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Mixed Problems for the Wave Equation III
Exponential Decay of Solutions

By

Mitsuru IKAWA*

§ 1. Introduction

Let 0 be a bounded object in I?3 whose boundary F is sufficiently

smooth. Concerning the exponential decay of solutions of the wave equa-

tion in the exterior of 0 it seems to us that the cases with the Dirichlet

boundary condition and with the Neumann, or the third boundary condition

are studied. Besides the case with the Dirichlet boundary condition, we

know only a few works, for example, Morawetz [11] on the case with

the Neumann condition for a convex object and Tokita [13] on the case

with the third boundary condition for 0={x\ \x\<^\} .

In this paper we suppose the strict convexity of 0, which is an

assumption stronger than that of Morawetz [11], and treat the exponential

decay of solutions of problems for a very general boundary condition.

Set fi = «'-O-r. Let

be a differential operator with C°° coefficients denned in a neighborhood

of F. We pose the following assumptions:

(A-I) the Gaussian curvature of F is strictly positive.

(A-II) b j ( x ) , 7 = 1,2,3 and c (x) are real valued.

(A-III) 2] bj (x) HJ (x) = 1 011 r
j=i

where n (x) — (X (x) , nz (x) , ;/3 (x) ) denotes the unit outer (with respect

to 0) normal of F at x^F.

Under these assumptions a mixed problem
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r ——Y~I^—-2
 = ® m fix (0, co)

0 on r X (0, oo)

(P)
& (X 0) = u0 (x)

®U f C\\ f \— (x, 0)=«1(^)

is well posed in the sense of C°° if and only if

(A-IV) *(*)<! ^ all x^T .

This is the main result of [6].

About the asymptotic behavior of the solution of (P) under the

assumptions A-I~IV, when Re( — d(x)) is large in some extend the

solution u(x, t) for initial data UQ, u^ with compact support decays expo-

nentially. Namely we have

Theorem 1. Suppose that

Re
\2 y

rvhere dQ is a certain constant. Let u0, i^ be initial data satisfying

the compatibility condition and

i _
U supp UjC: {x; x^&. \X\<K} .

Then the solution u (x, t) of (P) has an estimate

Ei(u, rQ, 0 <—

-where SQ
:=12p~1e~1, p = diameter of O9 £ is an arbitrary positive con-

stant, C a constant independent of rQ, UQ, u± and e, and Em is defined by

Em (u, r,, 0 = S f I Dl.tu (x, t)\2dx .
Irl^m J^n{|^'^r0}

In the case where b(x) =n(x) and c (x) =0, that is, the third bound-

ary value problem we can study the condition on d(x) in detail.
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Theorem 2, Suppose that

B=— + G(X), <70c)6=c°°cr).
dn

For any M>»0 there exist constants (?i>>0, r?2>0 such that, if ff(x)

satisfies

\Imff (jc)\^dl9 - M<^Re ff (x) <,§! on 7\

the solution u(x,i) of (P) for u0, ^ satisfying the compatibility con-

dition and

i _
U supp ujd {x\ j?eJ2, -r|<£}

.7=0

decays exponentially, namely

E, (u, r0, /) <:C exp {3o0 (r0 + 2/e) } exp ( - S2t) • E, («, oo , 0) .

We should like to remark that the mixed problem (P) is not neces-

sarily L2-well posed under the assumptions A-I~IV. Indeed, if there

exists a point jr^^F such that

(l.D - (S (bj (*„) - n, (x.) )^<c (Xo) ,
j=-i

the problem (P) is not .L2-well posed for any d(x) (see, for example, [1],

[8]). This means that for any T^>0 there is no constant CT such

that the energy estimate

dt

holds for any UQ, u\ £E ^) (*Sfi) , @R={x^Q', \x\<^R} . Therefore Theorem

1 says that, when (1. 1) holds, however large the total energy may

increase the energy in a bounded region must decrease exponentially.

The proof relies essentially on the idea of [5] and [6] reducing

the problem (P) to one with the Dirichlet boundary condition.

The author wishes to express his sincere gratitude to Prof. A. Inoue,

who pointed out the efficacy of the considerations in [5] and [6] to

investigate the exponential decay of solution. We could not obtain the
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results presented here without the discussion with him.

§ 2. Reduction of the Problem

In the previous paper we showed that the mixed problem

' D u O, 0 =f(x91) in 2 X (0, oo)

Eu (x, f)=g (x, t) on P X (0, oo)

u (x, 0) = UQ (x)

9u(x Q)=USX)
V l ( )

is well posed in the sense of C°° and has a finite propagation speed when

the assumptions A-I^IV are fulfilled. Consider the solution u(x, t) of

the problem (P). Let U j ( x ) , j = Q, I be functions in C°°(RZ) such that

Uj(x)=U](x) in J2. Denote by F(x,t) the solution of the Cauchy

problem

QF (x,V)=ul(x}.
dt

Then a function

[u(x9t)—F(x9f) for (x, t) efix (0, oo)
w(^,0 = j

( 0 for (*,*)e=.flx (-oo,0]

satisfies

(P0)

n

Bw(x,£)=h(x9f) on

k supp ze; C J2 X [0, oo) ,

where h(x, t) = —BF(x, t)\r. The compatibility condition for &0> «i is

none other than

Note that by Huygens' principle the assumption supp Ujd {x\ i^l^/c} im-
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plies

(2. 1) supp h O, t) C r X [0, 2/c].

In order to investigate the behavior of the solution u(x, t) of (P) it

suffices to consider the solution if (x, t) of (P0) for a boundary data

h (x, t) satisfying (2. 1), because we know well the properties of solutions

of the Cauchy problem, that is, supp Fc { (x, t) ; t — lC<*\x\^t-h/c} .

Suppose that the origin of Rs is contained in 0. Set for

* 9 , ,. , 28
d\x\ \x

i,S»,.

and we have for all u (x, f) e C°° (J2 X I?1)

Then if we pose

for iv (x, t) the solution of (P0), it holds that

92

( ) v ( j c , 0 = c ~ | a r | A ( ^ , 0 on rxR1

supp T; C j? X [0, oo ) .

We consider a decay of 7^ (x, f) in place of that of ze; (x, ^) . As for

(2.2)

a boundary value problem with a parameter

*-&du(x)=o in a
u (x) = g (x) on F

it is known that there exists a constant //0>0 such that for any g(x)

eH'ri(r) (2. 2) has a unique solution w(:r) in Hm (Q) if Re^^^0, where

m = I,2,3,-~. Denote the solution u(x) by U(d}(p,g;x). We see at

once that U™(p,g\x) is analytic in Re/>^^0 as Hm (ti) -valued function.
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Moreover with the aid of consideration of Morawetz [10] we obtain the

following theorem, whose proof will be given in the next section.

Theorem 2. I. Suppose that S^d0 + 1. For every g(x}^Hn (T) ,

an analytic Hm "(S) -valued function U*s} (p, g; x) in Repl>jUQ can be pro-

longed analytically into Re£> — d0j and an estimate

(2.3) |||^K^g;^) ,
Re p + S0

holds.

Define an operator £B™ (p) from C°° (J7) into C°° (T7) by

®{8)(P}g = B™(p}U™(pyg-x)\r for

where

B*> (p) = S b, (x-) j + pc(x-)+d (x) + S- S bt (x) x, .
y=i dx x y=i

In fact since t/(ff) (^>, g; x) eC°° (fl) for g<=C°°(r) by the regularity theo-

rem for the boundary value problem (2.2) we have Q (5) (£) g e C°° (F) .

Concerning the operator &(5) (p) we have

Theorem 2. 2. For every positive number m

(2.4) l|#

holds -where Cm is a positive constant. And -we have for all p = ik + {i,

-8a and

(2.5) ~Re(5(

where c0 = I — supc(x), C is a constant independent of bjy c, d and m,

a —i 1 ^dCbj — Hj} j f N)S d^r d(x}\
and C'm is a constant depending on m. When d(x) satisfies

(2.6)

1} Hereafter || • ||m denotes the norm of Hm(H and |||-|||m the norm of Hm(Q}.
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if we consider by (2.4) <£™ (P) as an operator from H*1^"1 (F) into

Hm(r) for every w;>0, $(S} (p) is bijective from Hmhl(T) 0/7*0 Hm (F)

we /mt^e /or a// Re /?>• — 50

(2.7) ^"'(/O-'gl

(2.8) ll^'W-'gl

'where C'f is a positive constant.

A proof of the above theorem will be given in Section 4 and 5.

For a while admit Theorem 2. 2. Since ^W) (p)g is analytic in Re/?>— dQ

as Hm(F) -valued function for every ge£PJ1(O the estimates (2.7)

and (2.8) imply that for all /eH"m(O

pw) (/>)"!/ is analytic in Re/>>-o0 as H"1^ CO -valued function

twhen d(x) satisfies (2.6).

Let /? (x, rt e C00 (r X I?1) , supp 7iC P X [0, 2/c] . If we pose

r* ̂ ^
h(x,p) = e-pth(xj

J — 00

h(x,p) is analytic in C as Ifn (F)-valued function for any wz2>0 and

it holds that

" dt .(2.10) \p

Let us set

(2.11) »(*,*)=£

where /J^> — d0. The estimates (2.3) and (2.7) give

Ci -2-j ^m || j,2+jji ^^ ^\ii

and U™(p,$(d) (p)-le~s^h (>,p)\x) is analytic in Re />> -50 as f-Iw (fi)-

valued function. Then from (2. 10) and (2. 12) the right-hand side of

(2. 11) converges for all /,/> —(?0, therefore it is independent of /t^> — d0.

And we have at once for all
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•e*,t£ d

y0 + # ~ J— \9*/ - 'wi-/

This shows that

v (x, t) = 0 when

Since we have

(x9 0 = A O, 0 ^-'|xl on

v ( x 9 f ) defined by (2.11) is the desired solution of (Pa). The solution

tv (x, f) of (P0) is represented as

w(x9 f) =e3lxlv(x, f),

from which it follows for any /i^>—dQ that

(2.13) Ize^OIIU^ + ^CM

<Cm-e'Va-e-7''2l+1S f°° f-^
j=0 J-co1, \9^,

where ||| • \\\m.sB denotes the norm of the space H^fJS^). And Theorem

1 follows from (2. 13) by using the estimate

§ 3. Proof of Theorem 2. 1

Consider the problem

(D)

n

u(x,t^=h(xjt') on TxU1

k supp « (a;, 0 C fl X [0, oo)

for a boundary data A (x, f) e C°° (r X J?1) such that supp Acrx[0, oo).
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It is well known that there exists a unique solution u (x, t) EE C°° ( J2 X Rl)

satisfying (D) for any data h (x, t) . Concerning the asymptotic behavior

of the solution for t— >oo? we can derive the following proposition from

the consideration of Morawetz [10].

Proposition 3.1. Suppose that h (x, t) e C°° (P X R1) satisfies

supp/zCTx [0, 2/c].

Then for any d, /? such that <J-i;>£o^>/3>0 it holds that for

<Cme-^Y\ r\(*LYh(x 0
J=Q Jo I] \Qt' ' '

where Cm is a constant independent of d, /9.

A proof of this proposition w^ill be given in the last of this section.

Take $2j(?o + l and consider the problem

92

v(x,t)=f(x,t) on

(supp vdfi X [0, oo )

for the boundary data /(x, t) ^^(FxR1) such that supp /CFX [0, oo).

Through the uniqueness of the solutions of (D) and (Ds), w^hen we

denote by u (x, t) the solution of (D) for a boundary data h (x, t) = es^ -

f(x,t), we have v(x,f)=e~9\x\ti(x9t). Then the following follows im-

mediately from Proposition 3. 1.

Proposition 3.2. Suppose that f(x, t) eC^fTxI?1) and

supp/crx[0,rf.

Then for any 0<^dQ, the solution v (x, f) of (D3) satisfies an inequality
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m + l fP\ / fl\J I 2

S l(l-) f(x,t)\ dt, v*>0.
.7=0 Jo |\0£/ 'm+i-y

(3.2)

Note that the boundai^ value problem for As with a parameter

(P2~&s)w(x)=f(x) in fl

•£t> (.r) = gr (a:) on F

has an apriori estimate

(3.3) /*{|||w(*)|^

for all zv(x) eJ/m+1(J2) when Rep = /jt^>/JQ where JUQ is a positive constant

determined by d. Indeed, since the operator dt
2 — ds and the Dirichlet

boundary condition satisfy the uniform Lopatinski condition we obtain

the apriori estimate (3. 3) through the considerations of Balaban [2] ,

Kreiss [7] and Sakamoto [12].

Denote U™(p,g;x) the solution w(x) of (3.2) for /=0 and g

We have

U(S> (p, g-x)^r,Hm (fl) when g (x) <= C°° (F)
m = l

from the regularity theorem of an elliptic operator. And the following

follows immediatel}^ from the apriori estimate (3.3).

Lemma 3.3. For every g^Hm(F) U™(p,g;x} is analytic in

I>//o as Hm(Q) -valued function.

Next, we will show that U™(p,g-,x) can be prolonged analytically

up to Rep>-dQ. Take q(t}^C°°(R1} such that

(3. 4) q(i) E£0 and supp gC [0, 20]

and set f(x, i) = g (x) q (t} . Using Proposition 3. 2 we have that the solu-

tion v (x, t) of (D5) for a boundary data f(x, t) satisfies

(3.5) \\\v(x,t)l\m<Cm-e-<e-f(x,t). dt,
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for any 0<I/3<Io0. This inequality assures the summability of the integral

f e~ptv O, 0 dt for Re />> - dQJo

as a Hm (fl) -valued function. Then

is analytic in Re/>> — $0 as /Jm (J2) -valued function and it satisfies

(/>2 --/,)£(*•,/>)=() in £

because v(:r, £) is a solution of (Dtf) . On the other hand, by the choice

of the boundary data we have

v (JT, p) = f Cr , />) - g Or) g (£) on y

i
oo

e~ptq(£)dt. Note that g (/>) is analytic in € and that
i

{ P ' « q ( p ) — 0} has no accumulation point in any bounded set. If we set

for

Uq* is analytic in 31 (<?) as Hm (J2) -valued function and it satisfies

(3.6)
Uf>(P,g;x)=g(x) on f.

For any </3, <?2 satisfying (3. 4) we have

In fact, since Uq?,j = 1, 2 satisfy (3.6) for allp£i3l(qj) and the solution

of (3. 2) is unique when Re />S?/«o, we have

{/« (p, y ; j.-; = t7 » (P, g ; x) , v^ e tft (?1) n 5? (ft) H {^ ; Re /.^ A} .

(3.7) follows from this fact b}^ taking account that \p\ Re p^> —30,p

& (51 ((?i) H5l(g 2)) , |£|<^M} is a finite set for every M< + oo.

We define Um(p,g;x) for Re/>>-(?0 by

by choosing a function g (^) satisfying (3. 4) and q (p) =^0. Then the

right hand side is independent of choice of q(t) and U*8) (p, g\ x} is an-
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alytic in Rep>-8Q. Evidently for all Rep>-80 U(S} belongs to Hm(S)

and satisfies

;x-)=Q in S

on F.

And by applying Proposition 3. 2 for f(x, t) — q(x)q(t) we have

q(p)

~!?O)

where a function q (t) is arbitrary if only it satisfies (3. 4) and q (p) ^0.

Since we can find for every p^C a function q(t) satisfying (3.4) and

m C'2p ( ft \ l 2 \ */2
I ^ X- . >. I ^^ I " • I : I I I \ s ~ - \ 'm

, m (*2

S\z=o Jo

the estimate (2. 3) is proved.

No^v ^ve set about to prove Proposition 3. 1. In the first place con-

sider the problem in the free space, that is to say, the Cauchy problem.

Lemma 3.4. Suppose that Uj^H1 -7 (H3), j — 0, 1 and that

SUpp Uj d \X j \X\ ̂ ^Kf .

Then the solution of the Cauchy problem zvith initial plane t = \

D u (x91) = 0 in R3 X (r, oo)

u (x, r) = UQ (JT)

(jc9 r) = «! (^)

(3.8)
' du

satisfies an estimate

(3. 9) e^~^ kc-^u(x, t) \\\i+ \\\e-' (x,

<6(l + o^2) {1+ (i-r)2} .e^-8>((-r>e
2

for all t^T, where 6, ft are arbitrary positive constants.
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Proof. The Huygens' principle says that if suppz^C {x\ \x\<^tc} for

.7 = 0, 1, the support of the solution u(x9() of the Cauchy problem (3.8)

is contained in

Then we have

^<l-r>

from which it follows that

20U-r) | | j p-d\x\ „./e |||£ Z£^

And also we have

c Wl-r> ,;—(«-"*'« (or, 0)

u (x, f) \ ^ + \ \ \ e ^ ( x , t) |||j

<2 • e2«'-r> (1 + S2) {||| V« (x, 0 i + HI « (x,

Then the left hand side of (3. 9) is majorated by

|| u (x, f) l||i + (x, t} ; .
h dt o)

On the other hand the Cauchy problem has an energy equality

Using an estimate

III" U 0 lll.< f '.'-^(-c, 0 ,1
Jr I 9^ 1

^(i-OiJll^W

we have

< {1 + (t - r)2} {|]| UQ (x} HI? +1 Kl (^) |||S>,

which shows (3.9). Q.E.D.
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The idea of Morawetz [10] to prove the exponential decay of the

solution with the Dirichlet boundary condition is as follows: The solution

it (x, t) of (D) for a boundary data h (x, t) satisfying the condition of

Proposition 3. 1 can be decomposed as

.
3=1

Here F,(x, t)=Q for t<JT and for t^jT it satisfies

0 in Rsx(jT,°o)

Fi(xJT)=F},(x)

where FJO and Fj^ have properties

(3.10)

(3. 11) \l\Fj fl dt
l-J

for a certain positive constant T. And R^ satisfies

c,f)c_{x-\x\<:
[ 2

(3.12)
dt ^ '

<C • exp ( - 2dJ h (x, t) dt .

Applying Lemma 3.4 to each F3*(x,t) and using (3.11) we have

dt ^ '
{l+(t-jT)*}.e^-^--

1 f

l-Q JO

from which it follows at once that

n > \ * 2

— }h(x9t) dt
dt> '

6*^ o
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(^U dt.
S Jo

Note that

where C8ip is a constant depending on d — {3. The combination of the

above estimates and (3. 12) gives

which proves Proposition 3. 1 for 771 = 1.

Differentiate (D) £-times in t and we have

= 0 n
dtl

on

Then we have

(3.13)

— I h
-o Jo ' - '

dt

Since for ^>

g - - w ^ e - j ; A on

we have

(3.14) ||k-*'"K(;c,0

Combining (3.13) and (3.14) we have (3.1) f o r m = 2. Repeating this
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process we obtain (3. 1) for any ??zl>0.

§ 4. Explicit Representation of the Solution of (Dg)

In order to consider the operator 2)(S} (p) it is necessary in the first

place to obtain detailed properties of U(8\ And in an attempt to do it

we will construct explicitly the solution ^ (/*, h ; x, t) of the problem

n
\\dt

;*,0=A(:r,0 on FxR1

ksupp ^CJZx [0, oo)

for — 5o^/^2//0 and h (x , t~) ̂  C°° (F X R1) such that supp A (x, 0 C F

X (0,oo).

The functions and notations used in this section without explanations

are found in [5] and [6],

Let sQ^r and 7^0 be a neighborhood of s0 such that F is represented

in /^o by parameters ff=(ff1,ffs) as

5 ((T) = (<>! (<?!, <J2) , sz (ffl9 (T2) ,

ff= [ — (T10, tTio] X [ — (720, #20] 9 ^"10, ^2o>0- Take Fl a neighborhood of SQ

such that FI^FQ. Let A (5), I (5) be functions on F such that

5 e ( 0 , (5)=l o n

supp AC {5; A (5) =1}.

And let

= on -^, A

f ^ - ( - * o , *o), ?(0=1 on [-r1?^]

suppf (OC^; r (0=l> .

Let us pose 60 (5, £) = A (5) - r (^) , 5 (5, f) = 1 (5) -r(t). Then we have

for any h (x, i)^3) (Fl X (0, A) )

,0 f ^ f ^ f ^x f ^'
JjK1 JjB2 Jiff JIt
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Take x /(Z)eECoa(fi1), j = I, 2, 3, 4, as

0 |/-li>2a,

z.(0 =
0 Z<l + a /

0, or

1 Z>3

0 Z<2

and

(4.2) Sx/(')' = ! for ̂ 11 /ef i 1 .

Define operators Q7y, J —1, 2, 3, 4, by

7), 0 1 dk\ da d^' d$' dt'
Jn1 J-i jz Jiff Jit

where I = { (f „ f 2) ; f :
2 + f2

2 = 1} . We have at once

(4. 3) V] (cy ,A) (S9 t)=h(s, 0, v/^(^ 0

by using (4.2) and a change of variables g = k(l + (%)£'. Let 6 (x, g, a) ,

p(x,£,cx) be functions satisfying (3.6) of [6] and y ( f f 9 f f ' 9 £ ' 9 c x ) , 0(ff,

tf',?',^), V j ( l ) , j = l, 2, 3, be functions used in Section 3 of [6]. Define

<VV by

, t)- { dk{ d*fl{ d$( d(J' f ^x

JlJi J^ J|/3|^/30 J/ f f J/j
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)g (5 ( f f /) ' *') h (s

where 0<^£<^1/10. Evidently we have

(4.4) £cvtth = cvth, VA

We construct <W satisfying (4.1) for h(s, t) ^3) (A X ( — tl9 O)

through the above decomposition of A. First let us construct a function

u, h;x, t) satisfying almost the relation

n

, h; x, t) = C[?2jh on

For this purpose we consider a problem with an oscillatory boundary data

n X

v(5,0 on T X H1

supp -w (x, t) d $ X [ — £o, °°)

for z; (5, i) ^ 3) (Ti X (0, ^j) ) , and ask for an asymptotic solution in the

form

(4. 7) <w (x,t ; TJ, 09 k, & = exp {ik (d (x, V, ft + 1) }

i (^, ̂ ; ?f A *f /O .

In order that w (x, ^) of (4. 7) satisfies (4. 5) in a neighborhood of

T^o X II1 asymptotically it suffices to hold

dt

ik\\dt

in 00 n ^) X J?1
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(4.8)

on T0 X I?1,

"where ^ is a neighborhood of 7^ in I?3.

The construction of g05 g1 satisfying (4. 8) can be carried out by

using the method in § 4 of [6] and the process of the construction shows

that

suppg^-C U £^(s,f)
(s, t) Gsupp v

where XT (s, t) = { (xr, *') ; iy= (vl5 y2? v») such that I>/=1 E ^?^0,
y=i /=i

x' = s + Zv, t' = t + l, i:>0}. The function vu (x, t;-rj, [3, k, fi) defined by

(4. 7) with g0, gi satisfying (4. 8) has the form

(4. 9) iv(x, t', -T}, 13, p} -exp{f^(0+ (x, r], /?) +t)}-G(x, t; TJ, 0,p)

in {x\ rQ/2^r<^rQ} for a certain r0>>0, if we denote by r the distance

from x£E:@ to F. And by the consideration of § 4 of [6] we see that

zv(x,t) of (4.9) can be prolonged up to {^;r^>r0/2} satisfying asymp-

totically ( (9/9* + fji)2 - J) w (x, t) = 0. Then

satisfies for any f= (Ti, Tz, T*> 7*0 , and

(or, *) e ,0 X
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(4.10) \Df.t(w-v-)\^Cr,.N(\^'r+\k\-^, v(s)

and

(4.11) supp we U -£+(M)-
(s, t) esupp v

Denote by f(x9 t \ f ] , @ , p ) a prolongation of ( ( d / d f + ju)2 — J) w to the

whole space Rz X R1 as C°°-function with properties

(4. 12) i£>r,,/(x, *; f], ft/,

(4. 13) supp/(:r, t',-q9&9p) dRsX [-*„, oo).

Let z(x,t\f},$,p) be the solution of the problem in the free space

n

supp z(j:, ^; 7, ft />) C J?3X [-^0, oo) .

Set w(x,t\Tl,f},p) as

fw in J3XI?1

ze; = <
0 in OX I?1.

Taking account of (4. 11) we have

'9
=0 in

On the other hand from (4. 11) and the location of the support olf(x,

t\y,$,P) we have that

supp

from which it follows with the aid of the Huygens' principle that

(w+z)\r = Q for *I>

By using (4. 11) once more we have

(4.14) suPp*|r

And from (4. 12) we have

We now carry out the above construction of w(x9t\fJ9^9p) and

z(x9 t\ y,l3,p) taking as v (s, f) e 3) (Tl X (0, ^) ) a function with param-
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eters <r', ??, 0

co (s ((J), 0 (1 + a (ff, 6', ?, /?)) -^^4y ^> *'> ?> ft'

and by using these g?- (x, t\ ff', ^, /?,/>) , 7 = 0, 1, G" (JT, £; tf', fj, /?,/>) and

£ (.r, t; 6f, f), @, p) we define operators ^zz and 322 by the following

WK(/t,h;x,t)= f J^ f^ f ^/9 f dff' f ^'
Ji?1 JZ J l P l ^ t f o Jiff Jit

ff(-/?&2/3) r v~ ""' """y0+ z*i/3" p^'^

Sp2C«,A;^,o= f ^ f^ f ^/? f d<s' fJi?1 J^ Jh5i<i?0 jiff jjt

• exp { - ik (6 (s (O, '1, /?) + O } • ~ CT, * ; ff ', 'I

•Jr- %(F/9)2- 5 (s(ff'\ tf) h (S(a'\ *') .

The properties of QJ and 2; assure at once

- n
(4.15)

i-supp (W22 + S22) C fi X [ - f o, oo) ,

(4.16) 2 r \\D\
1^0 J-C3

(4. 17) supp S22 1 r c r x [ - *

TO f oo f oo

(4.18) £ | |DiS«(/«,A;^OIrl |i^<Cw |i/z(^0!!o^.
i=0 J-C3 J-CO

Next, for 0, k such that /?0^l/?l^^"£, 0<e<l/10, we can find an

asymptotic solution of the problem (4. 6) in the form

(4. 19) w(x, t; 7], 0,p) =exp{f*(^(x, 7], j8) +0} 'G(x, t\ ^ 09p).
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It suffices that (fj satisfies

2 = l in S (mod/900)

- - < 0 for /?<0 and
dn

>0 for
dn

and G satisfies

ik\\dt

(mod &-°°) in J2 X R1

and we can construct such 0 and G with the aid of the consideration

of § 6 of [6] . Then w (x, t) of (4. 19) defined using such 0 and G has

properties

and

suppwC IJ X+(s, t).
(s, f) esupp v

Secondly we define z (x, t; y, /?,/>) in the same manner. Taking as

v(s, t) SE.3) (F! X (0, O) a function with parameters (T7, 17, /9

(ff ff/

we construct G(x, t\6f ,fj, $,p) ,z(x, t; ff' ,f]9 @,p) according to the above

consideration, with which operators ^y, 2>2y, J — l, 3 are defined by

(4.20) <W2j(y, A ;*,*)= f ^ f ̂  f Jj8 f ^(Tx f A'
JI21 J^ Ji^l^o J/cr Jit

• exp { - f * (0 0 (O, 7, /?) + O> • exp {* k (0 (x, y, 0) + 1)}

•G(x,t;ff',y, 0, p) tfu} (k*Pf& (s (ff'\ t") h (s ((T'), O ,



MIXED PROBLEMS FOR THE WAVE EQUATION 93

(4. 21) 2>2j 0«, h; x, 0 = f dk f df] { d${ dff' f dt'
JRl J2 J\0\<>P0 J-Tff Jit

•exp{-£*(0(*(<T'), 7, ft + *')}*(*, t\ G'9 ?, /?, />)

Then we have

'd
{(

(4. 22)

(4.23)

(4.24)

=0 n
(/1

C fi X [ - ^0, oo) ,

m P uo P

(4.25) 2 IIA'SwC/' .Aj^OlrllW^C.
1=0 J-oo JO

Using the method of construction of ^Wzj and 2>2/, J = = l> 3, we can

construct ^y, 2y, J — 1, 3, 4, in an almost same form as (4. 20) and

(4. 21) , satisfying

(4.26) ^"~"; - '^"" —

SUpp (^y + Spy) C J2 X [ — £„, °°)

(4. 27) W/0«, A; .r, t)\r = C(J .~k

m f00 s 2 f(4.28) 2 I H-Df2?/(# , &; .r, £)|r||TO^£<CTO I
Z=0 J-oo J-

(4. 29) supp 2

Let us pose

f f * f f= I dk 1 <fc 1 aff \ dt •(

3

where cI/f72
:::=Z] Wy- Then we have
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H^DE.D&^Cff), *; ff',k, e , f i ) I^Q.JV(|?|

Now denote by y (x, t; ff' , k, f, ,'J.) the solution of

dt ' "" '" v "" " "" """

supp y (x, t-, ff', k, £, /O C £ X [-*o, oo)

Then the result of Morawetz [10] gives an estimate

\Dl.tD^,D^y (x, t- ff', k, ?, m) |

<Cr,Nexp{-(S0+/j:)t}-(l + k2+\t\2)-x, on F X R1 .

Define an operator Q/ by

Q J ( f l , h ; x , £ ) = ( dk{ d%( da' { dt'-exp{-i«$,ff'y + kt')}
JR1 JRZ Jiff Jit

• y (x, t ; f f ' , $ , k , ft) 3) (S (ff'\ t'} h (s (ff'\ t'}

and we have

P" / P°° \ V2

(4.30) \WQi,h;x,t)\r\\»dt<cJ\ \ \ h ( s , f ) \\ldt] .
J-oo \ J-co I

Let us pose

^ (IJL, h\x9 0 =2 W/G", A; ^, 0 + 2y C", A; ̂ , 0) +^ (^ A; ̂  0^=1

and we have for all /KE^C/^X (0, O)

supp ^C.GX [ — £0,

Up to the present we assumed that the support of a boundary data

h is small enough. To consider a boundary data h EE .2) (/" X (0, ^) ) , we

introduce ^(s}^3)(r}, j = l, 2, - • - , JV, by the way of

0) y=i

(ii) for each j supp /3y is small so that we may carry on the
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construction of ^7 for ftj (s) h (s, t) according to the process prescribed

in this section. Since

.7-=l

if we define ^ (jU, h\ x, t) by

N

we have

//9 \2 . \^-9 A .V = 0 in

supp ^ C ̂  X [ — £„, ex?) .

Then this operator ^7 is the desired one of (3. 1).

§ 5. Proof of Theorem 2. 2

The operator ^B (p} is defined for Re^^>0 and we have a relation

which shows

(e*8\3-\cg(8) (p^g9 g ) 0 — (jg (p) (es]x]g), p s l a ? l g) 0 .

Taking account of the boundedness of <?5|'r| on T7, Theorem 2 of [6] shows

that (2. 5) holds for Re ^>0.

From now on we show (2.5) for — 80<^Re p<^2;UG. The solution

of the problem

/ 92 \ , 1—- — A f f j T £ ' ( . r , £) =0 in MXR

w (x, f)=h (s, f) on FxR1

ksupp wdti X [ —^0 , °°)

is expressed by the operator ^ as
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First we show (2.5) for g(s)^^)(F1). Let m (f) e 3) (0, O and pose

h(s,t)=g(s)m(f). Suppose that m(p)=^=0 for p = fjL + ik. Then

^m; x, t)dt .
m (p)

Hence we have

(5.1)
n r j; m -~

+ _l_«-»i'i f°° e-™^^, e^g-e^'m-, x, t)dt
m(p) J-oo 9^

t
x y m(p) J-~ 9?z

Begin with the estimate of dcW22/9n. From its definition

,h;x,t)\r=\ dk(di,{
Jn1 jz J\

, ,
on Jn1 jz J\0\^00 Jiff Ji

• exp {ik (0 (s (ff\ v,0) -6 (s (ff'), V,ft+t- «'

- r (0 ) ik

f • - • Jexp {ik (G (s (ff), T?, /J) - 6 (s (ff '), 7, /

, if)
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+ f - Jexp {Ik (6 (5 (ff), V, ,3) - 6 (s (ff'), y,ft+t- f) }

= I2

Define an operator c^?22(^) from ^(T^ into .2) (7^0) by

^22 (*) /= f ^ f J/J f ^/ - exp {f A (6 (j ((7), 17, /S) - 0 (s (O, ^,
JJ J|/3|S/50 J^"(7

•A'o.C^'/C^ff')), for

Then we have

- f eikt^A22(k)(e^g}'m
JR1

from which it follows that

(5. 2) p e-"!/22 (A, *""</• e-"'m (0 ; *, 0 <fc

Next we consider II22. Since supp(r(^) — 1) fl supp r (£) = 0 /J22 is a

pseudo-differential operator belonging to tS"00 (jT X I?1) . Then for any m,

we have

r\e-^7?i(t)\2dt]1/Z for all
Jo /

Concerning III22 recall that g0 and g1 satisfy
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which implies

\\TTT ( ii P®\X\ n • P~ ̂  w . t\\\\\iJ.j.22(/l,e y e m, , £ ) \ \ m

r°
JO

About IV22 remark that it is an operator of the class Sjy3f 0 (F X

and that for any h

supp IV22 (ju, h- x, t) C A X [ - *0, *o] -

Then we have

2 \ 1/2

\ 1/2

/

Combining the above estimates we have

/{r o\ I aZ8\x\ ^ 1 ~-iktV WZZf., ~8\x\ „ ^-^t^-,. ^ +\ ̂  + ~\(b.6) (e l^—r~- e ——(/j, e l g - e * m; x, t)at, gj
\ m ( p ) J-°° $n ' i

_

m(p)\

Consider d'W^/dn, j = l, 3.

V Jo

• k2i)j (/fe£/3)25 (5 (d"7), t'} h (s ((T7), O.

From the equation which G satisfies it follows that

9 G / 9 0 \ - M 9 G _ , , , . - 1A ,
9» 2

(mod ^~O T),
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where

/ r-r d(P ^ rr/- 9G</>s = V</)—n—— , Gs=\G — n -.
dn dn

By using

G\r = co(s9 t) (1 + a) — ±^-?J-%2(1 + of

we have

9 g!r = I"' Jexp {ik (d (s (<T)>'' ̂  ~ °(s (ff /)> '•/5) + * ~ ̂ /}}

f / ^i)//i 1 / /-\)//i \ —1 \ T~) ('ry ^^\

( / -,\\ /-l I \ -*--' V*-''-/% a )
5(CT))( l + a) —- — 7\ J/ \ ' / -j-̂  f f~* ^ /V'

+ a ) - - -
D (/9, T?)

- F • u, (^/S)25 (s (O, O A (s (O,*')

+ J • • • J exp {£* (6 (s ((7), T?, /5) - B (s (O, 7, /?) + < -

n 2

+ J . • • J exp {Z7c (0 (5 ((7), r/, /?) -0(S(0'\'(j,ll)+t-t')}

Let us define an operator Ul2j (k) from 3) (A) into .2) (/"o) by

= f <*? f ̂  f ^' exp {:* (0 (5 ((7), -n, 0} - 6 (s (ff'), ?, /?))}
J^ J Jiff

A02
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Then for h (s, t) = es^g(s} • e~^m (t) we have

/„(/£, A; 5,0 = f eiMJlvIB*

By taking account of the fact

supp (1 - r (0) H supp r (0 =

we have an estimate for all t

( f"
\ J-c

Concerning Illy recall that

supp III2J C F X [ - tQ, to]

and that III2J is a pseudo-differential operator of the class 5f_^jje (/" X I?1) .

Then we have at once

r \\Dmi2J(M,fi; -,
J-co

\\DlIII2}(fji,h; -,

By the above estimate we have

(5. 4) e^-~- e-«'-(ti, h; s, f ) d t , g
m(p) J-°° an

i / r°° \ v2

l ^ ' ^ ' / T l l 2 • I \p-lttm(t\\l
l^ y l l m ^ I I \e m\i)\

\m(p)\\J-°°

In the same manner we have for j = 19 3, 4

(5. 5) ^1 e - ^ ( ^ , h ; S , f)dt, g



where a^ (ff, 6r , f, K) e5J i0(/ff), real valued and

fli((T,^,

And Jl$(k) is given b}^

df f ^/-
2' J/cj-

. k . ( _

where <z s(ff , ff', £,&) e5J, „(/«). real valued and

is in the form

Jl<(K)g= f rff f
Jif!^2fc J/

MIXED PROBLEMS FOR THE WAVE EQUATION 101

i / r °°
<Cm\\e'Wg\\l^±—( \

!raO)|\J-~

Here <Jli (K) is an operator in the form

= faW f^r f dff'
J-l J.Z1 J/ff

where a4 (ff, ff\ f , &) e »SJp 0 (/<r) and

<24(^^,f

From the estimates (4. 18) , (4. 25) , (4. 28) and (4. 30) we have

(5.6)
(/>) J-

aoo \ 1/2i*-"«(oi
Combining the estimates (5. 3) , (5. 4) , (5. 5) and (5. 6) we have

-,Q ~
' m j=l
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Remark that the left hand side is independent of in (t) and that it is

possible to find for any p a function m (t) ^.S) ( — t^ tj) such that

^>r'(j;
Then we have

(5.7)

1/2

m

on

v^e^CTO, Re £>-<?

4

where we set JL(K) =^ JLS (&) .
y=i

We investigate the operator <Jlj (k) .

?ff' • exp {ik<fl - ff', f '

Let us set

£- (5, 77, 0)

From the asymptotic behavior of R(z) we have

Lemma 5. 1. For a positive constant C sufficiently large, ^ve

have that for c0>0

-1~) when - k*"0>C

when |

when
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And we have

=7? when -

when |£

Let us pose

B22i(s, f, s', K) =bat(s,ii(s, s', £',«), 0(5, s', f ' ,a), *)

B22f(s,$,k)=B22}.(s,$,s,k-).

By calculus of § 6 of [5] and § 5 of [6] we have

(5. 8) -Re (Jlu(K)f,f)^ (1-c*-") (l-B2S1-]FTzf, T2f)

Similarly it follows that

(5.9) - im (cJ22 (*>/, /) m^ ( [ - s222] ,r,/, r ,/) m

- ( [ - £»] ,r,/, r,/) » - im (£?,,/, /) „ - cm

For j = l, 3

' f ^a f dff /-
J|a|Sa» J'd

We set

521,(5, f, s', K) =b21J.(s,7l(s, s', f, a), 0(s, 5', f, a),

Recall thai for -i3^^-k~s, 9</-/9«|/-<0 and
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Since d(f>/dn\r is purely imaginary for fit^fi^lk'* we pose

bZS = Z&— — = #231 + lbm, &2S2 = 0
On

5231(5, f, s', k) = b2il (s,7i(s, s', ?, a), /9(s, 5', f, a),

Then we have

— b^<c0k -J @ .

It holds that

(5. io) -ReCJkofe)/,/),^!-^-"1) ([

- Re (£?„/, /)-

(5. 11) -Im(^n (*)/,/), ̂ (l-^-"1) ([

Set

and we have

(5. 12) -Re G-40&)/,/)m^ (l-^-e/2) (^X,/, X2/)m-Cm [[/(1 2

because it holds that

«/, /)» I <C -^•=1

Set

~ 3 ^

^2F = 2 ^* E ~~ -82^2]^^^
7=1

and we have

(5. 13) - Im (Jl. (k)f,f) ^(1-c- k~*'2) (B,FX2f, X2f)
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From the form of <JL] (k) and the properties of their symbols we have

at once

(5.14)

(5. 15) -Im (JL} (&)/,/) m;>c0^

(5. 16) -Re(Jls(Vf,f)m^c0k\\X,f\\l-Cm\\f\\2
m

(5. 17) -R?(Jtt(k)f,f)m>Ca(lDlX,f,X,nm-Cm\\f\\*m.

From (5.12), (5.15). (5.16) and (5.17) it follows that

(5.18) -E

and from (5. 13) and (5. 15)

(5. 19) -Im (JL (k)f,f) m^ ( (cJtXfXi +X?8tfXt)f,f)

By Lemma 5. 1 we have

X? (B2F

from which it follows that

(5. 20) 2|

n r

oxj 2 dxj

+ (ik + ft) (e^c(x}g, g)m+ (e^d(x)g, g)

Then using (5. 7) and (5. 18) we have for a real

(5.21) -Re(e^($™(p)-a-)g,g)m

^ ( (X*B2FXZ + cakX*X, + Xf\D\Xt-) e^g, C
5^'g) „
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Till now we have supposed that g^3)(r^. In order to show that

(5.21) is valid for all geC°°(r) we use ft (s) ,j = l, 2, • • • , ^introduced

at the end of § 4. Applying the above result for each ft (s) g (s) we see

that (5.21) is also valid for all geC°°(r).

Suppose that

(5. 22) inf Re (- d(x) ) ̂ C0 + CJ + 1 .
*er

Then we have for any aS>0

(5.23) K"1 ff II o^ K1" (#w (*>)-«)? II o.

Therefore for (5. 1) and (5. 23) it follows for cm>0 that

(5.24) \\es^g\\m^cm\\esW($™(p)-a)g\\m.

Since it holds

we obtain from (5. 21) for any a>0

(5. 25) \\es^g\\m+l^Cm\k\\\e^ (^B) (^) -a)g||m .

We will show the existence of j3(5) (P}~1 under the assumption

(5. 22) . Let us set

on

Then we have from (5. 7) that %? (k, {!) is a bounded operator from

into Hm(n. For a real constant a

.7=1 \ 2 QXS

Concerning <_^? (^) * we can show

by using the properties of the symbol. Therefore it holds that for a

sufficiently large a
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Then {(Sm(p)-a)g'9g^C°(T)} is dense in U (F) - For any h (5)

e L2 (F) there exists a sequence g3 GE C°° (T7) such that

(&<»(£)- a) g,-»h as j ->oo.

From (5. 24) and (5. 25) gy converges in H3 (T) . Let us denote the

limit by e S [ X l g . We have

That is, $m(p}-a is a bijection from H*(F) onto L2 (T) . Therefore

CS^C/O-a)-1 is continuous from Z/CO onto H1 (F) - Taking account

of F is compact, the operator (j2(<J) (^) — a) ~1 is a completely continuous

operator in L2 (F) . The equation

(5.26) S

is equivalent to

(5. 27) g + a($m(p) -a~)-lg= (®m (p) -a)'1/, .

Now we know the uniqueness of solutions of (5. 26) from (5. 24) , which

assures the solvability of (5.27). Then we see that <2(8} (p)~~l exists

and continuous from L2 (7"1) onto H1 (7"1) .

Simillarly we see for any 7?z^>0 3B(8) (p)~l is continuous from Hm (F)

onto H"H ' CO . Thus Theorem 2. 1 is proved.

§ 6, Case of the Third Boundary Condition

(Proof of Theorem 2)

When B = -®- we denote .®(5)(£) by ^TW) (#>) specially. The estimate
dn

(5.20) shows that for —

(6. 1) (a2/3 -

Then for any ff (s) ^C°° (F) such that \ff(s) \<*M, there exists &0>0 such

that for p = i

Then (^rw) (p) +ff) "l exists for -50<^2//0, l^l^o- Let (70(5> be real

valued and
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(6.2) -M<:tfoO)<;o.

Suppose that for Re^]>0 there exists g(s)eL2CT) such that

(6.3) (^w(W+<To(5))<7(s)=0.

From the regularity theorem it follows g (s) GE C°° (JT) . A function

u(x)=<fWUv><p,g;x)

satisfies

(A~p2)u(x-)=0 in J2

u(x)=e°Wg on T

— — h (T0 (5) & = 0 on jT .
4 cm

When Re^>0 it holds that u(x)^Hz(@') since we have

f
Jr

and

f ^LudS=~ ( Ot
Jr dn Jr

Then we have &=0 and ^ = 0.

Next consider p = ik=^=0. Since u(x) satisfies the radiation condition

of Sommerfeld we have

1
The application of the uniqueness theorem of Rellich implies u=0.

For k = Q by the consideration of Mizohata [9] u(x) is written by potential

of double layer. Therefore we have that \x u(x) and \x\*du/dXj rest

bounded. Then

0= f u-&udx= f u(-^L\dS~ f \Vu\2dx+ f u du <
J^s Jr \ 072 / Jj2fi J\x\=R d\X\
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- f (J^U\ZdS- { \^U\2dx-r f
Jr ' JsR J |X| d\x\

Taking account of (70<JO we have Vz/^0 by R-^oo^ then ?/=0.

Thus we obtain for Re/>^>0 the uniqueness of the solution of (6. 3).

This fact assures that (.-/^^ (p) + 0"0) ~
1 exists and that it is continuous

from Z,2(D onto H1 (/*) and also Hm CO onto Hm+1

Let us set

where inferior is taken with respect to U g H ^ l , 0<^Re p<,2jLtQ, i^l^^o

and (T0e{(J; real valued C°° function such that — Af<J(75SO}. Then we

have J^>0. Since

+ff

we kno~w that

(6. 4) || ^rm

implies the existence of

We see at once that there exist positive constants dl9 02>0 such that

(6. 4) holds for any i&|<7e0 when

(6.5) -S0<-<k^/J^O and ,ff|^

are fulfilled.

Thus we have shown that, for ff = ff0-r(f and p = ik-\-/t such that

(6. 5) holds, (.r(d) (/>) +(7) M exists. On the other hand for Re/>^0 and

£ such that i&!>&0, " S0</^2jU0 the existence of (^rw) (p) -\-G) ~l has

already proved. Thus if \ff\^01 (^T™ (p) +(T)~1 exists for all Rep^>-d2,

and it follows that

(6.6)

Thus Theorem 2 is proved.
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