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Let G be a finite group throughout the present work. Bredon [2]
discussed CW-complexes on which G acts nicely, and called them G-com-
plexes. In the present work we discuss first, about G-spaces having G-
homotopy types of G-complexes, parallel properties to Milnor [8] in § 2,
where main results are Theorem 2.3 and Corollary 2.6. Then, in §3
we apply Corollary 2.6 to representations of G-equivariant cohomology

theories, defined by Segal [9], by £-G-spectra (Theorems 3.3 and 3. 4).

§ l. G-Complexes

By a G-complex X we mean a CW-complex X on which G acts as a
group of automorphisms of its cell-structure such that XY the fixed-point
set of g, is a subcomplex for each g&G, Bredon [2]. We refer the
basic properties of G-complexes to [2]. By G-maps and G-homotopies
we mean equivariant maps between G-spaces and equivariant homotopies
between G-maps, respectively, for simplicity.

First we quote two basic properties of G-complexes.

G-Homotopy Extension Property ([2], Chap. I, §1). Lez (X, A)
be a pair of G-complex X and its G-subcomplex A, and Y a G-space.
Given a G-map fX—Y and a G-homotopy F: AXI—-Y such that F|A
X {0} =F|A, then there exists a G-homotopy F: XX I—Y such that F|X
X {0} =f and F|AXI=F.
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G-Cellular Approximation Theorem ([2], Chap. II, Proposition
(5.6)). Let (X, A) be a pair of G-complexes and Y another G-com-
plex. Given a G-map f: X—Y such that flA is cellular, then there
exists a G-homotopy F: XXI->Y such that FIAX {t} =flA, 0<¢<L1,
FIXX {0} =f and F|XX {1} is cellular.

Because of these two properties we can make constructions such as
mapping-cylinders, mapping-cones, equalizers, telescopes, G-cofibration se-
quences (Puppe sequences) etc., in the category of (pointed) G-complexes.

Secondly we quote

Theorem of J.H.C. Whitehead for G-Complexes ([2], Chap. II,
Corollary (5.5)). Let f:X—Y be a G-map between two G-complexes.
f is a G-homotopy equivalence iff f¥=f1X*: X*—-Y* is a weak homo-

topy equivalence for every subgroup H of G.

As to the denomination of the above theorem we refer to Matumoto
[5].

Now, in our case X¥ is a CW-complex for each subgroup H of G
by definition. Thus the above theorem can be restated in the following

form:

Proposition 1. 1. Let f1X—Y be a G-map between two G-com-
plexes. [ is a G-homotopy equivalence iff f¥: X¥—Y" is a homotopyv
equivalence for every subgroup H of G.

The above proposition holds also for pairs of G-complexes. By

“f =z 9” we denote that two G-maps f and g are G-homotopic.

Proposition 1.2. Let f:(X, A)— (Y, B) be a G-map between two
pairs of G-complexes. f is a G-homotopy equivalence iff f:(X¥, A®)
— (Y¥#, B¥) is a homotopy equivalence for every subgroup H of G.

Proof.¥ The “only if” part is clear. To prove the “if” part we

b We would like to appreciate Professor Peter S. Landweber who kindly communicated
us the error of our original proof.



REPRESENTATIONS OF G-COHOMOLOGY THEORIES 205

need the following

Lemma. Let (K,L) be a pair of G-complexes and f: X—>Y
be a G-homotopy equivalence of G-spaces. Let ¢:L—X and h:K—Y
be G-maps such that hiL=fog. Then there exists a G-map §j: K—>X
such that §|L=g and fofj=sh relative to L.

This lemma [ollows from [2], Chap. II, Lemma (5. 2), if we replace
[ by an inclusion map making use of the mapping cylinder of f.

Now suppose that f#: (X", A¥)— (Y¥, B") is a homotopy equivalence
for every subgroup H of G. Then f%: X*—>Y* and (f|A)?: A" B are
homotopy equivalences for all subgroups H of G. Thus, by Proposition
1.1 we see that f: X—>Y and f]A: A—B are G-homotopy equivalences.

Let g5: B— A be a G-homotopy inverse of f|A, and Hy: (f|A)ogs==¢ls
a G-homotopy. By G-homotopy extension property we have a G-map H,:
Y X I->Y such that H;|BXI=Hjz; and H,|YXx1=1,. Put h=H,|Y X0,
then h|B= (flA)ogs Apply the above lemma to the pair (A, gp) of
G-maps, and get a G-map ¢:Y—X such that ¢|B=g¢ and fog=sh relative
to B. Let H,:fog=gh be this G-homotopy relative to B. The sum H,
+ H: fog=~¢l s p is a G-homotopy of G-maps (Y, B)—(Y,B) of pairs
by construction. As is easily seen, H,-+ H;|BX1I can be equivariantly
deformed to Hj relative to BX0U BX1. Then, by G-homotopy extension
property we can deform H,+ H, to a G-homotopy H: fog=z¢ly 5 such
that HIBX I= Hj.

Take a G-homotopy H,:(g|B)o (f|A)==41, and apply the same argu-
ment as above to (f|d,g), then we get a Gmap f: (X, A) — (Y, B) and
a G-homotopy H': go f==gl (x4 of G-maps of pairs such that f|A=f]A and
H|AXI=H, Then

f:af"g"f:ﬁf

as G-maps ol pairs. Thus

q °f:c:g°f“‘:61<x. n

as G-maps of pairs. q.e.d.

More generally we obtain
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Proposition 1.3. Let f:(A; A, -+, Aui) > (B; By, +++, Byoy) be a
G-map between two n-ads of G-complexes. f is a G-homotopy equi-
valence iff f7:(A%; A%, ---, AR )~ (B¥; BE, ..., BZ ) is a homotopy equi-
valence for every subgroup H of G.

Proof. Again the “only if” part is clear.

Suppose that f7:(A¥"; A%, .-, AZ )— (B¥; BE, ..., BZ_)) is a homotopy
equivalence of z-ads for every subgroup Hof G. Then f|A4; N---NA,;,:
A,
{ty, ==+, € {1, --,»—1}. Using the same argument as in the above

N--NA,—B;N--NB; is a Ghomotopy equivalence for every subset

proof we can construct a right G-homotopy inverse ¢:(B; B, *++, B,_,)
—(A; Ay, -+, A,-y) of f and G-homotopy H: fog=~,l of G-maps of z-ads
by stepwise construction of g[Ailﬂ N A4;, and H]Ailﬂ -+ NA;, XTI so
that they extends G-maps and G-homotopies already constructed, starting
from ¢g|A;N---NA,; and H|A,N--NA,;XI Then we construct a
right G-homotopy inverse f of g as G-maps of z-ads in the same way.
Finally we see that f~=gfogof=;f as G-maps of z-ads and that g is a
left G-homotopy inverse of f. g.e.d.

A simplicial G-complex K is a simplicial complex K endowed with
a group G of automorphisms of its simplicial structure. Then, its geome-
tric realization K,, (or K;) in the weak (or strong) topology is a G-space,
but not always a G-complex in our sense. As is easily seen, K, is a
G-complex when, for each &G and each simplex ¢ of K,
go=0¢ iff g fixes all vertices of 7.

In particular we have

Proposition 1.4. Let K be a simplicial G-complex. The bary-
centric subdivision Sd K, of K, is a G-complezx.

In virtue Sf this proposition we regard K, as a G-complex.

A simplicial G-set K is a simplicial set K together with a group
G of automorphisms of its simplicial structure. For each g&G its action
on K commutes with all structure maps of K; hence its fixed-point set

K’ is a simplicial subset of K. Let |K| be the geometric realization of
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K in the weak topology (Milnor [7]). G-actions on K induce G-actions

on |K|. As is easily seen we have

Proposition 1.5. Let K be a simplicial G-set. Then |K| is a
G-complex and K| =|K"| for any subgroup H of G.

Let X be a G-space. Its singular complex S(X) is a simplicial G-set
with induced G-actions. Then S(X¥) =S8(X)? for any g=G as is easily

seen. By a routine argument we obtain the following

Proposition 1.6. The assignment
X—>|SX) |
is functorial on the category of G-spaces, and the map
a:1S(X)|-X,
defined by a(0,y) =0(y) for (0,y)€|S(X)|, is a natural G-map.

Let X=(X; X,, -+, X,-;) be an #n-ad of G-spaces. Then S(X)
=(§(X);SX), -+, S(X,-1)) is an n-ad of simplicial G-sets, and [S(X) |
=S ;1S L, ,IS(X-1) 1) is an n-ad of G-complexes.

Proposition 1.7. Let X=(X;X,,---,X,_;) be an n-ad of G-com-
plexes. Then

a:|SX)|-X

is a G-homotopy equivalence of n-ads.

Proof. Since [S(X) "= (SXD IS, -, ISXE)|) for each
subgroup H of G, we see that

allS(X) ]S (X) F->X" = (X*; X¥, -+, Xi0)

is a homotopy equivalence for each H by Milnor [7], Theorem 4, and [8],
Lemma 1. Thus Proposition 1.3 completes the proof.
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§ 2. G-Homotopy Types of G-Complexes

In this section we discuss G-spaces having G-homotopy types of G-
complexes in a parallel way to Milnor [8]. Roughly to say, since G is
finite, averaging procedures over G allow us parallel arguments to [8].

Let X be a G-space. A covering QU ={U}es of X is called a
G-covering when gU,= Q] for each g=G and A= 4. Then, putting

gUzngz s

G acts on the indexing set A.

Let Q] ={U,}:cs be an open G-covering of a G-space X. A partition
of unity {p:}ics subordinate to QU is called a G-partition of unity (sub-
ordinate to qJ) when

2:(97'x) =pu(x)
for gG and xeX.

First we prove an analogue of Milnor [8], Theorem 2. We denote
by Gp° the category of G-spaces having G-homotopy types of G-complexes
and by ¢ the category of z-ads of G-spaces having G-homotopy types

of n-ads of G-complexes.

Theorem 2.1. The following restrictions on an n-ad A= (A;
A, -, A,_)) are equivalent:

(a) A belongs to the category Y8,

(b) A is G-dominated by an n-ad of G-complexes,

(c) A has the G-homotopy type of an n-ad of simplicial G-com-
plexes in the weak topology.

(d) A has the G-homotopy type of an n-ad of simplicial G-com-
plexes in the strong topology,

Proof. The implications (c)= (a) = (b) are clear (by Proposition
1.4). Remark that, for an n-ad 4 of G-spaces, the barycentric subdivision
of |S(A4)| is an n-ad of simplicial G-complexes in the weak topology.
Because of Proposition 1.7 we get a proof that (b)= (c) by the same
argument as [8], p.275, (using the same diagram).

Proof that (c)© (d). Let K= (K; K, --, K,-;) be an n-ad of simpli-
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cial G-complexes, and K, and K, denote the n-ads of geometric realizations
of K in the weak and strong topology respectively. Recall that the
topology of K, is given by the standard metric d defined by barycentric
coordinates which is G-invariant,

Let {8} be the set of vertices of K and U ={U,} be the locally
finite open covering defined as in [8], p.276. QU is a G-covering as is
easily seen. Let p,:K;—R be defined by

Pﬁ(x) :d(x’ Ks—Uﬁ)/Z d(l‘, Ks_(IT)9

xeK,, for each vertex 3 of K, where the summation runs over all
vertices 7 of K. Then {ps} is a G-partition of unity subordinate to .
Define p: K,—K, by letting p(x) be the point in K, with barycentric
coordinates pg(x). Now it is clear that p is a continuous G-map, and
maps each (Kj;); into (K;),.

Let

i: K,—K,

be the canonical map which is obviously equivariant. The composition
iop: K,— K, maps each simplex into itself equivariantly, hence a linear
homotopy gives a G-homotopy of 70p to the identity. Similarly poz: K,
—->K, is G-homotopic to the identity. q.e.d.

Let X be a G-space. XXX is a G-space by diagonal actions. X s
called to be G-ELCX (G-equi-locally convex) if there exists a G-invariant
neighborhood U of the diagonal in XXX and a G-map

L UXI->X

(which will be called the structure map) satisfying Milnor’s conditions
(1). (2) and (3) of [8], p.277. Even though we do not assume the
open covering C) ={V;} of X by convex set (which we call the conver
covering of X) to be a G-covering, we can actually choose CJ/ so as
to be a G-covering by adding all gV, to CI/, g=G and V,= /), because
of equivariancy of the structure map A. This will be called the conver
G-covering of X.

An nad X=(X;X,, -, X,-,) is called a G-ELCX n-ad when X is
G-ELCX., X; is a closed G-subspace for each 7, 1<¢<<n—1, and X is an
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ELCX n-ad in the sense of Milnor [8].

Here we remark the following. Let X be a paracompact G-space
and ] an open G-covering of X, then we can choose a locally finite
G-covering G of X which refines q[. (Choose any locally finite
refinement G’ of ], and add all g-transforms of elements of ' to
GY’; the resulting G-covering f/ is still locally finite since G is finite.)
Next, let Gf) be a locally finite open G-covering of a paracompact X.
We can choose a G-partition of unity subordinate to ) (by averaging

over G an arbitrary chosen partition of unity subordinate to GJ).

Lemma 2.2. Every n-ad of simplicial G-complexes in the strong
topology is G-ELCX.

Proof. Let K=(K;K,, -, K,.;) be an n-ad of simplicial G-com-
plexes in the strong topology. Use the same constructions and notations
as [8], p.278, Proof of Lemma 2. It is easy to check that Uis G-invar-

iant and the maps
u:U—->K and 21:UXI—K

are G-maps. q.e.d.

Theorem 2.3. The following restrictions on an n-ad A= (A,
Ay, -, Ay are equivalent:

1) A belongs to GYE,

Gi) A has a G-homotopy type of a metrizable G-ELCX n-ad,

Gii) A has a G-homotopy type of a paracompact G-ELCX n-ad.

Proof. Since simplicial complexes in the strong topology are metri-
zable, Theorem 2.1 and Lemma 2.2 imply that ()= (i). Since metri-
zable spaces are paracompact, it is obvious that (i) = (iii).

Proof that (iii))= (i). This part corresponds to Lemma 4 of [8].
Let A= (A; A,, -+, A,_,) be a paracompact G-ELCX n-ad. Because of
Theorem 2.1, it is sufficient to prove that A is G-dominated by an n-ad
of G-complexes.

Let ¢V ={V,} be the convex G-covering of A. Since A is fully
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normal, we can find an open covering G’ ={W,’} of A which is suffi-
ciently fine so that the star of any point a of A with respect to G}’ is
contained in some convex set V, (as in [8], p.279).

Since G is finite and A;’s are closed, we can choose at every point
a of A a sufficiently small open neighborhood W, of a such thati) W,
is Gy invariant and W,NgW,=¢ for g=G—G,, where G, is the isotropy
subgroup of G at a, ii) W, is contained in some W,/, iii) gW,=W,, for
any ¢=G, and iv) if W,N A;=5¢ then a€ A;, We call each open set
W, an admissible open set centered at a. The totality G ={W,;ac A}
of these admissible centered open sets forms an open G-covering which
refines G)’; hence G is also sufficiently fine so that the star of any
point a of A with respect to ¢}/ is contained in some convex set V.

Practically we need only a G-subsystem of J) which covers A. So,
choosing one representative among G-orbits in G}/ which coincide mutually
as families of subsets of A, we may assume that W,==W, if a=b.

Let QI ={U;} be a locally finite open G-covering of A which refines
qQpY. Let N denote the nerve of Q], considered as a geometric simplicial
complex in the weak topology. Define subcomplexes N; such that the
vertices Og, **+, 0x span a simplex of N; iff U, N---NU,, intersects A;.
Then we obtain an z-ad N= (N; N, ---, N,_,) of simplicial G-complexes in
the weak topology. Choose a G-partition of unity {p;} subordinate to
Q. Define p:A—N by letting p(a) be the point in N with barycentric

coordinates p;(a). p is clearly continuous and determines a G-map
p: A—->N

of n-ads of G-spaces.

Next we define a G-map
qg: N—4

of n-ads. Let Sd N be the barycentric subdivision which is a G-complex.

Vertices of Sd N corresponds to simplices of N which are mutually identi-

fied by an abuse of notations. Order vertices of Sd N so that 0<{¢’ iff

020" in N. Then G-actions on Sd N preserve this ordering. Set
SdU ={U; =U,,N--- N U},

where ¢=<0,, -+, 0y runs over all simplices of N. For each U &Sdq]
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we choose from ) an admissible open set W, centered at a, so that
U/ cW, and gW,=W,, for any g=G.

Now we define the wanted G-map q as follows, by induction on the
skeletons of Sd N. For each vertex ¢ of Sd N set q(0) =a,. Consider
any k-simplex & in Sd N with vertices 0,<---<0,. FEach point x of &
can be written uniquely in the form x= (1—2)0,+¢y. 0<¢<1, where

v lies in the (k—1)-face opposite to the leading vertex 0d,. Put

q(x) =i(as, qv), t),

assuming ¢ is defined and a G-map on the (2£—1)-skeleton inductively
by the above formula. ¢ is well defined and continuous on the k-skeleton.
As G-actions preserve ordering of Sd N, it is easy to see that g is a
G-map on the k-skeleton. Suppose g maps the (£—1)-skeleton of Sd N;
to A; for each 7, 1<;<n—1. If & is a k-simplex of Sd N; with vertices
0,<--< 0%, then U,, intersects A; and a,,&€A; by our choices; hence
g(xr) € A; for any point x of & by definition of G-ELCX n-ad. Thus
g maps the k-skeleton of Sd N, to A, for each 7, 1<t<{n—1, completing
the induction.

For each point a€ A, let V, be a convex set which contains the star
of a with respect to /. Then gop (a) is a convex combination of points

in Vy, whence (a,gop(a)) € VyXx VaCU. Therelore the formula
(a, t)—A(a, gop(a), t)

defines a G-homotopy between gop and the identity of A. q.e.d.
Corresponding to Proposition 3 of [8] we obtain the following

Proposition 2. 4. If A belongs to G5 and B belongs to Y5, then
AXB belongs to Y, .1

Proof. The product AXB is an (n+m—1)-ad as defined in [8],
p.277. Because of Theorem 2.3 we may suppose A and B to be metri-
zable and G-ELCX. Then A X B is metrizable by product-metric. Using
products of convex sets as convex sets, and the product of the structure
maps as the structure map, it is routine to check that A X B is G-ELCX.

q.e.d.
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If X and Y are G-spaces then the function space F(X;Y) from X

to Y, endowed with compact-open topology, is a G-space by the [ormula

(gp) (x) =g¢(g ')
for pe F(X;Y), z€X and g=G.

The following theorem corresponds to Theorem 3 of [8].

Theorem 2.5, If A= (1A, . A, belongs to WS and if
C=(C;C, -, C,..) is an n-ad of compact G-spaces, then the n-ad
(F(C; A);F(C,C:A A), - F(C,C,_; A. 4,.))
belongs to 8.

Proof. By Theorem 2.3 we may assume that -f is metrizable and
G-ELCX. Since A is metrizable and C is compact, F(C;.1) is metri-
zable; and F (C, C;: A, 4,) is its closed G-subspaces for each 7, 1<i<n—1.

Define the neighborhood U’ of diagonals in F(C; A) X F(C:.1), the
structure map A’ and convex sets of F(C; A) asin [8], Proof of Lemma
3. It is easy to check that U’ is G-invariant and 1’ is a G-map. Thus
F(C; 4) is G-ELCX, and the n-ad mentioned in the theorem is also
G-ELCX. q.c.d.

Let V be a fnite-dimensional G-module, and 3" denote the one-point
compactification of V. Let X be a pointed G-space with base point .

We put
‘QVX:F("/E;VQ *:X) IG)?

which we call the (dim V)-fold loop space of X with G-actions of type
17 in parameters. £2"X is a pointed G-space with the constant map ¢ as

base point.

Corollary 2.6. If a pair (X,x,) belongs to G5, then the pair
(RYX, ¢) also belongs to 2.

This corollary corresponds to Corollary 3 of [8]. and will be used

in the next section.



214 SHORO ARAKI AND MITUTAKA MURAYAMA
§ 3. Representations of G-Cohomology Theories

Segal [9] proposed to discuss generalized G-equivariant cohomology
theories with degrees in the real representation ring RO(G) of G. These
are called G-cohomology theories for the sake of simplicity. Here we
discuss to represent G-cohomology theories by £2-G-spectra (defined
below) in virtue of the method of Brown [3,4].

A reduced G-cohomology theory will be defined as follows. Let
GY§ and F§ be the categories of pointed G-spaces and G-maps whose
objects have G-homotopy types of G-complexes and of finite G-complexes,
respectively; and let @GP and € F¢ denote the full subcategories of
them with pointed G-complexes and finite G-complexes as objects, respec-
tively. When we are given with an abelian-group-valued contravariant
functor %% for each «=RO(G) simultaneously on the category GJ¢ or
¢, satisfying the following two axioms Al) and A2), then we call the

system
hi={h% a=RO(G)}

a reduced G-cohomology theory on GY§ or on F§.

A1)  Each h® is a G-homotopy functor satisfying wedge axiom
and Mayer-Vietoris axiom on & GWE or on € F§. (Cf., Adams [1]
and Brown [4].)

A2) For each finite-dimensional G-module V, the natural suspen-

sion isomorphism
o B (X) =~h*t" (37 X)

is defined for every as RO(G) (where 3'X=3"N\X).

Take an infinite-dimensional G-module W which contains a discrete
countable G-subset S such that every finite subset of S is linearly inde-
pendent and, for every subgroup H of G, there exists an infinite number
of points of S at which the isotropy groups of G are H. Let L be the
simplicial complex consisting of all simplices spanned by finite subsets
of S. L is a simplicial G-complex and every finite simplicial G-complex

is isomorphic to a G-subcomplex of L. Let #§ be the full subcategory
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of F§ having all finite G-subcomplexes of L as objects. &§ is a small
category and contains countably-infinite many objects. Now the pairs
(9GS, 25 and (ZF§, #§) are homotopy categories and all functors
7, restricted to ZGYE or F FE are homotopy functors in the sense of
Brown [4]; and we can apply Brown’s theory to our functor A%

Here we remark the following. Every finite G-complex is G-homo-
topy equivalent to a finite simplicial G-complex (by simplicial approxima-
tions of attaching maps of cells); hence the set of G-homotopy types of
finite G-complexes is countable, and we can choose a representative system
HK={K,K’, .-} such that all elements of K belongs to @5. Next, for
any two complexes K and K’ in X, the set [K, K']%is countable (where
[, ]° stands for the set of G-homotopy classes of pointed G-maps),
because any G-map f:K—K’ can be G-approximated by a simplicial G-map
of some subdivisions of K and K’ (i.e., take barycentric subdivisions
Sd K and Sd K’ first to make them G-complexes in our sense, secondly
subdivide Sd K sufficiently fine so that we can apply the usual simplicial
approximation to f, then, taking care of G-equivariancy, we can apply
the usual argument of simplicial approximation to get simplicial G-approxi-
mation of f). These remarks will be used later to apply the device of
Adams [1], § 3, to our case.

Let & be a full subcategory of Z )¢ and 1 a Brown’s homotopy
functor on % (in the sense of G-homotopy). Let Y be an object of &
and #€h(Y). The map

T [X, YI°>h(X),

defined by T,[f] =/ *u, is a natural transformation of functors on %,

and the correspondence
u—T,
gives a bijection
h(Y)==Nat Trans([ ,Y]% h),

[3], Lemma 3.1. When T, is an isomorphism for each object X of &,
Y is called a representing complex of & as usual.

Let Z9P% and € F % be the full subcategories of @ IPE and
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& F¢, respectively, in which objects are G-complexes X such that X¥ are
arcwise connected for all subgroups H of G.

As is easily seen

[(G/H)*N\S", Y]°~n, (Y")
for all 20 and all subgroups H of G (where G acts trivially on S"
and Y is a pointed G-complex). Hence, if f:Y—Y’ is a map in % s

such that
X, Y~ [X, Y']°

for all G-complexes X in %%, then f is a G-homotopy equivalence by
J.H.C. Whitehead’s theorem for G-complexes. Thus we can apply [4],

Theorem 2.8, to a Brown’s homotopy functor on % )% and we obtain

Proposition 3.1. Let h be a Brown’s homotopy functor defined
on €9GY8. There exists a representing couple (Y,u) of h, where Y
lies in Ws and ush(Y), ie.,

T,:[X, Y]°~h(X),

a natural isomorphism of sets for X in @GWE. Y is unique up to

G-homotopy equivalence.

(Let KX, be the subset of K consisting of all elements which belong
to F4. Remark that we can use only elements of K, as attaching
data in the constructions in the proof of Theorem 2.8 of [4], which

supplements the proof{ of the above proposition.)

Before discussing representations of Brown’s homotopy functor on

& F &, we remark the following

Lemma. Every G-complex X in € GYWS can be expressed as a

union of finite G-subcomplexes which belong to & FS.

Proof. 1t is clear that X can be expressed as a union of finite
G-subcomplexes. Hence it is sufficient to show that, for arbitrary finite

G-subcomplex K’ of X, we can find a finite G-subcomplex K of X such
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that KDK’ and K belongs to @ <§.

Let H be a subgroup of G. We want to find a finite G-subcomplex
K, of X satisfying that K, DK’ and, for every vertex v of K, such that
G, is contained in H, v can be joined to the base point by a path in
K%, Suppose we obtained a finite G-subcomplex K, of X satisfying that
K,DK’ and, for every vertex w of K, such that G, is a proper subgroup
of H, w can be joined to the base point by a path in K$. Now, for
each vertex v of K, such that G,=H, we can find a path L, which is

a subcomplex of X* and joins v to the base point. Set
K, =K,U (U,GL,)

where v runs over all vertices of K, such that G,=£fI. K, is the wanted
G-complex.

Now, inductively on inclusions of subgroups A of G, after a finite
times of the above construction we obtain a finite G-subcomplex K of X
such that KDK’ and every vertex v of K can be joined to the base point
by a path in K%, which is equivalent to saying that K belongs to ¥ & §.

q.e.d.

Let & be a group-valued Brown’s homotopy functor on ¥ FE. Put
h(X) =lim i (X,)
—
for each G-complex X in @)%, where X, runs over all finite G-sub-
complexes of X which belong to @ <. % is a weak G-homotopy functor

on Z Y% in the parallel sense to “weak homotopy” in [1]. For each
object Y in # W% and uch(Y), the maps

T, [X Y]°>n(X), Xewdq,
and
T.[X,Ye—h(X) Xezagpl,

defined by T, [f]=f*u and T. [¢g] =g*u, respectively, are natural trans-

formations of functors and the correspondences
u—>T, and w—T,

give rise to bijections of sets
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h(Y)~Nat Trans([ ,Y]% h)
~Nat Trans([ ,Y]%, %),

where [ , ]9 stands for the set of weak G-homotopy classes of G-maps,

[3], Lemma 3.3, and [1], Lemma 4. 1.

By the earlier remarks and the above lemma we can apply the argu-
ments of [1], § 3, to the present case. In particular, the functor % on
& GPe satisfies the Wedge axiom, the isomorphism with inverse limits
and the Mayer-Vietoris axiom in the weak sense, [1], Lemma 3. 3, Lemma

3.4 and Proposition 3.5, without any countability assumption on 7.

Now we can do the same arguments and constructions as [1], Lemma
4.2 and Proposition 4. 4, by utilizing only elements of X, as attaching

data, and we obtain representations of A, that is,

Proposition 3.2. Let h be a group-valued Brown’s homotopy
functor defined on €FSE. There exists a representing couple (Y, u)
of h, where Y lies in €94 and uch(Y), ie.,

To:[X, Y]o~h(X),

a natural isomorphism of sets for X in €FE. Y is unique up to

G-homotopy equivalence.

We can also prove an analogue of [1], Theorem 1.9, and introduce
a certain Hopf-space-structure to Y to make 7', an isomorphism of groups.
But we don’t need it to represent G-cohomology theories.

Now we shall discuss representations of G-cohomology theories. Let
ht={h%; 2= RO(G)} be a reduced G-cohomology theory defined on ¢
or &F§. Since discussions of both cases are quite parallel and since the
first case is a bit simpler, we shall discuss only the second case, i.e.,
we suppose i is defined on F¢.

By Proposition 3.2 we have a representing complex Y’ of A%|& F¢

for each a€RO(G), i.e., we have a natural isomorphism
[X, Yo°~h*(X), XegT§,
for each = RO(G).
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By 2Y and 2Y we denote the suspension and the loop space of a

pointed G-space Y with trivial G-actions on parameters. Put
Y. =82Y,,,.

where 1 denotes the real 1-dimensional trivial G-module. Y, is a Hopf-
space (H-space) with the multiplication defined by wusual loop composi-
tions. Moreover, this multiplication in Y, commutes with every g-action,
g=G. In this sense we call Y, a Hopf-G-space. By Corollary 2.6 Y,
belongs to GY§; hence we may assume that Y, is a Hopf-G-complex
(replacing by a G-homotopy equivalent one if necessary). Then Y% is
a Hopf-subcomplex of Y, for any subgroup H of G.

XX belongs to € GP% for any G-complex X. Thus we have iso-

morphisms
he(X) ZheN(EX) ~[5X, Yinl®~[X, Y.]°

for each X in 4§ and a =€ RO(G), where ¢ is the suspension isomor-
phism. Moreover, the above isomorphisms are group isomorphisms by a
usual argument, endowing [X, Y,]¢ a group structure induced by the
Hopf-G-structure of Y,. Thus Y, represents A% on #FE¢ as a group-
valued functor.

Let A be the associated functor to he, ie.,
e (X) =lim h*(X;)
N

for X in @9P¢, where X, runs over all finite G-subcomplexes of X.
Since [X, Ya]a,,,:}irﬁ[Xr, Y,]¢ as is easily seen, we have a natural iso-
T

morphism
[X, Yo]4~he(X)

of groups for each X in ¢ and «=RO(G), ie., Y, represents A%
Let V be a finite-dimensional G-module. Passing to the inverse limit
of suspension isomorphisms ¢”: 7L“(X7) ~h*+V (37 .), we obtain a natural

isomorphism
87 h(X)~h*7(2VX), Xe# e,

Again, passing to the inverse limit of the canonical natural isomor-

phism [27X,, Y, +]°~[X,, 2"Y,.+]% we have a natural isomorphism
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[27X, Y. v]5=~[X,27Y, 1%, Xe&s.
Combining the above three natural isomorphisms, we obtain a natural
isomorphism

[Xy Ya]%%[Xy ‘QVYavV]i s XE gCWg s

of groups, where 2'Y, , is a Hopf-G-space with structures induced from
those of Y,y and the group structure of the right hand side of the above
isomorphism is induced from Hopf-G-structures of Y, ;.

By Corollary 2.6 2'Y,., belongs to G¥§. And we may suppose
that 2"Y,.y itself is a Hopf-G-complex. Putting X=7Y, in the above

isomorphism, we obtain a G-map
fa. V- Ya%gVYa-i—V

such that [f, »] corresponds to the class of the identity map of Y,.

Next, putting X=82"Y,.» in the same isomorphism, we obtain a G-map
Gm V:‘QVY(H- v—> Yn:

which corresponds to the class of the identity map of 2"Y,.». By the
above choices we see easily that (f,.v)«= (0 v)s" which is the same as
the above natural isomorphism.

This shows, on one hand, that ¢, yo/.v and f, y°Q.r are weakly
G-homotopic to the identity maps; and, on the other hand, the fact that
Swv and ¢. v induce group isomorphisms implies that f, and ¢, v, are
weak morphisms of Hopf-G-complexes (i.e., they commute with Hopf-struc-
ture maps up to weak G-homotopy).

Then, for each subgroup H of G, we see easily that (f, )% is a

weak morphism of Hopf-complexes, and
(Gan) o (far)=,1 and  (far) o (@ar)?=u1,
“~,” denotes ‘“weak homotopy’’, which implies isomorphisms
(fan)i: m(Y) ~m, (27 Yarr) ™)

for all #2>0. Hence, (f.»)? is a weak morphism of Hopf-complexes,

where

induces one-one correspondence of path-components, and gives a weak
homotopy equivalence of e-components. Thus (£ y)?is a weak homotopy
equivalence by a classically well-used argument. Finally, J.H.C. Whitehead’s

theorem for G-complexes concludes that f, »is a G-homotopy equivalence.



REPRESENTATIONS OF G-COHOMOLOGY THEORIES
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I
—

Summarizing the above arguments we obtain

Theorem 3.3. Let hi={h*; a=RO(G)} be a reduced G-cohomo-
logy theory defined on 9§ or F§. There exists, for each a«=RO(G),
a G-compler Y, in Z9GY¢ which is a Hopf-G-complex and represents
h* as a group-valued functor. Furthermore, for each finite-dimen-

stonal G-module V, there exists a G-homotopy equivalence

Sur: Y, =e2"Y, .

which is a morphism or weak morphism of Hop/-G-spaces (depending
on the categories) and induces the suspension isomorphism ¢° for eaclh
aeRO(G).

Let w be a G-module containing exactly one copy of each irreducible
G-module (including a trivial one) as a direct summand. A G-spectrum
E? consists of a G-space E, in 9§ and a G-map ¢,:2°E,—~E,.; for each
ned. Let ¢,: E,~8°E,., be the adjoint G-map of ¢, for each n&Z.
E is called an 2-G-spectrum if €, is a G-homotopy equivalence for every
neZ. Since w contains a l-dimensional trivial representation as a direct
factor, 2°Y is a Hopf-G-space for any G-space Y by compositions along
the parameter on which G acts trivially. Thus, if E is an £-G-spectrum,
each term of it can be regarded as a Hopf-G-space.

In Theorem 3.3, putting

E =Y,

n ne

and
S — . —~
En _jlln).tu' En-G'QMEn 1

for each n&=Z, we obtain an £2-G-spectrum E={E, ¢,;n<Z}. And we

obtain

Theorem 3.4. FEvery reduced G-cohomology theory hE={h* «
e RO(G)} can be represented by an -G-spectrum E={E,;ncZ}, ie.,
we have a natural isomorphism

he(X)~[X.2"E,]°

» The referree remarked the authors that this notion was defined in somewhat wide
sense by C. Kosniowski, Math. Ann., 210 (1974), 83-104.
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Sfor each a=RO(G), where V is a finite G-module such that a+V

=nw.

Remark 1. A similar representation theory was discussed by Matu-
moto [6], Theorem 6.1, for certain equivariant cohomology theories de-
fined on the category of his G-CW-complexes, where he obtained represen-

tations of his cohomology theories by weak £-spectra.

Remark 2. As observed by Segal [9], stable G-cohomotopy @F is
universal for G-cohomology theories, or equivalently, we can say that
every reduced G-cohomology theory is an @#-module. Then a result of
Segal [9], Corollary to Proposition 1, suggests that every 2% should be
treated as an A (G)-module-valued functor and the suspension ¢” as an
A (G)-module isomorphism, where A(G) denotes the Burnside ring of G.
Such an A (G)-module structure would be important if we want to discuss
further structures of G-cohomologies such an multiplicative structures,
in which units of A (G) might play an important role in sign conventions.
Even though it seems to be difficult to discuss the general case, we will
discuss the case of G=Z/2Z, i.e., spaces-with-involutions, in a subsequent

paper in details.
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