =D%0, 1<y<p—-2 < ~1_%

A§,111=<D£_1+ (p—-1)! (—)p—lDyDZ>6<—> _1_.1)_;.£’
a
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and similar delta functions by exchanging x, vy, =.

o= ) (e D) D).

1<v'<g-1
1<y"<r—1

It is remarkable that
1 1 1 )

Pty=—t+t(1—2) (1-;1/P+ T F T

and exponents (1/p,1/q,1/7) can be found through the coefficients of

X, X, X, in the following manner.

111 1 1 9

qg 7 q r

A S N N TG 0 S N )8

P p r » q r

1 ir 4,11

p2 q P q
1
+\1|Q/p,1/q,1/7).
1

This is similar to “EEF” type 2°.

1 1

Example 4.14. f= E.1:5‘ + gy:’ + %z“— axyz’. a: parameter.

4=12, c=1/6. Set

1 1 1 .
X0=§xDz+§yDy+ZzDz’ go:l_za‘az““
0,=2(ZD,+2azzD,+ yD,), Q2=ﬁ<2ayzD,—*— EDy+Jch>.

a ® a

@
Q = Q1Q2 + QzQx .

4 (s) is generated by X;; and

xr(s—X,) — «é;—zz (yD,+ az’D,+ a’zzD,)

y(s—X,) — Giz2 (a2?D,+ xD,+ a*yzD,)
@
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z(s—X,) ———éla{ (axz*+y) azD,+ (ayz*+xH) azD,+xyD,}

(s—=Xo+0) (s—Xo) +

2.2
<5s+}6—1(xD,+yDy) +_3‘2Dz> - 22 0.

a’s?
6% 12

The correspondence of eigenvectors and eigenvalues are as follows.

(We omit the minus sign).

0ot 18 Do Do, DD, (DDimaD)o 7

12’12 4 12’ (D,D:—aD?)0 4
Dol DPOLE ool (p.0,0,4 L0001,
6 D,D, 2 12 3 12

Thus b-function is determined as follows.

- D

X <5+ H> <s+1§> <s+1‘—7> <s+1—9>
12 12 12 12

P@) = (£ —1) (P —1) (11— 1)
(1 - tll-‘s) (1 _ tl/s) (1 _ tl/d)

- 2B (1 —2).

In view of this, P(¢) is given by “EEF” type 1.

§ 20. Remarks on the Canonical Forms of Isolated Singularities

According to V. I. Arnold, isolated singularities with modality not
greater than two are completely classified, up to stable equivalence, by

the following lists [2], [5].

1. 0O-modal case
Ay, Dy, Eg, Eq, Es.
2. 1l-modal case (with parameter a)
@ P Xy, Ju.

@ PP+5’ R;v,q’ Tp,q,r’ Xp+57 Yp,q’ Jp+4
® 14 exceptional families.

3. 2-modal case (with parameters b and ¢ or a=a,+ a,y)

@ JS,O; ZI,O, 1V1,0, QZ,U’ SI,O, UI,O
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@ Jﬂ,p’ ZI.P’ WI,P’ Wlﬁﬂq—l’ Wi*,?q’ QZ,P’ SI,P’ Sfﬂl—l’ Sl#ﬂq’ Ul.Zq—l’
Ui,z

® 14 exceptional families.*

The case 1 is weighted homogeneous. 2-@ and 3-@ (¢=0 or
a,=0) are weighted homogeneous 1l-parameter family. As for 2-@) and
3-(®, they are weighted homogeneous when a=0 and qy=a;=0 re-
spectively, and forms g-constant family of deformation. They are non-
quasi-homogeneous and of simplex type, and hence if 4,50 in 3-@®), we
can assume a,;=0 by Proposition 3.12.

2-®@ and 3-Q) except W, are also of simplex type, and we can
assume @;=0 in 3-@), except W¥,.

Theorem 4.15. Iz all the canonical forms with modality less
than three, L(f) =2 holds if f is non-quasi-homogeneous. a:f is
given as follows.

(x,y) or (z,v,2) 2-®@, 2-® with a0, 3-QQ with ¢£0 or
a0, and 3-@) with ay=0, a,5#0.
(z, ¥ or (z,¥%2) 3-®Q, and 3-@) with a,+#O0.

We can determine the action of s in a#ﬂlﬂg(g%, B,) and know
5(s) and local monodromy. Especially,
1. s is semisimple in cases 2-@), 3-@ and 3-Q).
2. In cases P,.s, Rpq Tper 6(s) has a double factor (s+1)% and in
Xoisr Y00 Jpis <s+%>2.
3. In the cases of two variables except W#, and three variables in

2-® and 3-®), “EEF” holds. Although W#¥, satisfies conditions (a)
and (c) in §17, it does not satisfy (b).

As for the proof of this theorem, the author restrict himself to cases
corank (f) =2 except W¥,, Jso, Zi, and Wi, The proof for cases
referred to above and f being corank (f) =3 is included in [32].

* In V. L. Arnold’s papers [4], [5] and [40], »° should be read ' in E and Es.
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Proof) In the next table, we give the correspondence between V.
I. Arnold’s classification and the author’s. Most of those types have
been already discussed. Example 4.19 below gives special types cor-
responding to Arnold’s class Z, and Z,,.

Table 4.17 is concerned with classes in 3-@), which are not of
simplex type, together with more general classes J, and Z;,and param-

eters appearing in “EEF”. The detailed structure of them are included

in [32], with the stuucture of W¥,. Q.E.D.
Table 4.16
2-@ a B 3-®@ a B
Jp+l Sg.ln 1/3 1/? Jl,p S# 1/3 1/ (9+P)
Xpﬂ Smln 1/4 1/? Wl,p S 1/ (6+P)
Yoo | S vp | g Zi, | oS (}22;+ )| /@)
2-® a B 3-® B
E;s Yo o 1/3 1/7 Ess Yp 1/3 1/10
Eys X¥ oin 1/3 2/15 Ey X§ 1/3 2/21
Ey qu 1/3 1/8 Es Ypb 1/3 1/11
Zy bemx 4/15 1/5 Zn be 7/24 1/8
Zu yXf.m 3,/11 2/11 Zu yX? 5/17 2/17
Zu bem 5/18 1/6 Zu be 8/27 1/9
Wia Y nax 1/4 1/5 Wi X# 1/4 3/20
Wis X§ oin 1/4 3/16 Wis Y 1/4 1/7
Table 4.17

3-@ similar type a B b

Js,0 me 1/3 1/9 1

Zi,0 yYP P x 2/7 1/7 1

Wi,o Y max 1/4 1/6 1

Jiy0 Yp - 1/3 1/3% k-2-d

Zsyo yYP GE+1)/@Bi+4) 1/@i+4) i-d

The number 4 is determined by

c=0 mod y%, #0 mod y**!

Among the Arnold’s classification, following eight types in Table
4.18 are also of simplex type. Ji; and E, (Z,,and Z,, respectively)
includes parameter a=ay+ - + ax_sy*? (b=5b,+ --- + b;y*, respectively),
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and a,%0 (6,70, respectively) in Jy,; (Zy,,, respectively). a:f=(z, »").
The number 4 in types E, and Z, is determined by
a=0 mod ¥, #0 mod y**!, for E,.
b=0 mod y%, #0 mod y**!, for Z,.
Table 4.18
a B8 b
Tt S# 1/3 1/ (Bk+1) k—1
A yS% Bi+p+3)/3@Bi+p+4) 1/ Bi+p+4) i+1
yorm Yp 1/3 1/(3%+1) k—1—d
Eoxis X# 1/3 2/3(2k+1) k—1—d
Eoyy2 Ypb 1/3 1/(3k+2) k—1—d
VAT yYp (3i+4)/3(3i+5) 1/(3i+5) i+1—d
Zsi412 yX¥ 2i+3)/6i+11) 2/(6i+11) i+1—-d
Zsts13 yYP (Bi+5)/9(G+2) 1/(3i+6) i+1—d

Operators and ideals a: f for Z;, and Z, are included in the

following example Z.

Example 4.19.

Z: f= l.2:""31 + ly"—tx""y"‘
3 n

'

1 2 0

D m=1, 2m>n+2, w>m. c=l(1~l>+ﬁ~1(¢0)
3 n n

3

A R w—

y* " (s —Xo)

3¢
Bm—-1)t

3x

T GBmoD XY

y2m—n-—1 (S —_ X2 + yn—mD$>

n=3i+6+d

a) 22+4+1>3m a:f=(z, y"™ ") type yX¥, Zoin: m=2i+4

(s~ Xemg25) (=Xt s

y”""D,>

_ 1 3 ? en—sm+1 _ _
?‘(—‘—'——3"2_1) y —Xo+c) —Xp)
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g . n= 3i+5
6i+11- m=21+4+d

7o n=3i+6
S m=2{+5+d

b) 22+1<3m a:f=(x, y" ™) type yY?,

2
(S—Xo+ C) (S'—Xo) —_ (m_.._‘-'_lg> tysm—Zn—I

3nc 3¢
x (5~ X,— )( ~ Xyt 2y, )
<S 1/ Bim_D s
.. 2 1 m
i) m=2, n=2m, m=2. =-§-<1——->+——1 (0).
n n

z(s—X,) —2ty™ 1 (s— X)),

yroimtl (s—X,— ctym_lDz) — _2_(_.‘3’.”_;_—_2)_ 'z (s—Xy).

a) n+2>3m af=(x,y™") type yvS* Z;,: nm==3iz_|-_l-21>+4

n—3m+2
(S—'Xl) (S'—Xz) '—4—(3‘33;’1—_%(5—‘)(0‘}‘20) (S'—'Xo—-cty'”"-lDz)

b) #+2<3m a:f=(x,y"""™*") type yXp

(5— Xo+2¢) (s— Xo— cty™'D,) —4 (m - %) £y"m =2 (s _ X)) (s—X5).

§ 21. Non-isclated Singularities

We give some examples of b-functions of non-isolated singularities.

Example 4.20. f=z"+y'2". d=g.cd.({,m).

1. d=1.

. . .
b(s) (s+1) (11 <s+z+1 +1> I <s+ﬁ+fif—1)
A =

< TI <s+i—tl—+’il>>red.

0<isn—2 n m
1<k<m-—2

2. d>2. Put I'=1/d, m’=m/d.
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. 2 .
b(s)| (s+1) <s+z+1+i><ﬂ<s+z+1+l>
1<t<d—1 n d / \i=o n
<<i<n-—2
% <s+z+1+J+1> I <S+z+1+k+1>> ]
0<i<n—2 n l o<i<n—2 n m red
1< <2 0<k<m—2

Jtl =1 mftm’ —1

We can prove these formulae by explicit construction of differential
operator P(s) such that P(s) f**'=0"(s) f*, and the estimate in Theorem
3. 3.

Recall that the integral local monodromy of f is

HO=Z Z’d
—17 —1
1 ; 1
Hy=n-1)d-1)Z | ', N (<31 I
1 1
1—1J 1-1
n—1 d—1
—1 r 1
1 : 1
He=u-vdz |1 el
1 1
1—-1 L 1
N————— [
n—1 d

k
Example 4.21. f=>] xyu_ 28
i=1

b(s):(s+1)< [ <S+il+1+"'+ik+l>>md'

0<ij=<p;—1 by D

k
Example 4.22. f=3(_1%2)"
i=1

k k Z k+1—1%
b(s)[(s—kl)ﬂ)(s—l—;—i——z—) .

Note the equality
1 2 2 s+1 k 2 s
T (D 2Dl £ = D) (s o) (L ) £,

Example 4.23. Cubic cones in C°
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Cubic cones in €° are classified in nine types.

1. 24+ y*+2'—3lxzyz (s+1)“’<s+-;£> (s—l—_5_> <s+§.>

3 3

P£1
2. Z'+y'—3zyz (5+1)3<5+%><s+%>
3. zlz—y (S+1)<5+%><s+%><5+%><3+%>
4 tzyz (S+1>3<5+%><s+%>
5. x'z+yzt (S+1)z<s+%>(s+—2_>
6. xyz (s+1)°
7. 24y (S+1)2<3+§><5+‘§‘>
8. 'y (s+1)2<5+%>
- e d)ird)

The polynomials in s written in the righthand side are the &-functions
of the lefthand side except 2 and 4. In cases 2 and 4, the factor
(s+1)® might be (s+1)? for &-function. The diagram of specialization

is as follows.

1SN

—> 4 —

W N+

6
J
7

1<

—-5—->7—->8—->9,

It should be noted that the maximal root of &(s) =0 increases along

the arrows.
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