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Let G be a finite group throughout the present work. Bredon [2]

discussed CW-complexes on which G acts nicely, and called them G-com-

plexes. In the present work we discuss first, about G-spaces having G-

homotopy types of G-complexes, parallel properties to Milnor [8] in § 2,

where main results are Theorem 2. 3 and Corollary 2. 6. Then, in § 3

we apply Corollary 2. 6 to representations of G-equivariant cohomology

theories, defined by Segal [9], by J?-G-spectra (Theorems 3. 3 and 3. 4).

§ I„ 6-Complexes

By a G-complex X we mean a CW-complex X on which G acts as a

group of automorphisms of its cell-structure such that X?9 the fixed-point

set of gr, is a subcomplex for each 0eG, Bredon [2]. We refer the

basic properties of G-complexes to [2]. By G-maps and G-homotopies

we mean equivariant maps between G-spaces and equivariant homotopies

between G-maps, respectively, for simplicity.

First we quote two basic properties of G-complexes.

G-Homotopy Extension Property ([2], Chap. I, § 1). Let (X, A)

be a pair of G-complex X and its G-subcomplex A, and Y a G-space.

Given a G-map f:X—»Y and a G-homotopy F: A X I-^Y such that F\A

X {0} =f\A, then there exists a G-homotopy F:Xx I—>Y such that F\X

X{Q}=f and F\AxI=F.
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C-Cellular Approximation Theorem ([2], Chap. II, Proposition

(5. 6)). Let (X, A) be a pair of G-complexes and Y another G-com-

plex. Given a G-map f: X->Y such that f\A is cellular, then there

exists a G-homotopy F:XxI-*Y such that F\Ax{t}=f\A, 0<^<;i,

F\XX {0} =/ and F\XX {1} is cellular.

Because of these two properties we can make constructions such as

mapping-cylinders, mapping-cones, equalizers, telescopes, G-cofibration se-

quences (Puppe sequences) etc., in the category of (pointed) G-complexes.

Secondly we quote

Theorem of J.H.C. Whitehead for G-CompIexes ([2], Chap. II,

Corollary (5. 5)). Let f:X-*Y be a G-map bet-ween tzvo G-complexes.

f is a G-homotopy equivalence iff fH—f\XH: XH-^YH is a -weak homo-

topy equivalence for every subgroup H of G.

As to the denomination of the above theorem we refer to Matumoto

[5].

Now, in our case XH is a CW-complex for each subgroup H of G

by definition. Thus the above theorem can be restated in the following

form:

Proposition I. I. Let f:X—>Y be a G-map between two G-com-

plexes. f is a G-homotopy equivalence iff fH: XH-^>YH is a homotopy

equivalence for every subgroup H of G.

The above proposition holds also for pairs of G-complexes. By

"f~Gg" we denote that two G-maps /'and g are G-homotopic.

Proposition 1. 20 Let f: (X, A)—*(Y, B) be a G-map between two

pairs of G-complexes. f is a G-homotopy equivalence iff fH \ (XH, AH)

—>(YH,BH) is a homotopy equivalence for every subgroup H of G.

Proof? The "only if" part is clear. To prove the "if" part we

1} We would like to appreciate Professor Peter S. Landweber who kindly communicated
us the error of our original proof.
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need the following

Lemma. Let (K, L) be a pair of G-complexes and f: X—+Y

be a G-homotopy equivalence of G-spaces. Let g:L->X and h:K-*Y

be G-maps such that h\L=fog. Then there exists a G-map g: K-^X

such that g\L = g and f°g—rji relative to L.

This lemma follows from [2], Chap. II, Lemma (5. 2), if we replace

/ by an inclusion map making use of the mapping cylinder of f.

Now suppose that fH\ (XH, AH} -> (YH, BH) is a homotopy equivalence

for every subgroup H of G. Then /*: XH-^YH and (f\A)H: AH->BH are

homotopy equivalences for all subgroups H of G. Thus, by Proposition

1. 1 we see that /: X-+Y and f\A: A-+B are G-homotopy equivalences.

Let gB: £>—>A be a G-homotopy inverse of f\ A, and HB: (f\A) ogB—Gl.B

a G-homotopy. By G-hornotopy extension property we have a G-map Hl:

YxI->Y such that Hi|J3x/=H* and H1\Yxl = ly. Put /^J-JjYxO,

then h\B= (f\A) °gB. Apply the above lemma to the pair (hygB) of

G-maps, and get a G-map g:Y—>X such that g\B = gBaudfog~ah relative

to B. Let //2:/ogz±G/i be this G-homotopy relative to B. The sum H2

+ H1:fog~al(YiS) is a G-homotopy of G-maps (Y, B) -> (Y, B) of pairs

by construction. As is easily seen, H2-t-H!\BxI can be equivariantly

deformed to HB relative to 5x0 U -Bxl. Then, by G-homotopy extension

property we can deform Hz^rHl to a G-homotopy H:fog—G~L(YlB) such

that H\BxI=HB.

Take a G-homotopy HA:(g\B) o (f\A)—GlA and apply the same argu-

ment as above to (f\A, 0) , then we get a G-map f: (X, A) —> (Y9 B) and

a G-homotopy PI': QQf—G^(x,A} oi. G-maps of pairs such that f\A=f\A and

Hx| AX/=//!. Then

f—cfQS°f~cf

as G-maps of pairs. Thus

g°f—og°f~Gi<xtA)
as G-maps of pairs. q.e.d.

More generallv we obtain
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Proposition I. 30 Let fi (A; Al9 • • - , An_0 -» (S; B2, • • « , Bn_0 be a

G-map between two n-ads of G-complexes. f is a G-homotopy equi-

valence ifffH: (AH; A?, • • • , A^) -» (BH; Bf, • • • , B?_i) « a homotopy equi-

valence for every subgroup H of G.

Proof. Again the "only if" part is clear.

Suppose that f*: (AH; Af, • • • , A?_0 -> (B*; Bf, • • • , BJLO is a homotopy

equivalence of ?z-ads for every subgroup H of G. Then /"lA^fl ••• fl Aig:

Ail D ••• fl Aj,—>Bfl fl ••• fl J3e-s is a G-homotopy equivalence for every subset

{iii •", is} C {1, • • • , n — 1}. Using the same argument as in the above

proof we can construct a right G-homotopy inverse g: (B; Bl9 ••% -Bn-i)

->(A; A1? • • • , An_2) of / and G-homotopy H:fog—GI of G-maps of ^-ads

by stepwise construction of gr| A^ fl ••• Pi Aig and H\ Afl fl ••• fl Ais X/ so

that they extends G-maps and G-homotopies already constructed, starting

from g lAj f l ••• fl An-! and U| Al fl ••• fl An_! X I. Then we construct a

right G-homotopy inverse f of g as G-maps of ;z-ads in the same way.

Finally we see that f~Gfogof~Gf as G-maps of 72-ads and that g is a

left G-homotopy inverse of f. q.e.d.

A simplicial G-complex K is a simplicial complex K endowed with

a group G of automorphisms of its simplicial structure. Then, its geome-

tric realization Kw (or Kg) in the weak (or strong) topology is a G-space?

but not always a G-complex in our sense. As is easily seen, Kw is a

G-complex when, for each gG=G and each simplex ff of K,

go" = o° iff g fixes all vertices of o~.

In particular we have

Proposition I» 40 Let K be a simplicial G-complex. The bary-

centric subdivision Sd Kw of Kw is a G-complex.

In virtue of this proposition we regard Kw as a G-complex.

A simplicial G-set K is a simplicial set K together with a group

G of automorphisms of its simplicial structure. For each (/EiGits action

on K commutes with all structure maps of K\ hence its fixed-point set

K° is a simplicial subset of K. Let \K\ be the geometric realization of
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K in the weak topology (Milnor [7]). G-actions on K induce G-actions

on \K\. As is easily seen we have

Proposition I. 5, Let K be a simplicial G-set. Then \K\ is a

G-complex and \K\H=\KH\ for any subgroup H of G.

Let X be a G-space. Its singular complex S(X) is a simplicial G-set

with induced G-actions. Then S(Xg)=S(X)g for any g^G as is easily

seen. By a routine argument we obtain the following

Proposition 1. 6. The assignment

X^\S(X)\

is functorial on the category of G- spaces, and the map

defined by a (ff, y) = 6 (y) for (ff, y) e \S(X) |, is a natural G-map.

Let X=(X;X1,~',Xn-1) be an n-ad of G-spaces. Then S(X)

= (S(X)',S(X1)9>~,S(Xn-l)) is an ?z-ad of simplicial G-set s, and \S(X)\

= (|5(X)|;|5(X1)|,-,|5(XB-,)|) is an ^-ad of G-complexes.

Proposition 1. 7. Let K= (Xm,Xl9-~,Xn-i) be an n-ad of G-com-

plexes. Then

is a G-homotopy equivalence of n-ads.

Proof. Since \S(X) \"= (\S(Xa)\;\S(X?) \, -, \S(X*-J |) for each

subgroup H of G, we see that

is a homotopy equivalence for each H by Milnor [7], Theorem 4, and [8],

Lemma 1. Thus Proposition 1. 3 completes the proof.
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§ 2. G-Homotopy Types of 6-CompIexes

In this section we discuss G-spaces having G-homotopy types of G-

complexes in a parallel way to Milnor [8] . Roughly to say, since G is

finite, averaging procedures over G allow us parallel arguments to [8].

Let X be a G-space. A covering ^LL = {Uj} ^A of X is called a

G-covering when gU^<U for each geG and k<=A. Then, putting

G acts on the indexing set A.

Let tfj, = {U^x^A be an open G-covering of a G-space X. A partition

of unity {Pi}i<=A subordinate to tfj, is called a G-partition of unity (sub-

ordinate to ^U) when

for geG and

First we prove an analogue of Milnor [8], Theorem 2. We denote

by CW° the category of G-spaces having G-homotopy types of G-complexes

and by cffl^ the category of n-ads of G-spaces having G-homotopy types

of n-ads of G-complexes.

Theorem 2. 1. The following restrictions on an n-ad A= (A;

Al9 • • • , An_j) are equivalent'.

(a) A belongs to the category ^J,

(b) A is G-dominated by an n-ad of G-complexes^

(c) A has the G-homotopy type of an n-ad of simplicial G-com-

plexes in the weak topology.

(d) A has the G-homotopy type of an n-ad of simplicial G-com-

plexes in the strong topology,

Proof. The implications (c) => (a) =$ (b) are clear (by Proposition

1. 4). Remark that, for an n-ad A of G-spaces, the barycentric subdivision

of \S(A) | is an n-ad of simplicial G-complexes in the weak topology.

Because of Proposition 1. 7 we get a proof that (b) =£ (c) by the same

argument as [8], p.275, (using the same diagram).

Proof that (c) O (d). Let J5T= (K; Kl9 • • - , Xn-i) be an n-ad of simpli-
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cial G-complexes, and Kw and Ks denote the n-ads of geometric realizations

of K in the weak and strong topology respectively. Recall that the

topology of Ks is given by the standard metric d defined by barycentric

coordinates which is G-in variant.

Let {/9} be the set of vertices of K and QJ, = {Up} be the locally

finite open covering defined as in [8], p.276. U is a G-covering as is

easily seen. Let pp'.Ks->R be defined by

s, for each vertex /9 of K, where the summation runs over all

vertices ?' of K. Then {p$} is a G-partition of unity subordinate to QJ, .

Define p\ Ks-^Klo by letting p(x) be the point in Kw with barycentric

coordinates p/3(x'). Now it is clear that p is a continuous G-map, and

maps each (Kj)s into (Kj)w.

Let

>KS

be the canonical map which is obviously equivariant. The composition

top: KS-+KS maps each simplex into itself equiva riant ly, hence a linear

homotopy gives a G-homotopy of iop to the identity. Similarly poi: Kw

—>KU, is G-homotopic to the identity. q.e.d.

Let X be a G-space. XxX is a G-space by diagonal actions. X is

called to be G-ELCX (G-equi-locally convex} if there exists a G-in variant

neighborhood U of the diagonal in XxX and a G-map

(which will be called the structure map} satisfying Milnor's conditions

(1), (2) and (3) of [8], p.277. Even though we do not assume the

open covering ^V = {V^} of X by convex set (which we call the convex

covering of X) to be a G-covering, we can actually choose C17 so as

to be a G-covering by adding all gV$ to C[?9 gEEGand V^eECy, because

of equivariancy of the structure map L This will be called the convex

G-covering of X.

An n-ad X= (X; Xl9 •~,Xn-1) is called a G-ELCX n-ad when X is

G-ELCX, Xi is a closed G-subspace for each z", I<[z"<j7z— -1, and K is an
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ELCX n-ad in the sense of Milnor [8].

Here we remark the following. Let X be a paracompact G-space

and tfj, an open G-covering of X, then we can choose a locally finite

G-covering ^ of X which refines (U. (Choose any locally finite

refinement c^r of <^, and add all ^--transforms of elements of CW to
CW> '; the resulting G-covering ^ is still locally finite since G is finite.)

Next, let cffi be a locally finite open G-covering of a paracompact X.

We can choose a G-partitioii of unity subordinate to <-$? (by averaging

over G an arbitrary chosen partition of unity subordinate to

Lemma 28 2e Every n-ad of simplicial G-complexes in the strong

topology is G-ELCX.

Proof, Let K= (K', Kl9 • • • , Kn^ be an n-ad of simplicial G-com-

plexes in the strong topology. Use the same constructions and notations
as [8], p. 278, Proof of Lemma 2. It is easy to check that C7is G-in var-

iant and the maps

ft-.U-^K and LUX.I-+K

are G-maps. q.e.d.

Theorem 2e 3. The following restrictions on an n-ad A= (A;

Al9 • • • ,A n _ 1 ) are equivalent'.

(i) A belongs to <W%,

(ii) A has a G-homotopy type of a metrizable G-ELCX n-ad,

(iii) A has a G-homotopy type of a paracompact G-ELCX n-ad.

Proof. Since simplicial complexes in the strong topology are metri-

zable, Theorem 2. 1 and Lemma 2. 2 imply that (i) =» (ii) . Since metri-

zable spaces are paracompact, it is obvious that (ii) =» (iii) .

Proof that (iii) =$> (i) . This part corresponds to Lemma 4 of [8] .

Let A— (A; Al9 • • • , An-±) be a paracompact G-ELCX n-ad. Because of

Theorem 2. 1? it is sufficient to prove that A is G-dominated by an n-ad

of G-complexes.

Let Q7— {Vff} be the convex G-covering of A. Since A is fully
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normal, we can find an open covering CI^/ = {W/} of A which is suffi-

ciently fine so that the star of any point a of A with respect to cffl' is

contained in some convex set Vp (as in [8], p. 279).

Since G is finite and A/s are closed, we can choose at every point

a of A a sufficiently small open neighborhood Wa of a such that i) Wa

is Ga-invariant and W angW a = 0 for geG — Ga? where Ga Is the isotropy

subgroup of G at a, ii) Wa is contained in some W/5 iii) QWa=Wga for

any geG, and iv) if Wa fl A^0 then aeA*. We call each open set

Wa an admissible open set centered at a. The totality ^ = {Wa\ a^A}

of these admissible centered open sets forms an open G-covering which

refines CW \ hence Cpf7 is also sufficiently fine so that the star of any

point a of A with respect to ^ is contained In some convex set V0.

Practically we need only a G-subsystem of Cjf7 which covers A. So,

choosing one representative among G-orbits in ^ which coincide mutually

as families of subsets of A, we may assume that Wa=/=Wb If a^=b.

Let QJ, = {Us} be a locally finite open G-covering of A which refines
Cj/f7. Let N denote the nerve of tfji, considered as a geometric simplicial

complex in the weak topology. Define subcomplexes Nt such that the

vertices 8Q,~-,dk span a simplex of Nt iff USoC\ -•• C\USk intersects A^.

Then we obtain an n-ad N= (N; Nl9 • • • , -A^-i) of simplicial G-complexes in

the weak topology. Choose a G-partition of unity {ps} subordinate to
<U. Define p:A-^N by letting p(a) be the point in .AT with barycentric

coordinates ps (a} . p is clearly continuous and determines a G-map

p:A-

of ii-ads of G-spaces.

Next we define a G-map

q: N->A

of ii-ads. Let Sd N be the barycentric subdivision which Is a G-complex.

Vertices of Sd N corresponds to simplices of N which are mutually identi-

fied by an abuse of notations. Order vertices of Sd N so that (J<^6f iff

' in N. Then G-actions on Sd N preserve this ordering. Set

where fi = '\d0, • • • 3 ( J f c ) > runs over all simplices of N. For each C7/
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we choose from <%? an admissible open set Wff centered at aff so that

C//CW, and gWff = Wgff for any g^G.

Now we define the wanted G-map q as follows, by induction on the

skeletons of Sd N. For each vertex ff of Sd N set q(6}=aff. Consider

any ^-simplex £ in Sd N with vertices ff0<^-mm<^ffk. Each point .r of $

can be written uniquely in the form x = (1 — t) 0~Q + ty, 0<^<I1, where

v lies in the (k — l)-face opposite to the leading vertex (70. Put

assuming <? is defined and a G-map on the (& — 1) -skeleton inductively

by the above formula, q is well defined and continuous on. the ^-skeleton.

As G-actions preserve ordering of Sd N, it is easy to see that q is a

G-map on the ^-skeleton. Suppose q maps the (& — 1) -skeleton of Sd Nt

to At for each 7", l5Sz<[;z — 1. If f is a ^-simplex of Sd Nt with vertices

0"o ̂ ""^C $"/<;> then t7ff(j intersects A< and a f f o £ z A i by our choices; hence

q (x) e A£ for any point x of £ by definition of G-ELCX n-ad. Thus

# maps the ^-skeleton of Sd Nt to A^ for each ?, l<^z<^ — 1, completing

the induction.

For each point ae A, let Y0 be a convex set which contains the star

of a with respect to CJ|7. Then q°P(a} is a convex combination of points

in lr£, whence (a, q°p(a) ) e T7^ X V^C f/. Therefore the formula

(a, t)*-+l(a,q°p(a), 0

defines a G-homotopy between go/> and the identity of A. q.e.d.

Corresponding to Proposition 3 of [8] we obtain the following

Proposition 2e 4. If A belongs to <W% an^ B belongs to cffl^ then

JxB belongs to WS-mi-i-

Proof. The product AxB is an (n-\-m — I) -ad as defined in [8],

p. 277. Because of Theorem 2. 3 we may suppose A and B to be metri-

zable and G-ELCX. Then AxB is metrizable by product -metric. Using

products of convex sets as convex sets, and the product of the structure

maps as the structure map, it is routine to check that ,4xHis G-ELCX.

q.e.d.



REPRESENTATIONS OF G-COHOMOLOGY THEORIES 213

If X and Y are G-spaces then the function space F(X; Y) from X

to Y, endowed with compact-open topology, is a G-space by the formula

for (p^F(X; Y), xeX and

The following theorem corresponds to Theorem 3 of [8].

Theorem 2.5. If A --= (A; A,, • • - , A^) belongs to W° and if
C — (C; Q, • • • , Cn_!) Z5 a;z n-a^ of compact G-spaces, then the n-ad

(F(C- A) ; F(C, Ci: A, A) , • • - , F(C, C n_ i ; A, A^))

belongs to ^G
n,

Proof. By Theorem 2. 3 we ma}' assume that A is metrizable and

G-ELCX. Since A is metrizable and C is compact, F(C; A) is metri-

zable; and F(C, Q; A, Af) is its closed G-subspaces for each z, 1^i^n — 1.

Define the neighborhood Ur of diagonals in F(C; A) XF(C\ A), the

structure map /!/ and convex sets of F(C\ A) as in [8], Proof of Lemma

3. It is easy to check that Uf is G-in variant and A' is a G-map. Thus

F(C; A) is G-ELCX, and the ;z-ad mentioned in the theorem is also

G-ELCX. (l-e.d.

Let V be a finite-dimensional G-module, and £v denote the one-point

compactification of V. Let X be a pointed G-space with base point JCQ.

We put

"which ^ve call the (dim V)-fold loop space of X with G-actions of type

V in parameters. $FJ\T is a pointed G-space with the constant map c as

base point.

Corollary 2, 68 If a pair (X, x0) belongs to ^W®, then the pair

(J^Y, e) also belongs to <W°.

This corollary corresponds to Corollary 3 of [8J, and will be used

in the next section.
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§ 30 Representations of ^-Cohomology Theories

Segal [9] proposed to discuss generalized G-equivariant cohomology

theories with degrees in the real representation ring RO (G) of G. These

are called G-cohomology theories for the sake of simplicity. Here we

discuss to represent G-cohomology theories by $-G-spectra (defined

below) in virtue of the method of Brown [3, 4] .

A reduced G-cohomology theory will be defined as follows. Let

cfflv and 3f$ be the categories of pointed G-spaces and G-maps whose

objects have G-homotopy types of G-complexes and of finite G-complexes,

respectively; and let W^Q and ^ff? denote the full subcategories of

them with pointed G-complexes and finite G-complexes as objects, respec-

tively. When we are given with an abelian-group-valued contravariant

functor ha for each <2E:jR0(G) simultaneously on the category cJJ7jf or

3f, satisfying the following two axioms Al) and A2) , then we call the

system

a reduced G-cohomology theory on cfflo °r on 2^.
Al) Each ha is a G-homotopy functor satisfying -wedge axiom

and Mayer-Vietoris axiom on W^Q or on ^S'?. (Cf., Adams [1]
and Brown [4].)

A2) For each finite- dimensional G-module V, the natural suspen-
sion isomorphism

is defined for every a^RO(G) (where £VX=IV/\X).

Take an infinite-dimensional G-module W which contains a discrete

countable G-subset S such that every finite subset of S is linearly inde-

pendent and, for every subgroup H of G, there exists an infinite number

of points of S at which the isotropy groups of G are H. Let L be the

simplicial complex consisting of all simplices spanned by finite subsets

of S. L is a simplicial G-complex and every finite simplicial G-complex

is isomorphic to a G-subcomplex of L. Let 9^? be the full subcategory
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of ^3^ having all finite G-subcomplexes of L as objects. &$ is a small

category and contains countably-infinite many objects. Now the pairs

(^W?, ^o) and (g'S'o, g7?) are homotopy categories and all functors

h", restricted to ^cfflo or g^EF?, are homotopy functors in the sense of

Brown [4]; and we can apply Brown's theory to our functor ha.

Here we remark the following. Every finite G-complex is G-homo-

topy equivalent to a finite simplicial G-complex (by sirnplicial approxima-

tions of attaching maps of cells) ; hence the set of G-homotopy types of

finite G-complexes is countable, and we can choose a representative system

J(={K9K', •••} such that all elements of K belongs to &$. Next, for

any two complexes K and Kf in J{, the set [_K, K'~\G is countable (where

[ , ]G stands for the set of G-homotopy classes of pointed G-maps) ,

because any G-map f\K-^K' can be G-approximated b}^ a simplicial G-map

of some subdivisions of K and K! (i.e., take barycentric subdivisions

Sd K and Sd Kf first to make them G-complexes in our sense, secondly

subdivide Sd K sufficiently fine so that we can apply the usual simplicial

approximation to f, then, taking care of G-equivariancy, we can apply

the usual argument of simplicial approximation to get simplicial G-approxi-

mation of /) . These remarks will be used later to apply the device of

Adams [1], §3, to our case.

Let & be a full subcategory of W^Wo and h a Brown's homotopy

functor on W (in the sense of G-homotopy) . Let Y be an object of %?

and u^h(Y). The map

defined by Tw[/] =/%, is a natural transformation of functors on

and the correspondence

gives a bijection

h (Y) ^Nat Trans ( [ , Y] G, K) ,

[3], Lemma 3.1. When Tu is an isomorphism for each object X" of & ,

Y is called a representing complex of h as usual.

Let tfcfy1* and ^^S be the full subcategories of ^^1 and
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f, respectively, in which objects are G-complexes X such that XH are

arcwise connected for all subgroups H of G.

As is easily seen

for all /zl>0 and all subgroups H of G (where G acts trivially on Sn

and Y is a pointed G-complex). Hence, if f:Y— >Y' is a map in

such that

for all G-complexes X in ^3%, then / is a G-homotopy equivalence by

J.H.C. Whitehead's theorem for G-complexes. Thus we can apply [4],

Theorem 2. 8, to a Brown's homotopy functor on ^cffl^ and we obtain

Proposition 3. 1. Lei h be a Brown's homotopy functor defined

on ^cft?*- There exists a representing couple (Y,ii) of h, where Y

lies in <g<W% and «eA(Y), i.e.,

a natural isomorphism of sets for X in ^CW%. Y is unique up to

G-homotopy equivalence,

(Let JC^ be the subset of J{ consisting of all elements which belong

to ^£F^. Remark that we can use only elements of J{^ as attaching

data in the constructions in the proof of Theorem 2. 8 of [4], which

supplements the proof of the above proposition.)

Before discussing representations of Brown's homotopy functor on

j, we remark the following

Lemma. Every G-complex X in (^?CW% can be expressed as a

union of finite G- sub complexes which belong to

Proof. It is clear that X can be expressed as a union of finite

G-subcomplexes. Hence it is sufficient to show that, for arbitrary finite

G-subcomplex K' of X, we can find a finite G-subcomplex K of X such
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that K^>K' and K belongs to

Let H be a subgroup of G. We want to find a finite G-subcomplex

KL of X satisfying that KI 13 K' and, for ever}^ vertex v of K± such that

Gv is contained in H, v can be joined to the base point by a path in

Kfv. Suppose we obtained a finite G-subcomplex K2 of X satisfying that

K2I3K' and, for every vertex iv of Kz such that Gw is a proper subgroup

of JJ, zcf can be joined to the base point by a path in K$w. Now, for

each vertex v of K2 such that GV
:=H, we can find a path Lv which is

a subcomplex of XH and joins v to the base point. Set

where v runs over all vertices of Kz such that GV = I~I. K.± is the wanted

G-complex.

Now, inductively on inclusions of subgroups H of G, after a finite

times of the above construction we obtain a finite G-subcomplex K of X

such that KmK' and every vertex v of K. can be joined to the base point

by a path in K°v, which is equivalent to saying that K belongs to ^3%.

q.e.d.

Let h be a group-valued Brown's homotopy functor on ^3%. Put

for each G-complex X in ^?c{|/?5, where Xr runs over all finite G-sub-

complexes of X which belong to ^3%. h is a ^veak G-homotopy functor

on W^W^ in the parallel sense to "weak homotopy" in [1]. For each

object Yin tfcffl* ancl «e%(Y"), the maps

TU:[X, Y]*

and

T"^ . rv7 vn
U:L-A , JJ

defined by TM[/] =f*2i and Tu[gf] =g*u9 respectively, are natural trans-

formations of functors and the correspondences

and

give rise to bijections of sets



218 SnoRd ARAKI AND MITUTAKA MURAYAMA

h ( Y) ^Nat Trans ( [ , Y] G, h)

^Nat Trans ([ , Y]*,£),

where [ , ] J stands for the set of weak G-homotopy classes of G-maps,

[3], Lemma 3. 3, and [1], Lemma 4. 1.

By the earlier remarks and the above lemma we can apply the argu-

ments of [1] , § 3, to the present case. In particular, the functor h on

^f'-W** satisfies the Wedge axiom, the isomorphism with inverse limits

and the Mayer-Vietoris axiom in the weak sense, [1], Lemma 3. 3? Lemma

3. 4 and Proposition 3. 5, without any countability assumption on 7z.

Now we can do the same arguments and constructions as [1], Lemma

4. 2 and Proposition 4. 4, by utilizing only elements of J{^ as attaching

data, and we obtain representations of h, that is,

Proposition 3* 20 Let h be a group-valued Brown's homotopy

functor defined on &S%. There exists a representing couple (Y,u)

of h, 'where Y lies in ^^l and u^h(Y), i.e.,

a natural isomorphism of sets for X in ^frF*. Y is unique up to

G-homotopy equivalence.

We can also prove an analogue of [1], Theorem 1. 9, and introduce

a certain Hopf-space-structure to Y to make Tu an isomorphism of groups.

But we don't need it to represent G-cohomology theories.

Now we shall discuss representations of G-cohomology theories. Let

h$ = {ha; a<=RO(G)} be a reduced G-cohomology theory defined on cjj;?

or £FSf. Since discussions of both cases are quite parallel and since the

first case is a bit simpler, we shall discuss only the second case, i.e.,

we suppose h^ is defined on 3®.

By Proposition 3. 2 we have a representing complex Y' of

for each a^RO(G), i.e., we have a natural isomorphism

for each <X<=RO(G).
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By 2Y and @Y we denote the suspension and the loop space of a

pointed G-space Y "with trivial G-actions on parameters. Put

Y — QY'I a — M la+i ,

where 1 denotes the real 1-dimensional trivial G-module. Ya is a Hopf-

space (jFJ-space) with the multiplication defined by usual loop composi-

tions. Moreover, this multiplication in Ya commutes with every g-aetion,

geG. In this sense we call Ya a Hopf-G- space. By Corollary 2. 6 Ya

belongs to cj|7o j hence we may assume that Ya is a Hopf-G-complex

(replacing by a G-homotopy equivalent one if necessary) . Then Y% is

a Hopf-subcomplex of Ya for any subgroup H of G.

2X belongs to ^^^ for an}^ G-complex X. Thus we have iso-

morphisms

for each X in W5!® and ae,RO(G), where (T is the suspension isomor-

phism. Moreover, the above isomorphisms are group isomorphisms by a

usual argument, endowing [X, Y^\G a group structure induced by the

Hopf-G~structure of Ya. Thus Ya represents ha on ^3® as a group-

valued functor.

Let ha be the associated functor to ha, i.e.,

for X in ^^ff, where Xr runs over all finite G-subcomplexes of X.

Since [JX, Y"J £ = lim [J£"r, YJG as is easily seen, we have a natural iso-

morphism

of groups for each X in g^? and ae^O(G), i.e., Ya represents Aa.

Let V be a finite-dimensional G-module. Passing to the inverse limit

of suspension isomorphisms ffv: ha (Xr)^ha+v (2vXr) , we obtain a natural

isomorphism

Again, passing to the inverse limit of the canonical natural isomor-

phism [_2vXr, Ya~v~]G^[Xr, QvYa^.v~\G, we have a natural isomorphism
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\_2¥X, YaJ v-\l^[_X, SvYa , „] 1 , Xe & <W% •

Combining the above three natural isomorphisms, we obtain a natural

isomorphism

of groups, where QvYarV is a Hopf-G-space with structures induced from

those of YQH y, and the group structure of the right hand side of the above

isomorphism is induced from Hopf-G-structures of Ya r.

By Corollary 2. 6 SvYa+v belongs to ^jf. And we may suppose

that $vYa+v itself is a Hopf-G-complex. Putting X=Ya in the above

isomorphism, we obtain a G-map

fa.v- Ya-^>@ Ya+v

such that \fa, v\ corresponds to the class of the identit}^ map of Ya.

Next, putting X= Q Ya+v in the same isomorphism, we obtain a G-map

ga, y\S Yaj. y— > Ya

which corresponds to the class of the identity map of QvYa^ v By the

above choices we see easily that (fUt F) ^ = (ga< F) J1 which is the same as

the above natural isomorphism.

This shows, on one hand, that Qa,v°fa,v and fa,v°Qa,v are weakly

G-homotopic to the identity maps ; and, on the other hand, the fact that

fat v and gat v induce group isomorphisms implies that fat r and ga, v are

weak morphisms of Hopf-G-complexes (i.e., they commute with Hopf-struc-

ture maps up to weak G-homotopy) .

Then, for each subgroup H of G, we see easily that (fa,v)H is a

weak morphism of Hopf-complexes, and

(0«. F) "° (/„. r) "~al and (fa. r)
 a° (ga. r) "~B1 ,

where "^^w," denotes "weak homotopy", which implies isomorphisms

for all ;z^0. Hence, (fai F) H is a weak morphism of Hopf-complexes,

induces one-one correspondence of path-components, and gives a weak

homotop}^ equivalence of ^-components. Thus (fai F) H is a weak homotopy

equivalence by a classically well-used argument. Finally, J.H.C. Whitehead's

theorem for G-complexes concludes that fa,v is a G-homotopy equivalence.
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Summarizing the above arguments we obtain

Theorem 3* 3. Let h% = {ha-a^RO(G)} be a reduced G-cohomo-

logy theory defined on ^Q or 3%. There exists, for each a^jRO(G),

a G-complex Ya in W^® which is a Ho pf-G- complex and represents

ha as a group-valued functor. Furthermore, for each finite-dimen-

sional G-module T7, there exists a G-homotopy equivalence

fai:Ya~oa
vYa ,-,

which is a morphism or weak morphism of Hopf-G- spaces (depending

on the categories) and induces the suspension isomorphism 6V for each

Let cO be a G-module containing exactly one copy of each irreducible

G-module (including a trivial one) as a direct summaiid. A G-spectrum

J52) consists of a G-space En in cffl® and a G-map sn:^
l°En~>En^1 for each

;?eZ. Let e.'n: En-*Qt°Eni1 be the adjoint G-map of en for each n^Z.

E is called an Q-G-spectrum if e^ is a G-homotopy equivalence for every

n^Z. Since o) contains a 1 -dimensional trivial representation as a direct

factor, SaY is a Hopf -G-space for any G-space Y by compositions along

the parameter on which G acts trivially. Thus, if E is an ^-G-spectrum,

each term of it can be regarded as a Hopf-G-space.

In Theorem 3. 3, putting

and

£?i Jno,a>' -^/i— G^ J^n I

for each ;/eZ, we obtain an J2-G-spectrum E= {En, £„; n eZ}. And we

obtain

Theorem 3e 4. Every reduced G-cohomology theory h,Q = {ha\a

eJ?O(G)} can be represented by an ^-G-spectrum E={En\n(=Z], i.e.,

we have a natural isomorphism

2) The referree remarked the authors that this notion was denned in somewhat wide
sense by C. Kosniowski, Math. Ann., 210 (1974), 83-104.
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for each a^RO(G), where V is a finite G-module such that ct+V

= no).

Remark 1. A similar representation theory was discussed by Matu-

moto [6], Theorem 6. 1, for certain equivariant cohomology theories de-

fined on the category of his G-CW-complexes, where he obtained represen-

tations of his cohomology theories by fweak J2-spectra.

Remark 2. As observed by Segal [9], stable G-cohomotopy 0J is

universal for G-cohomology theories, or equivalently, we can say that

every reduced G-cohomology theory is an QJg-module. Then a result of

Segal [9], Corollary to Proposition 1, suggests that every ha should be

treated as an A (G) -module-valued functor and the suspension 6V as an

A (G) -module isomorphism, where A (G) denotes the Burnside ring of G.

Such an A (G)-module structure would be important if we want to discuss

further structures of G-cohomologies such an multiplicative structures^

in which units of A (G) might play an important role in sign conventions.

Even though it seems to be difficult to discuss the general case, we will

discuss the case of G = ̂ /2Zy i.e., spaces-with-involutions, in a subsequent

paper in details.

References

[1] Adams, J. F., A variant of E. H. Brown's representability theorem, Topology, 10
(1971), 185-198.

[2] Bredon, G. E., Equivariant cohomology theories, Lecture Notes i?i Math., 34,
Springer-Verlag, 1967.

[3] Brown, E. H., Cohomology theories, Ann. of Math., 75 (1962), 467-484. Correc-
tions, Ann. of Math., 78 (1963), p. 201.

[4] Brown, E. H., Abstract homotopy theory, Trans. Amer. Math. Soc., 119 (1965),
79-85.

[5] Matumoto, T., On G-CW-complexes and a theorem of J. H. C. Whitehead, J. Fac.
Sci., Univ. Tokyo, Sect. I, 18 (1971), 363-374.

[ 6 ] Matumoto, T., Equivariant cohomology theories on G-CW-complexes, Osaka J.
Math., 10 (1973), 51-68.

[ 7 ] Milnor, J., The geometric realization of a semi-simplicial complex, Ann. of Math.,
65 (1957), 357-362.

[8] Milnor. J., On spaces having the homotopy type of a CW-complex, Trans. Amer.
Math. Soc., 90 (1959), 272-280.

[9] Segal, G. B., Equivariant stable homotopy theory, Actes, Congres Intern. Math.,
2 (1970), 59-63.


