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Holonomic Quantum Fields I

By

Mikio SATO,* Tetsuji MIWA* and Michio JIMBO*

In this series of papers we expound a treatise on these subjects:
(1) Deformation theory for linear (ordinary and partial) differential
equations, (2) Quantum fields with critical strength, and (3) Theory of
Clifford group (Theory of ‘rotations’). Indeed, our principal aim as well
as idea here is to reveal a deep link between these apparently independ-
ent concepts.

Naturally we can and do exploit this connection in both ways,
namely: On the one hand we exploit it toward the study of (1) and
see that deformation theory can be constructively analysed in terms of
field operators; and on the other hand we utilize it for construction of
exact z-point 7 functions (causal Green functions) for (2) in a closed
form in terms of solutions to a system of non-linear differential equations
(which appear as equations of deformation of linear differential equations).

Our present work has been evolved from L. Onsager [9] who dis-
covered in effect that field operators on 2-dimensional Ising lattice are
elements of a Clifford group (a link between (2) and (3)), and exploit-
ed this fact toward exact computation of the free energy of the Ising
model, and from T. T. Wu et al [8] who discovered that the 2-point
function for the Ising model admits an exact expression in terms of
Painlevé transcendent of the third kind. Brief accounts of our theory are
given in [2], [3], [4], [15].

Chapter 1 is devoted to the theory of rotations in an orthogonal
vector space [1], [2], [3], [4], which plays a fundamental role in sub-
sequent chapters. After a preliminary review on Clifford algebras we
introduce the notion of the norm map Nr, and give an explicit formula

expressing the norm of an element g of the Clifford group G(W) in
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terms of the rotation 77, it induces in the underlying orthogonal space
W. Then we characterize the closure G(W) of G(W), and give a
formula for the norm of a product g®...g™ of elements g® of G(W).
Finally we define the generalized notion of the norm (f#-norm) Nr, and
study the transformation property under a change of the norm maps.

The construction of our operators of holonomic quantum fields is
achieved in chapter 2 [2]. We let W be the space of solutions to the
Dirac equation with positive mass in the 2-dimensional Minkowski space-
time, and equip it with a non-degenerate inner product to make it an
orthogonal vector space. By specifying a rotation in W®C?", we con-
struct a field operator ¢(e) in the normal product form of auxiliary free
fermi fields ¢(x) so that the rotation induced by ¢ (a) coincides with the
specified one. Analogous construction is performed when the space-time
is only one dimensional (i.e. no time dimensions); in this case the con-
struction of ¢(a) from the rotation leads one to the Riemann-Hilbert
problem [5]. Also we derive an operator expansion formula for the
product ¢(x)¢(a) in the region where x— a is small.

Chapter 3 is concerned with deformation theory of a holonomic
system [3], [15]. We consider the space W4, consisting of double-
valued solutions to the 2-dimensional Euclidean Dirac equation satisfying
suitable growth order conditions at the branch points a,,---, @, and at
oo. After establishing its finite dimensionality we derive a holonomic
system of first order linear differential equations satisfied by a basis of
Weriet .. The coefficients appearing in this system are functions of
a,, -+, a, and are shown to satisfy a completely integrable system of
total differential equations (the deformation equations). These results
are extended to the case of the space W3%ret (A) which consists of
multi-valued solutions with the prescribed monodromy property and the
same growth order conditions. The holonomic systems and the deforma-
tion equations have their 1-dimensional analogues, which are the Fuchsian
systems of first order ordinary differential equations and the celebrated
Schlesinger’s equations [6], respectively.

In chapter 4 we construct solutions to these holonomic systems and
the deformation equations in terms of the f-expectation values < >,

introduced in chapter 1 of the products of our field operators ¢’s and
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¢’s [3], [15]. It is shown that by a suitable choice of { ), and various
combinations of the operators we obtain a basis of solutions to the rele-
vant holonomic system. This provides the relation between the coeffici-
ents of the system, which are solutions to the deformation equations, and
the 7-point functions {¢(a,)---¢(a,)>, of the ¢’s. In this way we obtain,
in one hand, an n(z—1)/2 parameter family of solutions to our 2-di-
mensional deformation equations (cf. [7]), and in terms of their solutions,
on the other hand, closed expressions for #z-point functions of the ¢’s
[3], [8]. Moreover the monodromy structure of the basis construct-
ed in this way is apparent in the rotations T, prescribed beforehand.
Thus the above scheme gives, in the one-dimensional case, a constructive
solution to the Riemann’s problem on the complex sphere and also to
the Schlesinger’s deformation equations.

In subsequent chapters we study the holonomy structure of the z-
point functions [2] and the lattice field theory. We shall give the norm
of the spin operator of the 2-dimensional Ising model below and above
the critical temperature, and exact expressions of their #z-point correla-
tion functions [9], [8], [10], [11], [12]. Their scaling limits ¢ and
¢" are shown to be obtained as special cases of the comstruction in

chapter 2. Also we shall calculate the asymptotic fields and the S-matrix
for ¢ [2].

A Summary of Results in Chapter 1

§1.1. Generalities on Clifford algebra.

Let W be a vector space over € equipped with a non-degenerate
inner product {(w,w’>. We call W an orthogonal vector space. We
denote by A (W) the Clifford algebra over W'; an associative algebra
generated by W with defining relations ww’+w’w=<{w,w’). Let ¢
denote the automorphism of A (W) characterized by e(w)=—w for
weW. We denote by G(W) the Clifford group {g=A(W)|3g~!
eA(W),gWe(g)'=W}. ¢ belongs to G(W) if and only if g =w,---w,
where w,€W and wi=0 (k=1,---,7). The spinorial norm nr(g) is
given by nr(g) =,£[1(——-w§,). T,: WoW, w—T,w=gwe(g)™", belongs

to the orthogonal group O(W), and we have an exact sequence
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1.1.3) 1-GL(, C) G(W) —>O(W) - 1.

A holonomic decomposition of a 27 dimensional orthogonal space W
is a decomposition W= V@V into two holonomic (=maximal isotropic)

subspaces V' and V. There is a unique isomorphism
1.1.49 Nr: A(W) - A(W)

of left A(V') and right A(V) bi-modules such that Nr(1) =1. Here
A(W) denotes the exterior algebra over W. Nr(a) is called the norm
of ac A(W). In physicist’s terminology an element of V*t(resp. V) is
called a creation operator (resp. an annihilation operator), the inverse
of (1.1.4) Nr7'is called “the normal ordering” of Nr(a) and a is
called “the normal product” of Nr(a). In notations a=:Nr(a):.

The residue class of 1 in A(W)/A(W)V (resp. A(W)/VIA(W))
is called the vacuum and is denoted by [vac) (resp. {vac|). We have
A(W)=End (A(W)|vac)) =End Kvac|A(W)). The constant term of
Nr(a) €A(W) is called the vacuum expectation value of a and is de-

noted by <{vac|a|vac) or in short {a).

§1.2. Norms and rotations.
Let W=V'@V be a holonomic decomposition, and let (i, ---, v},
vy, -+, Uy) be a dual basis: (v}, v})=0, {v,,v,)=0 and (v, v,)=0,.

We set (T,'UI, Ty T,'UI, Tv'”h ) Tg‘(),-) = ('01’ Tty 'UI, Uy *ty f) <g: ;:)

and set (S‘ S’) = (1 —T’> (Tl TI‘) (J’i", 1>, assuming that 7', is invert-

Ss Su 1
ible. Then {g)> and Nr(g) are given by
1.2.7) {g>*=nr(g)det T,
(1.2.8) Nr(g) =<gye*”
]
1
with o= (ol, -, v}, vy, -, v) Rl U~
(£
v,

where the skew-symmetric matrix R is given by R= <—S’ SI_]").
1—-8, Ss

In general the norm of an element ¢ in G(W) is of the form
cw;---wiet with ceC, wy, -, w, €W and p A (W) (Theorem 1. 2. 8),
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and the relation between Nr(g) and T, is given in Proposition 1. 2.6
and Proposition 1. 2.7.

As an example ¢N=1:¢e® IN: is discussed where N is the number
operator defined by Nr(N) =é vYv,. Finally we shall give the relation
between the norm of ¢ and ﬁ;e matrix elements Yy, .-+, Vn|a|ly, ***, Um)

d—;(vaclv,l---v..,,avf,;--v}_Jvac) (Proposition 1. 2.11).

§1.3. The closure of G(W).

Let W be a vector space of N dimensions. We shall prove that
G= Llj G* where G*= {cw,---wie’?|cEC, wy, -, w, €W and pe L (W)}
is clt)ﬂsoed in A(W) (Theorem 1.3.2). This immediately implies that the
closure G(W) of G(W) coincides with {:cw;---wze?*:|cEC, wy, -, W,
eW,ped(W) and £=0,1,2,-.-} (Theorem 1.3.1).

Let (vy, -+, vy) be a basis of W and let w,---wie?*= éo-ﬁl—!%i‘:l
Om (l1y *+*y Um) Vs Uy An explicit form of o, (&, -+, Um) in terms of

the Pfaffian of a skew-symmetric matrix is given in Proposition 1. 3. 8.

§1.4. Product in G(W).

Let W®(y=1, ---, z) denote a copy of an orthogonal vector space
W, and let 4 denote an 7 X 7z symmetric matrix (4,.)s,v=1,,n With 4,,=1
(v=1,-.-,n). Let W(A4) denote the orthogonal vector space é we
equipped with the inner product {(w®,---, w™), (w’®,..., -::} ™)>,
= i} Aplw®, w’®y, Let g® be an element in G(W®) cG(W (4)).
Anﬂ.”:)lcplicit formula for Nr(g®..-g™) is given in Theorem 1.4.3 and
Theorem 1. 4. 4.

§1.5. k-norms and transformation law.

Let W* denote the dual space of W and let W=W@W?* be an
orthogonal vector space equipped with the inner product {(w, %), (w’, 7))
=7(w’)+7"(w). Let £: W—W?H* be a linear homomorphism such that
£ (w) (w’) +£(w”) (w) ={w, w’y, and set &: W->W, w(w, k(w)).
Then the fk-norm is defined by

1.5.1) Nr,: A(W) S AG(W)) S5 AERW))|vac)
5 A(W)|vacd S A(W)|vac) S A(W).
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This is a generalization of the norm Nr.

The formulas (1.2.7) and (1.2.8) are restated in terms of K-norms
(Theorem 1.5.3). The constant term of Nr,(a) is denoted by <{a),.
There exists a unique element ¢g,€G (W) such that traceg,=1 and
{a),=trace §,a.

A transformation law of k-norms are given in Theorem 1. 5. 7, which

gives a natural proof of the product formula in § 1. 4.

Chapter 1. Theory of Rotations in an Orthogonal Vector Space
§ 1.1. Generalities on Clifford Algebra

Let W be an orthogonal vector space over C, a vector space over
C equipped with a non-degenerate symmetric inner product {w, w’).
The dimension of W is denoted by N.

Let T"(W) be the contravariant tensor algebra over W and let I (W)
be the two-sided ideal in 7"(W) generated by [w, w’], —<{w, w”") (w,
w’eW). Here we denote by [w, w’], the anti-commutator ww’+ w’w.
A(W);T(W)/I(W) is called the Clifford algebra over W.

There is a unique automorphism a+>e(a) of A(W) characterized
by e(w)=—w for weW. Weset A*(W)={acs A(W)|e(a)=+a}.
An element of A*(W) (resp. A~(W)) is called an even (resp. odd)
element.

There is a unique anti-automorphism ¢g+~>g* of A (W) characterized
by w*=w for weW.

We define trace: A(W)—C to be the linear map characterized by
the following conditions: For any x,y€ A(W) (i) trace xy=trace yz,
(ii) trace € (x) =trace x and (iii) trace 1=2%"~

We denote by G(W) the Clifford group {9 A(W)|3g~'e A(W),
gWe(g)'=W}. For geG(W) we denote by T', the linear transforma-
tion of W induced by g:

t.1.1n» W — W

w 0
Ty:w —> T,w=gwe(g)™

* In [2], [13], [14] the representation of G(W) is defined by wr>gwg~'. (1.1.3) is not
valid for odd N under this definition.
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:g—>T, defines a representation of G(W) on W. Since (T,(w))'=

=Ty (w)e (T (w)) = —gwe(g) e(9) (—w)g'=gw'y'=w’, T, is a

rotation of W, i.e. T, belongs to the orthogonal group O(W) over W.
weW belongs to G(W) if and only if <{w,w)s<0. In fact
-1__ -1 —w

e(w)'=—w ZW and

1.1.2) Tww’=w'—2<w’—w>—w .
{w, w)
T, fixes the hyperplane {w’e W |{w,w’>=0} and transforms w to

—w, hence it is a reflection with respect to the above hyperplane.

Proposition 1.1.1. We have the following exact sequence of

group homomorphisms:

(1.1.3) 1-GL@, ) e Sow)y—1.

If we set G=*(W)=G(W)NA*(W), we have G(W)=G*(W)
UG- (W), T(G*(W)) =SSO (W) and T(G~(W)) =0 (W) —SO(W).

Lemma. If an odd element a anti-commutes with any we W,
then a=0.

Proof. If N is even, an element of A(W) which anti-commutes
with any we&W is a constant multiple of v;-:-vy, where (v, -, vy)
is an orthonormal basis of W. Since a is odd, this implies ¢=0. If
N is odd, we embed W into an N +1 dimensional orthogonal space
Wi=Cv,+ -+ Cvy,y. Here (vy, -+, vy) is a basis of W and {vy,,, v;)=0
(j=1,---,N). Then acsA(W)CA(W, anti-commutes with any
weW,. Hence a=cv;+vyy;. This is possible only if ¢=0. (The
assumption that @ is odd is unnecessary in the case N is odd. If a

anti-commutes with any we W the even part of @ must vanish.)

Proof of Proposition 1.1.1. Since O(W) is generated by reflec-
tions with respect to hyperplanes, £ is surjective. Now assume that
T,w=w for any we W. This implies that g+ ¢(g) € A* (W) belongs
to the center of A(W). Hence g+¢(g) €C, or equivalently, g=c+a
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where c€C and a€ A~ (W). Moreover a must anti-commute with any
we& W, This implies that 2=0. Thus we have proved that the kernel
of Tis GL(1,C). Now let g G(W). Since T, is a product of re-
flections, ¢ itself is a product of elements in W. Thus we have proved

the proposition.

Let g=w;---w; be an element of G(W). Then we have ge(g)*
—e(g)*g= ,H; (~w) €GL(L,€). nr(g)=ge(g)*=5(0)* is called the
spinorial norm™ of g, and gr>nr(g) defines a group homomorphism
G(W)—>GL(1,C). We note that, for ceGL(1, C) cG(W), nr(c) =¢’
and that e(g)"‘=—nrlvg*. The definition of the spinorial norm is
extended to the closure G(W) of G(W); in fact for g G (W) —G(W)
nr(g) =0. Also we have nr(g) =nr(e(g)) and T,=Tsy.

Let A”(W) denote the subspace of A(W) generated by elements
of the form Zﬂ Cipmg, Wy, Wy, where wy, -+, w,&W and, for #=2,
€4,..7,EC is hs'l.;;:‘:;:slymmetric with respect to jj, -+, j,. We have A(W)
= év-) A*(W). This is the irreducible decomposition of the representa-
tiofoof G(W) on A(W), which is induced by 7T'; namely T',(a) =gag™
(ac A*(W)), =gac(g)'(acs A~ (W)). We denote by 0* the projec-
tion A(W)—>A*(W). In particular trace a=2%?¢"(a) for ac A(W).

trace (a&(a)*) (as A(W)) is a quadratic form invariant under the

above representation. The Schur’s lemma implies that trace (ae¢(a)*)
2(a—

_ é(-—)"trace (0*(2)0*(2)*). (Note that 0*(a)*= (=) T 0*(z).)

Proposition 1.1.2. Let ¢, g, be elements of G(W) such that
T, T,=T,T,. Then g, and g, either commute or anti-commaute.

Proof. From (1.1.3) it follows that g¢,g,=cg,g, for some constant
c. Taking the spinorial norm of both sides, we have nr(g;)nr(gs)
=nr(g.gs:) =nr(cgsg;) =c’nr(g;)nr(g,). Hence ¢*=1 and either g,0,=g.g:
or gig:= —Q201.

A subspace V of W is called isotropic (resp. orthogonal), if {(w, w)

@ Note that our definition here differs from [2], [13], [14] by sign.
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=0 for weV (resp. if the inner product is non-degenerate in V). A

maximal isotropic subspace is called holonomic.

Now assume that N is even: N =2r.

Let W=V'@V be a decomposition into two holonomic subspaces
Vtand V. A(W) is a semi-direct product of two exterior algebras
A(V?) and A(V). More precisely, A(W) is generated by 1 as a left
A(VY) and right A(V) bi-module.

Definition 1.1.3. There is a unique isomorphism
1.1.4) Nr: AW)=A(V) - A(V)>AW)=A(VHINAV)

of (A(VY), A(V)) bi-modules such that Nxr(1) =1. We call Nr(a) the
norm of ac A(W).

V (resp. V) generates a maximal left (resp. right )ideal A(W)V
(resp. VIA(W)) of A(W). The quotient module A(W)/A(W)V
(resp. A(W)/VtA(W)) is generated by the residue class of 1, which
is called the vacuum and is denoted by [vac) (resp. {vac|). We have
A(V)|vac) =0 and A (W)|vac) = A(V) |vac) =A(V?), in particular,
dim A (W)|vac)=2". The representation of A(W) on A(W)|vac) in-
duces an isomorphism: A (W)=End(A(W)|vac)). Similarly we have
{vac|A(V?) =0 and {vac|A (W) =<{vac|4(V)=A(V).

A(W) is the direct sum of subspaces A*(W) (»=0,1, ---, 2r): A(W)
=éﬂA"(W). The projection of Nr(a) € A(W) to the summand A*(W)
=:’J= is called the vacuum expectation value of @ and is denoted by

{vac|a|vac). The bilinear form
{vaclA(W) X A(W)|vac) — C
U] U]
(Kvac|ay, as|vac)) > <vac|a,a,|vac)

is well-defined and non-degenerate. Thus {vac|A (W) and A (W)|vac)
are canonically dual to each other. We often abbreviate {vac|a|vac) by
{a).

In general, let W be a vector space of N (even or odd) dimensions

k
and let (v, ', U, Viy1, =+, Uy) be a basis of W. We set W,=Y Cv,
=
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and W,= Z:‘,lC'v,. We denote by @|y,-..c0,-0 the image of a€A(W)
by the natural projection 4(W)—A(W)/A(W)W.=A(W).

Let (v}, -+, v}) and (vy, -+, v,) be mutually dual basis of Vtand V,
respectively. This means that (v}, v,>=0,.. Since V'and V are holonomic,
(v}, v})=0 and (v,,v,>=0. Hence the table J of the inner product

of the basis (vi,---, v}, vy, -+, v,) of W reads as follows:
<7JI', 'UI>"'<'UI: 'U,’-‘> <'UL"U1>"'<'UI,-'U,~>
<o, vl -Col, ofy (ol vidoCol, o) <o 1)
oy, "’§>"‘<'013 2% <'01,.'”1>'“<‘U1,.'0r> 10/
<'”r; "’D"'(vr; 2% (v,,'v,>---<v,,.'u,>
A (W)|vacy (resp. {vac|A(W)) is spanned by elements of the form
[Va, -+, v1>d-——;f'z;3n---'v11|vac> (resp.{Yy, *+-, v,,];(vaclv,l---v,,,) (n=0,1,2,---)
and these elements constitute a mutually dual basis:

0 if m=n,

115 sty M| Vs o0y = X
WL5) ooy tnlOm ey 9 {det(%) LT

The identity transformation 1&End (A (W)|vac)) is decomposable as

follows:

(1- 16) 1=|vac><vac|+2 E llvla'") vk><vk’ "',1)1]

1
k=1 —kfl. Yy, oo, Vg

where |yy, -++, Ved{Vs, -+, V1| denote the element [y, -+, Vid@Vs, *++, V|
in A(W)|vac)Q<vac|A (W) =End (A (W)|vac)) = End ({vac|A(W)).

§1.2. Norms and Rotations

The explicit formula for Nr(g) expressed by the rotation 7T, was
obtained by the first author [1]. Before explaining it we prepare the
notion of conjugate transformation.

Let W be a vector space and let (V,, V_) be an ordered pair of
its subspaces such that W=V @V_. We denote by E, (resp. E_) the

projection operator onto V, (resp. V_).

Definition 1.2.1. Let T € End(W) and assume E +TE_ is
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invertible. We define the conjugate transformation S to T with
respect to (V,.,V_) by

(1.2.1) S=(E,+TE.)"(E_.+TE,).

Remark. We note that if we rewrite (1.2.1) as
1.2.2) (E,+TE)S=E_+TE,

the invertibility of E,+ TE_ follows. In fact, we have (E,+TE.)
X(E,+SE)=E,+ (E_+TE,)E_=1. Moreover this means that S
is conjugate to 7" if and only if T is conjugate to S. It is also easy to
see that if T and 7! have the conjugates S and S’ respectively then
S’'=8"

Set T=1—2P and S=1—2Q. The following proposition gives an
alternative characterization of conjugate transformations in the special

case T%=1,

Proposition 1.2.2. Set E=E,—E_. The following are equiva-
lent.
() T and S are mutually conjugate and T*=1.
(i) 7T and S are mutually conjugate and S*=1.
(iii) PQ=Q and PEQ=PE.
(iv) QP=P and QEP=QE.

Proof. The equivalence (i) & (ii) follows from the above remark.

(iii) in terms of T and S reads
A+T)(E,+E)(A-5)=0, Q-T)(E,—E)1A+S)=0,
or equivalently
(E,+TE)YS=E_+TE,, (E_.+TE)S=E,+TE_.

Then it is easy to see from the above remark that this is equivalent to
(iil). Hence we have also (ii)& (iii). Similarly we have ()< (iv),

hence we have proved the proposition.
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Proposition 1.2.3. Take a basis (vi,---, vi) (resp.(vi, -, Ui,))
of V. (resp. V_) and represent T and S as block matrices;

(T‘vf, "', T'U;l, T'Ul._, "', T'l);’) = ('Ui*-, '”’ vtx’ '01_’ “" ‘v;t) (;1: g-::)’
(S'uf’, tee, Sva, S'U;, "ty S'Z);,) = ('vi‘-, BT vtu '01_, Ty .U;l) <§: §:>.

Then T and S are conjugate to each other if and only if

wan (530 )2

or equivalently

1.2.4) (g: ‘;j)=(1 _1T”>(T1 T;l)(:}", 1>

<T1“' T,7:T, —T, 4_1>'
T T

Proof. (1.2.4) is rewritten as

(1.2.5) (s s)=(7)

This is nothing but the matrix form of (1.2.2).

Remark 1. The assumption that E,+ TE_ is invertible is equi-
valent to that 7", is invertible.

Remark 2. The decomposition (1.2.3) is unique and independent

of the choice of a basis, hence it defines a canonical decomposition of 7:

T=T'T"T" where T’,T”,T" -correspond to (1 _152>, ( ' S">’
4

(; 1), respectively. In fact, T'=1—E,SE_, T”"=(E,+E_SE_)!
s
X (E_+E,SE,) and T"=1+E_SE,.

Remark 3. From the decomposition (1.2.3) it follows that
det (Tl ;2) —det T, det(Ti— T:T7Ty)

3 4
and
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(7 1) =g D)0 D =(Lo5e s ssms)
T, Ty —S; 1 S, 1 —SsS7t Si—SsS'S
Similar formulas are available when 7", or T, or 75 is a non-singular

matrix.

Now we go back to the orthogonal vector space W and its holono-
mic decomposition W=V'@®V. The conjugate transformation will be
used with respect to (V', V). We take a mutually dual basis (v}, -+, v},
vy, *--, ¥y) and represent a linear transformation as in Proposition 1. 2. 3.
We denote by E, (resp. E_) the projection onto V' (resp. V) and by
w™ (resp. w) the image E,w (resp. E_w) for we W,

Proposition 1.2.4. Let T and S be mutually conjugate linear
transformations of W. Then T is orthogonal if and only if

(1.2.6) S1="S,, 'Si=—28,, ‘Sy=—S;.

Proof. Denote by T* the adjoint transformation of 7" with respect
to the inner product in W. 7T is orthogonal if and only if (7*)'=T.
The uniqueness of the decomposition (1.2.3) yields that (T*)'=T
if and only if (T/*)'=T", (T7*)'=T” and (T"*)'=T". Since in

(T (T _ o (To T o b e oro.
(T*) <T*>.> (i, o), we have the pro

matrix representations (

position.

Theorem 1.2.5. Let g be an element in G(W) and let T, and

(;’ ;’> be the induced orthogonal transformation (1.1.1) and its
3 4

matrix representation, respectively. We assume that T, is invertible.

Denote by S, and (S: gj) the conjugate to T, and its matrix repre-
sentation, respectively., Then we have

1.2.7 {g>*=nr(g)det T,

and

(1.2.8) Nr(g) =<gre"”
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v]

. S, S;—1\| vt
th 0= (i --- ; ( 2 1 > |,
wi p (1}1, ,v:'vly ,1),-) 1—S‘ Sa .{)1
v,

Conversely, if g A(W') is given by (1.2.8) with S;, S;, Ss and
Sy satisfying (1.2.6) and if S, is invertible, then g belongs to G(W)
and its induced orthogonal transformation T, is given by the conju-

gate to S,.

Lemma 1. For a, be A(W), we have

.2.9)  eb=(b+=[a,8] + e, [,8]]+)e".

The proof is straightforward.

T

Lemma 2. If Nr(g,) =exp(% 21 (—-—S,),,,‘v}.v,*,) with :S,=—8,, ¢,

H,y=

€G(W) and the matrix representation of T, is (1 —1SZ>.

Proof. Since [—%— Zr (—Sy)vlivl, v}]=0 and [% Zr} (—Sp)whol,
1

u,y= #,v=1

-vl] =31(—8),:7}, the lemma follows from Lemma 1.
u

Similarly we have the following lemma.

Lemma 3. If Nr(gs) =exp <% Zr (S8)w, 'a,,) with *Sy=—S;, ¢s
u,y=1

€G(W) and the matrix representation of 7', is @ 1>,
s

Lemma 4. 1If Nr(g2)=exp<% >3 (Sl—l),.,'v'},'u,,+% 3 (1—S) .
u,y=1 u,y=1

X v,v]) where ‘S;=S, is invertible, then ¢g,€G(W) and the matrix

representation of T, is ( ! S_1>. Moreover nr(g,) =det S,=det T
4
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Proof. 1f we prove the lemma when S; is diagonalizable, the non-

diagonalizable case follows from the continuity of Nr. Assume that

PS,P! is diagonal. If we define (Wi, - -, 7!, 7y, -+, 7.) by 'vI=§r:ﬁI,P,,,
Hn=1

and v,= >9,(*P™Y),, it is also a mutually dual basis and the lemma
=1

reduces to the case »=1. Now a direct computation shows the lemma.
(See Proposition 1. 2.9.)

Proof of Theorem 1.2.5. If we set g=g¢gs:gs, we have geG(W),
T, T,)
T, T/
This proves the second half of the theorem. Since T;=T,, g=cg with

Nr(g) =e’” and the matrix representation of T,=T,T,T,, is (

some constant ¢. Taking the vacuum expectation value, we have (g)
=c¢{gy=c. Taking the spinorial norm, we have nr(g) =¢’ nr (g) ={g)*
det 7;'. This proves the first half of the theorem.

Remark. We often use the skew-symmetric matrix R= (R‘ R’)

R; R,
= (_S2 S‘—l> instead of S.
1-S, S,

Proposition 1.2.6. Let g be an element of G(W) and let
(;‘ ;’) be the matrix representation of T,. We assume that Ker T,
3 4
#{0}. Take w=))vici+> v.c,€W such that w”=§‘_, che,#0 and
#=1 H=1

n=1

C1 ’ ’
c=\|:|&¢ImT.» Set g'=wqg and denote by (Ti Tﬁ) the matrix
i T} T;

representation of Ty. Then we have Ker T DKer T and dim Ker T,/
Ker Ti=1. There exist veV and v'€V' such that T,v=—v' and
{w,vH=1. Then

(1.2.10) g=2'¢’+e(g)v.
Lemma. If <T1 T’) is orthogonal in the sense
Ts T‘
YTy TNO IN/T, T;\ _ /01
(1.2.11) <T, T) <1 o> <T, T)—(l o> ’

* ¢! does not mean the complex conjugate of c,.
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we have

1.2.12) Im Ty= (T, (Ker T))*.

Proof. Since (;‘ ;’) is non-singular, Ker T, N Ker T;= {0}. From
3 &

(1.2.11) it follows that *T,T+*TT,=0, hence, Ker *T,=T;(Ker T,).
This yields that Im T',= (Ker *T)*= (T, (Ker T))".

c1

4
:l
cr

)EC" and
1

_wg

Proof of Proposition 1.2.6. Take a vector c’=(

set 'a’=2_,-‘r v,,€V. Then we have (T,v") = (T,T,w )=
#=1

X<{w, T o dw +ﬂi1 v,(T’),. Hence Tic’ =—1z-v—z<w, T, v e+ T’
Since ¢&Im T, Tic’=0 if and only if Tye¢’=0 and ‘cT:c’=0. From
the lemma it follows that ‘eT;(Ker T,) 0. Thus we have proved that
Ker TyDKer T; and dimKer T\/Ker T{=1. T,v=—v' means gv=
—v'e(g). Hence if (w,vH=1, e(g)v=¢e(w)e(g) v=wrvlg=<{w, vg
—vtwg=g—2lg’.

Proposition 1.2.7. Let Nr(g') =w,; - w;Nr(g) where w;=
glec§ﬂ+”Z=1vﬁc,peW(j=1,---,k) and geG(W). Then g’ belongs

to G(W). Let (? T’)

denote the matrix representation of T,, and
3 4

n ch
set ¢;=|: | and eh=|: |. Then we have

Cir, C},-

-_ ‘CIT401 v — thTlck
(1.2.13) nr(g’) =det : : nr(g).

—telTe, -+ —telTics
Now assume that nr(g’)#0. Then ¢’€G(W), and if we denote by

(Ti Tﬁ) the matrixz representation of T, we have

T: T

(1.2.14) (Tf T5>=<T1 Tz)_<—cI—Tzc1, —cL—T,ck>
o T; T Ts Ty =Ty, -+, — T

(— elTc, - — ‘cITm) - (‘c1 +%€lTs, *elT, )
y : ' : S

—tel Ty —"ctTer) \'er+'elTs, el T,
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In particular

(1.2.15) T,w{d=—wi®
and
k
(1.2.16) Ker T, =3 Ce,@®Ker T,
=1

Lemma 1. Assume that Nr(g”) =w Nr(g) where g,g’€G(W) and
weW. Then T, (w)=—w™,

Proof. ¢'=wPg+e(@w=(wP+T,(w))g. Hence we have
)\ =)\ — —_ )
Ty () =Tuwrir,wenT o (w) = @™ T, (w(_))>(w‘+’+ Ty(w))
X Ty () (4 T, () = —w®,

Lemma 2. Let g, g’ be as in the proposition, then A=g’g™" is a
polynomial of w, M+ T,(w;) (=1, k).

Proof. We prove the lemma by induction on 2. k=0 is trivial.

We assume that the lemma is proved for 2—1. Then we have
g’ =w: w, - w, Nr(g):+¢(: wy--we Nr(g): ) wi
=wPh'g+e(h'g) wi,
where A’ is a polynomial of w§{+T,(w§?) (j=2, ---, k). Hence

g g =wPh’+e(h)T,(w§?) is a polynomial of w4+ T,(w§?)
(J=1: Tt k)'

Proof of Proposition 1.2.7. By embedding W into a higher
dimensional orthogonal space, we may assume that »=k. We prove the
proposition by induction on k. k=0 is trivial. Suppose that the pro-
position is proved for 2—1. Without loss of generality we may assume

—telTe; - —teiT e —telTye, - —telT s
: : #0 and det 0.
- ‘cl T4Cl‘ e — ‘c; T4c,,

that det : :
—telTye; - —tel T ek

Then we have
nr(g’) = — (Wi : wy - wi Nr(g): + & (: wy--we Nr(g):) wi?)

X (& (: wy--wy Nr (@) )*wi + wi? : w,---w, Nr(g):¥)
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= —nr (: w,-w, Nr (@):) {wi?, T twgwy Nr@g): (wlc_))>

= —nr(: wy-w; Nr(g):)

x (0, :cD {___ (—C;—;zzz, ) —cl—gsz)
— L 4Cqy "y — £ 4Ck

(—— czT4cg —‘c}Tw,,) 02 +teiT cIT‘)
X :
- cLT‘c,---—-‘cLTw,, c,,+ telTs, el T,

*(zs ) C)
T, T,

—_ ‘c;T4cz e — cleck
=det : -nr (g)

—telTies - — c,,T4ck
X {—‘c'{Twl—-— (=eiTcs, -+, —clTcx)
- c,Tm, Y P A —‘cﬂ"‘cl
* (—‘ clecz - CLthk) (—‘c],f:['4c1)}
T, —'elTc;---—"elT cy

=det| — c‘%T‘cl —‘cﬁT;cz---— C;'T‘Ck -nr (g)'
—tefTie; — c,,T‘cg —tef Tes
Now we shall prove (1.2.14). Lemma 1 implies that when re-
stricted to CC:)) + ---+C<O), (1. 2.14) is valid. We set Wy={weW|
Cp

{wP+ Ty (w§?), Tyw)=0 for j=1,---,k}. Then w{?, - wf? and
W, span W. From Lemma 2 it follows that when restricted to W,

(1.2.14) is valid. Thus we have proved the proposition.

Summing up, we have the following theorem.

Theorem 1.2.8. Let g€G(W) and set k=dimKer T, k is
even (resp. odd) if ¢ is even (resp. odd). Nr(g) is of the form
cwy - wie?? with ceC, w,, -, wi, €W and o A*(W). Moreover we
have

(1.2.17) S Cw = {veV|Tve V1

k
7=1
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and T,w§’=—w{. cw,--w, is determined uniquely by ¢g. L is
unique up to modulo ﬁ w;W. Conversely if Nr(g) is of the form as
above and if nr(g) qf()l, then g belongs to G(W), dim Ker T,=k and
(1.2.17) is valid.

We shall give several examples.
There exists a unique operator N A (W) satisfying
(1.2.18) [N, v']=92" for oteV?
[Nyv]=—v» for vweV
and
{N>=0.
If we take a dual basis (@1, :--, v}, vy, -++, v,) of W=V'@®V, we have
(1.2.19) Nr(N) =3 vlv, .
n=1

N is diagonalizable and its eigenvalues are 0, 1, ---, 7. The eigenspace

of N with eigenvalue % is >, Clt, -+, txy. This means that
1= msr

(1-2-20) Nluly"'rﬂk>=k|ﬂh "":uk>-

In this sense we call N the number operator.
The number operator depends on the choice of the holonomic de-
composition W=V'@®V, but T _,N does not. In general, we have the

following proposition.

Proposition 1.2.9. Nr(cN) =e“N, and if c+0 the matriz re-
presentation of TN is (c _1>.
c

Lemma 1. Let ( N ) denote the operator —1—'-N (N=1)---(N—m+1).
m m!

Then we have Nr<<N) =LN”‘.
m m!

Proof. We prove the lemma by induction on 7. m=0 is trivial.
Assume that the lemma is proved for m. Then (1.2.18) yields
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<m,j-1> - CD I;In:-’;.z - (m41-1)! N7z (N=m)

=(_mi_1_)_'” )iﬂ: L b (N =)

T

=(m—-:|l-1)—';. ‘V‘:, =1¢I¢x' P NGO,

1 e

T mrD)

Lemma 2, Let a,be A(W) satisfy [a,b] =cb with cC, and let
P(a) be a polynomial in a. Then P(a)b=56 P(a+c).

The proof is straightforward.

Proof of Proposition 1.2.9. By Lemma 1 we have c(N=(1+(c—1))N
- Zr: (N> (c—l)”‘:i: Le—1)*. N™: =:e®PN: Applying Lemma 2 for
m=0 \7, m=0 m!

a=N, b=weW and P(N)=cN=Z<N>(c—1)"‘, we have cNw
m

m=0

{wc"‘+1 if weVt,
"~ weNt if we V.

(—)Nis characterized up to the signature by the following conditions:
is even or odd.) The pair (W, ey) of an orthogonal space W and its

=—1 and e¢y=1. We call such & an orientation of W. (dim W

orientation &y is called an oriented orthogonal space. A holonomic de-
composition W=V'@V is called positive (resp. negative) if (—)N=¢p
(resp. (—)N=—¢ey). We have nr(ey) =(—)" and trace e5=0. (See
(1.5.19) below.)

Taking an orthonormal basis vy, -+, vy we have ep= L v;---vy.
r
Proposition 1.2.10. |vac){vac|=]] v, vi=0N=:e"N:.
=i

Proof. Comparing the action on A(V?)|vac) of both sides, we have
the first equality. The second one follows from (1.2.20) and the last
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one follows from Proposition 1. 2.9.

We shall give here the relation between the norm and the matrix
elements of an element @ of A(W). We mean the matrix elements
those in matrix representation in A(V')|vac). Let @un(U1, **) Um; V1, =+
Y,) denote the matrix element (¥, «*+, V,|@|ly, -**, k). Then a is written

as follows:

L1 1
Z ' Z ¢m;'ﬂ(ﬂls ‘s Uns pl’ ErY v.,.)
m,n=| m le

v,.—l

X v},---v} | vac) {vac|v, - v,,.
Proposition 1.2.11. Let ac A(W) be written in two different
Sforms;
M2.21) o= 3 2L S o e, s vy ey 9)
ma=0 m! 7! s,

0 m' ! ey
Vi ¥p=1

X vIn---vII vh-.-vﬁl’

T 1 T
(1.2.22) o=y L+ L 2 Ol i 0
m,n=0 m' n' g’ v

X v}, -0l |vac) {vac|v, v, .
Then the relation between Om.’s and Qmn’s is as follows:
(1.2.23)  @mn (W, ***, lms V1, ***, V)

min(m, n)

/’
= ;Zo ;_ sgno sgnt Dm-z,n—t(ﬂa(n, oy Betmetys Vesn, =5 Velny)

X lhatmys =5 Latm—149] Ve, =5 Ve 5
where the summation 3 is over 6 €S, and v =&, with the restriction
CQ) < <O (m—1), 6(m)>>0(m—I+1), c(+1)<-<t(n) and
t(D)>->t().
(1.2.24)  Onn(lts, -, lm3 V1, *+7, V)

min (m, n)
2 ( )l Z, SgN 0 SgN T Qg nt (.uo'(l), ooty Uotm—1)3

Ve % Vo) Kbamys ***5 Bam—141|Vewys =5 Yey)
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where the summation Y’ is as above.
aq,t

Proof of (1.2.23). We apply (1.1.6).

r 1 1 r
a= E __.'. ._' z pm,”(ﬂl’ ..., ﬂm; vl, ..-, vn) v;’;n...'v:l-vﬂm...-v,‘l
ma=0m . n! fl »»»» 5 “mvl
1 Y=

r 1 T
= Z 1 Z pm,n(ﬂl,"',ﬂm; Vl,"',V,J
»m, e ML Ay B

Vi Va,

Agy ey Ap=1

X v}, - vl v, o], | vacd {vac| v, v, v, T,

Yis s Va
Ay, Ay,
By, Kp=1

X<E1, ...’ Ellll, ..., ll>vlu...vztvL...'levac>

X {vac|v,, U, Vp U,

u 1 1 1 1 1 r ,
= e — 6
Lid=o () m! nl (m+l) <n+l> ﬁ'x-,;%"‘.u_-laz,‘é sgngsent
l l 1 VRl =

X Om,n (Baay, =5 Latmys Yetan, =75 Yeiam)
X lheemens =5 Bamen|Vewy, % Ve Uly, Vb | vaC)

X <{vacl|v,,,, U,

= 33 >Vsgndsgnt

=0 a4, 0,7

ViyenVn =

T 1 1 min(m, n) r
ma=0m! 7! [

X Om—t,n-t (Ueary, ***5 Lam=1y3 Vs, ***s Yemy)
X thoemyy 7y Botmeten | Pey, ***s Vr(l)>]

X v}, ---v},|vac) {vac|v,, - v,, .

The proof of (1. 2. 24) is analogous to that of (1.2.23). We apply
Proposition 1. 2. 10 instead of (1.1.6).

§1.3. The Closure of G(W)

The closure G(W) of G(W) is characterized by the following
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theorem.

Theorem 1.3.1. G(W) coincides with {:cw;--we’*:|cE€C,
wy, -, we €W, 0 £(W) and k=0,1,2, ---}.

Since Nr is a linear isomorphism, it is sufficient to prove the follow-
ing theorem. (See § 1.5 as for the case N is odd.)

Theorem 1.3.2. Let W be a wvector space of N dimensions
and A(W) be the exterior algebra over W. Denote by G* the set
{cw,-wie?|ceC,w,, -, w, €W and o€ A (W)} and set G= UG"
Then the Zariski closure G in A(W) coincides with G. We set A+ (W)
=m§v9enAk(W)’ A~ (W) = k@d A*(W) and G*=GnA*(W). P(G*
=(G*—{0})/GL(1,C) is a non-singular projective wvariety in
P(Ax(W)) of %N (N —1) dimensions. {P(G*)} (k=0,1,---, N) gives

a stratification of P(G). P(G") isa fiber bundle over My (C) with
the fiber A*(C**). Here we denote by My,.(C) the Grassmann
manifold consisting of k dimensional subspaces in C¥. In particular,

we have dim P(G") =%N(N——1) —%k(k—l).

Before the proof we prepare some notation.
W—-C
707:0 W
w7 (w)
An orthogonal structure is introduced to W@ W?* so that W and W*
are holonomic and {w, 7)=7(w) for we W and ye W*. We denote

by W the orthogonal space thus obtained.

W=WE@W?* gives a holonomic decomposition. We identify 4(W)
with A(W)|vac) where |vac) means the vacuum of A (W)/A(W)W*.
A(W) acts on A(W) in this sense.

Let W*=Hom¢ (W, C) = be the dual space of W.

Proof of Theorem 1.3.2. Let (vy, -, vy, &, -+, §y) denote a dual
v
basis of W. An element a of A(W) is written as a= Z——l—

m=0 1! | Hyyoery Hp=1
Om(Uay *+*y Um) Vppo -0, Where 0, (ly, -+, Um) is skew symmetric. Assume

that o, (¥y, -+, ¥x) #0, and let W=W1@W§" be a holonomic decomposition
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given by W= 3> Cv,+ > C€§ and W¥= 3 C&,+ 3 Cov,.
Hefyy, e, Vi y=yg,e, Vg Hevy, oo, Vi V=yyg, eV

Let Nry, :: and { ); denote the norm, the normal product and the

vacuum expectation value with respect to this decomposition.
We set (cf. p. 10, lines 1~2)

aId"—;er (ae,l' . 'eyk)lv,‘=-.. =1),'=0 Py

y 1 r /’ /7 4
= Z — 2 =10m<ﬂ1’ "t ﬂm) Vup' Vs,

m=0 m | a1 tm

where

v, i pEY, e, Ve,

v, =
&, i pu=yy, -, V.

We have p;=<aé,--&,>1=0: (¥, -+, V1) #0. Reciprocally we have
a=Nr (a,'a.,,---'v,,)lev‘=...=e,.=o. From Theorem 1.5.7 below it follows
that if g& G, Nr,1(g§,, - -§,) vy, = =0y, =0= g6, €™ with o€ £/ (W),
Hence we have
0 if m is odd,
Om (b, +++,) Um) = 1

@y
(See (1.3.7) below.) This implies that in a neighborhood of g&G such
that 0z (Vy, -+, Vi) 0 (1, <o+ <Vp), %N (N —1) elements {0, (&, -**, lhn)]
<o <lhm and  {fy, o+, U} = {V1, -+, Vi} U {44, o} — {1, -+, Vit N {11, s}

for some 4; and A;} together with p,(vy, ---, ¥;) constitute a set of local

Pfaffian (0; (#, ¥) )ppmprmum  if ™ is even.

parameters of G.

N N
Now let g= Z—l— >0 0wy -ty Um) Uy, v, be an element of
1

m=0 177 ! HB1y o U=

G such that p,(¥,, -+, V) 0 and pn (s, -+, Um) =0 if m<k. Then we
have
1 "
g1=00 {exp (-—, 2 02 (o, ts) v,.,v,.,)}gl
0 Hy Fl:ﬁﬁ."'- Y
where
" 1 4
g1 = :{exp <—, 3 0t (v, u) v,,f..)} 4.
Oo fdyi o

Hence
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1
g=0 {exp <—, 2 05 (, e) v,,,v,“)}wk---wl
Oo #1, ﬂﬁfvﬁ'---. Ve

where

’
' e p: (vy, 4
wj:g; vngl -vpl+ﬂ+v; 147 2 p‘z, ) 'vlf'
’

/ 4

{——02 (:: £) Y=y, =, Vi UFEVy, =7, Vk} and {—_—02 (ﬂl,’ £s) |y, UeE=Ye, <o+, Vk}
0 2

constitute a set of local parameters of the base space My (C) and of

the fibre A*(C"~%), respectively.

Theorem 1.3.3. Let W be arn orthogonal space of dimensions
N. For an element geG(W) we define

1.3.1 0.(0) =35, A+ DN (L= 27" ().
If geG(W), we have
1.3.2) nr(0,(g))det T,=nr(g)det(z+T,).

Proof. We shall prove the case where N =2r is even and
geG*(W). Other cases are proved in a similar way.

Without loss of generality we may assume that the eigenvalues
Ay, -+, Asr of T, are distinct. We label them so that A,4,=1, - -, A 445
=1. Let w,5<0 denote an eigenvector: T ,w,=2,w,, and set W,
=Cw,y,1+Cw;,. Then W is the direct sum of these orthogonal sub-
spaces: W=W,@---®W, and W, 1 W, if pzv.

g is decomposable as g=g;---g, so that g,&G*(W,). Let af denote
the eigenvalues of ¢, as an element of G*(W,)=GL(1,C)’cGL(2,C)
such that 4,,,=a}/a;.

Note that nr(g) =nr(g,):--nr(g,) and det(z+7T,) =det(z+T,,) -
det(#+T,,). On the other hand we have

0:(g) =35, L+ (1= 2Y'0™ (@)

R B )06

e1=24

= 3 A+ A—e)D)o%(g)

g=0or 2 i=1
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=£Ij»(g;)-

Therefore (1.3.2) reduces to the case =1, which is then obvious.

Remark 1. Here we quote the results in §1.5. Let £, denote the
v
linear homomorphism £: W—W* such that K =%J . Then Nr.,=@id",
a=0
- . . - L
where id*: A*(W)—-A*(W) is given by zd"(j Z,: 1c,l..._,‘,'w,,---'w_,,,)
P =
= 2 €4.7,Wy-wy, when c;..;, is skew symmetric with respect to
=1

jl-"‘;!p

Jy oy Je (U22). <If we take a basis (vy, -+, vy) of W so that J=1,
(1.5.8) reads R=2%.) Hence, if Nry, (g) = wy---wye?”? with wy, -+,

w,€W and pe A£(W), we have

(1.3.3) Nrg,0@)) = (+ 010wy wy exp (3 1)
If geG(W) and det(1+4 T ,)+#0, 0.(g) also belongs to G(W).

More precisely we have

T,+¢
1.3.4 T,,(g) =——2*% .
( ) @ 12T

The proof of (1.3.4) also reduces to the case when N =1 or 2 and then

it is easy. In particular, we have
00 (g) =g,
01(g) =2%?¢°(g) =trace g

0_1(g) =2"76" (g)

and
li O'z(g) : -+
im——~2s if geG*(W),
g*— tseo [
im——2@ i seG-(W).

iooo A — £ &1/

Proposition 1.3.4. T;=1 if and only if g A*(W), where k
is the multiplicity of the eigenvalue —1 of T,.

Proof. Tj;=1 implies that the eigenvalues of T, are 1. Then
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from (1.3.7) it follows that T, is independent of #, or equivalently
0:(g) is a constant multiple of g. Hence g belongs to A*(W) for some &.

Conversely, if geG(W) NA*(W), Nr; (9) =cw;--w, with ceC
— {0}, w,, -, w, e W. (See the above remark.) We may assume that
(wy, -+, Wi, Wyyy, ~*+, Wy) constitutes an orthonormal basis. Then w,
commutes or anti-commutes with g according as (—)*g; is positive or
negative. Here e;=11if j& {1, - &}, =—11if je {1, .-, k}. Hence we

have the proposition.

Proposition 1.3.5. The coefficients of nr(0.(g)) belongs to the
coordinate ring Aaw, of G(W).

Let N=2r be even. If geG*+(W), t " nr(6,(9)) is written as
t"nr(0.(9)) =ai(@)s"+ -+ a,1(g)s+a,(9) where s=t—2+¢7'. In
particular, a,(g) =nr(g) and a.(g)= (traceg)’. a,(g), -, ar-1(g),
Va,(g) are algebraically independent and the polynomial ring Cla,(g),

- ar1(9), Va,(Q)] coincides with the subring {f(qg) € Aszonlf Q)
= f (hgh™) for vheG(W)}. If geG~ (W), ¢ (1 —)" nr(0.(g)) s
written as 7" (11—t nr(0.(g)) =ao(g)s" '+ -+ a,_,(g) where s=t
—2+4+¢tt and a,(g) =nr(g). a(g), -, ar1(g) are algebraically inde-
pendent and the polynomial ring Cla,(g), -+, ar-1(g)] coincides with
the subring {f () € Aa-un|f(g) = f(hgh™) for VReG(W)}.

If N=2r+1 is odd, t7"(1+t) ' nr(0.(9)) has similar properties
according as geG*=(W).

Proof. If N=2r and gG*(W), nr(0.(g)) = %trace (0: (@) a:. ()"

=%§‘o A+ M (1 —¢t)* trace 0*(g) 0% (g)*. Hence the coefficients of
nr(0,(g)) belong to Ag.w).

Using the notations in the proof of Theorem 1.3.3, we have
ar(g) = f[a,j’aa;, raceg=f[(a};+af;) and det(¢+T,) =]_"[(t+a,‘ -1y
(t+azat™). Thus we have ™" nr(0,(g)) = H [(@f+a))+atazs]. In

particular a,(g) =nr(g) and a,(g) = (trace g)2
Next we shall show that

G*(W)y——C™!
U]

U]
g > (ai(g), -+, ar_1(g), trace g)



250 Mik1O SATO, TETSUJI MIWA AND MICHIO JIMBO

is surjective. This implies that a,(g), ---, a,_1(g), trace g are algebraically
independent. Let (b, -+, b,_4, b,) €C"+' and assume that by=---=5,_,=0
and 5,#0. Taking o =---=a; =0, we have a,(g) =---=a,_,(g) =0.
Hence we may assume that s=0. Since we can give arbitrary values to
(@i +a)’
afa,
ar1(9) =b,_; and a,(g) =b}. Then g or —g is the one we need.

Now let f(g9) € Ag.w, satisfy f(g)=f(hgh™). The polynomial
f(tg) on CxTG*(W) is written as f(tg) = i #f,(g), where £,(q)
satisfying f;(g) =f;(hgh™") is homogeneous ofj&egree j. Then f;(g)/
(trace g)’ is determined by the eigenvalues of 7', hence it is a rational

function of 2 (g)’ ey a,(g). Thus f(g) is a rational function of a,(g),
a(g) a(g)
.-+, ar-1(g) and traceg. Since G(W)———C"*! is surjective, f(g) be-
w

, there exists an element g&G* (W) such that a,(g) =b, -,

U]
g>(as(g), -+, ar-1(g), trace g)
longs to C[a,(g), -+, ar_1(g), trace g].

Other cases are proved similarly.

Proposition 1.3.6. Lez W, W*, W, etc. be as in Theorem
1.3.2. We take a dual basis (v, -+, vx, &, -, Ex) of W. Let R be
an N X N skew-symmetric matriz, and set g=e*”* where p=%(vl, ey

Y N
'vN)R<§ ) Let 1;=3]¢;3,,6, (J=1,:--,K) be elements of W*, and
n=1l

Unw

Cu ***Cg1
set r=<' : ) Then the constant term of 7---Yxg is equal to
CiN'**CEkN

Pfaffian (—‘rRr).

Proof. If 7;---9x=0 or K is odd, the above statement is trivial.
If 9,---9x#0, without loss of generality we may assume that 7,=§,, ---,

Px=§&g. The constant term of &-.--§gg is equal to the coefficient of

1
&/21 G, R onva) (B

(—Rjg,skxs) Vkg,sVix,). Hence we have the proposition.

vg+--v; in the expansion of

Ler R be a 2r X 2r skew-symmetric matrix, and consider an element

g(R) of A(W) defined by
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1 N N 1 N
(1.3_ 5) g(R):exp<_2.p+ﬂZ=1§PvF)= - Z Em---fh‘vh..-'yme?ﬂ

m=0 77 | 43,1, ttm=1

(41
where 0= (vy, =, vm)R| ¢ |.

Un

Proposition 1.3.7. Let ¢ denote the canonical isomorphism
¢: W W*, t(w@®n) (W' Py ={wdy, w'@1’>. Then we have for
Wy, e, W EW

g=0-

N
L.3.6)  wrewexpL=c(w) c(w)exp (Lo + 2 6m,)
2 2 =1 K
The proof is straightforward.

Proposition 1.3.8. Let g A(W) be given by g=w,---wie’,
C1,1°°°Ck,1 N
Set r=(§ : ) where w;=)\v,c;, Let e, denote the N com-
C1,N"**Ck,N, #=t
ponent column vector (0,,),-1,...x-
N N
If we write g=ZL 20 Ou(May -y Um) Vpy -+ 0,, the coefficient

m=0 m! Uyy ey Mp=1
On (M, =+, Um) is given by

@.3.7)  0on(lt, -, tm) =Pfaﬂian<te ‘r> <_R 1) <e r>’

-1
te
tr 1
= (—)™+7 Pfaffian / Pfaffian < )
—e 1 -1
—r|—1R

where e= (e,,, -, €u,) -
Proof. We apply Proposition 1. 3.6 taking W, exp(-;—p+é 6,,'0,,)
=1
and (e ) as W, g and r, respectively. Then from (1.3.6) follows
r
1.3.7).
§1.4. Product in G(W)

Since G(W) is an algebraic subgroup in A(W), G(W) is a semi-
group. We shall give a formula to compute Nr(g®:-.g™) for g®, -,
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g™eG (W) when Nr(g®),---,Nr(¢g™) are given. (Though we treat
only the even dimensional case, the results in § 1.5 enables us to give
analogous formulas in odd dimensional case.)

T T
First we consider a simple case. Let w=Z}1vLcL+21'u,,c,, and
u= p=

w,, -+, W, be elements of W and let p= (vl -, v}, vy, -+, ©;) <R1 22)
3
]
:'f
or be an element of A*(W). We assume that R= (R‘ R’) is skew-
7{1 Rs R4
v,
symmetric.

Theorem 1.4.1. Let Nr(g) =w, --wie?? with w,, -, w, and 0

as above. Then we have
k
(1.4.1) Nr(wg)= (:Z=1 (=Y w - w (WWPWypy Wy
+ wVw,---wy) e’

where wW=w— é vl (Rie),.— i v,(RsC),, and
a=1 a=1

k
142 Ne(gw) = (5 () w10, ywdw ey
+ Wy ..wkw(z)) e:"/2

where w®=w+Y v, (Ree") ,+ 2 v, (Rec"),. Here we have set
n=1 2=1

CI Cy
ct=|: ] and c=|: ).
ct ¢

k
Remark. Since 77(‘)=121 (=) 'wy - w_wwdw,,,-cw, or 9@
k
=;1(—)”“’w1~-'w,_1<w,w>w,+,---w,, is a k—1 form in wy, -+, wy, it is
a monomial. We have
f S —

k
if there exists w{’ € Cw; such that {ww®)=1,
(1.4.3) =

1 Nr(wg) =w®w,--wre??, if {ww;»=0 for j=1, - k.



HorLoNOMIC QUANTUM FIELDS 253
Nr (gw) =7®eo2+wfP0®

k
. ; 0 @0 —
(1.4.4) if there exists wj EJZ=1 Cw; such that {wfPw)=1,

N1 (gw) =w,; - w,wPef?, if (w;w)=0 for j=1, .- k.
The proof of Theorem 1.4.1 is given in §1.5.

Let W®O=V"pV® (v=1, .-, n) denote copies of an orthogonal
space W with holonomic decomposition W=V'PV. Let 4 denote an
n X n symmetric matrix (1,)pua1,.,n With 4,,=1 (=1, .-, n). Let W (4)

n
denote the vector space @W® equipped with the inner product
y=1

(D, oo ™) (D ™) = iap,<w<ﬂ>, w’®).  If det 450,
V3 1

=
W (4) is an orthogonal space. W(A)=(G—31V*("))€l-)(é V®) gives a
holonomic decomposition of W (4). We d(:.;wte by <”_>1,, the vacuum
expectation with respect to this holonomic decomposition. We note that
the natural inclusion ¢®: W®»—>W (A) preserves not only the inner
product but also the holonomic decomposition.

Since (¥ (w) —4,,t® (w), ¥ (w’)>,=0 for any w, w' eW, we

have the following proposition.

Proposition 1.4.2. If ¢®WeG(W®W), for any weW we have
(1.4.5) Ty (¥ (w) —2,,t® (w)) =¢¥ (w) — 2,,6 (w).

Hence, in particular, g™ belongs to G(W (4)).

Take a dual basis (of, -+, v, vy, -, v,) of W. We denote by
(0¥, oo, U1 p® ... p®) the corresponding dual basis of W®,
Let g® be an element of G(W®) with the norm Nr(g®) ={g®)e?®”?

where
2}®

P9 = (21 o DI p® ... p®

Rl(v) Rg(l’) .U;(V)
Réu) Mv) :

v

p®



254 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

® [©]
We assume that R®= <Rt Rﬂ(y
R® RY

denote 2n7 X 2nr skew-symmetric matrices

0 Ak Ak

R® Tk 00
( ) and —A”.tKI. 0, “Aa-1aKy where K,=( >
R™ N . 10

) is skew-symmetric. Let R and A (A)

o CIRE N o)
Theorem 1.4.3. Under the above assumptions, we have
(1.4.6) <g@---g™Pa=<Kg®>--{g™) (det(1— A (M) R))"”

=<g®-++Cg® Plaffian(~ A 7) [Praffian(__ 7).
If <g®--g™P470,

4, e g®) = gD g®S PO
(1.4.7) Nr (g®:--g™) =(g®-..g™> grrt
21
n v;(»)
with () = 31 (01, -+, v, v, -, )Rl | where R(A)
V= !
v.ﬁ"’

R(Myu-+-R(AM)1n
( : ) is given by R(A)=R(1— AU R)™.
R(A) ny+*R (4) nn

The proof of this theorem is given in § 1.5.

T T
Let w® = 2Ll 4+ v,e®, v=1, -, n; j=1, - k®) be elements
u=1 x=1
of W®, We set Nr(g®) =(g‘”)w{”’---w,‘,"?.)e”‘"/’. Let ¢!® and ¢% denote
1) )
€j.i €11 . .
: ) and | : |, respectively. Let r denote the 27z X 2 matrix
ci? 3
c[®---clB
e ey
cf™---el®
e -l

where k=i k.

y=1
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Let (9}, ---, 9l,, Dy, -++, Oyn) denote the basis (vi®, - i@, ... 2]™
+ 1 1 PN At A a ~
ey v;‘(”)’ -vf)’ HEN -'05)’ ey -U](.")’ LN v'(‘"'))‘ Let eL ey e}:, el’ ey er’ ey, e:(n—1)+l’

-ee, 8lu, éren-tys1, ***, érn denote the 27z component column vectors,

1 0 0
0 1 0
9 > 9 s (1) , etc., respectively.
0) lo) (o

Theorem 1.4.4. If we write

Nr@G®-g™ = 3 L L %

’
mm=0 ! m’ s
- Viy oo, Vs =1

X Omm? (:ul, ey Ums vl, Tt l)‘m.’) ﬁlm,-"mﬁm'“@m,

the coefficient is given by

(1.4.8) pmm’(,ul,"', U s ”1,"', vM’)

‘e
= (= )R UL (g, ‘ L /Pfafﬁan < 1\\
—e —Al) 1 -1 7/
—-r|—1 —R

where e= (ep,, Sy Chms eIn Ty e:n’) .
If {g®---g™>,#0, we have

(1 4. 9) Omm (:uly oty M Yy, 00y, vm’) =<g(1)"'g(")>,1
Pfaff <“’ ) ~RA-AMDR" 1-RAMU)” )
xoEmman (—-(l——A(A)R)—I (1= A () R)"A (4) ( ,)'
In particular

(1.4.10)  (G®---g™>={g®--.g™> Pfaffian 'r (1— A (A) R)"A (4)r.

Set k—k' =rank‘r(1—AU)R)'A(A)r, and choose a kXk non-
singular matriz (X,, X,) (X, isa kX k' matriz and X, isa kX (k—F’)

matriz) so that

1

<X> A-AWR AW (X, X0 =(, y
x,) " TA DT (X, ’)“<0 tx;r(l—A(A)R)‘IA(A)rX)'

Then we have
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(1.4.11) Nr (g‘(l). . .g(n))

'g(,.)\Pfaﬁan Xfr(1—AUWDR)TTAUMDrX,
4

={qD..
\J det X

X ﬁ)l---z’bye“z
fxid T
where ®;=Y 9LéY ,+> D ,é,, is given by
a=1

2]®)

=1—RA))rX,, and p= (v]®, .- 0l® o® ... -,,p),...)jé Z?;)
vzﬁ"
()
with R=R(1—A)R)"'—A—RAU)) rX,['X;'r(1— AR

XA rX, "X r(1—AUAR)™.

The proof is given in § 1. 5.

Remark 1. If we set 1,,=1 and identify all the W® with W in
Theorem 1. 4.4, we have a formula to compute products in G(W).

Remark 2. Let us denote by || X|| the norm of an m X m matrix
X; namely |X| =‘$'_| |zey]. I AU R| <1, (1.4.10) is rewritten as
y J=1

1.4.12) gGD---g™>=LgW)---{g™) Pfaffian ‘r g AUDRAUDr

X exp{——g 2—11- trace (A(4)R) ‘} .

We shall give an example. Let Nr(g) =w, - w; e** with
w,=§lec},”+§lv,c,,P (=1, -, k)

and
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— ees )\ .
0 ('IJL sy Ur, Uy ’ 'UT) <1 '—‘54 Ss

Then we have

with

where

and

with

where

and

Nr (cNg) =w®...pPer®r

T r
1) __ 1 § —
wf =3 ol + B vaes (=1, B
<C§I)T...CE)T) <C ><‘;I.-.c;‘>
Cfl) ...C,gl) 1 €1+ Cy

—02S2 CS1—1> '(.);
1'—'CS4 Sa

ol
p(l)= ('UI, e v;’ Uy, v, -vr) <
v,

Nr(gc") =w®---wPer

r T
2, 2, H
wP =3 whei+ 0,08 (=1, B
<C§2)T"'C;(Z)t> (1 )(cl...c};>
CP) "'C;(,;z) c/ \¢cy e cp

(2)= vT,--c’v;’v,-uc,v (
0 ( ! ! r) 1—0S4 CZSa

Uy

§ 1.5. x-Norms and Transformation Law

—Sz S1—1> 'U,f-

_Sz 051—1> 7’/;

257

Let W, W* and W be as in the proof of Theorem 1.3.2. Let

k: W—W?* be a linear homomorphism and denote by % the induced in-

jective homomorphism

BEEW—sW

w— (w, K (w)).
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We assume that the inner product in W is non-degenerate when it is

restricted to W, —:-f/E(W), and identify W with the orthogonal space W.
d

Definition 1.5.1. The k-norm is the following linear isomor-
phism:

(1.5.1) Nrg: AW)SA(W)SA(Wo)|vacd>A (W)|vac

SAW)|vacd S A(W).

We denote by : :; the inverse of Nry: a=:Nrg(a):;. The constant
term of Nry(a) is called the k-expectation value and is denoted by {a);.

Take a basis (vy, -, vy) of W. We denote by K the matrix
(<"’1:01>1c e <'01'{1N>::

: : ), and set J=K+'K and H=K —*‘K.
{vwv)e{UsVUn)s

Remark 1. Let W=V'@YV be an orthogonal space and its holonomic
decomposition. We define £ by £(w) (w’) ={ww’). Then the orthogo-

nal structure on W induced by k£ coincides with the original one and

the k-norm coincides with (1.1.4). If we take a dual basis (o1, -, vl,

vy, -+, Uy), wWe have J=<1 1) and K=<1 )

Remark 2. Let ‘r denote the adjoint of £, ie. ‘k(w)(w’)
=k(w’) (w). Then the following alternative coincides with (1.5.1).

Nrg: A(W)SA(W,) S{vact| A (W)
S¢vack| A (W) Scvack | A(W)SAW),

where (vac*| denotes the residue class of 1 in A(W)/W*A(W).

Proposition 1.5.2. If weW and ac A(W),

(1.5.2) Nry(wa) =w Nrg(a) + £ (w)Nrg(a),
and
(1.5.3) Nr, (aw) =Nrg (@) w+ Nrg (a)'® (w).

The action of k(w) (resp.'t(w)) is understood on A(W)]vac) (resp.
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{vac*| A (W)).
In particular we have

(1.5.4)  wimop= 3T > sgn (L k)

Ky lgmV1VE-2m
m=0 ﬁx<ﬁ:. oy Ham-1<Hlzms
1<ty <lgm-1
{a1, = am} Uy, -y Ve-2m} = {1, -+, k}

X <wlﬂwl‘2>’5. : '<wmn-1wlltn>5 CWy Wy am K s

for wy, -, wye W,

Uy N
If we set Nrg(g) =w, - wy exp{%(vl---vN)R<§ )}, W=D U,Cp
vy u=1
C1
where 'R=—R and c¢=| : |, we have
Cw

(L.5.5)  Nre(wg) = (L= wrwwy Cww dewy o
+wWw,--w,) e??,

(1.5.6) Nr (gw) = (jﬁ___l(-—)""wl---w,_1<w,w>,w,+1---w,‘
+ 'wl---'w,,-w“)) el

N v
Here w®=3 v,{(1—R'K)c},, w=3v,{(1+RK)¢},.
a=1 u=1
The proof is straightforward.

Theorem 1.5.3. Take an element g of G(W). Let T denote

the matrix representation of T, with respect to the basis (v, ---, vy).
Then we have

1.5.7) {gdi=nr(g)det(CKT+K)J™).

If {g>r+#0, we have

(1.5.8) Nrx (9) =<g>e e

with 0= (vy, -, '(JN)R<v§1> where R=(T—1) CKT+K)™.
Un

Remark. If {g)r=0, we have

(1.5.9) {gOi=nr(g)det(1+KR)™,
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(1.5.10) T=0—-RK)'(1+RK).
Lemma. FE induces a natural inclusion £: G (W) c—>G(ﬁ7) .

Proof. We have W=W @W_.. Since Wil W _.,, £(g)we(®(g))™
=w for we W_,,. This implies £(g) We(E(g)) '=W.

Proof of Theorem 1.5.3. If we take a basis (9,, -+, Oy, 9F, -, O¥
where 9,= (v,, £(v,)) and 3} = (v,, —*¢(v,)) (#=1,---, N), the matrix
representation of Ty, €O (W) reads (T 1). The dual basis (v, -, vy,
771’ Py WN) is given by (ﬁly R '?)\N: ﬁf’ Y ﬁ;)=(v1’ S UN, T, ﬂN)

<°I1( 1K> Thus the matrix representation of T, with respect to

the basis (vy, -+, vy, %y, ==, 7y) Teads <,II< _]k> <T 1) <z11< —1K>-1

(T-1)J'K+1 (T-1)J si _ _
<(‘KT+ K)JK—K (KT+K) J">' ince nx(£(g)) =nz(g), <o7
={vac|E(g)|vac) and Nr;(9) =Nr(£(g))|,-s the theorem follows from

(1.2.7) and (1.2.8).

The following proposition is sometimes useful in finding R from 7.

Proposition 1.5.4. Suppose there exist Y. that are invertible

and satisfy
1.5.11) J*K.Y,.J7'K=0, J7'K-Y_.J"K=0,Y_=Y,T.
Then we have
(1.5.12) (K+!'KT)'=Y'(J'K-Y_+J 1KY, )J!
R=-Y)W'K-Y_+J"K-Y,)J!
=X JK+Y LT VK) (Y —-Y,)J .

Proof. Note that J K.Y, ,.-J'K=0 (resp. J/'K-Y_-J1*K=0)
is equivalent to JUK.Y,.JUK=JYK.Y, (resp. J/'K-Y_.-J 'K
=J'K-Y_). Hence we have

(J7K-Y_+JMK.Y,)J(K+KT)
=JK.Y_+J VK.Y, - J VKT
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=J'K-Y_+J VK.Y, T
=J 1 (K+'K)Y_
=Y_.
(1.5.12) follows from the above equation and (1.5.8).

Now we fix an orthogonal structure in W. Let (vy, -+, vy) be a
basis of W and set J= ({v,, v,))use1,..n. Let g, be an element of
G (W) such that trace g,+0. Let T, be the matrix representation of
T,, with respect to (v, -, vy). We set

(1.5.13) H=gi=T,
1+ T,

Then H is skew-symmetric, and if we set K =—;-(J + H), we have
K+'K=J. Hence there exists a unique &: W—W?%* such that K=

(& (W) (©.))p =1, ¥
From (1.5.7), (1.5.8) and (1.5.13) we have

b 1+ 7%
1.5.14 2=nr det L
( ) {gos=nr(go) de 1+ T,
: v 1—-T3
and Nrg(go) =<goyee’”* with py=(v;, -, vw) Ro| } | where Ry= 1+ T2
Un 0

xJ

Proposition 1.5.5. Under the above assumptions, we have

(1.5.15) (a)y =520 o
trace g,

Remark 1. (1.5.13) is rewritten as

(1.5.16) Ty=K-“K .

Remark 2. In Proposition 1.5.5 we have restricted g, in G(W).
If we admit g, to be an element of G(W) such that trace g,#0,
(1.5.13) gives a one to one correspondence between £ satisfying
k(w) (w’) +k(w’) (w) ={w, w’> and g, modulo a constant factor. In

fact, if we define ¥ by &(w) (w’) =trace(goww’) for given g,, we have
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£ (w) (w”) + £ (w’) (w) = trace (gyww’) + trace (gow’w) = trace (g, (ww’
+w’w)) =(w, w’)>. Since (1.5.13) is an algebraic relation, it is valid
even if g,&G(W). Conversely, taking the closure of such elements g,
as in (1.5.12) the existence of g,#0, which satisfies {a) trace g,
=trace goa for given £, is obvious. Since trace g,a %0, we have trace g,

#0.
We shall denote by g, the unique element in G (W) such that

trace gy =1 and {a),=trace g;a.

Remark 3. If a holonomic decomposition W=V'@V is given,
gr=|vac) {vac|:

1.5.17) {vac|a|vac) =trace (|vac){vac|a).

Lemma. Let g be an element of G(W). Then we have
(1.5.18) (trace g)*=nr(g)det(1+ T,Y).

This follows from Theorem 1. 3. 3.

Proof of Proposition 1.5.5. It is sufficient to prove (1.5.15)
when geG*(W) and nr(g) =1. We also assume that nr(g,) =1. Let
T be the matrix representation of 7°,. The matrix representation of

T,, is K-'*K. Hence we have

(trace gog)® _ det(1+K~''KT) _ det('KT+K) —det (KT +K)J.
(trace go)°® det(1+ K 1*K) det((K+K)

Now the proposition follows from (1.5.7).

Proposition 1.5.6. If H is invertible, we have

(1.5.19) Nrr (ewgr) =<Ewgr)x exp(—%('ul, <, Vy) H“‘(z;1 ))

Uw,

Proof. Without loss of generality we may assume that g, G(W).
Then the matrix representation of epgy is —K ‘K, and (1.5.19)
follows from (1.5.8).
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Now we shall give a transformation law to compute the £’-norm of
an element in G(W) from the gnorm of it. Let K and K’ denote the

matrices ({v,0.05)uve1,.5 a0d (V,0,D¢) 4 y=1,... n, Tespectively.

Theorem 1.5.7. Let geG(W) be given by Nr(g) =<g>se’”’,

v

o= (vy, -, vN)R( 51) with a skew-symmetric matrix R. Then we
Un,

have

(1.5. 20) o =<g)r(det(1— (K'—K)R))¥*

={g>, Pfaffian ( B (Kll_ K) ;) /Pfafﬁan <__ 1 1> .

If {g>r+#0, we have

(1.5.21) Nz (9) =<g)re”””
U1

where o'= (v, -, vx)R’| : | with R"=R(1— (K'—K)R)™".
Un

Proof. We note that K+'K=K’+‘K’, hence we have
R(1—-(K'—K)R)!
=(T-1)(KT+K)'QA— XK' —K)(T-1)(KT+K)™H
=(T-1)(KT+K—-K'-K)(T-1)*
=(T-1)CK'T+K")™.
From (1.5.9) it follows that {gd=nr(g)det(1+KR)™" and {gd%
=nr(g)det(1+K’R’)"". Hence we have

0% _det (14 K’R")(1+ KR)
L)

—det(1+K’R(1— (K'—K)R))'(1+KR)
=det(1— (K’'—K)R).

Theorem 1.5.8. Notations are as in Proposition 1.3.5. We set
Nr; (@) =<{g)rwy--wre??.  If we write
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_ ry1 F
erc'(g) = Z — Z pm(ﬂl, Y ﬂm) Vpm' Uy s

m=0 7 | 4,5, 2m=1
the coefficient On (U, *+*, Un) IS given by
(1.5.22) 0ty -+, Um) = (=)™ g>,
‘e
L /Pf i ( 1>
T(K - 1 affian 1)
-1 R

X Pfaffian

—e

—r

Proof. Let ¢ denote the canonical isomorphism ¢: W—W*; ¢(w)
(w’) ={w, w’>. We introduce an orthogonal structure into W* by
{e(w), e(w’)>=(w,w’>. We denote by W, the orthogonal space
W@W*#* equipped with the inner product {w@®7, w’ @y’ )>=<{w, w")
+<n,7’>. Take a basis (§,,---,&y) of W* so that §,(v,) =0,. Let £
denote the linear homomorphism &: W— W* such that {v, 0,08 =<LV, 005,

0 u>y
0,8 08=0, <£,v.08=0 and <&, = -%-(5,., §. #=Y., Likewise we
BN Ewby 4y
define B’ : W—->W*

Let § denote the element of G (W) given by Nrz(g) =g(R) (see

(1.3.5)). Applying Theorem 1.5.7, we have

<g>g,=1>fafﬁan<— (K';K) ;) /Pfaﬂaan<_1 1),

and if {§)#+0,

Uy

: R —1\ (/1
where  p’= (vs, -, vn, &y, -, En)R? ";N with Rz=<f 1){( 1)

1

Ev

K’'—K R —1\) ! — (K’ — 1\ -t
_< ) <1 } =< ( 1 ® R) . Then using Proposition

1. 3.7 and Proposition 1. 3. 8, we have
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foaﬂian{—(te ,r><—(K_’1— ® 11€>-1<e r>}

t

Om (ta, -+, tm) =GPk Pfafﬁan<— (K,l— K) ;z)/ Pfaman(—l 1>

e
t

r 1
/Pfafﬁan< )
—(K’'—-K) 1 —1
-1 R

= (=) ™*+"2g>, Pfaffian

—r

Remark 1. Theorem 1.4.3 and Theorem 1.4.4 are special cases

of Theorem 1.5.7 and Theorem 1.5.8; namely we take

(K

K= Azz(K}'FtKl)_ K, .

Ai(Ki+ Ky Ana(K + 1K) K
(K, llzKl::""l1nK1

121'I<.1 Kl. '
' ‘. ..-. ln-luKl '
\lanl"'Ann-lKl Kl

and K’ =

Remark 2. The analogues of (1.4.9)~(1.4.11) are valid in
Theorem 1. 5. 8.

Propositions 1. 2.6 and 1. 2.7 are paraphrased in terms of fk-norms
as follows. We omit proofs, which are only refrains.

We denote by & the linear transformation g: W—W defined by

E(w), )=k (w) (w’) ={ww;.

Note that g+‘c=1. We have

(1.5.23) : k(W) Nrg(a) w=£(w) a—e(a)E(w),

(1.5.249) : Nrg (a) 'k (w) e =a’k (w) —&(a) ‘£ (w).

Thus (1.5.2) and (1.5.3) read

(1.5.25) i w Nrg(a)="£(w)a+e(a)E(w),

(1.5.26) : Nre(a) wip=ak(w) +£(w) (a).
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In particular, if ¢’€G(W) and Nr,(g) =w Nrg(g’), we have
(1.5.27) g=Ce+T k) (w)g’ .

If g also belongs to G(W), we have

(1.5.28) (Ck+ T,k) (w) =0.

The matrix representation of £ is J~'*K. If we choose a basis so
that J =1, the matrix representation of s+ 7T,k is K+ T*K. Hence, if
det (K+ T*K) =det (KT + K) 50, we can apply Theorem 1.5.3 to com-
pute the g-norm of g.

Now assume that Ker(‘g+ T,k) %0, and set g’ =wg, where w is
a generic element of W. Then the following conditions i) and ii) for

w, €W are equivalent;
i)  (e+Tpk) (wy) =0,
(&+ T k) (wy) =0,
<w, ‘& (w) > =0.
Moreover we have Nrg(g9) =w; Nry(¢9"), where w,; is any element of

W satisfying (k+ T,k) (w,) =0 and {w, ‘kw,>=1.

Take a basis (v, -+, v,) of W, and assume that Nr,(g) =w,---w,e?”,

N U
with w;=3>v,c;, (=1, ---,k) and p= (v, -, 'vN)R(f ) where R is
#=1

b

Uw,
skew-symmetric. We set Nrg(g,) =e’”2. Then we have

(1.5.29) nr(g) =det({(E+Ty,8) (w,), Ty, (@)D u=1,.x 11 (g),

tc
= det( 21) (1—*KR)'*K (¢;---cx)det(1+ KR).

tck

If nr(g,)%0, then g, G(W) and ggi'is a polynomial of (*6+ T, .£) (w,)
(J=1,---, k). If nr(g)+#0, g€ G(W) and we have

(1. 5. 30) Ker (6 + T,5) =3 Coo), .
=1

If we denote by 7" the matrix representation of g, we have

(1.5.31) T=(1—RK)*(1+RK)
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