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Notation

X: a complex manifold

Ox: the sheaf of holomorphic functions on X

S)x\ the sheaf of holomorphic linear differential operators of finite

order on X

@x: the sheaf of holomorphic vector fields on X

C

N: the set of natural numbers, NQ = N\J {0}

Z: the set of rational integers

g.c.d.^the greatest common divisor

l.c.m. = the least common multiple

Introduction

The purpose of this paper is to develop a general theory of ^-func-

tions with emphasis on the detailed study of examples. A ^-function

bf(s) associated with a local holomorphic function f(x) is defined to be

a generator of the ideal formed by polynomials in s satisfying

(1) P(s,

for some linear differential operator P (s, x, D) = ]T] sJPj (x, D) .
O^j^m

The following is a famous example of the equality of this type for
n

a quadratic form Q (x) = £] xt
z
9

(2)

where

We note that the roots of b f ( s ) =0 are strictly negative rational

numbers.

It is well-known that ^-function b f ( s ) plays important roles in

analyzing hyperf unction f*. Jn fact, define the gamma factor ? (s)

when b(s) =H (^ + ^0 • Then (1) turns out to be
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, -) rOO

In view of this formula, we can readily see that /+ depends meromor-

phically on s and its poles occur only at — at~ V, where V runs over

the non-negative integers.

For example, the factor ls + —1 in (2) has a relation with the

following facts that (1) the poles of Q5, are located at — — — v, vej¥0,
£j

(2) the local monodrorny of Q"1^) at 0 is (-1) n = exp(2ni(- n/2)),

and (3) 7(/z) = I exp ( (z'/A) Q CT) ) <? (.r) ̂ Lr behaves asymptotically like

/(//) -0(/zn/2), (/?->0).

At this point, it should be remarked that £/(Y) is an invariant of

the hypersurface /"^(Q) finer than local monodrorny (cf. §16 etc.).

We investigate bf(s) through the structure of Modules 31 = £D \_s\f *

and ^M = 3)\_s}fs/S)[_s]f^\ where 3)[s\=g)®C\i\. Here 5 acts on

them as s: P(s)fs\->sP(s)fs. Then, one can state (1) as "bf(s) is the

minimal polynomial of s in c5H." 3? admits as pecial operation t\P(s)fs

l-»P(s-f l)/s+1. The commutation relation ts — st = t plays an essential

role. This standpoint was established by M. Kashiwara and M. Sato.

This paper is organized as follows. In Chapter I, we introduce the

notion of S)[t, s]-Modules, thereby ^-functions being generally introduced.

General theory of these Modules are included in [32]. In Chapter II,

the structure of 37 and JK are studied. The author introduces a number

L(/), which measures non-quasi-homogeneity of /, and the notion of a

functions of simplex type. He also gives a good presentation of a

Module (s-s-l)c_5K for / being isolated singularity with L(/)=2, 3,

which is used in the next chapter. The methods to determine or to

estimate ^-functions are investigated in Chapter III. The author gives a

join-formula for ^-functions in § 16. Various examples are found in

Chapter IV. In particular, some interesting explicit formulae are given

for two-dimensional case. The determination of ^-functions of all the

canonical forms of isolated singularities with modality less than three is

performed by the author and it is included in §20 for corank /=2 and

in [32] for corank /=3.
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A part of the results of this work was announced in [27], [28],

[29], [30], [34] and [37].

Historical remarks around the equation (1) is as follows.

I. M. Gelfancl conjectured in Amsterdam Congress that the analytic

properties of f+ could be well investigated by use of the desingulariza-

tion theorem. In fact, I. N. Bernstein-S. I. Gelfand [39] and M. F.

Atiyah [38] proved the meromorphic dependence of /+ in s and discribed

its poles by the resolution theorem of H. Hironaka.

In 1961, M. Sato initiated a theory of ^-functions for relative in-

variants on prehomogeneous vector spaces, in connection with the Fourier

transforms and C-functions associated with these spaces [23], [26].

On the other hand, I. N. Bernstein independently took the equation

(1) and proved an existence theorem of such ^-functions which does not

vanish identically when / is a polynomial [7]. J. E. Bjork succeedingly

generalized Bernstein's result for analytic functions [8].

Since then much effort has been forcused on the general theory of

^-functions [12], [19], [27]. The author's contribution has been done

since this stage. B. Malgrange pointed out a close connection between

^-functions of f and the local monodromy of jf "*(()) [16], He proved

that, when f has an isolated singularity, the eigenvalues of local

monodromy are just exp(27T\/ —la) for roots a of ^-function [17]. After-

wards, M. Kashiwara proved the rationality of the roots of ^-function

for general f in a completely different way [14].

As for the analytic property of fa, we note also that an important

result that fa satisfies a holonomic system was proved by I. N. Bernstein

[7] in a special case and by M. Kashiwara-T. Kawai [10] for any /.

More generally, analytic property of fau for holonomic u is studied in

[7] in a special case and in the author's subsequent paper [32] for

general cases.

The ^-functions associated with prehomogeneous vector spaces are

well-investigated and they are determined by many people. The micro-

local calculus finds its good application in the area of ^-function theory,

and that theme will be fully treated in M. Kashiwara-T. Kimura-M.

Muro [41].

The author is grateful to Dr. M. Minami and Professor T. Kawai
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for their critical reading of the manuscripts. He would like to express

his hearty gratitude to Professor M. Sato and Professor M. Kashiwara

for their fruitful advices, enlightening discussions and constant en-

couragement.

Chapter I. Gen.erari.tles

In this chapter, we study the basic features of general 3)\_t9s\-

Modules and ^-functions associated with them, which are indispensable

to later chapters. The author develop the general theory of such b-

functions and Modules in [32] .

§1. 3) [t, s] -Modules and 6-Functions

Let C\t, s~] be the associative algebra over C with generators s and

t and defining relation

(1) ts-sl = t.

Set 3)\t9s\=g)®C\t9s\. A ^-Module Jtt is called a 3)[s\ -Module
c

(respectively 3)\t, s] -Module) , if 3ttl)s3tt (respectively 3tt~Ds3tt,

JUl^tJH) holds. In this chapter, all Modules are 31 [*, s] -Modules

unless otherwise stated. Since tvs — (s-\-v)tv in view of (1), Ker T,

Coker tv and Im tv are 3) [t, s] -Modules along with a given £D[tys~\-

Module.

Definition 1.1. Let X be a 2) \_s~\-Module. If stE&ut^X) has

the non-zero minimal polynomial, zue denote it by dj?(s)9 and say

"d_r(i) exists." '* b-f unctions" for a S)[t,s~\-Module 3?, are defined

by bm> v (s) = dm/t*m (s~), V = 1, 2 • - • .

Usually, £yu is abbreviated as b^. As is easily seen, bjitV exist if

and only if bm exists.

It should be remarked that if X is a holonomic 3) [£, s\ -Module

dx(s) exists, since &tdg)(£) x (x^X) is finite dimensional and <£#4>(_£)

is coherent [13] .

Standard example of 3) [£, s~] -Module is constructed as follows. Let
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/ be a holomorphic function on UdX, let X be a coherent «£D-Module

and let u be its section over U. We denote the annihilator of u by S*

that is; J = {Qzi £)\QU=0} . Define the ideal ^($)<Z.2)[>] by the

condition that

P(s, .r, £>) e^O) if and only if

, x, D + — grad/Wc|>](x)c5, for some w.

We denote by Jl the Module 3)\s\/g(s) and by /'M the class

(1 mod /(*)). Jl=S)\_s]fsu is a .$[>, s] -Module with actions of t and

^ given by,

The map £ is injective in 37. In fact, if P (5 + 1)/ e ^ (j) then

for some m and Qj^S, The left-hand side equals to

and the right-hand side can be rewritten in the form

for some R^J. Therefore,

-4-grad/) =

which implies P(j)e^(5).

The ID-Module S)fsu is coherent, and if u is a holonomic section,

S)fsu is subholonomic (see [32]).

Definition 1.2. With a non-zero polynomial p(s), ive associate

a number zu(p)^N0 in the folio-wing manner (zv(p) is called the

width of />.)

i) // P(s) eC* then <w(p) -0,

ii) // p(s) =
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iii) // p(s) has the form
k

P(s) — XI Pi (-0 > where each p3 (s) is of the form in ii) ,
i = l

^a^ mod Z 0>/) ;

= max ze;

Theorem 1. 3, // dx(s) exists, then tw(d^X = Q. Furthermore

if -we assume that t is injective or surjective, then X = 0.

Proof, we have

and by virtue of (1),

0 - t^-^dx 0) X = dx (s + w (djr^ ) t

It follows from the definition of w (dx) that

g.c.d. (dx (s} ,dx(s + w (dx) ) = 1 .

Hence the assertion follows. When t is injective or surjective, it is

obvious that _£ = 0. Q.E.D,

A coherent «2)-Module X is called holonomic (resp. sub-holonomic)

if Z*tg)(jL., £D) —0 for i<^n (resp. i<^n — 1) . This condition is equivalent
NX NX

to codim SS(£) ~>_n (resp. codim SS (X) >72 — 1) . X is called purely

subholonomic if £*Jg(X9 ^)) =0 for i=£n — l. It is known that for any

coherent ^-Module, Z*t$(X, 2)} (resp. ̂ -'(X, 5))) is holonomic (resp.

sub-holonomic) and £*J$(X9 3)) =0, z'>?2. Let T^ be an irreducible
NX

component of SS(X). Then the multiplicity of X at a generic point
NX

.r0 of an irreducible component of SS (X) can be defined (which is

denoted by ?nXo(X))9 and has the additivity, that is, if

o<-j:1<-.cI<-.£.<-o,
is an exact sequence of coherent ^-Modules, mXo(Xz) =niXQ(Xi)

Corollary Ie4e Let 31 be a sub-holonomic S)\_t,s~\-Module such

that t:Jl-^c3l is injective. Then, 3? is purely sub-holonomic.
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Proof. Consider the exact sequence

Set «C==<£W£(32, 3)). Then X is holonomic and the long exact sequence

of &*t gives us the surjection X— >J?-^0. Therefore J? — 0 by virtue

of Theorem 1. 3. Q.E.D.

Proposition 1. 5. Upon the conditions in Corollary 1. 4, bm exists.

N/

Proof. Consider an irreducible component W of SSffl.). Since

t is injective, the multiplicity of Jl/tJl at a generic point of W vanishes.
\/

Therefore codim SS(Jl/tJl) >_n which implies that Jl/tJl is holonomic.

Thus bm exists (and so does bjiiV, by the argument after Definition

1.1). Q.E.D.

The conditions in Corollary 1.4 are satisfied for Jl ~S)\s\fsu, if

one of the following two conditions holds.

i) f is arbitrary holomorphic function, u = l.

ii) f is quasi-homogeneous, 3)u is holonomic.

In the present paper, we restrict ourselves to case i) . We investigate

case ii) in [32], where the detailed structure of b-jiiV(s) and the relation

between Jla and S)fau (aeC) are also discussed. The existence of

bm(s) for "31=- 3) \s~\f su with general f and 3)u being holonomic can

be derived from that of case ii) , following the technique in § 3 of [14] .

(See [32])

§ 2. ^-Functions of Holoinorphic Functions

Let X be a complex manifold of dimension n, and let f(x) be a

holomorphic function. Hereafter we make vise of the notations fi = df/dxi}

a = S0/i, for brevity.

The ^-function of/ , which we denote by £/(s), is defined by,

bf (s) = bm (*) , where 31=3) |>]/f .

Here, Jl is a special case of 3)[s~]fsu for u = l. We also define

bfiV(s) =bjitV(i). The existence of them will be assured later by Theorem
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1.8.

It follows from the above definition that there are P(s) and

Pv(s + v)&g)[s']9 such that

(1) P(0/'+1 = */(*)/',

(2) Pv(* + v)/IJ" = */>)/',

and bf(s) and bftV(s) are minimal among such polynomials in s.

When we emphasize the point x^X into consideration, we use the

notation bfiX(i). Furthermore given a compact set KdX, we set

*/.*(*) =l.c.m. bfiX(s).
x^K

If /(.r)^0, then —fs^=fs. Hence £,.,(*) =1.

If /(o;)=0, setting j = — l in (1) , we know (5 + 1) | bfi x (s) .

If /(*)=(), grad /(*) ¥=0, then £,.,(*) = (*+!) by A/s ' l

= (s + l)/s (e.g. when f, (x)

Therefore, our main concern is with b f , x ( s ) at a singular point of

/-'(Q).
If y is in a sufficiently small neighborhood of x, bf:y(s)\bfiX(s) by

(1). For g(x)e0, g(x0)^0, we have b,fil,(s) =bf,x,(s). Because, if

l)grad log ff)

and vice versa. Thus, £/(V) is an invariant of the hypersurface {f = 0}

independent of the choice of its defining equation.

For later convenience we list up basic notations in ^-function theory.

Definition 1.6.

i ) 3 (*') = (P W e 3) [5] | P (s)/s = 0} ,

ii) W= {(x, s grad log

T70= {(^ f) e W|/(x) =0} U {U 0)

Proposition 1.7. 3? = .0 [>] /^ (s) ,
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Proof. The isomorphisms of 31, Jtt and 3?a are easy to verify.

That of JyR is proved as follows. Let P(s) be such that P(s) ($+!)/'

= QO)/!+I. Setting s=-l, we have Q(- 1) =2 ft(:c, Z>) D4. Hence,

P (,) (* + I)/' = ( (S + 1) P. (5) + I] ft (X,

= (5 + 1) (P. (5)/+ S ft (X,

Q.E.D.

If grad /(x) =^=0, /(X)=0 at xe.X, we can assume f=xt. Then

(5-^A) +1] 3) \s~\D, ~3)/iz 3)D,. Therefore,

=... = fn = 0}=W r in a neighborhood of x. Since

is an analytic set, we have

We state the fundamental theorem of M. Kashiwara.

Theorem 1,8. i) 3? is sub-holonomic and 33(71} = W. ii) bf(s)

exists and all the roots of bf(s) =0 are strictly negative rational,

For the proof of this, we refer the reader to M. Kashiwara [14],

The existence of bj(s) can be derived from i) and Proposition 1. 5. See

also [32].

Corollary I» 9. 3A, j/l and Jla are holonomic. More precisely,

Proof. For, t gives an isomorphism on W\f~l(§) in the exact

sequence 0-^-43?-* JK->0, SS (JH) is contained in f~l(V)^W and

hence a holonomic set.

Since fD.-ftsegts), SS^J^Wf] (/-•(O) U (? = 0)).

(/i = 0 ,Vz) . Q.E.D.

When f is locally reduced, K. Saito proved the following:
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Theorem 1. 10. Q is a reflexive Ox-Module. Let Xt = Yl <Zij(x)Dj

z = l, • • - , « , be elements in Q. Then Xl9 --,Xn is a locally free basis

of 3, if and only if det(a^) =g/, ge0J.

Corollary 1.11. Suppose dim.X = 2. Then Q has locally free

basis Xly X2 (Xi = ̂ aijDj) and aua22 — ci12a21 = gf, Q^O^. Converse-

lyp, if i-wo vector fields Xt in Q satisfy the above formula, they form

a basis of G.

For the proof of these, we refer the reader to K. Saito [21]. When

f is the square of the fundamental anti-invariant of a Coxeter group,
considered as a function of fundamental invariants, Q is a free module.

This was pointed out by K. Saito [21]. For the determination of the

structure of Q and the microlocal structure of 3)\s~\f\ we refer the

reader to T. Yano [33] or T. Yano-J. Sekiguchi [35], [36]. They

proved that the holonomic system 3)fa has multiplicity 1 on all the

irreducible components of SS(£Dfa), and determined a basis of Q

concretely.

Corollary 1. 11 was also noted by M. Sato and M. Kashiwara (not

published) .

Chapter II. Structure of the Ideal §(s)

In this chapter, we shall restrict our attention to the structure of

$ (s). First of all, we introduce a number L(/), which measures the

non-quasi-homogeneity of /. We further define a class of functions

called a convergent power series of simplex type, which plays an im-

portant role in later applications. In the case of such a function, cor-

responding $ (s) contains a distinguished element (cf. Theorem 2.15).

In §§6, 8, we shall determine the structure of $ (s) upon the following

two conditions that 1° L (/) <3 and 2° the singularity is isolated.

Section 8 is concerned with a delicate phenomenon about $ (s), and

given are counter examples against Sato-Kashiwara conjectures.

§ 3* Total Symbol
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For the later purposes it is appropriate to modify the notion of

order of an element of 2)\_s~\ by regarding s as element of order 1. To

be more precise, we define

Definition 2. 1. Given P(s) = X! s'Pfa, D}^3) [>] , max (j + ord Py)
3

is called the total order of P and denoted by ord r(P(Y)). Let

Z = ordr(P(s)). Then -we call

the total symbol of P. It follows that o"T (P) is a function on Cx T*X

having homogeneous degree I in (s, f ) . For an ideal 3 (s) in

we define its total symbol ideal by

Let (3 be an ideal in 0T+X \_s~\ and S be a subset of Cx T*X. Then

we denote by V (<5) and <3 (S) the null set of ^ and the ideal of

functions that vanish on S, respectively.

Definition 2* 2. i) We define

/or <z 5) [5] -Module X = 3)\s] /<$ (s) . More generally we define

H (^) = U 55 H (3) H «f) ,

/or finitely generated 3) [5] -Module £ = 3)\_s\Ui+ ••• + 3)\_s\Ui. ii)

f be a holomorphic function. The subset W\js\ in Cx T*X is defined

by

W\s\ = {(s, x, s grad log /

Proposition 2. 3.

Proof. Let P(s)<=3) [5] , ordrP = m. Then

P (*)/'= Wm<Tr(P) (/, ^, ̂ /)/s-m+ (lower order in 5),
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Therefore, if P (s) 3/0), then tfr(P) e= J(W[s~\) . Let p(s,x,$)

<=J(W[s~]}. We shall prove that *l, 3P(s)6=/(s) such that 6T (P (s) )

= />(*, «z, f)1- From this, 2.3 follows. Define the function on CxX

3(*, .r) by /'(*, .r) =tf(x\ and the function on T*(CxX) by g(*, *, r, £)

— P(t"C, x, f ) . Since ^?(s, x, srflog /) =0, we have qlt,x9 — , s

= 0. However, ( — , sd log f\ — sd(ttX} log /'. Hence, </ vanishes on
\ L> /

W'= {(t, x, sd(ttX) log /x) |*/V=0, 5eC}closure. By Theorem 1. 8, we have

^(^O-TF7, where Jl' - ^)Cx.Y W//s = «2)Cx.Y//s, whence there are

ZeJY and Qe/r such that <J(Q) =gl. We write Q0 for the 0-th homo-

geneous part of Q with respect to t. Then obviously it follows that

and (J(QQ)=ql. Finally define P (s, x, Dx} = Q0 (s, x, DJ . Then, we

readily have P (s, x, Dx)f
s = 0 and GT(P)=pl. Q.E.D.

The above Proposition 2. 3 amounts to saying that ffT (

). There are examples of / for which this inclusion relation

are a strict one (cf. §8). A necessary condition for p to belong to

<5"r(^(s)) will be given in the following (1°, 2°, 3° below).

Let p(s, x9 f) e 0j»^M be a homogeneous function of degree m in

(5, f) : p(s, x, £) = X] sm~J'aJ,aSa- In the sequel, we use the notation
| a i = j

and

j l « l = j

Let P (s) be an element in 2)\_s] with ord r(P(^)) = ??z. Then,

where a (sy x) is a polynomial of order not greater than in in s with

coefficients in 0. We use the notation

(order less than m +1 in 5)
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for a(s,x)fs~m. Let <z'(s, x) be a polynomial of order less than m in

s with coefficients in 0. Then the formula of the form

is denoted by

a (s, x)fs~m + (lower order in s) .

First concider a homogeneous function p (xy £) = X! a<*£a not depend-
\a\=k

ing on s. Then we have

p(x, D)f = (s)tp(x, dnfs-*

+ (lower order in s) .

From this, we have for p(s, x, f) =2 sm~kpk(x^ f) with the degree

of ^>fc in f is just &,

# (5, x, D)/S =

- S I! (*).-»(*- *) -.^»[/>»]/"
ft=i fc

(order less than m — 3 in 5)

x,

-f (order less than m — 3).

Now assume conditions :
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2° *i [#](/,*,#•) e (a + 0/)-1.

With the aid of the condition 2°, there is a homogeneous polynomial pf

of degree in — 1 such that

Set

Then

+ (order less than in — 2).

Thus we have the following theorem.

We define ideals cz Z = 2, 3, ••• by

Ci= WM (/, x, d/) | hog. dem( i i f )<z(*, x, f) =/, g(/, x, d/) -0}.

Note that

Theorem 2.4. Le^ ^(5, x, f) e 0r*jrM '^ <z homogeneous poly-

nomial of degree m in (j, f ) . Then, to impose the condition 1° #72^

2° w equivalent to e?isurc the existence of an operator P (j)

has the folio-wing properties.

P (5)/s — (order less than m — 1 in s) .

Assume 1° and 2°, and set

pl introduced just before this theorem. Then there exists Pf (5)
such that

f (s)fs — (order less than m — 2 in s) ,
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if and only if the following condition 3° holds.

Corollary 2.5. 1) If P(s), oid.TP = m, satisfies

1 ^(PCO)e^(^)),

2 P(s)f' = sm~1Q(x)f'-m+1 + (lower order in < > ) ,

then Q(x^(a + 0f)m~1-

2) When p2 (s, x, f ) - as2 + (£ 0<?<) * + £] fl,y?<f , satisfies pz (/, .r,

— 0, £/*£?-£ exists P (s) ^ £ (s) such that ffT (P) — pz if and only if

§4. The Numbers L(/) and

Let /eC^ such that F (a) d F (/) . We denote by /(/) the degree

of integral dependence of f over a, whose existence is assured by the

presence of

Theorem 2. 6 (H. Hironaka). f is integral over a.*)

i
Corollary 2.7. There exists P(s)^^sl-sPs(x,D) in $(s) such

that ordTP = l, PQ(x, £>)=!.

Proof. The p(s,x9£) in Theorem 2.6 belongs to J(W\_s]). It

follows then from Proposition 2. 3 that there exist k and P (s) ^ § (s)

satisfying

Obviously, this P(V) is an anounced one. Q.E.D.

We write L(f) for the minimum of ordrP where P(s)&£(s)

which is of the form specified in Corollary 2. 7. We have L (jT) = 1

when and only when / is quasi-homogeneous.

That is, there exists p(s, x, £) ̂ Ox\_s, fl, homogeneous in (5, f) and p(f,x,df)=Q,
/>0,0,0)=sdegp.
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Proposition 2.9 (K. Saito [22] ). When f has an isolated singu-

larity ', the condition L (/) >2 is equivalent to the condition

§ So Functions of Simplex Type

Let f(x) be a local holomorphic function at OeCn, /(O) =0. We

fix a local coordinate and expand / into convergent power series. The

support of f in this coordinate is defined to be

supp(/) = {a<EN?\aa=f=Q in /=S aax«>.

The set of subsets S of supp (/) , satisfying jSf + 7V0
nI3supp (/) has the

minimal element, which is denoted by inl (/) . This set can alterna-

tively be described in the following way. Define the order relation <^

on NS" by

K' if and only if di<a^ vz.

Then inl (/*) is characterized by

1° v0esupp(/) , 3aeinl(/) such that a</3,

and

2° va,a'(a^f=a') einl(/), there is no relation

Thus we can write f(x)= Xj aa(^)xCtt aa(ty "T^O, and for any .r",

.r"', a, Oi7 e inl (/) , xa is not a divisor of xa>'.

Incidentally, the following proposition holds.

Proposition 2e 10- If inl(/) = {cl(1\ • • • , a(n)} forms a set of

vertices of (n — 1) -simplex, f can be transformed to JJ yato ^y «w #/>-

propriate coordinate change (x) i-> (y) .

(a
 }\
• . Then it follows from the

condition that A is invertible. Set : ^A"1 : I, where afs are
\bj \log «n/
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f=^at(x)xaW, and set yt = exp(b^)x t . Then/(

"' Q.E.D.

In this case, / can be considered to be weighted homogeneous with

weight

Definitlon2.il. When inl(/) - (a(0\ a(l\ • • - , a(n))

o/ vertices of n- simplex, we call that f is of simplex type.

In the sequel, we fix some coordinate system, and use the phraze,

"of simplex type" to mean "of simplex type in that coordinate".

Proposition 2, 12. Let f be of simplex type. Then, by a?i ap-

propriate change of coordinate (x) — » (y) , there is found a function

, 0(0) =^=0,

Proof. First note that Ax = : ' - i s invertible in this case.
\a(n) i/

In fact, if it were not so, {<2(0), •••,a (n )} should lie in some hyperplane.

(&A /log a0 \

/ \ = A' A , j , y< = exp(*0^ and g(y)=exp(*) . Then
^n I I 1U8 ttn-l /

bl \ loga, /

-w> . Q.E.D.

It is thus found that the ^-function of f at 0 is equal to that of

|>vra(<) for any ^eC*.

Theorem 2.13. Let a0, •••,aneJV0
n\(0) form a set of vertices of

an n-simplex. Then, by an appropriate change of subscripts, if neces-

saryp, one can determine I} j = l, 2, 3 uniquely which satisfy the follow-

ing:
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There exist natural numbers Z0, •",

(1) Zoa(0) + • • • + /fc-,a
(*-1K

(2) /0 1- ••• + 4-1-4+ ••• +4-1.

Proof. Since a(l)'s form a simplex in JYo77, there exists a unique

relation for (3t^Q

(3) /9oa ( 0 )+-"+/9na ( n ) = 0

up to a constant multiple. Superscripts of a are so chosen that the

following conditions for k and 1C (0^^<C/C^^) are satisfied: 1° The

coefficients /?„, • • - , /J^ are non-zero and 0K= ••• =/Sn = 0. 2° /90, • • • , /3fc_i have

the same sign each other and ($ky •-9@K-i have also the same sign which

is opposite to that of ft, • -•, 0k_l9 and 3° |/?0-t- •-- +&_il >\Pic+ -"+0K^\.

(This is really an inequality because if this is an equality, {<2(0), • • • , (X,(K~^}

must lie in some hyperplane.)

Let us tentatively assume /?0> • -^ /Sfc-i^O- Then equation (3) becomes

(-A)a l°'+---+(-&-i)a (^

We choose rational numbers To9
mmm,Tk-i so tnat 0<7"i^( — j9«) and

We can caiicell denominators in this equation by multiplying some natural

number N. We set lt = Nrt for (0<z<£-l) lt = N0t for (£<£<£ -1).

Then, it is easy to see that condition (2) of 2. 13 clearly holds and

condition (1) thus follows from the very choice of f^s. Q.E.D.

Definition 2* 14. Let f be of simplex type. Then we divide

inl (/) into three subsets according to Proposition 3. 13, inl (/)

= /i U -^2 U ̂ s5 and superscripts of a are also chosen as indicated there.

We say that "a vector field X is associated with a hyperplane h(x)

= 1", if X=^2 aixiDi and h(x) =^2 aixi. If inl (/) is a simplex, there
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exists for each vertex a(i) the unique face of that simplex which does

not contain a(i\ Let hi(x) =1 be its defining equation, and Xt be a

vector field associated with it. When h3(x) is of the form hj(x)

= ^2ia
i
jxi, we put cJ = ̂ ai

JaP — l. Then it holds that

Hence we have

The following theorem says that $ (s) contains a noteworthy element

in it.

Theorem 2.15. There exists an element P(s)=P(s,x,$} in

3 (s) zvhich has the form

P (s) = Pk (s} • • .P«_I (j) + Q (s, x, *) ,

if (i-

and

Q(j,0,0)=0, ordrQ<ordrP.

orcF(P) = / „ + • • • + *»_! = /.+ ••• + /«_!

^ (/)</.

We used the notation

«=(«l,- ,*n) = (^lA,-",^»^»).

To prove 2. 15, we here prepare two lemmata.

Lemma 2. 16. L££ / &£ o/ simplex type. Then, there exist

s9x,-d) of total order one which has the form



THEORY OF ^-FUNCTIONS 131

L,(s, x, V) = (s-Xf-)+lf(s, x, 0),

'with

/,(*,0,#)=0,

and satisfies

Lj (s, x, tf)/s = ( - a'jcj ^"V-1 .

Here, we write a*j = aj(ff) (=^0), when /=
j=Q

Proof. It follows from the definition of Xj that

, i e m .

We regard these as equations in xa(fc) and get the solution

Then, Ly (5, x, -&) is given by

L, (5, X, tf) - (,- AO) + S C] (5- A%) .

Q.E.D.

Lemma 2. 17. Le£ P ^^^ Q satisfy the equations

for some analytic functions <p a?id 0, and polynomials i7i s, p and q.

Then,

= p (0 q(s-r>x°<

Here we have used the flotation

when

The proof is straightforward.
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Proof of Theorem 2. 15. Let us set

It follows from Lemmata 2. 16 and 2. 17 that

with qt (s, 0, #) = 0, and

Qy W/s = ( - a$*y) I'*

Since X kx
ain = xa™ for £=7^.7, we have

Qo W Qi W -Q.-, (*)/' = ff ( -
0

fc-1
Q* (*) • • -Q«-i (*)

k

On the other hand, x? lja divides x^ lja by (2) of 2.11. Hence, if

we put

where

P(^) turns out to belong to £(s) and has the required properties.

Q.E.D.

An important example of function of simplex type is the following.

Example 2. 18-

n
-ff ~\ - VI ™»i 1 ^.Wli mrl/ (^x; — 2_j Xi -r Xi '--xn ,

i=l

for l^Wi<C^i- Let us put c = 2 — - — 1. When c = 0, /is weighted
^i

homogeneous. When c^O, there are two cases:

i) For £<0, I,= {a^}9 where a(0)= (m^ • • - , wn), /2= {a(1), • • • , aw} ,

where a(£>- (0, • • - , nt, • • - , 0) , /, = 0. In this case X0=S— #*, Xf = Xo
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$ and CQ= c, GI= — (nj mi) c, ~L<i<n.
mi

ii) For £>0, the convention of superscripts in 2.13 tells Il= {a(Q\ • • • ,

a(n~1)} and I2= {a(n)}. Tentatively, we change the superscripts in such

a way that Il= {a(l\ • • - , a(7l)}, J2={a(0)}. Then all operators become of

the same form as in i).
1 n

In both cases, we can take / — min (AT?-) where Nt = — JJ n}. The

proof is omitted.

We finally note that in Example 2.18, the P (s) in Theorem 2.14

is given by

j=i

Pj (5) — II (s — Xj-\- V ^ y ) , if <

In particular we can take lj == 1, Z — ;z if 72^-^

§ 6. Generators of ^ (s)

In this section, we give a way of explicitly determining j?(s). We

always assume that f has an isolated singularity.

The ideal $^ — $(s) [\S) previously defined is determined by

Theorem 2.19.

To prove this, we begin by stating an algebraic lemma (cf. [12]).

Lemma 2.200 i) The following conditions 1 through 3 on gt

(i = 1, • • -, n) are equivalent.
i-l

1. gt is not a zerodivisor of 0/^QjO, z' = l, • • - , # , where ive
j=Q

understand QQ = 0.
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2. 0Qw/ay+1 is isomorphic to 0/a[?i, • • • , fn] under the homomor-
n

phism Si^+Qi, where a = J^QiO.

3. Each homogeneous component of the kernel of ©dv<—0[?i, • • • , ??l]
v>0

zs generated by g^- —g^ as an 0 \q~\-module. ii) 7f in-primary ideal

a of 0 is generated by n-elements Ql9 • • • , ( / „ , (^i, • • • , ^n) satisfies the

conditions in i).

This lemma is the one known in the theory of local rings. When

(Qi>'"yQn) satisfies one of the conditions in Lemma 3.2 i), it is called

an 0-sequence.

We remark that when f has an isolated singularity, a = ^Ofi~DttlN

holds for large N (actually, we can take N = }J. = dim 0/d). Thus

C/i, m",fn) makes an 0-sequence.

Next, choose an element P(^:?Z)) from ^0 with ordP = ??£. Then

the equation

order in s)

readily yields (Tm (P) (x, J/) = 0. Since (/i, ••-,/«) is an 0-sequence,

by 3 of Lemma 2.20. Thus, choosing Qa^S) such that 6T (Qii) =qij->

we have

or d (P - 2 Qw (x, D) Xtj} < m .

Hence by induction on ordr(P), we complete the proof of Theorem 2. 19.

Q.E.D.

When f is quasi-homogeneous, the relation s — XQG £ (s) holds with

a vector field X0 such that XQf=f. Then for any P(» =2 sJPj(x, D)
e«2)W? ^00 and Pj(x,D)Xi are congruent modulo ^(Y). Hence

(4) 32

(5) JK

Next, since ^oC^a and /e a, we have

(6) Jl
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by use of Proposition 2. 2 i) .

When f is not quasi-homogeneous, there are av(x, I) = ]T] #y,i (•£)?*

such that

where (al(x} , • • • , ar(x)) are the generators of a:/. Set

A,, (s, x, D) = av (x) s+a'y (xy D) ,

where a'v (x, D) — ]T] aVii(x) Dt. Then we have the following:

Theorem 2* 21.

3 W n (S)s + 3)} =11 3)A9(s, x, £

Proof. The proof will be carried out by induction on l = oidP(s)

where P (5) €= $ (s) . The case Z = 0 is trivial. There are three cases

when P(s) =Qs + R.

1. If (7f(P)-^_1(Q)^, then Pfs = 0 yields (T

Hence

ffi-! 02) (^, 0 e

and we can lower ordr(P) b)r subtracting from J° a suitable element in

2. If (Jf (P) - (7Z (^) , then, 6t (R) (x, df) = 0. The proof in this case

reduces to that in 1, if we replace $Q-s in 1 by JQ.

3. If (Jf (P) = (7^ (Q) 5 + <7, (P) , then

(7) (Tz_! (Q) (x, rf/)/+ (7, (R) (x, df) = 0 .

Denote <Tz_i(Q) (#, f) = 2] a(a)fa. Then the statement 2 in 2.20 and
l«i=i-i

(7) yield tf(a)/ea. Thus we can find &}a), • • - ,^ r a ) such that

«(a)=E^ 0 )W«.W.
y

Hence,

P' (*) = P 0) - S (S #a> (x) D«) ̂ , (5, x, £>)

is either of total order less than I or reduces to the P (s) in case 2.

Obviously, Jo'^d^J £)Av-\- J/0 since CK/IDd. Thus we have com-
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pleted the proof of Theorem. Q.E.D.

We now proceed to the determination of the structure of §(s) when

L (s) = 2. Since s2 + As + B e $ (s) in this case, every element in 3) \i\

is congruent to an element in S)s + S) modulo § (s) . Therefore we

obtain the following:

Corollary 2.22. When L(f)=2, g (s) is generated by $Q to-

gether with Av(s,x9D) and sZjrsA-}-B.

Modules yi, 3VL and J\{ are generated by two elements / and s,

where the bar indicates the residue class of the element without bar.

Their structure is characterized by the following theorem.

Theorem 2. 23. Modules 31 , 3tt and 3tt have following pre-

sentations.

i) When L (/)=!,

(8 )

~ (/«)
(10) 0<-J/K<-.0 >

ii) WAew L(/)=2,

/I

(11)

< / 0 '
' <z^

/ 0

2 i 0 y

//. o1

(i\ (f o
_ \5/ \af, a,,
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Remark : We can easily show that the sequence

is exact. It is the absence of ft and f in the right column of the map

in (13) that plays an important role in the following sections.

Proof of Theorem 2. 23. We first note that sequences (8) , (9)

and (10) are direct consequences of (4), (5) and (7), Sequence (11)

is derived from Theorem 2. 20. Let us try to prove (13) . Sequence

(12) can be proved in a similar way.

First, suppose Pl + Qs=0. Then there are RI(S) and S(s) such

that

(P + Q^fs = HR* (^fifs -r S W/-1,

where the first term of the right-hand side can further be written

Second, set S' (s) = S (5) + ^ KL (s) Dt . Then, b}^ making use of

(0+i) 2+ (5+i) A

we find S\ and 52e 3) which satisfy

S/(5)/'+1=(5,

Hence we have

Next set ff T (s2 + sA + B} = s2 + (£ a4f ,) j + (£ a(/f 4f ^) . Then, £! «„/„

= Z3 btft + bf for some &, and * by Corollary 2. 5. Since /2+

+ S aafifi = °. we have

fs + X aJD, + 2] aiy/^y e / (5) .

It follows that

^/s+1 = E (a. + A, - E fliy^y)/. - (S fl«A -
i 7
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Consequently, there are Rt and S^S) such that

(P + Q*)/s = (S Rifi}fs +Sfs+1.

This formula and Theorem 2.20 implies (13) since gQCl£)a. Q.E.D.

When dimX = 2, the statement in Theorem 2.21 can be made

simpler with the aid of Corollary 1. 11. First note that f(xly x2) is

locally reduced since we assume cOm^.

When L (/)—!, $(s) is generated by s — XQ and X12, (or Q is

generated by XQ and X12) .

When L(/)J>2, a:f is generated by two elements anounced in

Theorem 1.10 since so is Q. Let a: f = Oa1-rOa2 and Av(s, x, D)

= av (x) s + (avl (x) DI + av2 (x) D2) . Then X12 must be represented by Al

and A2. Since (aly a2) is also of an 0-sequence, the relations between

a1 and az are generated by the following trivial relation:

Since /Q — £DX12, we obtain

a1 A2 — a2A1 = (pX12

where ^(0)^0. Now we restate Theorem 2.21 in the form:

Theorem 2.24. Suppose dimX = 2. Then,

s, x, D),

where Av(s, x, D) = av(x)s + (aul(x)D1+ av2(x)D,) with aif^O

(When f is quasi-homogeneous, -we understand a1 = l and a2 = 0.)

Conversely, if there exist in $(s) f| (&)s+ 3)), Al and A2 with

above form such that det n 12\=(pf, (p(0)=^0, then they generate
La21 a22j

§ 7. "Fundamental Conjecture" — Counter Examples —

Let p(s,x,£) belong to Ox\_s, ?] and be homogeneous in (s, f ) in

such a way that
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It follows from Proposition 2. 3 that there is an integer / such that

In connexion with this fact, M. Sato and M. Kashiwara once con-

jectured in [12] that for such p9 at least one of the following three

statements should hold.

RS 1 peffT(3(s».

RS 2 There exists ;;z0eJ¥ for which the following holds.

), if deg />>»«„.

RS 3 There exists q (x, £) which is homogeneous in £ such that

0=^0 and that qpf=0T (g(s)).

However, they fail to hold in general, as is shown later.

It should be remarked that RS 1 is true for f being of isolated

singularity with L(/)<2. In fact, if p(f,x,df)=Q, after dividing

p(s,x9$) by s — J^ciiXi^i or s2 + GI ( A) s + o~2 (B) , one can use the argu-

ment of the proof of 2. 18 or 2. 20 to find the required operator P (5) .

Proposition 2. 25. 1. Let f satisfy RSI. Then, there exists an

operator P(s) such that

P(s)f
s^ = b(s')fs^ with ordrP = deg&.

2. Let f satisfy RS2. Then, there are Pv(s) and v such that

v = bv(s')fs with orc\TPv

Corollary 2. 26. Assume that f has an isolated singularity at 0

and that L(/)<2. Then one can find a " b-operator" P(s) such

that ord r(P)=deg£.

Proof of Proposition 2.25. Assume ordrP>^ = deg b. Then,

GT(P(s)f-b(s})=(*T(P(s»f.

Thus ffr(P(s)) (/, x, df) =0. By RS 1, there exists an operator P' (»

Such an operator is called a "&-opepator" in the sequel.
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in § (s) such that <5T (Pf (s) ) = GT (P (s) ) . Set P" (s) = P(s)- P' (s + 1) .

Then, orcFP'Ordrp and P" (s)fs+1 = b(s')fs. Proceeding in this way,

we finally reach the stage that ordr(P;// (5)) = deg b.

The Proof of 2 is much the same. Q.E.D.

Proof of Corollary 2. 26. This can be directly proved by Pro-

position 2. 25. 1 and the argument preceding it.

We can also prove this Corollary by the aid of concrete process of

determining operator P(s) and by the simple fact that "If an ideal <$ in

3) is generated by elements {al9-~9ak} in 0, (<z1? • • - , ak) forms an in-

volutory basis of ^". See p. 161 and p. 163.

The following gives us a counter example against RS 1 and RS 2.

Example 2. 27. f(x)= — (xn + yn + zn)-^- (xyz) m

n>5m-2, m>2.

This is of simplex type. We set c = — — l «0),

X* = — (xDx + yDy + zDs), X^X.-^-D, etc., and <? = !-
n m

Let (i9 j9 k) be a permutation of (1, 2, 3) and define the vector field

Xm, for example, by

Xm = -=*- (ym-lz2m-l

Other operators are defined according to the permutation of variables.

Xijk satisfies

Xtjkf= x
im-ly'm-lzkm-1 .

We can verify the following:

1 a 3 x11-1 - xm-1 (yz) m =fX9 x™-iy*™-iz*™>-^ X2m-iyn-m-^

^,n + 2m-l ra-1 ^Zn + m-l Q^c

2 a:f=(xm~l
y^~\xn-m-(yz}m, etc.)

3
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4

5

Statements 1 through 4 hold even when ?z>

The structure of § (s) is as follows.

(a:"-- (yz)») (5-XO — £-^-"(j:Z),) etc.

are generators of § (Y) f| {3)s + =20 - L(f)<3 is guaranteed by the ex-

istence in £(s) of the operator

The operator in £ (s) with the leading term (xy) m~lsz is

m ' \m

where

T - (xyy-im+1xn-5m+2Xm - Xsn + - { (xy) -4

^

x ( (3m ~ 1) (3;^) m + (3m - 2) xn""1) X82

The situation for xzm~2^ (az~r Q/) :/2 is delicate. We have

(5 - X.) (* - X,) /s = (^-) 2 (y*) "5 (5 - 1)/'-2 ,

and

Qf = ̂ -2 (y z) 5-2
5 (5 - 1) /-' - J^zi_X-2 (y Z) 4-25/S-l 9

Q = ̂ 123X132 + _L:C»->»-ly«—1Z—1

^
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Then setting

p/~\ _ ~2ro-2/_ vWe y \r \b) —«t ^ - A . %) \t>-^sj ,
\m

we obtain

(14) P(s}fs=(c^m 1

On the other hand

For, if ;cm~2(y2:)n~mea + 0/, we consider both sides mod xm~l and have

(yz)n~m^ (y71"1, J^71"1) o y p z , which is impossible since m>2. Therefore,

(14) gives a counter example against RS 1 by Corollary 2. 5, 1) . We

can find, however, following three operators.

xP(s) - (~
m I <p

c\2m-l
m / cp

and

mcp

Their total symbols are x(JT(P), 3;
m-1(Tr(P), and ^m~1(Tr(P). Moreover,

we can choose an element in $ (s), whose total symbol is fm~1(

Set
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or when ;?>5w — 1, set

7i-5m + l n ~ O?7Z n-m^n-2m y
-

1 + ( (3m - 1) ym^123 + x""4"

X ( (2m - 1) (xz) ™+(m-l) y"— ) Xra[ 1 .

Then,

- Z>r J ^ (y *) "-5m+2

is an element in § (5) . Thus (14) cannot be a counter example against

RS 3.

But there are no element in §(s) with its total symbol rf^G* (P) .

In fact, if DljDlsP(s) +R'(s) e^O), oTATR'<l1 + lz + 2, then

DljD]f<pP (s) = Q0 2 (m - Vrtfl'x"-' (yz} n~m (5) Zl+.2+1/s-1-z-Z2

4- (lower order in 5)

implies

xm-2 (yz) n-mfljfl* e (a + Of) li+l^ J ,

by Corollary 2. 5, 1) . If this formula were true, there should be a

homogeneous polynomial F(tly--9t4) of degree /j + Z2+ 1 with coefficients

in 0, such that

Considering both sides mod x"1"1, we conclude that

y(n-V(li + l)-m + lz(n-l)(lt + l)-m + l^ fQ yn-1 _^ Q ^n-l\ ^ + ̂  + 1

But this never occurs. Thus (14) also serves a counter example against

RS 2. Set

/>'(*) =1- (*'»-' c^-X,) (^-xo
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where

5' = s+<7-2- 3-.
n

Then the following operator belongs to § (5).

— l^n — 2m — 1p' (*) P (S) - ^-i (A) 2 (y *) —-"b^1 f
<2? \m / [_ (p v

X {(m-2)^2m(5-^"2) + (xy)ri-37n(s:7l-m + ^mym) (5-X0)>

+ J_x^-43;2m-V1-2 { (2m - 3) ;ym*2m + (n + 2m -1) x71-771^

+ (rc + ra-l)^-27^71'"1} (5 —X8) (s —X8) .

Thus ((Tr (P))2 e (Tr (^ (5)).

The following gives a counter example against RS 1, 2 and 3.

Example 2.28. f=x5(x + ty) — y\ t:a parameter. This is a

constant deformation of XQ — y5 (# = 20). Set

t)

For ti=Q, $(s) n (^5+^)) is generated by

(a) (6
lou

and

(a')

where

We set

(36)2 \ ' 15'\ "• " 25
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Then

(15) />«/' ', „ .
o- (36)

We can verify by direct calculation that

(16) (xyY^a + Of,

Formula (16) shows that (15) displays a counter example against RS 1.

We can also show that this is a counter example against RS 2 by the

same way as in 3. 24, considering Dl
yP (s) and mod x^.

Lastl}T, we show that this is a counter example against RS 3. Our

argument relies on the following general proposition.

Proposition 2. 29. 1. Let f have an isolated singularity at 0

-with Z(/)=2, and let P(s) satisfy ord r (P)=w>2, and

(17) P(s)fs = sm-1a(x^fs-m+l-{- (lower order in s) .

If there exists Q(x, D) e 3) such that (7(Q) (0, ?) =£0, and

then a (x) e a -f- Of 'when m = 2, or a(x)^Q when

Especially -when m = 2, if (17) gives a counter example against

RS 1> then it is also a counter example against RS 3.

2. More generally, if / ( / )=A>2 and ordz'P>A, a(x) ea-f Of1'1,

zuhe?i o rd r (P)=A, or a (x) e a when ord r(P)>>A.

Remark: This proposition is useful only when m = ordr(JP) =/(/)

and /(/)+!. Since, regardress of the existence of O, we see

Thus a (^) e a when ord P>Z (/) + 2.

Proof. Since f2 e= a2 + a^T, we can show by induction on & that

Now, if ff

(18) fft (Q) (x, d/) a (x) e (a + 0/) '+"1-1 = a'+-' (a +
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Therefore, since w>2, there is a homogeneous polynomial Pi(x,f) of

degree / with coefficients in am~2 such that

ffi (Q) (x, df) a (x) + pt (x, df)f e a1*—1 .

By the aid of Theorem 2. 19, 2 and w>2, all the coefficients of

* (*) <Ti (Q) (*, f ) +/A (*, f ) are in a. Thus

owing to the condition <T(Q) (0, £) ^0.

The proof of 2 is almost the same. Q.E.D.

We apply 2. 29 1 to (15) . Then (16) implies that (15) is a counter

example against RS 3.

There is Q(s)e/(s) which assures L(/)<3.

(c) QW

64 \ 15/V 15

Therefore, our / has the property that 2 = £(/)<£(/) =3. (cf. §8)

§ (s) is generated by (a), (a'), (c) and the following operator:

(b)

Set

25/ \ \ 25/ 25

Then

25

*-^ 6-^ - x- A—^ — 5 - -Y+ —
63 y^ ^1M" ^2J 12 Xl" ^1"r25A" ^° 180

is an element in /(*). Thus ((T r(P))2e(T r (^(5)).

We shall show later that several types of polynomials give us
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concrete counter examples against RS 1~3 (§18).

The next example satisfies £(/") —3. Corresponding operator of total

order 3 fulfills conditions 1° and 2° in Theorem 2. 1, but violates con-

dition 3°.

Example 2.30. f=—xn* + —yn*-txm*yn*-1.
Hi nz

mi 1 / ;Zi— Wi 1 . - TTTTc = — - — — , c — - - - - — — — , t is a parameter. We assume
HI n2 n1(nz — T) iil

and (11^ — 1)/5<W!< (n1~2)/4. Consider the following operator:

P (s) = (s-xo +

X (s-X*

X x^ (s - X2 + cf + gt) - 3 ̂  ~ 2) c y

yDx.

It follows that

(19) P(^)/s-cV(7^2-l) (;/2~2)a(x)5/s-1

where

<z (or) - -x3wllyn2~3+ (^2-3)te4"l^"2~4.

Thus conditions 1° and 2° of Theorem 2. 4 hold for (JT (P) .

We prove that (19) serves a counter example against RS 1 and

RS 2 using condition 3°. Consider the operator D1
XP (s) . If RS 2 holds

for (Tr(P), the following must hold by condition 3°, for />0.

(20)

Claim:

In fact, if q(f,JC,df)=Q, degq = l + 2, then

/ 77! \

ql , x, y; xHi~\ Oj=0 mod 0yn2"3.

Hence

^+2,
;(0,x,
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Therefore the relation

mod

yields the Claim.

Considering both sides of (20) mod OyH2~&, we obtain

This is impossible since 4m1<^?ii — l. Therefore (19) is a counter ex-

ample against RS 2 (and RS 1 when / — 0).

Quite generally, if (;z1? n2, m^ satisfies

72- 1 ~~~ JL --- -^ 7Z 1 ^ J. ^- Wl> i1 ±- - — 1-- — , - — -9
k n« nl

e.g. n1 =

we can prove

Equalities holds for k = l, 2, 3. See §19 types X0, X$ and X$* .

§ 8. Generators of § (s) — continued —

In this section, we study the structure of § ' (i) when / has an

isolated singularity and L (f) = 3. Our goal is Theorem 2. 32. There

exist an operator Q (5) in § (s) :

(21) QOO =s*+Cs2+Ds+E,

with ordT(Q)=3.

The case £(/) =3 will be divided into two cases: 2 = / (/) <X (/)

-3 and 3 = /(/)=!,(/). We call the latter "case (3,3)". In the

former case, there is an operator P (s) = sz + As + B, ord r(P)=2 such

that

(22) P (*)/'=* (a;)*/-1,

where
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We call this case "case (2, 3; a)". It is easy to see the following:

If (ffr(P))"sffr(/(0), then

M))''orr

Recall that it was enough to choose V = 2 in Example 2.28.

Let (bi(x)} be a basis of an ideal (a2 + Cl/) : /2. Then, there are

operators

(23) Bj(s)=bjs' + b'js + b';, ordT(Bj)=29

with

B, (*)/' = *" (*)*/-'•

Here, one may assume that b*$a + 0f for j = l9--9J and b'j =Q for

./ = «7+l, • • • , «/ + «/'. The following congruence relation can be proved

in the same manner as in the proof of Theorem 2. 23.

(24) btsf^^b'jf mod H)(a + 0/)/s.

Let C2 be the ideal used in Theorem 2. 4. Then

(25) dcf] 04?

in view of the structure of ^ (s) 0 (3)s+3)} and the definition of (£/) .

Set

£7,4 and b.^b^-b,.

(when j^>J9 bjik = bj'). Then, we can find operators BJtk(i) in § (s)

such that

(26) J3 / | f c(5)=A / f f c5 IH-*; i^ + *y, f c ,ord r(S^)=2.

In general, $ (s) fl (^^2+ £Ds + 3)} cannot be generated only by (IDs

+ 3)) (§(s) p, (£)s+g))) and ^3)BJtk, and we need operators of the

following type (cf. Example 2. 27) :

(27) C; (5) = Cl (x, £>) ̂ 2 + c,' (x, D) ^ + c'i (x, D) ,

with ord(cj)>l.

As is easily seen, we can assume that
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ordr (CO - ord fo) + 2 = ord (c't ) .

Moreover, it can be proved by the method employed in § 6 that coef-

ficients of ff(ci)(xy f) belong to a:/2. Set

q(s, X, f) = <

Theorem 2. 4 shows

where

9' 0, *, £) = S *«£ £j + (H WO 5 . f or some

Define the operator Q(V) by

Q (j) =/5 (5 - 1) + (H «, (A/ -/O )(*-!)

Then, Q(5)/s = 0 entails

(28) &(s)f = R(x)f,

where

Making use of condition 3° of Theorem 2. 4 and (25) , we have

(29) £(.r)^0 mod

and hence by (28) and (29),

(30) s2fs+1^bfs mod

where

Now we investigate "case (2, 3; a)." In this case, b1 = l, J/ = 0,

bi=a, J=l. We write bk(b'k9b'£ and Bk, respectively) for bljk(b'ltk9b"ik

and Blik, respectively), ^ = 1,2, • • • , g . Then we have the following

Proposition 2. 31, In case " (29 3; a)", &
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=2
k=l

x

Proof. Let T (s) = Qs2 + Rs + S be an element of §(s) with

ord r(jT) =/. The proof is carried out by induction on /. If /^l, then

the proof is straightforward. Assume l>2.

Case i) ord(Q)<7 — 2. In this case,

*,-! (£)/+<?, (S)=0.

Using the same argument as in Theorem 2. 21, we can lower ordr (T)

by subtracting a suitable element in (3)s + Sf) fl ̂  (-^) .

Case ii) ord(Q) =1 — 2. In this case,

- QA) S + (S - QB) }/! = - Q (a (x) sf^1) .

Now that the operator in the left-hand side is of order 1 in s, and the

right-hand side is of order not greater than / — 1 in 5, there is an operator

R's + S'<= (&s+3)) fUO) such that

Therefore,

by Corollary 2. 5. Then, applying the argument of Proposition 2. 20,

we conclude that all the coefficients of (Tz_2 (Q) (x, £) belong to (a + Of) :

a(a;). Then, choosing appropriate elements T fce«£D, we see that T(Y)

~~"X1 TkBk is of total order less than / or reduces to an operator dis-

cussed in case i) . Q.E.D.

Remark: The proof also shows that

(31) (a + 0/):*(*)Z>a:/,

if we consider s At (s, x, D) e § (s) .

The structure of J\{ is given by the following theorem. Corre-

sponding theorems for 3? and 3A, are similarly given and we omit them.

Theorem 2» 32. When L (/) = 3, JM A<zs a following presentation,
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1) case (3, 3).

//<

ay av

\*y.* */.* */.*
^ \o / £z Cz (7^

2) ca^ (2, 3; a).

(33)

'where -we can set the row (g, h9 0) either

g = Q,h=f or g = a,h = Q.

In this case, the following inclusion relation holds.

(34) (a + Of) :

Proof. 1) case (3, 3) . Suppose

Pl + Qs + Rs2 = 0, in Jf .

As in the first step of the proof of Theorem 3. 23, one can assume

(35) (P + Qs + Rs2)fs = I] Rtftf* + (5, + S,s

for some j^ and Sj^S). Owing to (30), the right-hand side of (35)

can be rewritten as follows:

(36) 2 Riftf + (S'2 + S'lS)f
a+1 + 1] T^f .

On the other hand, (24) shows

Thus (32) is proved.

2) case (2, 3; a). The formula (24) yields

(37) fs^a mod § (s) + 3) (a + O/) .

Thus Proposition 2. 31 and (32) proves (33) .
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Next we prove (34) . The first inclusion is (31) . Using the formula

(22) under substitution s-»s-f 1, we obtain

(38) (s2+ (A + 2)s+ (B + A + l))/s+1 = a(s + l)/s.

We can eliminate szfs+1 and sfs+1 in the left-hand side of (38) by use

of (30) and (37). Then we find

for some H^S) with ord H<2. Therefore, Theorem 2. 21 (or its proof)

proves

a e a : /.

Q.E.D.

We remark that the similar argument of the last part of the proof

shows

(39) 6Jea:/

for case (3, 3) .

Chapter III. Determination of 6(s)

In this chapter, we explain the method to determine or estimate b-

functions, and give some explicit formulae in §§ 15~17. The relation

with the local monodromy structure is also discussed.
i r si

When we exibit 6-f unctions, we sometimes use p (t) = - 4 — log b (s)
2m J ds

X t~sds, where the path of integration encounters Rf counter clockwise.
i i

That is, if b(s) =n (^ + ^)c% />(0 ==Z3 ct*at- Similar notations are used
t=i f=i

for b(s) and so on.

A. General Procedure

§ 9. Construction of Eigenvectors

One of the most effective way to seek factors of Z>-functions is the

construction of eigenvectors. Let j£ be a ^-Module and u be its non-
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zero section satisfying

1. There exists aeC such that

Q(a)u = Q for any Q(s)*=g(s).

2. fu = 0.

Then, (s-a)\b(s). In fact, P(s°)fs+1 = b(s)fs yields Q(s)=P(s)f

-b(s)^g 0). Then b(a)u = P (a)fu = 0. Hence, b (a) = 0.

Conditions 1 and 2 assure that the map 3tt->X defined by fs^>u

is a well-defined 2) -ho mo mo r phis m, and it is an eigenvector belonging

to eigenvalue a of the action of s in &#<vxg(Jtt9 Ju). Since JA is holo-

nomic, if we take a holonomic X, ^(wigtJtt, X) has finite dimensional

stalks [13], and the eigenvalues of s can be calculated. In this course,

there follows an important result. The following Theorem 3. 3 is due

to Theorem 4.3 [12]. First note the following fact [13].

Proposition 3. I. Let X be a complex manifold and let Y be its

submanifold. Let X be a holonomic system on X. Then

1. There is a regular (in the sense of Whitney) stratification of

X,X=(JXa such that SS(X)dlJ T%aX and^a^a)(X, ®xa\x} is locally

constant sheaf of finite rank. Such stratification is called regular -with

respect to X.

2. If SS(X)C^T$X and Supp XdY, X is locally isomorphic to

a finite direct sum of &Y\X>

Definition 3. 2* Let X = (J Xa be a regular stratification with

respect to <3tt. We denote by &($) the minimal polynomal of s in

0 ^omg^Jtt, Qx \x} x , xa^Xa. bl(s) is similarly defined for Jtt.
codim Xa = i a a

Theorem 3. 3»

(1) l.c.m. (*

(2) l.c.m. (** ) !* ! IE*1.
i=2

Proof. It should be noted that bQ = bQ = b1 = l and bl = s + I. We
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k

set J?Kfc = n b*(s) -c5H, and prove by induction that codim Supp Jttk^>k.

Since Supp JA d {f = 0}, this is true for k = 0.

Suppose codim Supp 3ttk~l = k. Let Y be a &-codimensional irreducible

component of Supp JHJc~1. Then, there is a non-singular manifold Y'dY

such that codim(y-F')>£ and ^(JK^1) fl T*Xx Y'dT$,X. There-

fore 3ttk~1^. (£BY'\x)N by 2 of Proposition 3.1. Since bk(s) ^W^(c5K,

•®r'i;r)y' = 0, bk (s) ctf&mg^Jtt^ <3ttk~1)y' = Q. Then the commutative diagram

f\0

**(*) 1 ^
JH ^J^*-1

SV(S)

shows Jtiky> = Q. That is, codim Supp JHk^>k. Lastly, we obtain JMn

i = Q
n

Therefore &(V)| JJ bl(s). l.c.m. (^*)|A was proved in the arguments
i=0

at the beginning of this section. The proof of (2) is almost the same.

Q.E.D.

As a special case, if f has an isolated singularity, bn (s) turns out

to be the minimal polynomial of s in J/K, and hence b (s) = (s +1) bn (s).

Thus the determination of b(s~) is reduced to the study of 3\{ in case

of isolated singularity.

At this stage, we note a simple but useful proposition.

Proposition 3.4. Assume f is a weighted homogeneous polynomial

u)ith XQ = ̂ 2 a-i^iDi (isolated singularity or not) such that for a poly-

nomial p(x) eC[.r], (^o + X] ai)P(x) —0 yields p(x) —0. Then,

Proof, We have only to prove,

"If A&^Bpt satisfies XiJ-d = Q and/^ = 0, then/^J — 0."

We set A=q(D)d(x). Since £ j f i ( — Ds)q = £ifj( — Ds)q, there is an

r(f) such that/£ ( — Z)f) £ (f) = f €r (f) . Using the condition fA = 0,



156 TAMAKI YANO

By the condition on XQ, we can conclude that r(f) =0. Q.E.DB

M. Kashiwara conjectured that ^GO^H^CO ([12]). This, how-

ever, fails to hold in general, as seen in the following.

Example 3.5. f=xs + ysz (cf. Example 4.20).

/GO is generated by yDy-3zDt, y*Dx-3x2Dz, y2zD£-x
2Dy and

s-~(xDx+yDy). The stratification is X= [jXa, X0 = (X\ {/= 0} ) ,

3/ \ 3

b2(i) can be calculated by the construction of eigenvectors z~(k41 ^xJ^y

8{xy y) belonging to — (h +k-\-2)/3, h,k = 0,l. bs(s) is known by

eigenvectors DxD
2
yd(xy y, z), h — 0, 1, which belong to —4/3 and —5/3.

On the other hand, explicit calculation of P (s) (cf. § 11) shows

where

5 W 2 D 3 D
• 1 1 L>XUy

/ y \
Thus ^(^)=II(5 + —). In this case, both b2(s) and b*(i) have a factor

v=2 \ 3 '

—j, but b(s) has (5 + —j as a simple factor.
O ' \ O '

§ 10. Construction of Operators

If we can find P (s) e jj) [5] such that
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(3) P(5)/'+> = &'(*)/',

&(s) is a divisor of b' (s) . There is a systematic method to construct

such P(s) when f is a weighted homogeneous polynomial. This pro-

cedure was pointed out by M. Sato at the early stage of the theory of

^-functions. For the simplicity of explanation, let us assume that f(x9 y)

is a weighted homogeneous polynomial of 2-variables : X0f=f, XQ =

Suppose one can find operators A (s) and B (s) such that

Then,

This process shows that if one has equalities

At(s)f'^ = at(s)a*y'*-<r i = Q, 1, • • • , m,

then one can construct a P (5) e 3) [5] such that (3) holds, and each

roots of b' (s) is that of l.c.m. (at(s)) or of the form — (ak + $1) \<k^l,

k -f l^m + 1. More generally:

Proposlon 3.6. i) Let f(xly • - - , xk, yl9 •-, yr) be a polynomial
k

satisfying 1. X0f=f for XQ = ̂ ] atXiDi at^Q9 2. Fo;̂  a// multi-

indices a, \(X\=jn9 there exist Pa(s) such that

(4) Pa (i)/-
1 = «a (5) *"/', att (5) e CM .

(5) i (5) \ n 'l.c.m. (5 + 1] fl|y€) • l.c.m. (aa (5) ) .

Assume further that ordTPn(s) =deg aa(s) in (4). Then, ^ve can

find P(s) and b' (s) in (3) such that orATP(s) -deg b' (s) .

ii) W7z£;j / '(j:) w « weighted homogeneous polynomial with weight

(aly • • - , an) a7^J c?/ isolated singularity,
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(6) bf (s) |(s+l) JJ l.c.m. (^ +XI atVt)

where (l = dim 0/a.

Proof. Relation (5) can be proved analogously as preceding argu-

ments. Last part of i) is obvious by the very construction of P(s).

When f has an isolated singularity, a^nt'*, jU = dimO/a. Therefore, (4)

holds for any a, \a\=ju with aa(s)=s+I. Q.E.D.

In the next section, we give the explicit formula for bf in case ii).

We present (6) here simply to show that our elementary procedure even

proves the existence of bf for some polynomials.

The estimate (5) is not the best possible one in general.

Example 3.7. f=xn + yzm.

Then,

n I m

Thus, all calculations are carried out about the monomials xiyj

0<z<» — 1, 0<j<ra. And we have

l.c.m. (5 + — + —
i \ 71 m

Since 5(/), y-l/mDk
x-

lDl~ld (x,z) and D^Df^d (x, y, z) belong to
I k l\ Ik \eigenvalues —1, — — + — and — (— + 1), this is the equality.
\ n m I \n I

Example of this type can be found in § 21.

B. Isolated Singularities
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§11. Quasi-Homogeneous Isolated Singularities

Let f be a quasi-homogeneous analytic function with isolated singu-

larity at OeC". In this case, a result of K. Saito [22] tells us that

we can find a suitable coordinate transformation so that XQf = f with
n

-X"o — Zj CLiXiDi, at^Q+. We shall show that b is determined by (al9 ••• an).
i = l

Applying the functors ^om^ ( • , 3}pt) and J2n(X) • to the presentation

II (10) of JM, there are two exact sequences.

Here,

and they are dual to each other.

The action of s in F is XQ, and that in 0/a is X* = — XQ — ]T] <z$.

Since we can take monomials as a basis of 0/a, s is diagonalizable.

The following theorem was proved by Kashiwara-Sato-Miwa [19]. Here,

we give a simple proof of it.

As we have shown in § 9, b (s) — (s +1) b (s), where b (s) is a

minimal polynomial of s in ^^^(J/H, £BPt) - We denote by B (s) the

characteristic polynomial of s, and by P (t), the associated trace-type

formula.

Theorem 3. 8. P (0 = II ^'""^ •

Proof. Let {w?-} l^i^jU be monomials such that {m£ mod a}

generates 0/a.

Claim :

(7)

In fact, since ( f i 9 - — 9 f n ) is algebraically independent, C[/i,
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isomorphic to a polynomial ring. One can define the map from the right

to the left-hand side naturally. The inverse can be constructed as

follows. Take (p(x) eC[.Ti, • • • , xn~]. Then, there are unique at^C such

that (p(x) — X] CLiJUi-\- ]T] bifi, since 0/a is a vector space. We can re-

write further

i i y

and <2^- are uniquely determined since a/a2— (0/a[T])(1) by Lemma

2. 20. Here, (0/a[T])(l() denotes the v-th homogeneous part of 0/a [T].

Using aYa*+1—(0/a[T]) ^ we can proceed further and find the unique

(at, aij9 atjk, - - - ) such that

Z3

When the weight of ^ is J, this series terminates at most [2J] +1 terms.

Consider the Poincare polynomials of both sides of (7). Then,

n a - ̂ o-1=n a -
q (t) is nothing but tr (tx°: 0/a) . Therefore,

s: 0/a) =tr(^x-+sa ': 0/a)

_
= T[- - -. Q.E.D.

11 1-t"

Corollary 3.9. i) dim F = dim F* = y. = TI

ii) Le^ P (t) ~ J2 qat
a be the expansion into the polynomial -with

*^Q^
fractional poiver. Then,

iii) b(-n-s) = (-)*b(s)9 d

The proof is obvious.

We remark that the eigenvector belonging to — £j*z* is 1 in 0/a

and (J(.r) in F, and that to — ( / & — £]#*) is Hess (/) in 0/a.



THEORY OF ^-FUNCTIONS 161

Since j^i~S)/£)a, one can rewrite

Then, defining P (x, Z)) — Y] pi (xy £)) D£, we obtain

P ( x, £>)/•*' = (* + 1) U pt (x, D)ftf,

Put d = deg 6. If d = max (ord />4) >d, then XI ff« ( Pi) ft = 0. There-

fore, by setting pt(x, D) ='£ D"at,a(x) for (^ ( p{) = ̂  at,a (x) $ ", we

obtain ^Pi(x,D)ft = 0. Then

-X) <ord pt .

Therefore, we can choose />f's such that ord pt<deg b and at least one

of them is an equality. Then

ord P = max (ord pi + 1) = deg b .

Thus we again find Cor. 2.26. For example, when / = Xj-r*»

—
2

1
*o

Therefore P(x, D) =~U DJ = — J.
4 4

§12. L(/)=2

We use the presentation II (13). Applying the functor

and fl71®', we have,

(10)

Here

= f (") e ^2
P!| « e F,, a,(j:) w + a', (x, D) « = 0, l<v<rl ,
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The sequence (10) will be analysed later.

Set Ft={vt=$pt\(a:f)v = 0}. Since £(/) =2, we have /2ea/

+ d2, and hence F2dFlm Set fa = dim Fl = dim 0/(a + 0/) , ^2 = dimF2

= dim0/(a:/). Then, /£1 + ^2 = ^ = dim 0/a, since

Coker (0->0/a) = 0/ (a + 0/)

and

Coim(0->0/a)=C>/(a:/).

We choose a basis of F2 and JF^ such that (&1? • • • , w^) is a basis of 7^2

and (ul9 • • • , w^, «^8+i, • • • , u^ is one of FI. If XI e»(x, D) av(x) =0,

(IX (*,-*>)«; (*,£))/•

Therefore 2 ^X-^, -D) <2^ (̂ :, Z>) e^0C^)a. Then we can solve the system

of equations for vit ~L<^i<^fJLi,

and z;/s are determined mod F2. Thus, ( ) l^z'5^2 an

forms a basis of F.

This can be summarized in

Theorem 3. 9= L^^ f be a holomorphic function having isolated

singularity and of L(f)= 2. Then ^^^(J/K, ^p«) z*5 ,a-dimensional

and its basis is given by the form

°\ ... f°\ f«>\ ... ^
«J' 'UJ'U/' 'U

where (uly • • • , w^) forms a basis of {u^£Bpt (a: jQw^O}, (^1} • • - , u^,
ut*2+i, '", u^ forms one of {u e 3)pt\ (d + 0/) ^ = 0} a^ z;£ satisfy
equations

b(s) can be calculated as a minimal polynomial of
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u\ I 0 l \ / « \
5: W in F.

v] \-B -Al\vl

Let bij be the components of a matrix

o
\-B -AU bn b.

We have (£u, 6lf) =1 (s)f, and

. (X (*, D) , a, (.r) ) ,

by the presentation of J/H and the definition of b (5) . Set

P(s, x, D) -I] ^A+ (*+ 1) -C .

Then, P(s9 x, D) fs+1 = b(s) fs. This construction of P is applicable even

if L (/") ^3. v^hen ^ (5) is determined and b (s) is known.

We note that we can take P(s) such that ordrP — deg ^ (Corollary

2. 26) . This can be seen directly as follows. By the definition of b^,

ord bn<_d, and ord bn<d— 1, where J=deg£. Owing to the relation

b12 = ̂  dvav(x) , we can choose ord dv< d— 1, by the same reasoning as

in p. 161. Then, ord(£n — £] dvav(x^ D)) <d and hence we can take

max (ord cl, ord c) <d owing to the relation

Therefore, ordTP(s) <d+ l = deg b, and since the converse inequality is

obvious, this must be an equality.

Then u satisfies ( ) u = au, and u^F if and only if A
\-B -A

satisfies

A'

(11) Ay(

(12) (a2

Therefore, we sometimes call A itself, instead of u=( } an eigen-
\aA'

vector.
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Next, let u'•=•( I and u= { ) be root vectors belonging to an
\A"i \aA'

eigenvalue a,:

_ (a l

\ a/

Then

(13) A, (a, x, D) A' = - av (x) A ,

(14) (a2 + Aa-f- 5) J' = - (2a + A) A .

Conversely, if A is an eigenfunction and A* ', J/x satisfy above formulae,

u and ?jx are root vectors: Especially when

(15)

and

(16)

and 2 / / = ( ) form those belonging to an eigenvalue a.

We can also use II (32) . In this case, the isomorphism holds

(19) F*

as a vector space. The action of s is, under the above isomorphism,

lq\ fO -B*\(q\
S''\rl \l -A*/\r.

§13. !,(/)= 3

First, we consider case (2, 3; a). Define the spaces of (J-functions

Ft as follows:

The relation II (34) shows there are canonical inclusions:
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(20) F^F^F,.

Since dim F1 + dim F* = dim O/ (a + Of), we have

2 dim FI = dim 0/a = jtt .

Using the presentation II (33) with Q = a and A = 0, we obtain the

following theorem. The method of proof is similar to that of Theorem

3. 9 and we omit it.

Theorem 3.10. Let f be a holomorphic function having isolated

singularity and 2 = /(/)<L(/) =3. Then JfwQ^l, £Bpt) is/j.-dimen-

sional and its basis is given by the form

(, 0 \ 0 \ 0 i

7
1 ^^

-where (u^ • • • , w^z) w <2 ^<25/5 of F1 for z = l, 2, 3 <z?z<i (^, t;, t;7^) satisfy

the folio-wing equations:

The action of 5 in F = c40mg(jtt, 3$-pi) is given by

w

1

1

-E -D -C

i u\

V

\W'

Let GIJ be the components of a matrix

•E -D -C'

The presentation II (33) with g = 0, h = f gives

^3
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Define

Then

P(*)/S + I = £(*)/'•

We remark that this ^-operator P (s) can be so chosen that

(21) ordr(P)

It should be noted that we cannot apply Proposition 2. 25 since RS 3

(and hence RS 2 and RS 1 also) does not hold for f. The argument

to prove the existence of P (s) with (21) is similar to that for case

L (/) = 2 (cf. p. 163) and we omit the proof.

The situation becomes complicated for case (3, 3). Example 2. 27

shows that f $ a: f9 and there exist Ci (s) 's in general. The detailed

discussion will be found in a subsequent paper of the author.

§ 14. Examples of Calculation

In order to demonstrate how to use the procedures given in the last

section, we calculate some examples. The following two examples are

L(/*)=2,, and double root occurs.

Example 3.11. f = ~(xij
ry* + zi) — xyz # = 11, a Dm5, a:/=m.

4
We use the following notations. X0= (xDx+ yDy + zZ>2)/4, X1 = X0

/4, X2 = XQ + yDy/4, Xz = XQ^-zDz/4 and (p = 1 — xyz.

(s) is generated by Xtj and following four operators.

x (s - Xz} - ~^- (y*Dx + zDy -

y(s- X^ - ^— (y2zDx + z-D
4(p

(s - X,) (s - X2) - c2xyP,P2 - z (3s ~ X
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where

Pi = — (y 2zDx + z2Dy
<P

and

Then, calculating eigenvectors, we have

» DJ, v

—
4 \ 2 / \ 4 * ' i

By the aid of this basis of Jfomg^Jll, £Bpt), the action of s can be written

1 -1

-5/4

-3/2

-7/4

Therefore,

Example 3,12. f = xy(x+ y2) (x2 + y )

, .
0 6

is generated by three operators :

x (s - FO - - ^ - { (7x2 - 40y - 9xsy) xD2 2 y

+ 2 (14.r2 + 5y + IS^V) 3^ Dv} ,

and similar operator, exchanging x and y in the above, and
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1 — — xy
, B=-

The operators can be chosen in another way (cf . § 19) . ( ) and — 1 J
W \ 2 /

form a root subspace belonging to an eigenvalue —1/2. ( * y )
\ — Da.Dy8'

belongs to -1. Others are Dxd, • • • < - » -2/3, Did, • • • < - > -5/6,

Thus,

- 7/6,
20

C« Local Monodromy

§ 15e Relation with Local Monodromy

In the preceding sections, the equality dim F = dim 0/d holds. This

is based on the deep connexion between the local monodromy and the

theory of ^-function.

The local monodromy of f~l (0) around 0 is a linear operator in

^(/- ' (^nt/ jC), where U= {x^ C*| |*|<e, I/O) \<$, 0<£«J<1} .

When f has an isolated singularity at 0, only H°~C and Hn~l—Cf* do

not vanish.

In general, the local monodromy and ^-function relate each other

through the hypercohomologies of relative differential form. Since we

have not yet completed the argument in general, we discuss here the

case of isolated singularity. In this case, the linear map in Hn~l is

usually called the local monodromy.

Professor B. Malgrange proved in [17],

Theorem 3. 13. Let f have an isolated singularity at 0. Then,

exp (2nis) I F is equivalent to the local monodromy of /"*(()) around 0.
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Therefore, if we determine the action of s in F, we can also de-

termine the local monodromy of /"^(O). At this [stage, it should be

emphasized that, as an invariant of f~l(0), ^-function is stronger than

the local monodromy. For example, let ft be a /^-constant family of

isolated singularities. Then, the local monodromy of f0 and that of ft

are known to be equivalent, ^-function, however, varies. This situation

is extensively analyzed in §§ 18, 19. Here we give an easy example.

Example 3.14. f =

For £ = 0, this is weighted homogeneous and

/ S \ / 3
For £=7^0, the factor (5+ — ) changes into (s + — ) and then

\ 5 ' \ 5

When t = 0, D*xD*yd(x, y) is an eigenvector belonging to eigenvalue

— 8/5, and d (x, y) is one belonging to —2/5. Whereas, when £=^0, the

former cannot be an eigenvector since / • D^D|(J (.r, y) =^=0, and the later

belongs to two eigenvalues —2/5 and —3/5. Local monodromy does

not change since —3/5=—8/5 mod Z.

§ 16. Join Formula for ^-Functions

Let f (x) and g (y) be holomorphic functions with different variables.

Then, we can know the ^-function of / (x)+g(y) in terms of those of

/ and g. Put n — dim J£, w = dimY.

Theorem 3.15. Let f(x)f=Oz, g(y)<=0Y, / (0)=g(0)=0, and

assume g (y) is quasi-homogeneous and of isolated singularity. Then,
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Proof. We set h (x, y) - / (x) + g (y) , ̂  = J2W, 0 - CW and F0

be the vector field of quasi-homogeneity of g; ^0^ = ^. Then, the

following inclusion holds.

Claim :

(22) ^»(*)=3//(* -*".)•

The proof of this Claim is given at the last of this section.

Next, since QA + Oh = 0-af + Of+ 0-dg, if we set

there is a canonical surjection

(23) J«'->JL->0.

As we know, Mg = ̂ y/^ydg—® Si9 where $t~<Bpt, {i = dimOY/ag
i = l

and s acts on each component separately,

s: ut-*atu , u^Si ,

and Bg(s) = JJ (s — OLJ). Since the action of s is that of Y0 in 3&gj we

have,

This proves bh(s) |l.c.m. (bf(s — a^)) . Q.E.D.
j

Corollary 3. 16. Upon the conditions of Theorem 3. 15,

further assume f (x) is of isolated singularity. Then,

Bf+g(s)={Bf(s~ai)y where f[(s-at) =Bg(s).

Proof. In this case, h = / 4- g has an isolated singularity at 0 e X X Y.

Jtt' defined in the proof of Theorem 3. 15 satisfies 55(JJT) C T*0} (X X Y) .

We apply the functor ^¥&m^(^ £BPt\xxY) to (23) and have

(24) 0-*JV»J",
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where F, = Jh~a (M h , Spl]A-xF), F' = © Jkmai( Mf\M-,t, ^,.) . Owing

to the Theorem 3. 13, the equalities

dim Fh = dim 0/ah = dim Ox/af X dim 07/dg = dim F'

holds. Therefore, (24) is an isomorphism. Q.E.D.

Corollary 3.17. When f (x) has an isolated singularity at Oe X,
k

the b-function of h (xy v) = / (x) + JJ yl a^ OeXxY, is

We note that there is an isomorphism, in Corollary 3. 16,

by applying the functor c^We(-) t$pt\xxY) to (24). This isomorphism

can be proved (and hence also 3-16) directly, i.e. without using Theorem

3.13, when L(/)<2, or, case (2, 3; a).

In order to prove Claim in the proof of Theorem 3. 15, we prepare

Lemma 3. 18. There are natural numbers c(j} j>0 such that

w * = i: ( - ) 'c? (A) , (^ + o »_, , i</ .
.7=0

Proof. We use the induction on /. When / = !, one can prove by

induction on 7z that

(25) (*)* = !] (-)'(*)
^=1

Then, it follows from the hypothesis of induction and (25) that

= I! (-) '+M> (A) ,+*(* + / + l) »_ ,_* . Q.E.D.
J

are determined by
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cP = l, 1 = 0,1,...

Choose an operator of the form

P(s,x,D)=fl(s-k)m__kpk(x,D) with pk(x,D) = 2 ak,aD«0
fc=0 \a\=k

We apply this Lemma 3. 18 for (s — YQ — £)m_ f c in the following formula.

(26) P(s-Y«,x,

-*+0 .-i-./

m fc

= S (5) „_,_,( - ) '<« [|V (/>) 1 (/, x, <*/) (/ + g)s

LasJ J

Similarly,

(27) P(S,x,D)T

= S(*).-.-y(-)MI)-R.[^'0

Any JP(s) e .®i-[XI can ^e uniquely written as

where

J% (5, *,£>)= S (5 - J) ̂ -*^f * (^, ̂ ) 5

, ,,
\a\=k

Then, the preceding equalities (26) and (27) say that the coefficient of

-* in P(s~Y0,x,D)(f+gy and that of (*)„/-* in
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P(s, X, D)/s are the same. Therefore, P(s-Y0, x^ D) e= gf+g(s) when

P (s, x, D) e /, (5) . Q.E.D. of Claim.

Chapter IV- Results of b(s)

In this chapter, we investigate several examples of 6-f unctions.

Sections 18^20 are devoted to the study of non-quasi-homogeneous

isolated singularities in dimJ£ — 2, 3. We add some remarks in §21,

about the ^-functions of isolated singularities with modality not greater

than 2. Its detailed arguments in case corank (jf) =3 will be found in

[32]. Examples of non-isolated singularities are given in §22.

§ 17. Two-Dimensional Case

When the space dimension is 2, we can apply Theorem 2. 24. As

is shown below, we find "explicit formulae" under some assumptions on

f . Let us explain the situation.

First, we assume that f is a locally reduced non-quasi-homogeneous

function at OeC2 such that

(a) a:f=(x>,y*).

Next, we assume that generators of $ (s) 0 («2)s+ 3)) are given by

A, (s, x, D) =xa(s- X.) + A', (x, D) ,

and

At (5, x, D) = y ' (5 - X,) + A( (x, D) ,

where Xk = aklxDx-\- ak2yDy, £ = 1,2, atj^Q+, and they satisfy the

condition

(b) the weight of A{ (x, D) (A'2 (x9 D) , respectively) is greater

than that of a21a in X2 (alzb in Xi9 respectively) .

Set A = \ n 12\, There are two cases., _ [&u ai*\
La21 a22J

1° rank A = l.

Assume (an, a12) — c• (#2i, ^22) c^Q- We write / in the following

form: /* =\/o + 0, where f0 is the sum of monomials in f which have
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minimal weight, say it\ with respect to (<22i, #22) • Then,

} - A((x, D) (/o + sO

Comparing the terms with minimal weight in these formulae, we

have zv — 1 and c = I. Thus, X1 = X2 = X0 = axDx +ffyDy9 f=fQ
Jrg,

X0f0=fQ and g has the weight greater than 1 with respect to X0. This

shows that, when rank A = 1, f can be considered as a higher order

deformation of weighted homogeneous polynomial. Since ybA1 — xaA2

= <p(fxDy—fyDx), 0>(0)=^0, we have

(2) !>(# + 1)Oi + (6 + 1)/? .

2° rank A = 2.

In this case, inequalities an=£a21, a12=^a22 holds in general. Then

the relation xaA2 — ybA1 = <p(f3;Dy—fyDx) again shows

1 = ((2 4-1) an + (6+1) #12

= (a + 1) #21 + (6 + 1) #22 •

That is, A can be written in the form

_1

A -(!-(# + :

Taking the determinant of coefficients of 1 , we have1 ,
LA2J

where g is the sum of monomials whose weight are strictly greater than

that of xa+lyb+l with weight of X1 or X2.

Moreover, we impose the condition

(c) L(/)=2.

Upon these conditions, we conjecture that the action of s is de-

termined by a, b and A. The explicit formulae for ^-functions are given

as follows.
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Conjecture 4.0 (EEF)0

l-a 1-/3
1° rank A = 1. A = ( t f , / 9 ) . Then, /< =

a /5

(l-*att)(l-i

Moreover, s is semisimple.

2° rank A = 2.

i+ lJ

Then, ft = 1 + — + — ,
a /?

= ^ + (i - o (i - o (i - o (i
r \)

Set d = g.c.a. (0 + 1, £ + 1). Then, ——, v = l, • • - , « —1

semisimple eigenvalue of s of height tuoo.

We call the formula and proviso about semisimplicity of s in 1°

(respectively in 2°) as "EEF" type 1° (resp. 2°).

The common case where formulae type 1° and 2° could cover

formally is the following.

Z, /?) and 1 =

In this case, even though these two formulae seem very different, they

give the same result as directly seen. Of course, this case can never

occur according to the restriction (2).

We also conjecture that a second order operator showing that

L (y) = 2 can be chosen in the following way

Type 1°

(3) (s — X+c')(s — X



176 TAMAKI YANO

where each term in sA.' -\- B' has strictly positive weight with respect to

XQ. Note that c' is positive by the inequality (2) .

Type 2°

(4) (s~X^(s-X^+sA'^Bf ' ,

where sA'-rB' has strictly positive weight with respect to both Xi and

x2.
Especially when a — b = \ in type 1°, we can also take

We add some remarks to "EEF" type 1°.

According to the analysis in case 1°,

/=/o+ (higher weight), XQfQ=fQ.

The first term of Pf(f) of type 1° is the same with P/Q(t). Since

there is a factor (1 — 0 in the second term, P/(f) and P/0(t)
 can be

expanded into the fractional polynomial of the form:

and

Note that

(5) min C0<rnm C

owing to the inequality (2), because min Co = # + /9 and minC = l — act

-*/9.

There is a natural generalization of "EEF" type 1° to ^-dimensional

case. That is, if

(a), a:f=(x?\ • • • ,^«) ,

and first order operators associated to it are

(b) n x?* (s - X0) + (higher weight) ,

with XQ = XI OiiXiDi, and
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then

Moreover, 5 is semisimple.

We refer this formula with proviso as "EEF" type l(n). There

are several cases where these conjectures can be verified, as we will

discuss later on.

Conditions (a) , (b) and (c) are essential. In fact, types Wf^q and

Wi*«-i in §21 satisfy (a) (with a = l9 b = 2) and (c) but violates (b) .

POO is given in [32] and is different from both type 1° and 2°.

The next example satisfies (a) and (b) but violates (c) .

Example 4. 1. / - --.rn> + — (y - txm^ (y + (w2 - 1) txm^ "'-1.
}1 \ J7 9

/ is a non-zero parameter. We impose conditions

Then a : f — Or*1"2™1"1, y) , and first order operators associated with

it are the following: (w2 = 7/2 — 1)

y 0 -

where

Q = (y + matx
n^ s (Dx -

1 { (y 4

mi~ni (y +

Owing to the inequalit}r l/7Z2<^7721/;z1, we can check the condition (b) .

However, condition (c) does not hold. In fact, 2 = 1 (f) <^L (jT) — 3 in

this case. P(0 is given by the following and does not coinside with

formula type 1° or 2°.
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See type X0
btP in §18 and [32].

§ 18. *?

In this section, we study the typical example

f(x, y) = —xni + — yn'-txm'ym> ,
«1 ??2

where £ is a parameter.

We can assume \^/mi<ni — \ owing to Proposition 2.10. In the

following, c always denotes T] — - — 1.
n-i

When c = 0, f is weighted homogeneous polynomial with weight

j — — \ and hence by Theorem 3.6, we have
\nl ;z2/

(7) pro- (^-0(^-0 •
When c=^0, / is of simplex type, and when £>0, f is a /^-constant

deformation of

(8) JLrM+Ay.
Wl «2

Therefore, the local inonodromy of / is the same as that of (8). But

P (f) is not given by (7) as is shown below. When c<^0, bf(s) may

have double roots. Then so do the local monodromy. In the sequel, we

use the following notation.

- XD x + — yDv,

First of all, we determine g (s) fl (&

Proposition 4. 2. a : / are § (s) fl (S)s + 3)) are given as follows.

zi<Wi/2, l<wz2<;/2/2: (a;"11-1, ymz'1}
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-'(J-A'O-- °

m*~l (s - X,}

2. nl/2<ml<nl-!9 nt/2<m2<nz-I: (^-"n-1, y"--".-1)

^i-^t-i (5 __ Xo) - ctym*Dx - mimjx^y*"*-** (s - X,) ,

y *,-™,-i (5 _ xo) - ctxm*Dv - m.m^x^-^y™*-1 (s - XO .

3. ?/1+l<2;?^1, ;/2 — !>2m2:

( (xni~mi - mjy"') , (^"i-aii-iy".-*"'.-! - mjm^ V"1-"1-^1"1"1) ) .

4. ??2 + l<2;7£2, nl — \>2ml\ a: f and first order operators are the

same 'with those of case 3, if ^ve exchange x and y, and subscripts 1

and 2.

Proof. One can prove by direct calculation that the operators listed

above belong to $ (s). The proof that they actually form a basis is

based on Theorem 1. 10. We rewrite them in the form av(x)s+ avl(x)Dx

-raV2(x)Dy9 and calculate ^ = det n lz . Then, we have
l_£Z2j ££22J

1 ni-^y".-^)/ .„!
d={

m.cff - . - 3

^ m2ct2f -"4

Thus they form a basis. Q.E.D.

In general, L (/) <min (nlf n^) (cf. Example 3. 18) .

There are special types of functions for which L(/)<2 holds.

They are listed in the following table. We denote a->b under mV9 to

indicate
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Table 4.3

i) c<0 mi mz

1. Xi l-»(jii+l)/2 1

3. X2 1

4. Xf 1

5. 5 2->«i/2 2->w2/2

6. 5* 2->»i/3 (»i+l)/2

and (wi + D/2 2-»H8/3

ii) c>0

7. X0 (rai-l)/2-»Wi-l w2-l

and Tii —1 (?/z —l)/2->w2 —1

and wi-l Oz2-l)/3->O2-2)/2

9. r

10. y^
and

iii) Special cases of i) and ii)

11. Xf,mln (m + 2)/2 1

12. X#min 1 (*.+2)/2

13- SminGS#in) 2 2
14- Xo^mav («i-2)/2 »!-!

and tii-I («2-l)/2

*^min anc^ ^max aPPear c>nly when min(7ii, «2) =3.

Using the notations above we can state the following

Theorem 4.4* 1) TAe function f enjoys the property IA (2A,

3A, respectively) if and only if it has the property IB (2B, SB, re-

spectively} .

A B
1 Quasi-homogeneous X0, Xl9 X2, or c = 0 .

3 ^ J? f \ ~V& ~V& O O±t
Ci: J = (^,y) ^^min, ̂ min, Omin, ̂ £in

V"iP V" V"|P
^^-O.maxj -«• max? -«- max-

2) WA^;z / A<25 the property that a: /= (.ra, y&), a>l, ^>1, z» 1) the

equality L (/) = 2 holds.

Proof. 1): 1A. If /is of type X0 and m1 = n1 — 1, m2>^2/2, then

use 2 of Proposition 5. 2. If ?n1==n1 — 1, rag^ (;z2 —1)/2, then use 3. If/
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is of type Xi and w2 = l, m1^n1/2, then use 1. If w2 = l, m1= (n1-\-Y)/2,

then use 3. The proof for the case X2 can be done in the same manner.

2A and 3A. These can be derived from Proposition 5. 2 by direct

calculation.

To prove 2) , we list up second order operators, which certificate

that £,(/)= 2.

S : (s - X.) (s - XO -- la:-.-«-.y-.-«-. (s - X0 + c} (s - X.) .
m1m2t

Y: (s-X.+ c) (*-X.) -m1m,*V"-"y'"'-"'(*-X1) (s-XJ.

m-im\t \ HI n

X {y"—-1 (5 - X0) - c^m'Dy} (w, = (»

-X +c- — + —

X {xni~mi~l(s — XQ) —ctyDx}.

-^i —-—) \ymz~l(s — Xi) -f g xni~miZ),
;z2 ^2' I ^^]

- X, — + -
m, w, n,

X

The operator for Xf is similar to that of Xf. In view of these

operators, we can conclude that £(/*)= 2. Q.E.D.
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Note that second order operators in case 1), 3 can be taken in the

form (cf. 175)

For instance, in type

HI nz \ HI n2/ c

nz

jx^Dy) , P2 =

We exibit some special cases.

1. ^! = 3. Then / is quasi-homogeneous or !/(/) =2: types Xf9Y^9

xt,s*.
2. nt = 4. Then / is quasi-homogeneous or !/(/) =2, except next three

cases.

They are case (2, 3; a).

(2) Wi = l; m2 = n2 — 2 or 2(w2 + l)/3. They are also (2, 3; a).

<D Wi = 1 ; »f - 3> m2>2 (nz + 1) /3, m2=£3nz/4. L (/) <3.

In general, following four types listed in Table 4.5 are case (2,3;

a). (a + 0/):*=(*-,y)

Table 4. 5 i)

.**
xj>s

x<?»

Xf

mi

2-W4

(H,--l)/3-K»,-2)/2

(«.-l)/4^(*i-2)/3

2(wi + l)/3

W!

C»,+2)/2

nz-2

ni-l

1

condition

47 2

^i>A
Wl »2

^>^

l^

a'

OT1-1

Wi— 2mi — 1

Wi — 3mi — 1

1
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Same notations are used when we exchange x and y and subscripts

1 and 2.

The ideal a: f and <2 (x) — xklykz are listed up in the following.

Table 4. 5 ii)

Wi-2

Fig. 4.6
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The structure of $ (s) in these four types and the determination of

b (s) is found in [32].

Note that Example 2. 29 is of type Xft^, and Example 4. 1 is also

of type Xfrt* if we performe the coordinate transform X = x9 Y = y

— (n2 — T)txmi.

The followings are proved to be L (/) <3. We conjecture that

equality holds.

<w1<2;z1/3, 2<^2< ns/3 . e.g.

2n1/3<m1<n1-2 , n2/3<m2<(n1-2') /2 . e.g. X$*.

a: /is given by (^-"i-iy*.-^ x^-^- mjy™*) and (x*i-*i-*y»*-*"*-\

xni~mi~m1ty
mz) respectively.

Theorem 4. 7. When a : / = (xa, yb) , " £EFJ5 Ao &?5 /or / Param-

eters are listed in the following table. Moreover, *we can choose

second order operators as i?idicated in (3) and (4) .

Type 1°.

a /? a b

n1-2m1-l 1

2mi — n1 — l. 1

1 2m2 — n2 —

Type 2°.

55* a = m1-l, 6 = m,-l.

nl-ml\

Proof. Generators of £ ' (s) were already discussed. In order to

prove that b (s) is given by "EEF", we determine eigenvectors and root

vectors of s in J/&ms(JVL9 <$pt) explicitly. Here, we performe this pro-

cedure taking as examples type Y" and S. Calculation for other types

can be given similarly.
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We use the following notation:

, for a polynomial p(s) = ]]

For the 0 -functions, we use the notation

Since indices i and j are complicated, we do not adopt the usual notation

<?<*'».
Y: The generators of $ (s) are

^-^-'{(j-Xo) -7?t1m2^*1y*'(5-X2)> -ctym*Dx ,

We set 5o- = - + - - . Define delta functions dlj9 d'if and utj as
HI n2

follows.

'\., = -

'i1.ft \i-lk j — Ik 1

}^-±^\["

Then, utj where (0<z<w1-2, 0<j<m2-l) or

<J<?^2 —2) are eigenvectors belonging to eigenvalue — s^.

When (Q<i<n1 — m1 — 29 Q<j<n2 — m2 — 2), A'ij are also eigen-
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vectors belonging to —Sij — c.

Therefore,

p (£\ _ (f l — t) (t z — t) 1_ (ni_mi)/yt l_ (7t2_m2)/7ta

(l-*V*i)(i_fV«.)

C^Vni _ ^(Wi-^O/nA /£l/n2 _ ^("z-mz)/

~ »

a^-rv
Vo<j<n2-2y

S: The generators of £' (s) are

O^i^JTi! — T^-2

-lS

m1mzt

(s - X,) (5 - XO -- x^y ft= (5 - X, + c) (5 - X0) ,

Set

, _ (n2~m2) (z + 1) +^i

_ ^2 (f + 1) + Qi - mQ Q' + 1)--

g.c.d. (?nly m2) , m1 = dmi9 m2 = dm'2. s}j and 5^- coincide for

rm'i—l9 j = rm'2—l9 \<r<d. We denote this value r/d as sr.

We make use of the following delta functions, 0<z<»i — 2,

2 — 2.

ml
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Similarly, we define A\s by exchanging z" and j and subscripts 1 and

2 in the above formulae. Since d\tj
jr\ = —-f + —-— j and

are positive when O^zf^TZi —2, 0<J<;z2

2, they are well-defined.

Then,

are eigenfunction belonging to eigenvalue — sr.

For other values of (z, j) , we set

for 0<z<W!-2, 0<j<;z2-2, and also set tfij for 0<z<;?!-2, 0<j

<m2 — 2, in a usual manner.

Then, zjjy and u\j are eigenvectors belonging to —s}j and — s^-.

When ^?>2, non-semisimple roots appear. We define the series e]

by the following recursion formula.

x ( — + 2/-2K-•
d l\d

1 c + 1 I 1 , 1 * cl

+ 21-2 4

r — ^rmi-l,rw2-l — crm{-l,rm.'i-l'

Set

[ Af -1

* and ur = form a root subspace belonging to

eigenvalue —— for \<r<d—\.
d
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-L.
"d
l —L

d J

Thus, ^-functions are determined.

~}( n c*+*j/) n

'n2—mz 1 "1

is the characteristic polynomial of the local monodromy of f 1 (0), when

g.c.d. ((HI — m^), w2) =g.c.d. (;»!, (^2—^2)) —1-

§ 19. Other Examples

In this section, we show four examples in 2-dimensional case and

two examples in 3-dimensional case. Interesting examples in 3-dimension

can be found in [32].

Reduced quasi-homogeneous polynomial in 2-variables is essentially

one of the following three types.

In § 18, we investigated non-quasi-homogeneous functions derived from

the first type. Examples 4. 8~11 are dealt with those derived from the

second and the third type. In this section, we restrict ourselves to

the most typical classes, that is, those similar to Y and S in § 18. It

should be noted that one can take

instead of type S owing to Proposition 2. 12. We adopt this form in
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Examples xS and xyS.

We exhibit generators of § (s) , and values of parameters in "EEF"

in Table 4. 12. The determination of the action of s for these examples

is similar to that for type Y and S and we omit the details.

Example 48 8. xY

In this case,

#= (»! + !) («2-l

Set

c= (mjWj- (n1-m1) (n2-

and

is generated by

and

x

Example 4. 9.

/= xy (xni + yn* - xmiymz)
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ni/2<ml<nl — 1, »2/2<77z2<7z2 — 1, /* = Oi + l) (ft2-f 1).

Set

c = {mlm2 — (n1 — m^ (n2 ~

and

is generated by

and

Example 4. 10.

Milnor jt = (m + 1) (;z + v) + (v — 1) (w + /O .

Set

, ,
V (m (n + v) + ;z)

, + /^y Dy , F - Tz^D^ + myDy ,

Xi = W/ {m (n + v) + ;z} , X2

F^^/Vm7, Yi = V/nm'.

(s) is generated by

,,
mm'v mv

v (m (n + y)

and
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Example 4. 11. xyS

Milnor f = (n + 1) (n + v) + (v + 1) (m + /O + 1.
Notations c, 0 and W are same as in 4. 10. Set

-1,

§(s) is generated by

and

One can apply "EEF" for preceding four examples by setting
parameters in the following Table

Table 4.12

Type 1°

xY

xyY

a

l/Oii+l)
»«/{(fii+l) (»•+« -1}

e
»i/{(»i +!)»•}

»i/{0n+l) (»•+» -1}

a

Hi-mi

Wl — Wi

&

7Z2-W2-1

m-m*

Type 2°

xS

xyS

v-1

m(n+v)+m-i-n
VL
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Example 4. 13.

P q

_l? a: parameter
P q r

-xDx+-yDy + -zDZ9 X = -
p q r 3

— (y«-*zr~zDx + azr~2Dy + a

and J*L120 etc. are defined by permutation of variables and {p, q, r} .

Q — ( ^ ^ ^~ \ TT ~~ — /

I / -*- \ ^.^-3 V V-r — - — — p A0i2-A102
3 r /

The generators of ^(5) are X^'s and

y (5 - X.) - Cx?-2^210 ,x(s-Xj- cy*-2X021 , x (s

or

9

) and ( ) forms a root subspace belonging to eigenvalue
— 8' \v

Other eigenvectors are

p
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and similar delta functions by exchanging x, y, z.

It is remarkable that

and exponents (!//>, !/<?, l/?~) can be found through the coefficients of

Xi, X29 Xz in the following manner.

-JL_J_ JL JL
q r q r

1 , 1 1 1

p r p q r

This is similar to "EEF" type 2°.

Example 4.14. /— — ~c3+ — y3 + — z4— axyz2. a: parameter.
o o 4

= 12, c = l/6. Set

Xe = — xDx + — yDy + — zDt, <p=l-2aV.
o o 4

(j) is generated by J^^- and

azzDy
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f ~y \ s f <~2 _i_ ~\ c^, j~)

(V y 4- r} f? — X" ̂  4- a Z i 5? 4- f rD -^s ^i0-j-6;^ ^YO; T- I 0$ T- — \xux

The correspondence of eigenvectors and eigenvalues are as follows.

(We omit the minus sign) .

, , . - ,
12' 12 ' 4 * 12

- , , - , f , . ,
6 ' DXDJ 2 ' 12' V ' 3 / 12'

Thus ^-function is determined as follows.

12/ 12/V 12/V 1

~t)(t — t ) ( t ~t) ^2-1/3-1/3-1/4/1

+* ^

In view of this, jP(^) is given by "EEF" type 1(3).

§ 20. Remarks on the Canonical Forms of Isolated Singularities

According to V. I. Arnold, isolated singularities with modality not

greater than two are completely classified, up to stable equivalence, by

the following lists [2], [5].

1. 0-modal case

Ak, Dkj EG, El3 E&.

2. 1-modal case (with parameter a)

© ^s, X3, J1Q.

(2) *p + 5, -Kp,qy -L p,q,r) ^p + 5y * p,q, J p+4.

(|) 14 exceptional families.

3. 2-modal case (with parameters b and c or a =
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® Js,P> Zl,P, Wlfp9 WftZgi-i9 Wf>2q9 Qztp9 SltP, Sfi2q-l9 Sf,2q, Z/I,I«-1,

tfl,l«-

® 14 exceptional families.*

The case 1 is weighted homogeneous. 2-© and 3-© (c = 0 or

^ = 0) are weighted homogeneous 1-parameter family. As for 2-© and

3-©, they are weighted homogeneous when <z = 0 and aQ=a1 = Q re-
spectively, and forms ^-constant family of deformation. They are non-

quasi-homogeneous and of simplex type, and hence if aQ=£Q in 3-©, we

can assume a1 = Q by Proposition 3. 12.

2-(D and 3-© except Wfip are also of simplex type, and we can

assume ai = 0 in 3-®, except Wfip.

Theorem 4. 15. In all the canonical forms with modality less

than three, L (/) = 2 holds if f is non-quasi-homogeneous, a : f is

given as follows.

(x, y) or (x9 y, z) 2-©, 2-® with a=£Q, 3-© with c=£Q or
tfi^O, and 3-(3) with aQ = 09

(x, y2) or (x, y2, z) 3-©, and 3-® with

We can determine the action of s in «*4W^ ( JM9 IBpt) and know
b(s) and local monodromy. Especially,
1. 5 is semisimple in cases 2-®, 3-® and 3-©.
2. In cases Pp+5, RP,q, TPt^r, b(s) has a double factor (s + 1)2, and in

3. In the cases of two variables except Wf>p, and three variables in

2-® and 3-®, "EEF" holds. Although Wftp satisfies conditions (a)
and (c) in § 17, it does not satisfy (b) .

As for the proof of this theorem, the author restrict himself to cases

corank (/) =2 except Wfip, J8}0, Z1}0 and W1>Q. The proof for cases

referred to above and f being corank (/) = 3 is included in [32] .

* In V. I. Arnold's papers [4], [5] and [40], y* should be read y1 in Ei9 and Es<>.
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Proof} In the next table, we give the correspondence between V.

I. Arnold's classification and the author's. Most of those types have

been already discussed. Example 4.19 below gives special types cor-

responding to Arnold's class Z* and Zljp.

Table 4.17 is concerned with classes in 3-@9 which are not of

simplex type, together with more general classes Jkj0 and ZM and param-

eters appearing in "EEF". The detailed structure of them are included

in [32], with the stuucture of Wfif. Q.E.D.

Table 4.16

2-®

Jp+4

•"•IN- 5

•«/•

2-®

JEi,
£is
El4

Zu
Z18

Z18

1̂ 12

TTu

SSL

•Smin

Smln

Ymax
-X£>mln

yt>
max

yYt^
^?,mln

^ max
y-* max

^.mln

«

1/3
1/4

VP

a

1/3
1/3
1/3
4/15
3/11
5/18
1/4
1/4

f

l/P
l/P
i/q

0

1/7
2/15
1/8
1/5
2/11
1/6
1/5
3/16

3-®

«/.,*
Wi,,,
Zi,*

3-®

E18

jEie
£20
ZlT

Zl8

Z18

w^
Wu

s*
s
yS*

Y?
Xf
Y*>
yY*>
yXf
yY?

x$
Y

a

1/3
1/4

(/3C7+V))
a

1/3
1/3
1/3
7/24
5/17
8/27
1/4
1/4

f

I/ (9+*)
I/ (6+*)
1/C7+/0

*

1/10
2/21
1/11
1/8
2/17
1/9
3/20
1/7

Table 4.17

3-®

J.,0

ZM

Wi,.
JM
Z<f0

similar type

yt>
max

^^r»ax
yi?
-yYlP

a:

1/3
2/7
1/4
1/3

(t+l)/(3i+4)

*

1/9
1/7
1/6
l/3£

l/(3^+4)

b

1
1
1

£-2-<*
i-d

The number fi? is determined by

mod yd+1.

Among the Arnold's classification, following eight types in Table

4. 18 are also of simplex type. Jk}i and E# (Zijp and Z$, respectively)

includes parameter a = a0 H ----- h ak^y *"2 (& = ^o H ----- 1- £«y*j respectively) ,
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and a0=^=0 (£o¥=0, respectively) in Jk}i (ZijP, respectively). a:f= (x, y6).

The number d in types E* and Z* is determined by

a=0 mod yd, =£0 mod yd+\ for E* .

6=0 mod yd, E£0 mod y*+1, for Z* .

Table 4.18

1/3

Xf
ytp

1/3
1/3
1/3

(3i+4)/3(3f+5)

2/3 (2*+1)
I/ (3*+2)
I/(3*+5)

(3i+5)/9(f+2) l/(3f+6)

Operators and ideals a: f for Zi>p and Z^ are included in the

following example Z.

Example 4. 19.

Z : /= —jfy + — yn - txm*y
3 n

0

3 \ n' n

(3 w — 1) ̂

Qx-
5 _ X2 + - 2£ - y— Z). I -- — - (s

a) 2» + l>3m a:f= (x, y-— >) type yXf, ZM+1!:

2

/~ .y
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b) 2n + l<3m a:f=(x,yn-™) type yY*>,

(S-X,+ c) (s - X.) - (m - 1
\ «J

3C

ii) Wl = 2, n>2m, m>2. c = ~l~—+ — -~
3

a) « + 2>3m a: /= (x, y™-1) type

b) n + 2<3m a:/= (^, yn-2ra+1) type yX?

yl— -'(s-X.) (i-X,).

§ 2Io Non-isolated Singularitie§

We give some examples of ^-functions of non-isolated singularities.

Example 40 200 /= xn + ylzm. d = g.c.d. (/, T?Z) .

1. rf = l.

n
t^n
/^1

x n
-2 \

20 J>28 Put l' = l/d, m' = m/d.



THEORY OF ^-FUNCTIONS 199

t (5+i) n (*+—+4
- A n d

n s+^+^p n
;i<£n-2\ n I /0<i<n71 I I 0<;i<;TJ.-2 \ -}i JJ1 / I red

j=/=tl'—l m=j=tm'—1

We can prove these formulae by explicit construction of differential

operator P(s) such that P(s) fs+1 = b' (s)/s
? and the estimate in Theorem

3.3.

Recall that the integral local monodromy of f is

y T , ^ * j

1

1
1-lJ 1-lJ

d-1

1
1

1
1-lJ

1
1

1
1 J

d

fc

i=i "

n
' red

Note the equality

1 / & \
—-(Y1 x?-D2- ) fs+1= (5 + 1) (5+ —-) (TT ̂ :2-) /**
4 2t 2t"1 \ 2/

Example 49 23* Cubic cones in C3
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Cubic cones in C3 are classified in nine types.

2 . 3 3 s

3

3. x2z — ys (5 + !) (5+—)( •* + "

4 34- ( +IY( + —} ( + —
3

5.
4/ V 4

6. xyz (5 +1)3

8.

9.

The polynomials in 5 written in the righthand side are the ^-functions

of the lefthand side except 2 and 4. In cases 2 and 4, the factor

(s + 1)3 might be (s+ 1)2 for ^-function. The diagram of specialization

is as follows.

3-» 5-> 7 -»8 -»9.

It should be noted that the maximal root of &(V) =0 increases along

the arrows.
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