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Mixed Problems for the Wave Equation III
Exponential Decay of Solutions

By

Mitsuru IKAWA*

§ 1. Introduction

Let © be a bounded object in R® whose boundary I is sufficiently
smooth. Concerning the exponential decay of solutions of the wave equa-
tion in the exterior of O it seems to us that the cases with the Dirichlet
boundary condition and with the Neumann, or the third boundary condition
are studied. Besides the case with the Dirichlet boundary condition, we
know only a few works, for example, Morawetz [11] on the case with
the Neumann condition for a convex object and Tokita [13] on the case
with the third boundary condition for O = {x; |x|<1}.

In this paper we suppose the strict convexity of (), which is an
assumption stronger than that of Morawetz [11], and treat the exponential

decay of solutions of problems for a very general boundary condition.

Set 2=R*—O—1I". Let

0
axj

Bng,-(x) +c(x)a%+d(x)

be a differential operator with C® coefficients defined in a neighborhood
of I'. We pose the following assumptions:

(A-I) the Gaussian curvature of [ is strictly positive.

(A-I) b;(x), j=1,2,3 and c(x) are real valued.
(AIID) X b;(x)n;(x) =1 on I’
ji=1

where 72 (x) = (1, (x), 7, (x), 73(x)) denotes the unit outer (with respect
to ©) normal of I" at xT.

Under these assumptions a mixed problem
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=0 in £xX (0, )

Bu=0 on I'x (0, 00)

®
u(z,0) =u(x)

% (2,0 = (@)

is well posed in the sense of C* if and only if
(AIV) c(x)<1 for all z=TI.
This is the main result of [6].

About the asymptotic behavior of the solution of (P) under the
assumptions A-I~IV, when Re(—d(x)) is large in some extend the
solution u(x, ) for initial data u, %, with compact support decays expo-

nentially. Namely we have

Theorem 1. Suppose that

1 &00;(x) —n,;(x)
Re(-z—j; e ~d(@))=d,

where d, is a certain constant. Let u,, w, be initial data satisfying

the compatibility condition and
1 _—
U supp ,C {x; z€ 2, |x|=k}.
i=0
Then the solution u(x,t) of (P) has an estimate
C IaY
E (u,r,t) <= exp{30,(ro+2k)}
e

Xexp{—2(0,—¢)t} Es(u, 0,0), v¢=0
where 0,=1207'¢™", p=diameter of O, ¢ is an arbitrary positive con-
stant, C a constant independent of ry, uy, u, and ¢, and E,, is defined by

En(u,ro, ) = 25

f | D% u (x, )| .
Irlsm Jen{lz'<ro}

In the case where &(x) =n(x) and ¢ (x) =0, that is, the third bound-

ary value problem we can study the condition on d(x) in detail.
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Theorem 2. Suppose that
B:-@a—+o‘(x), 6 (x) e C=(I).
7

For anv M>0 there evist constants 0,>0. 0,>0 such that. if 0(x)

satisfies
Im 0 (x) <0, —M<Reo(xr)<6, on I,

the solution u(x,1) of (P) for u,, w, satisfying the compatibility con-

dition and
1 —
U supp #;C {x; z€ 2, |z| =k}
j=0

decays exponentially, namely

E, (1, 7. 1) ZC exp{30, (o + 2k) } exp (— 0,¢) - E; (4, 00, 0).

We should like to remark that the mixed problem (P) is not neces-
sarily L*well posed under the assumptions A-I~IV. Indeed, if there

exists a point x,&[" such that

(1. 1) - <2 (B, () — ny (2 )< (o),

the problem (P) is not L*well posed for any d(x) (see, for example, [1],
[8]). This means that for any 77>0 there is no constant Cr such

that the euergy estimate

e, O o +124 2, 0],

=Cr{lu(2) 1020 + %1 (2) |22}, V2 [0, T']

holds for any w, v, €9 (2z), z={x=2; |x|<R}. Therefore Theorem
1 says that, when (1.1) holds, however large the total energy may
increase the energy in a bounded region must decrease exponentially.
The proof relies essentially on the idea of [5] and [6] reducing
the problem (P) to one with the Dirichlet boundary condition.
The author wishes to express his sincere gratitude to Prof. A. Inoue,
who pointed out the efficacy of the considerations in [5] and [6] to

investigate the exponential decay of solution. We could not obtain the
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results presented here without the discussion with him.

§ 2. Reduction of the Problem

In the previous paper we showed that the mixed problem
Ou(x,t) =f(x,2) in £2x (0, c0)
Bu(x,t) =¢g(x,2) on I X (0,00)

u(z,0) =u,(x)

0L , 0) = ()

is well posed in the sense of C* and has a finite propagation speed when
the assumptions A-I~IV are fulfilled. Consider the solution #(x, ¢) of
the problem (P). Let #%;(x), 7=0, 1 be functions in C*(R®) such that
u;(x) =%;(x) in £. Denote by F(x,¢) the solution of the Cauchy

problem
OF (z,8) =0 in R*X (0, c0)
F(z,0) =7 (x)

oF =% (z
7 &0 =%(2).

Then a function

u(x,t) —F(x,2) for (x,t)e8xX (0, o00)

w(z, £) =
for (z,2) €2 X (—o0,0]
satisfies
Tw(x,t) =0 in 2XR
®Py) Bw(z,t) =h(x,?) on I'XR!
supp w C 2 X [0, 00),
where h(x,t) =—BF(x,t)|r. The compatibility condition for u, #; is

none other than
hiz,t) eC>(I"XR"Y).

Note that by Huygens’ principle the assumption supp #%;C {z; |z|<f} im-
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plies
2.1) supp i (x, £) ' X [0, 2¢].

In order to investigate the behavior of the solution u(x,%) of (P) it
suffices to consider the solution w(x,¢) of (P,) for a boundary data
h(x,t) satisfying (2.1), because we know well the properties of solutions
of the Cauchy problem, that is, supp FC {(x, t); t—c<|z|<t+k}.

Suppose that the origin of R® is contained in ). Set for >0
0 20

0|x| |

BY=BL0-1 310, (2)%)
z|i=t

and we have for all u(x, t) €C*(2 X RY)

02
0t

e Qu(x, t) = ( —Aa> (e7%1y)

¢~ *1"'Bu (x, t) = B® (e7"1"lu).
Then if we pose
v(x,t) =e Vw(x, t)

for w(xr,t) the solution of (P,), it holds that

0 _ . .
<0tz A,;)v(x,t)——O in xR

(P2) B9 (z,8) =l (z,£) on I'xR
supp v C 2 X [0, o0).
We consider a decay of v(x,?) in place of that of w(x,%). As for

a boundary value problem with a parameter p=C

{ (P*—A)u(x)=0 in £
2.2

u(x) =g (x) on [’
it is known that there exists a constant >0 such that for any g (x)
€H™(I") (2.2) has a unique solution z(z) in H™(2) if Re p=>u,, where

m=1,2,3, .. Denote the solution z(x) by U®(p,g;x). We see at
once that U? (p, g; x) is analytic in Re p=>u, as H™(2)-valued function.
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Moreover with the aid of consideration of Morawetz [10] we obtain the

following theorem, whose proof will be given in the next section.

Theorem 2.1. Suppose that 0=>0,+1. For every g(x) s H™(I'),
an analytic H™(R)-valued function U® (p, g; x) in Re p=>u, can be pro-
longed analytically into Re p>—0,, and an estimate

c
2.3 ue® ) [ ==—"llgllm YR -
2.3 T (p,g; x| =Rep 6ol[gll e p>—0,

holds.

Define an operator B® (p) from C=(I") into C*(I") by
B @P)g=B? ®)U® (p,9;x)Ir for geC~(I)
where

0

@x,-

BO (5 2,2 b, ()0 4 pe(x) +d(x) + 5,%;;?:31 b,(%) ;.

In fact since U® (p, g;x) €C~(2) for gC=(I") by the regularity theo-
rem for the boundary value problem (2.2) we have B® (p)gesC~).

Concerning the operator B® (p) we have

Theorem 2.2. For every positive number m
(2. 4) 1B ®)gIn=Cn(|glm-1+ Lllglln), YgEC=U)

holds where C, is a positive constant. And we have for all p=ik+u,

4> =0, and geC= (1),

(2.5) —~Re (B )9, 9) n=(cot—C) | gln+algln—Crl gl
where ¢c,=1—supc(x), C is a constant independent of b;, ¢, d and m,
zerl’
2=inf Re {i D _a_(@:_’if)__d(x)}
zer 2 i= Ox;

and C, is a constant depending on m. When d(x) satisfies

(2.6) az (cdo+C+Cp) +1,

» Hereafter || ||n denotes the norm of H™(I") and ||:||=» the norm of H™(£).
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if we consider by (2.4) BP(p) as an operator from H™ ' (I') into
H™(I') for every m=0, B® (p) is bijective from H" (") onto H™(I")
and we have for all Re p>—0,

2.7) 1B P) g n=Crllg|n
(2. 8) 1B P) 7 'gllw ZCrlpllglln

where C” is a positive constant.

A proof of the above theorem will be given in Section 4 and 5.
For a while admit Theorem 2. 2. Since B (p)g is analytic in Re p>—0,
as H™(J")-valued function for every g€ H™ '(I") the estimates (2.7)
and (2.8) imply that for all fe H™*(I")

B®(p)"'f is analytic in Re p>—0, as H™ ' (I")-valued function

2.9 )
when d(x) satisfies (2.6).

Let h(x, ) eC>(I'XR"Y), supp hCT'X [0, 2c]. If we pose
h(z, p) = j\m e Ph(x, t)di

h(z,p) is analytic in € as H™(I")-valued function for any m=>0 and
it holds that

2.10) (s, 2) S @t o) (T2 a0 ar.
Let us set
@1 o= | U, B9 e TR, 1) D) dp

where #>—0,. The estimates (2.3) and (2.7) give

(2.12) 1T (2, B (p)7e™ "=k (-, 2); D)lln

IA

i) P Co llp“'h(x Dl
0

and U® (p, B? (p) ‘e "k (-,p);x) is analytic in Re p> —0, as H™ (2)-
valued {unction. Then {rom (2.10) and (2.12) the right-hand side of
(2.11) converges for all px>—0, therefore it is independent of /(> —0,.
And we have at once for all x> —0,
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1o
o (@, Dl + 22 (2,0

— P2 1 o | 2 |
<C,-om 1 Zj d(ﬁ) Yeep(z s de.

‘m41—-7
This shows that
v(x,t) =0 when £<0.

Since we have

0’ .
(@; — Ag) v (x t) 0 in £2X Rl

B®y(x,t)=h(x,t)e”® on I'xR

v(x, t) defined by (2.11) is the desired solution of (P;). The solution

w(x,2) of (P) is represented as
w(z, t) =e"lv(x, t),

from which it follows for any x> —0, that

(2.13) |l (zx, ) lnss,ent ]’ a z, t){
oy e PELT L (2] /0)" .
=Caeret T ,ZJ |<52> hGeo)| | dt,

where |||l o, denotes the norm of the space H™(£z). And Theorem
1 follows from (2.13) by using the estimate

22 b0l ar=C it i)

=C" {llwollmz+ llzeall mss} -

§ 3. Proof of Theorem 2.1

Consider the problem
Cu=0 in 2XR
(D) u(x,t) =h(x,t) on I'XR'
supp « (z, £) C 2 X [0, 00)

for a boundary data A(x,¢) €C=(I" X R") such that supp ACI X [0, o).
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It is well known that there exists a unique solution z(x, £) €C” (2 X R")
satisfying (D) for any data h(x,?). Concerning the asymptotic behavior
of the solution for #—oco, we can derive the following proposition from

the consideration of Morawetz [10].

Proposition 3. 1. Suppose that h(x,t) €C*(I" X R") satisfies
supp hC " X [0, 2¢].

Then for any 0, 8 such that 0—1=>0,=8>0 it holds that for m=0

G e e, D+ e @ )

<c e‘“‘Zj ( Wiz, 0| dr, =0

Im4+1—7

where C, is a constant independent of 0, 3.

A proof of this proposition will be given in the last of this section.
Take 0=0,+1 and consider the problem

(gt )7}(’1‘,‘ H=0 in 2XR!
(Ds) v(z, t) = f(z,t) on I'xXR'

supp v C 2 X [0, c0)

for the boundary data f(x, £) €C*(I" X R") such that supp fC I X [0, o).
Through the uniqueness of the solutions of (D) and (D;), when we
denote by #(x, t) the solution of (D) for a boundary data & (x, £) =¢€°1*!.
f(x, t), we have v(x, t) =e **lu(x, ). Then the following follows im-

mediately from Proposition 3. 1.

Proposition 3. 2. Suppose that f(x,t) €C*("' X RY) and

suppfC I’ X [0, o].
Then for any §<0,, the solution v(x,t) of (D,) satisfies an inequality

o (2, Ot | 22 (2, 1)
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<C,e-*31 j"”(a)j F |  at vezo
=" j=0 ﬁh % ’ Jm+1-—:‘ ’ =

Note that the boundary value problem for 4; with a parameter p=C
@P—A)w(x)=f(x) in £
w(x)=¢g(x) on I

3.2)

has an apriori estimate

B3 allw @t lpwlE) + [l 2Pl
<Cal2UF 1 + g1
KU

for all w(x) e H**'(£) when Re p=u=>u, where 4, is a positive constant
determined by 0. Indeed, since the operator 0,°—4; and the Dirichlet
boundary condition satisfy the uniform Lopatinski condition we obtain
the apriori estimate (3.3) through the considerations of Balaban [2],
Kreiss [7] and Sakamoto [12].

Denote U? (p, g; x) the solution w(x) of (3.2) for f=0 and ¢
eH"(I"). We have

U®(p,g;2) e (H™(@) when g¢(z)eC=)
m=1

from the regularity theorem of an elliptic operator. And the following

follows immediately from the apriori estimate (3. 3).

Lemma 3.3. For every g H"(I') U® (p,9;x) is analytic in
Rep=>p, as H™ (2)-valued function.

Next, we will show that U? (p, g; x) can be prolonged analytically
up to Rep>—0, Take g(z) =C~(R") such that

(3. 4) g (¢) =0 and supp ¢C [0. 20]
and set f(x, ) =g (x)q(¢). Using Proposition 3. 2 we have that the solu-

tion v(x,¢) of (D;) for a boundary data f(x, ) satisfies

(3.5 oG 0lhsCare 3 [7(2) F@ 0, dr, vez0

1
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for any 0<{8<0,. This inequality assures the summability of the integral
fe—w»a (z,0)dt for Re p> —0,
as a H™(£)-valued function. Then
v (x, p) = Lme“"v (x, t)dt

is analytic in Re p>—0, as H™ (#)-valued function and it satisfies
P*—1)0 (x.p) =0 in @

because v (. t) is a solution of (D,;). On the other hand, by the choice

of the boundary data we have
0(x.p)=F(x,p) =g(x)4@®) on I

where g ()= jwe“‘”q(t) dt. Note that §(p) is analytic in € and that
0

{p: G (») =0} has no accumulation point in any bounded set. If we set

for p€ R (q) = {p;Re p>—0,, 4 (p) #0}
U9 (b, g:x) =0 (z,0)d (p)

(756’ is analytic in R (g) as H™(£)-valued {unction and it satisfies
PP=A)UP(p,g:2)=0 in 2

(3.6)

UP(p,q;x)=g(x) on I'.

For any ¢;, q. satisfying (3. 4) we have
@7 U, 9:2) =0 ®,9;%). VPER (@) NR(2).

In fact, since U;‘?, Jj=1, 2 satisfy (3. 6) for all p= R (g;) and the solution
of (3.2) is unique when Rep=/4, we have

U@ pg:x) =08 P, 9:0). YpER (@) N R (q) N {L; Re p=p}.
(3.7) {ollows from this fact by taking account that {p; Rep>—0,,p
E (R (q) DR (g)). |pPI<M} is a finite set for every M<+oo.

We define U? (p, g;x) for Re p>—0, by

U? (p, g5 ) =UP (b, g3 2)

by choosing a function ¢ (#) satisfying (3.4) and §(p)=0. Then the
right hand side is independent of choice of ¢(#) and U® (p,¢;x) is an-
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alytic in Re p> —0,. Evidently for all Re p>>—0, U® belongs to H™(£)

and satisfies
(L' =D UP(p,g;2) =0 in £
{U@)(p,g;x)zg on I'.
And by applying Proposition 3.2 for f(x, ¢) =¢(x)g(¢) we have

1 ca
WU (p, g3 2) lm= —— j ey (x, £) dt
0 2= Zey b ”

= s ol @ (S [ e )"

where a function ¢ (#) is arbitrary if only it satisfies (3.4) and ¢ (p)=~0.

Since we can find for every p&C a function ¢(#) satisfying (3.4) and

/2

@ 1z(3 (L) e ar)”,

the estimate (2.3) is proved.

Now we set about to prove Proposition 3.1. In the first place con-

sider the problem in the free space, that is to say, the Cauchy problem.

Lemma 3.4. Suppose that ;€ H 7 (R*), j=0, 1 and that
supp % C {x; [x|=x}.
Then the solution of the Cauchy problem with initial plane t=rt
Cu(x,£)=0 in R*x(r, o)
(3.8) u(x, T) =uy(x)
2L () = @)
satisfies an estimate

3.9) e e u (z, 0) [+ e L G, ) ]

=6(1+0%) {14 E— o)} - D || Vg + [ a5}

Jor all t=z, where 0, 3 are arbitrary positive constants.
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Proof. The Huygens® principle says that if supp »,C {x; |x|<k} for
7=0, 1, the support of the solution u(x, ) of the Cauchy problem (3. 8)

is contained in

{(@,0); (t—2) —c<Z|e| (@t —7) +i}.
Then we have

e,i(L—r)e—op:[ge(.i—B) (t—r)eﬁlc ,

from which it follows that

&0le W (z, 1) |

2@ =0 28 gy (e, ) |3

And also we have

2
£ 2BE=o) _6_ (e y (x, t))
axj ]

<20 flpe= " (z, ) i+ e 2% (2, &)1
@x_,- I
=2-e¥0 140 {IVa (, ) i + Nl (2, 2) |[3} -
Then the left hand side of (3.9) is majorated by

N g 2(8—8)(t—1) , ,20k 12 ]l Ou ‘Zl
6(1+0%) ¢ e Sl (x, )i+ == (x, 8 1 .
li Ot Uf

On the other hand the Cauchy problem has an energy equality

IVa(z,2)

9 \‘ 9 2 mn2 2
i+ 5 (2 ) = IV ao (@) i+ [l () [
Using an estimate

e, 0llis |22 ey e flata, Dl

= (=) e () I+ s Co) 34

we have

llee (2, £)

2,  Ou :
i+ — ) |
IO

={1+ E=oHllwe (@) [Ii + e (2) (I}
which shows (3.9). Q.E.D.
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The idea of Morawetz [10] to prove the exponential decay of the
solution with the Dirichlet boundary condition is as follows: The solution
u(x,t) of (D) for a boundary data % (x,¢) satisfying the condition of

Proposition 3.1 can be decomposed as
u(x,t) =§ Fi(x,t) + R.(x,¢).
Here F;(x,t) =0 for ¢<jT and {for t=jT it satisfies
OF,=0 in R*x (T, o)
F;(z, jT) =F;(x)

"”5" (z, jT) =F (2,

where F;, and F;, have properties

(3.10) supp F};, C {z; |z|<T + o}

311 IR+ IFAR=C exp(~ 200 D3 [(1(2) 8] ar

for a certain positive constant 7. And R, satisfies
suppR.. (z,2) C {z; |z|<T + 0} X R’

e || OR.
(3.12)  R.(z Ol +”| at

ol

<c-exp(-200 D)% [1(2) hw, 0 e

Applying Lemma 3.4 to each F;(x,¢) and using (3.11) we have
2
J

<6(L+0%) {1+ (¢~ T)} - e DI DRI+

»0)

0= et B G, ) i+ | e 20 (o

h(x %) |j dt,
from which it follows at once that

lle=""=1F ;s (z, ) I+

’ oF; .2
—diz| 7 (
.' v
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S6CA+M {1+ E—iT5

1
. 32(/3-3)(!——JT) . e—zﬁz Z j
1=0 Jo

L(%)Lhz

1—1

dt .

Note that
t/T+1 .
DI (= ST} <Cop, 120

where C; 4 is a constant depending on 0—f. The combination of the

above estimates and (3.12) gives

lle="'2 (z, t>|ul+m el (g, ol

<C3 g€

( ) Iz, z)h_dt

which proves Proposition 3.1 for m=1.

Differentiate (D) [-times in ¢ and we have

D(@%)Z:o in 2xR

<_g_t>Lu (z,8) = <gz>th (z,2) on I'XR'.

Then we have

L u] _sjz] 0w iF
32| 8l z|
(3.13) ! 0t | 11 ' oettt | s
—Co 20| 2 J
- L.
¢ Zj ‘l 0t> |1 i

Since for =0

As (e"”’”'u)— 0" (e“”””'u) in 2

ey =e*h on I

we have
3.10) [l (e, OEC -2 eu (e, 0 + e 1h (z, )[4

Combining (3.13) and (3.14) we have (3.1) for m=2. Repeating this
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process we obtain (3.1) for any m=0.

§ 4. Explicit Representation of the Solution of (D;)

In order to consider the operator B? (p) it is necessary in the first
place to obtain detailed properties of U?. And in an attempt to do it

we will construct explicitly the solution 9§ (#4, &; x, £) of the problem

<<%+/c)2—A>CM/=O in 2x R

(4 1) CV/(/[’ h; x, t) =h (_2:, t) on I'XR!
supp G C & x [0, o)

for —0,<u<2u, and h(x,t) €C*>(I'XR') such that supp h(x,z) I’
X (0, o0).

The functions and notations used in this section without explanations
are found in [5] and [6].

Let s,&l’ and Iy be a neighborhood of s, such that /" is represented
in I'y by parameters 0= (0, 0,) as

5(0) = (5:(04, 02) , 5. (03, G3) , 55 (01, 02) ),

o€ l,=[—0y,010] X[ —0ux, 0], 0y, 0>0. Take I'; a neighborhood of s,
such that Il Let A(s), /Nl(s) be functions on /7 such that

L) EDTY, 2(s)=1 on I,
1)€DTy), 1(s)=1 on I
supp A€ {s; A(s) =1}.

And let 0<t,<<ty, I,=[—t5, 2],
t)eD(—tt), (&)=1 on [—4,t]
T eD(—1t,t), T@E =1 on [—#,¢t]
supp 7 () C{¢; v (¢) =1}.

Let us pose w (s, £) =A(s) -t(¢), @ (s,£) =1(s)-Z(£). Then we have

for any A(x, 1) €9 1 X (0, 1))

h(s(0),8) =0 (s(@), £) lek s L o’ L ar
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cexp{i({0—0", 6>+ (¢ —tHk)} -0 (s(@),t)h(s(0),t).
Take y; () €C>(RY), j=1, 2, 3, 4, as

1 [<1-2«,
1) =
0 (>1—q,
1 1—1=q,
1) =
0 [{—1|=2«,
1 2>1>1+2a,
%) =
0 l<1+CK(,, or l>3
[1 >3
2 (D) =
lo 1<z
and
4
4.2) S1xi (=1 Afor all [ R'.
j=1

Define operators CV/;, j=1, 2, 3, 4, by
(CV,h) (50, £) =0 (s(0), £) j dk r da j a8’ j do [ ar
Rt —1 5 Iy 1,

rexp{ik(t—2"+ (1+)<0—0’, €)1+ )k (1+a)
@ (s(07),2 ) h(s(@), ),

where J={(£,8); & +&65=1}. We have at once
4.3) NV (0 =h(s,8), Yh(s,) @ DT X (—ty8))
iz

by using (4.2) and a change of variables §=k(1+«a)&’. Let 0(x,§, ),
o(x, &, &) be functions satisfying (3.6) of [6] and %(0,0’, £, ), £(0,
a, &, a), v;(),7=1, 2, 3, be functions used in Section 3 of [6]. Define
CVy by

(V) 6(0),0) =0G@),0)- [ ar[dr | a8 | i | av

-exp{ik(0(s(0),7,B8) —0(s(0"),7,8) +t—1¢t)}
e 4a(o,0’,7,8)kA+a(0,0,7,3))
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v, <k63>2%%5 (s(6"), ) h(s(@"), ')

where 0<e<(1/10. Evidently we have
3
(4. 4) ;szhZCVzk, V}LEQ(FIX(—tl, tz)).

We construct G satisfying (4.1) for A(s,) €D I X (—t, 1))
through the above decomposition of 4. First let us construct a function

D (U, h; x, t) satisfying almost the relation

<<_g_t+ﬂ>2—A>CW”=O in 2xR'

(4.5) Wyt hs 2, 8) =k on T X R
supp oy C 2 X [—1,, 00).

For this purpose we consider a problem with an oscillatory boundary data

<<§t—|—ﬂ>2—A>w(l‘,Z>=0 in QxR

(46) ooz, ) =explik (O (x,7,8) +8)} -v(s,£) on I xR
supp w (x, £) C 2 X [ —t,, 00)

for v(s,t) e D% (0,¢)), and ask for an asymptotic solution in the

form
4.7 w(z, 7,8,k 1) =exp{ik(0(x,71,8) +2)}
1 2/8 .
'm{mk’@@ 7,8)0u(z, £57, 6, b, 2)
—+ .113H’(k2/30(x, 7,8))0.(x, ¢;7,0, &, ,U)}
ikY/

In order that w(x, ) of (4.7) satisfies (4.5) in a neighborhood of
Iy X R' asymptotically it suffices to hold

0

2%—2V0-Vgo— AD-go—20V0-Vg,— (VO)g:

1//0 2
—0AQ-g:+2u- +———<<—+ > —A> =0
(AR Ko 2 \3z Y4 go

(mod (2 '+8)~) in (ZNAU) xR
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2%—ZVp-Vgo—Ap-go—2V0-Vg1—A0'gx
4.8)

+ 20+ 4 (2 ) = a)i=0

(mod (A'+/*) in (2N xR

1
g R (= BEM gr=v

(mod (B7*+8)*) on I \XR,

where Q] is a neighborhood of Iy in R®
The construction of ¢, ¢; satisfying (4.8) can be carried out by
using the method in § 4 of [6] and the process of the construction shows

that

suppg; € U L*(s,8)

(s, t) Esupp v

3 3
where L7 (s,2) ={(x’,¢);3v= (1, ¥, ;) such that Yy, =1 > vm;=>0,
=1 =1
x'=s+1ly, '=t+1[, [==0}. The function w(x, £;7,85, %, #) defined by
(4.7) with ¢,, ¢, satisfying (4.8) has the form

(4.9 w(x, 7,8, p) =explik (" (x,7,8) +8)} -G (x, t;7, 8, p)

in {x;r/2<r<r,} for a certain r,>0, i{f we denote by 7r the distance
from z€ 82 to I. And by the consideration of § 4 of [6] we see that
w(x, ) of (4.9) can be prolonged up to {x;r=r,/2} satisfying asymp-
totically ((0/0t+u)*—4)w(x, t) =0. Then

1

w(zx,t; 7, B, p) =exp{ik(0(x, 7, B) ‘H)}}{m

Ar @0 go L 0y g on(2)

1k 7o
. r\?
+explik @ +0)} -G oy L)
7o

satisfies for any 7= (71, 7a 75 7s), and N

DL((Z+) — A)w[SCpm exper) (1817 + [117)

V(x, t) €2 xR,
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(4.10) IDy, (w—20) |<C, y (181 + RI™Y), Y(s,) eI X R
and

(4.11) suppwe U LT(s,12).

(s, ) Esupp v
Denote by f(x, ¢;7,8,2) a prolongation of ((0/0¢+ #)*—4)w to the
whole space R*X R' as C*-function with properties
(4.12) \DLof (z, 257, B, ) |ISCwexp (er) (1817 +1k7Y)
(4.13) supp f(x, £; 7, B, p) CR*X [—£,. o0).
Let 2(x, ¢;7,8,2) be the solution of the problem in the free space

<<%+ﬂ>2—A>z(x,t; 7,8, 0)=—f(x,t;7,8,p) in R'XR

supp 2(x, £; 7, B, ) CR*X [—¢,, ).

Set ib(‘r: t;”];B!p) as
w in 2XR!
=
0 in OXR'.

Taking account of (4.11) we have

<<%+ﬂ>Z—A) (@+2)=0 in R°X [£s, o).

On the other hand from (4.11) and the location of the support of f(z,
t;71,3,P) we have that

supp (@ +2) |1-,,C {x; [x[ <0+ 4},
from which it follows with the aid of the Huygens’ principle that
(W+2)|r=0 for t=20+¢.
By using (4.11) once more we have
(4. 14) supp 2|, C I X [—ty, 20+ 2].
And from (4.12) we have
| DY [z (x, t57, 8, 2) 10| <Coo w (IBIY + 1R 7Y).

We now carry out the above construction of w(x,¢;7,8,») and

z(x, t;7,B,p) taking as v(s,2) €D "1 X (0,%)) a function with param-
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eters ¢, 7. 8
D (e, ¢")

(l) (S (6)’ t) (1 +a (0, 6’: 77’ B)) 7E(?:5 (69 6,, '7, B) >

and by using these ¢;(x,¢:0",7.3.9), j=0, 1, G"(x,¢:0",7.53,p) and
z(x.£;0°,7. 8,P) we define operators f/,, and %, by the following

Waalp, by, t) = j‘ dk jdﬁ j\ dﬁj do’ J‘ dit’
R! x 18180 Ig I,

exp{= ik (O (5(0"), 7, 8) + )} [ exp ik O (z, 7, B +0))

1 2/3 1 ’ 2/3
H {H (&0 (., 71, 8)) go+ Z_ﬁgH (&0 (z, 71, 7)) gl}

-92<;)2+ exp{tk (¢ (x,1,8) +1)} 'G‘L'US<1.;>2]

s T

k-0, (BB (s (67),2) h (s (@), 27,
Lo (U, by, t) = j dk fd'q j dg |\ dao’ | d¢’
Rt 3 [B1<8, Ig I,

cexp{—ik(0(s(0"), 7, B) +2)} -=(x, 1: 67,7, 3, p)
kR, (BB B (s (67), ) R (s(a), ).

The properties of g; and 2 assure at once

[<<2+/!>_—A\ (Wat Zw) =0 in ZXR
(4.15) oz '
Supp (Wa+ Fp) C 2 X [ —ty, 00),

@16) 3 [T IDH Wl b5 5,0l — Vah) e

<Cu | Ih G Dz,
4.17) supp Lol r CIT X [ —£o, 20+ 4]
4.18) 3 JN 1D 2o (12, s 2, )| p | mdt =Ch jm IR s, £)llide .
1=0 J—co —co

Next, for (8, £ such that #=>|f|=k" %, 0<e<1/10, we can find an
asymptotic solution of the problem (4.6) in the form

(4.19)  w(x, ;7,8 ) =exp{ik (Y (x,7.8) +0)} -G (x. £;7.8,7).
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It suffices that ¢ satisfies

(Vg)'=1 in £ (modB>)
$lr=0(s,7,8

%<o for <0 and

m92>0 for g0

on

and G satisfies

2%—(5—2V¢-VG—A¢-G+2,&G+%<<%+ﬂ)Z—A>GEO

(mod 2~~) in @X R
G|r=‘v($, t)’

and we can construct such ¢ and G with the aid of the consideration

of §6 of [6]. Then w(x,¢) of (4.19) defined using such ¢ and G has

properties
' 0 z _
ID;_t<<a—t+ ﬂ> — A)wtéCT’N-exp(cr) B
w|,=exp{ik(0(s,7,8) +8)}-v (s, 1)

and

suppwC U L7(,¢).

(s, t)Esupp v

Secondly we define z(z, £;7,8,2) in the same manner. Taking as

v(s,)e DT, X (0,t)) a function with parameters ¢/, 7, 8

v (s(0), (A +a (s, d, 7, B))%(G, o, 1,8 n(1+a(@, o, 1, B)

we construct G(z, ¢; 07,7, 8,9),2(x, t;0’,7,8,p) according to the above
consideration, with which operators 9f/,;, %, =1, 3 are defined by

(4.20)  GPay(u, b3z, &) = Ldk Ldvj

dp\ do’ | dt’
18 Jig 1,

~exp{—ik(0(s(0”), 7, B) + ")} -exp{ik (¢ (z, 1, B) +2)}
Gz, 207,71, 8, p) k0, (BB)'D (s (07),£") h (s (07),27),
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(4.21) Do, (u, bz, £) = L‘a’k Ldnj

8 deo" v
cexp{—ik(0(s(0"),7,8) +t)z(x,t;0°, 7,8, p)
K, (BB (s (67, ¢) B (s (07, ).

Then we have

0 : . _ . 1
((&w)—/s)(%ﬁzm*o in 2xR
supp (Waj + Bog) T2 X [—ty, ),

(4.23) W4, b x,0)|r =CVysh

(4.24) supp Dosir ST X[ —t, 20+ 1¢,],

(4.22) {

4.2 3 [T 10!, b 2, O lade=Ca [ G, ) e

Using the method of construction of G,; and Z,;, j=1, 3, we can
construct G, Z; =1, 3, 4, in an almost same form as (4.20) and
(4. 21), satislying

((502“‘>2_A> (Wi+%)=0 in @xR

supp (W;+ % ;) CR X [—tq, 00)
.27y G, hyx,t)r=C sk

(4. 26)

@28 3 [0t b, )l de=Ca [ s, ) i

1=0 J—o
(4.29) supp G, (U, by z,0)ir T X [ —ty, 20+ £0].

Let us pose

é(cwf(/l, hyz, t) +Z;(u, by z, t)lr—h

_ dkj dsj dG’J At exp{—i({0", E>+ ')}
Rt Rre Ig I,

wols, 2307, k, &, 1) B (s(07), L") h(s(07), 1),

where 9Y,=3 G4, Then we have

=1

supp Vo (s, L2 07, k, &, 1) T X [ —t0, 20+ 4]  for all 07, &, &, 4,
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]D%,{’Dg.lD?'yO (S (6) > t: 0‘,7 k, E’ la) |§CTN(|$12+k2) - .
Now denote by y(x, ¢;0’, %, &, #) the solution of

2
((%%—ﬂ) —A)y(x,t;o",/e,f,ﬂ):o in 9xR!

supp y (z, t; 07, k, &, /1) CR X [—t,, o)
v(x, t; 0,k &, 1) =—w(s, ;0" k& 1) on I'XR'.
Then the result of Morawetz [10] gives an estimate
| DL DDy v (x, 507k, &, 1) |
<C,.yexp{— (O+mt} - A+E+I§)", on I'XR'.

Define an operator 4J by
Y (p, bz, 8) = j Ak déj o’ J dt’ -exp{—i (&, 0"+ kt")}
Rt R? Ig I,
v(z, b0, 8k, a(s(@),e)h(s(@), ")
and we have
o o 12
@30 1 s lde=ca( [T 186, 0 ld) "

Let us pose
4
CM” (/j" h;x7 t) :ZI(CDV] (/'59 ]l.',.T, t) +z] (/’l! ]'[;.Z', t)) +Cl’} (la7 ]l: x, t)
e

and we have for all he D (I'; X (0, 1))

<<%+/1>2—A>CW:O in 9 R

supp P CEX [ —¢,, 00)
Wlr="0.

Up to the present we assumed that the support of a boundary data
I is small enough. To consider a boundary data he D (I" X (0, #,)), we
introduce B;(s) €D "), j=1, 2, .-, N, by the way of

0 g&wulonr,

(i1) for each j supp B; is small so that we may carry on the
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construction of ) for f8;(s)h(s,t) according to the process prescribed

in this section. Since

hs, 0 =3 8, (s, 2),

if we define G (u, h;x,t) by

N
Wty s 2, ) =23 W (1, B; (ks 7,2,
we have

<<%+¢(>2—A)CW=O in xR

W, by, )l p =32 B (s\h=h
i=1

supp W C 2 X [—1,, 00).

Then this operator ¢}/ is the desired one of (3.1).

§ 5. Proof of Theorem 2.2

The operator B (p) is defined for Re p>>0 and we have a relation

B (p)g=c"17 B (p) (£7'g), VgD T),

which shows
(@ BY@)g,9)0= (B () (¢""'9), €'9), .

Taking account of the boundedness of ¢’ on I”, Theorem 2 of [6] shows
that (2.5) holds for Re »>0.

From now on we show (2.5) for —0,<<Rep<<24,. The solution
of the problem

(2 Az, 5)=0 in xR
o 5)w(z,t) =0 in X

w(x, ) =h(s,t) on I'XR!
supp w C 8 X [ —t,, 00)
is expressed by the operator J/ as

w(x, t) =e e QY (u, &7 e R x, ).
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First we show (2.5) for g(s) €D ;). Let m(t) €49 (0,¢) and pose
h(s,t) =g (s)m(¢). Suppose that 7 (») %0 for p=p+ik Then

U® (p,052) = == | P (z, 1) dt
m
. J‘ e (u, e17lg-e *'m; x, ) dt .
Hence we have

U _ Lz el szl , _J‘w —pt
(5.1) 5 é‘<n m);\l—@e g e P'm(¢)dt

1 —d|z| I _i;nacf//' x| —pt
—e e "—— (U, e e "m; x,t)dt

-6z =3
=—0(nT g+ - o 0W (u, e""'g-e “m; x, t)dt .
=) @) oY

Begin with the estimate of 0)/,,/0n. From its definition

%(ﬂ,h;x,t)]r:j‘dkj‘dﬂf ag\ do’ | dt’
on R: =z [

B1S80 Ig I;

~exp{tk (0 (s (0), 7, 8) —0(s(0’), 1, B) +£t—2¢)}

D(a,§’)

g oy 00 | 00
k{ R (e 2L +a },z( o)+ DS

R0, (BB’ B (s (07), ¢") h (s (07), ")

[ [exp k@G @), 1,0 ~066, 1,0 +1-)

D(a, §")

R(— k") a0+ }/1( @O+

- @)ikf

R0, (BB)'® (s (07), ") h (s (07), ")

[ fexptir @@, 1,8 - 066,18 + -

D(a,§)

» yn 00
it| R~ 28 D9 (5 (0), )1 +a) DD e

U ICHCOTA N PRU.Z
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n [...jexp{ik(e(s(a),n,g)—0(3(6'),77,@+t—z’)}

[i#{-8 ~ (R g} 2, 900

LR 20 v, egyon

=1+ tIlpy+ 111+ 1V ,,.
Define an operator Ay (k) from D(I')) into 9D [,) by
Ay f= [ | dB | do’-expiik(0(s(@), 7,8 =000, 7,6)
2/8 60 ouv D(a, §)
R(~pi)- 20+ 204 (o) - e
o, (KBS (s(@"), for feDI).

{ kl/s

Then we have

Ly (1, %' g e m (£) 1 s, t)
- Lleikulzz &) (1%'g) - i ik + ) de |
from which it follows that
5.2) j:ce‘””lzz (u, e"lg-e “m(t); s, t)dt

=m (ik+ 1) - Au (k) (€7'9).

Next we consider I, Since supp(t(z) —1) Nsupp? (2) =¢ IL, is a
pseudo-differential operator belonging to S™ ("X R*). Then for any m,
m’>0 we have

[ 1Ls (1t 15 -, 8) | n=Cme (L +27) ™[ €% o
o 172
X < j‘ e *m (&) Izdt> for all t=R'.
0

Concerning IIl,, recall that g, and ¢, satisfy

D, §") _
DB,

=Cr oy (k7" + 1817

Dr, {w (5,8) 1+

A

(00+ R R(—BE™ )

BV
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which implies
H IIIZZ (laa eﬂxlg : e_ﬂtﬁl; ) t) ” m
, o 1/2
<Cow D gl [Tlem (17r)
0 /
About IV, remark that it is an operator of the class S};,(/" X RY)
and that for any 7
supp IV (U, by z, £) CI'y X [ — £, L]

Then we have

jj; (%) TIsz(/,t, g e m; x, t) udt

o [ (3 )

, o 1/2
<Colgln [ lem @) 1ae)

Combining the above estimates we have

Gz o0

\

(5.3) <e”1’[ ¢ g-e “m; x, t)dt, g)

m ()
— (An(E) g, &7g),,

e—ikt@__% («, £olel
on

=Cu 'y )|” gl J[e"”m(t)]dt)

Consider 09/;;/0n, j=1, 3.

0CW2; j fexP{zk(G(s(O‘) 2,8 —0(s(0”),7,B8) +t—t')}

(k260,101,820 +2E 6@, 50,1, 2)
0n on

ko (YD (s(0), ¢ ) h(s(0"),¢).
From the equation which G satisfies it follows that

G _ (09 {_«_ G—— G+ 1G
6’n_<0n> on Ap-G 4
1

21L

<<g— + //>Q—— L )G} (mod 277),
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where
b=Vo—n-Y  G=vG—ndC
0n on
By using
D(CL &’ ) 2
Glr=0(,t) Q1+a)= 1. (1+ )
' D (B, 7)
we have

0Ws _ j Jexp{ik(g(s(o), 1,8 —0(s(67), 7, B) +t—1")}

0n
(00 109 D(a,§)
1<zkan E\Wj Ag[))l(s(o‘))(l—{-a{) DG, ),((1+a)
_ (9% s D(a,£) \
(a”) c(GeO)a+a)- DG )x(1+a))f

kv (RERY® (s (07), ¢ ) h(s(07), ")
+ j fexp{ik(@(s(@'), 0,8) —0(s@), 1, B) +t—12")}

w3 5) 29)6=(5h) weed

R v (RBYD (s(07), ¢) 1 (s(07), ¢7)

IO

t [ [exptit@G@, 1,0 =060, 1,0 +1-1)

{5 (n) (- gasGmpec i ey

B, VR G@E, )
=1 +11,;+111,;.
Let us define an operator Ay (k) from D (I;) into D () by

@) f= [ dn [ | do” exp ik (0G0),2,8) =06, 2, 8

{<zk@£ (ﬂﬁb_) _Ag[)>/1( @+ L@ a1 ay

on on D, 1)
~(82) "o (1eona e DS avar)
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k0 (B2 (s (67)) f (s (67)).

Then for A(s, t) =€""g(s) -e “m(¢) we have
Li(u, h; s, t)= j et Ay (k) €7\ g (s) -m (u+ik) dk .
Rt

By taking account of the fact

supp (1—17(2)) Nsupp 7 (¢) =¢
we have an estimate for all ¢
122 Gty B3 5. 2) [ = Comne (1 2) ™ [ g [ Lo (0) ) .

Concerning III,; recall that
supp IIL;C T X[ —t, £,]

and that IIl,; is a pseudo-differential operator of the class ST (I" X R').

Then we have at once

r’ | DL, (u, bs -, £) |ode
LT 1/2
<Vt | \DIIL, (1 b -, 0 e

R oo 172
<Clegly- ([ lermrar)”.

By the above estimate we have

1 “ s O
5.4 2|z j ikt 27 h; b dt,
Go (et e T ks fdsg)

— (Ay (k) €”'7lg, €19

SCale gl [ lerm oy ra)

In the same manner we have for j=1, 3, 4
\

I e8|z 1 J\W —ikt aCWj .
(5.5) (e —“(P) e - (u, by s, t)de, g)m

’ m

— (A; (k) e"*g, e""'g)mj
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‘”(p)lq Jerm @)

Here 4, (k) is an operator in the form

=Cule"g|%

(A® @)= ["da a5 | a0 expiir1+a)a-07,67)
k(= V1= A+ @) a(0,0, € k) 11+ aykg(s(07),
where a; (0,07, & k) €8, (L), real valued and
20,0, 6 1) =c>0.
And A (B) is given by

(s (B g) (s () = L?'da LdS’ L 4o’ -expiik (1+a)<0—0", &5}
ke (—VA+a) =1 as (0,0, &, k) s L+ a)’Fg (s(67)),
where a;(0,0', &, k) €8] ,(1,). real valued and

[423 (G. 6’, 5, k) z(:>0 B
A, (k) is in the form

iRy g = Lwds L do” - exp (i{G—0", &)
(1D a0, 07, &, B a(1€1/R)g (s (@),
where a,(0,0’,&, k) €8] ,(,) and
a,(0.0°,& k) =c>0.

From the estimates (4.18), (4.25), (4.28) and (4.30) we have

(5.6) e""” 9 Z%ﬂ—@)dt“m

1
<Cale"g]s j le="m ()|%dt) " —
< ) ()|

Combining the esiimates (5.3), (5.4), (5.5) and (5.6) we have

'( 23|,,0U(">(01i g,x) >m——§(gﬂj(/€)ea'”g, e”’”'g),,,*

<Cale*igla( j:ie""m<”)lzdt>v2|ﬁtzﬁ)l '
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Remark that the left hand side is independent of () and that it is
possible to find for any p a function m (¢) €9 (—#,t,) such that

o 1/2
@) ([ lemm@rar) <1

Then we have

) .
(5 7) .<625]I| W’ g)m—- (J (k) eﬁlzlg’ eﬁ(z)g>m;

=C,|e""g|%n, Vg€ DT),Re p>—0,
where we set A (k) =i‘, A; (k).
i=1

We investigate the operator 4; (k).

A (B g= Ldé’ f da j{ o7 exp{ik(T—0",6) (L+a)}

L)1 ya 00 . 00 ,

ik { LR (=86 2L (5, 8,7) +-02 (5, 8,7}
A(@) 1+ Ko, (K89 (5(0"))

= Jd&' L do’ -exp(i{0—07,8)) - An(s(0),s(0"), &, k)

02 (KB (0, 07, 1,§7))’g (s(07)).

Let us set
bus, 7, B, B) = KPR (=882 (5,1,0)
n
= 5221 + ibzzz .

From the asymptotic behavior of R(z) we have

Lemma 5.1. For a positive constant C sufficiently large, we

have that for c,>0
. 1 23
_[)221(‘5‘, /]) 37 k)zc()(—F) when _‘k/BzC

— by (5,7, B, k) =ck® when |FPRIXC

— b (5,7, 3, k) Zcok\/ﬁ when kFP3=C.
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And we have
— by (5,7, B, k) =cokv/ —B  when —F*B=C
— 0y (5,7, B, k) =cok”®  when |FBI<C.

Let us pose
Boyi (5,6, 5", k) =bu; (5,7(s, 5", 8, ), B(s, 5", &', ), k)
Buy (5,6, k) =Buyy (5, €, 5, k).
By calculus of §6 of [5] and §5 of [6] we have
(5.8) —Re (An (&S, /) n= A —ck™?) ([—Bulel o fs o f)m
—Re (LS, f)n—Calfln-
Similarly it follows that

(5.9 —Im (Jzz R f, f) m=([— Bzzz] o, Vo f)m

— ([=Boudel 2 /s Vo f) = Im (Lsf s f) = Con -

For j=1, 3

ny (B) f = jd j

la|=a,

da L 46’ -exp{i (1 +@) {T—a", 'Sk}

: [(ik%—%(%) *IM) 2607, 1+ @)1 +a)

— <%> —lgbs- ((1 +a %%L,%xj 1+a) 2) s]

R (BRY A (s(07)) £ (s(67)).
We set

1/04\7" ., 09
b = (=X . +
21 (S, 77’ ﬁ, k) ) < an> Ag[) i (5) lk a”

=bus +1bys,
lei (S, 5, 5,5 k) :bZU‘ (S, 7](8: S,, 5/5 a) > B(S, 5’: E/, a) ’ k)
Ble (S; 5; k) :BZIJ' (S’ E, S, k)'

Recall that for —p3 <A< —%7%, 0y/0n],<<0 and

103
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—6211 (S’ 1]3 18’ k) é CDB

—bas (s, 7, B, B) =cokv/ — 8.

Since 0/0n|r is purely imaginary for B,=F=k"° we pose

28 = lk% = by + 199 baye=0
on

BZSI <57 E; 5,7 k) :bz:u (S’ 77(57 S/, 6” a) ’ B(S’ S’, S/, a) > k)
Bzu (5,6, k) =B (5,6, 5, k).

Then we have

—bm=ckV B .
It holds that
(5.10)  —Re( Ay (B)f, /) m= A —ck ) ([ = Boyplel s f, VX f) m
—Re (Pofs f) —Cul fl% .
(6.11)  —Im(Au B S, )= A —ck™**) ([ =Bl V1 Xo f/, 11X/ ) m
~Im (Porfo f)m—Cul Fl% .
Set

B;r =l_§i:.: Yi[—Boulel;
and we have
(5.12) —Re( AP f,f)nz=A—ck™?) (BuXof, Xof ) m—Culflan
because it holds that

12 (Pusf, Dal SC A BurXof, Xo I

Set

By =]§31 Y#[—Buslel ;
and we have

(6.13) ~Im (LB ) n= L= k) (BurXo f, Xaf ) m
—C- (BrXof, Xof ) m—Caull/ | -
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From the form of _4;(%k) and the properties of their symbols we have

at once

(5.14) - Re (A (R, f) = —Col fll

(5.15) —Im (A RS ) m=cok| X fll5— Cull 1l

(5.16) —Re (As (B)f, ) n=cok]| X5 fll 7 — Call £l

(5.17) —Re (UZL RS w=Ca (IDIX.f, XS )m— Cm“f”fn

From (5.12), (5.15). (5.16) and (5.17) it follows that

(5.18)  —Re(ARVS ) n= ((XFBopX, +cokXF Xy + XFIDIX) [ ) m
—Culfln.

and from (5.13) and (5.15)

(5.19) —Im (A &) f. f) n= (kX X, + X5 BorXo) f, f) m

- Cm”f”fn - (Bzszf- Xaf) m -

By Lemma 5.1 we have
X5 (Bor+ Bor) o= 0ok XEX,
from which it follows that

(5. 20) 21 (Af, )l Z ek | flln—Call fllm -

5 5 @ .
("B (p)g, gIn= <em o (ai . ﬁ‘p’ 0) n

0 1 a(bj—llj)
4+ T '/
axj 2 ax,- >g’g)

+ (e”i‘“ /\g (b;—ny)

+ (Gk+ ) (€7c(2)g, @) m+ (€¥d (x) g, 9) n -
Then using (5.7) and (5.18) we have for a real
(5.21)  —Re(e”*(B7(p) —a)g, @) m
= (X5 B Xy + ok XF X, + XF I DIX) €17lg, &*1g),,

—C||€"ig|n+Re((a—d(x)) g, &%),

Z (ID[Xe'"g, Xoe" ), + (a +inf Re(— d(x)) —C,) | g
re

—Calie gy -
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Till now we have supposed that g 9 (I';). In order to show that
(5.21) is valid for all g=C~(I") we use §;(s),j=1, 2, ---, N introduced
at the end of § 4. Applying the above result for each §3;(s)g(s) we see
that (5.21) is also valid for all geC~(I").

Suppose that

(5. 22) infRe(—d(2)=C+C +1.
Then we have for any a=>0
(5.23) =gl =] " (B ) —a)gllo-
Therefore for (5.1) and (5.23) it follows for ¢,>0 that
(6.29) l€ g n=cu|e" (B @) —a)g|n
Since it holds
1€"7'g |l n 1< || DI X" g ||+ Clk| ] €*g]|
we obtain from (5.21) for any a=0
(5. 25) 1€ ]| 1 <Crlkl]| €= (B @) —a)glm -
We will show the existence of B?® (p) ™' under the assumption

(5.22). Let us set

12U (5,43 2) AR ¢ 7lg =7 (h, 1) ™.

n

Then we have from (5.7) that % (k,4) is a bounded operator from
H™(I") into H"(I"). For a real constant a

(e (B (p) —a)g,

= (e"“”g, (J (B)*+ & (&, ﬂ)*—i} ;- ”j)i
= 0x;

+:‘;—;< ; a—(bé;nd—a(bf_”i %) +c_i_(7«‘)——a>eﬁiz:f>o-

2 oz,
Concerning A (k) * we can show
[ (A= B) = A@HARS — 5 Re(AB £, Nt CIF:

by using the properties of the symbol., Therefore it holds that for a
sufficiently large a>0
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[ (BT )*—a) e \f ;=] &\f |, .
Then {(B®®)—a)g;gC>(I")} is dense in L*(I"). For any A(s)
e€L*(I") there exists a sequence g,&C=(I") such that
(B®? () —a)g;—h as j—oo.
From (5.24) and (5.25) ¢; converges in H'(I"). Let us denote the
limit by €*lg. We have
(B®(p)—a)g=".
That is, B (p) —a is a bijection from H'(I") onto L*(I"). Therefore
(B? (p) —a) ' is continuous from L*(I") onto H'(I"). Taking account
of I' is compact, the operator (B? (p) —a) ' is a completely continuous
operator in L*(/"). The equation
(5. 26) B2 P)g="h
is equivalent to
(5.27) g+a(B? @) —a) lg=(B? @) —a) 'h.

Now we know the uniqueness of solutions of (5.26) from (5. 24), which
assures the solvability of (5.27). Then we see that B? (p) ! exists
and continuous from L*(I") onto H'(I).

Simillarly we see for any m=>0 B? (p) ' is continuous from H™(I")
onto H™*(I"). Thus Theorem 2.1 is proved.

§ 6. Case of the Third Boundary Condition
(Proof of Theorem 2)

When B:_@_ we denote B? (p) by #"? (p) specially. The estimate
n
(5. 20) shows that for —d,<<Re p=<24,
(6.1) (cok®—Cy) [ &gl <[ &' A" (L) gllo -

Then for any ¢(s) €C>(I") such that |0 (s)|<M, there exists £, >0 such
that for p=ik+pu, —00<u=2u, |ki=k,

[egle<] &% (/2 (B) +0) gl -

Then (/" ® (@) +0) 7" exists for —0,<u<2u, |k|=k,. Let 0,(s) be real
valued and
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6.2) —M=<0,(s)<0.
Suppose that for Re p=0 there exists ¢ (s) €L*(I") such that
(6.3) (AP @) +0:(5))g (s) =0.
From the regularity theorem it follows g(s) €C*(I"). A function
u(z) =*1U? (p, g; x)
satisfies
(A=PHu(x)=0 in £

u(x) =7

—Qz—l--i-O'o(s)u:O on I.
on

g on

When Re p>0 it holds that u(x) € H*(£) since we have

NUP (p, g5 2) =U (b, €95 ).
(2= A u, w)o= 2 ulli+ f O Zas +|vul
r on
and

J O pgs— — jdo(s)lulzdSZ_O.
ron r

Then we have =0 and ¢g=0.
Next consider p=:k=~0. Since u(x) satisfies the radiation condition

of Sommerfeld we have

L {A+B)u-7—u(A+E)u}dx

- ik L]ul’dS#—O(R“).

The application of the uniqueness theorem of Rellich implies #=0.
For £2=0 by the consideration of Mizohata [9] «(x) is written by potential
of double layer. Therefore we have that |zlu(x) and |z|*0u/0z; rest
bounded. Then

0= u.mzx:j

Qg r

u<—@>dS— J‘ [Vul|’dzx+ u_a_z_d:c
on [

==z 0|z|
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- jda!ulzds—j \Vultde+ f v 0% gg |
r 2 Jizm=r 0]x!

Taking account of 7,<<0 wc have V=0 by R-—oo, then #=0.

Thus we obtain for Re p=>0 the uniqueness of the solution of (6. 3).
This fact assures that (.#" (p) +0,) ' exists and that it is continuous
from L*(I") onto H'(I") and also H™(I") onto H™'(I).

Let us set
infl| (. /72 (@) +060)gllo= .

where inferior is taken with respect to [[g];=1, 0<Re p="2u, kI<k,
and 6,€ {0; real valued C* function such that —M=<0<<0}. Then we
have J>0. Since

AP (D) + T +T
=" PGk) +0,+. /P p)— 1P Gk) +0
= (NP (1k) +0,) {I+ (P (GR) +0o) (NP (p) =P (ik) +T)}
we know that
6.4) | (ADChtn) — 7 (k) +0) gle=1—e)J|gl,. YgCU")

implies the existence of

(PP +0,+0) 7.

We see at once that there exist positive constants 0, 0.>0 such that
(6.4) holds for anv [k|<k, when
(6.5) —0,<<—0,=#=0 and |G|=0,
are fulfilled.

Thus we have shown that, for 6=0,+06 and p=ik-+ such that
(6.5) holds, (/" (p) +¢) ! exists. On the other hand for Re p=>4, and
p such that [k|>k,, —0,<{#<2u4, the existence of (A#"?(p)+0)" has

already proved. Thus if |8 (/P (p) +0) ! exists for all Re p==—0,.
and it follows that

(6.6) 1A ® @) +0) "gla=Calkl™|glln, YRep=—0,.

Thus Theorem 2 is proved.
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