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Holonomic Quantum Fields I

By

Mikio SATO,* Tetsuji MlWA* and Michio JlMBO*

In this series of papers we expound a treatise on these subjects:

(1) Deformation theory for linear (ordinary and partial) differential

equations, (2) Quantum fields with critical strength, and (3) Theory of

Clifford group (Theory of 'rotations'). Indeed, our principal aim as well

as idea here is to reveal a deep link between these apparently independ-

ent concepts.

Naturally we can and do exploit this connection in both ways,

namely: On the one hand we exploit it toward the study of (1) and

see that deformation theory can be constructively analysed in terms of

field operators; and on the other hand we utilize it for construction of

exact ^-point r functions (causal Green functions) for (2) in a closed

form in terms of solutions to a system of non-linear differential equations

(which appear as equations of deformation of linear differential equations).

Our present work has been evolved from L. Onsager [9] who dis-

covered in effect that field operators on 2-dimensional Ising lattice are

elements of a Clifford group (a link between (2) and (3)), and exploit-

ed this fact toward exact computation of the free energy of the Ising

model, and from T. T. Wu et al [8] who discovered that the 2-point

function for the Ising model admits an exact expression in terms of

Painleve transcendent of the third kind. Brief accounts of our theory are

given in [2], [3], [4], [15].

Chapter 1 is devoted to the theory of rotations in an orthogonal

vector space [1], [2], [3], [4], which plays a fundamental role in sub-

sequent chapters. After a preliminary review on Clifford algebras we

introduce the notion of the norm map Nr, and give an explicit formula

expressing the norm of an element g of the Clifford group G(W) in
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terms of the rotation Tg it induces in the underlying orthogonal space

W. Then we characterize the closure G(W) of G(W)9 and give a

formula for the norm of a product 0(1)---(7(n) of elements 0(€) of G(W).

Finally we define the generalized notion of the norm (£-norm) Nr, and

study the transformation property under a change of the norm maps.

The construction of our operators of holonomic quantum fields is

achieved in chapter 2 [2]. We let W be the space of solutions to the

Dirac equation with positive mass in the 2-dimensional Minkowski space-

time, and equip it with a non-degenerate inner product to make it an

orthogonal vector space. By specifying a rotation in W&)Cn, we con-

struct a field operator cp(a) in the normal product form of auxiliary free

fermi fields 0 (x) so that the rotation induced by (p (a) coincides with the

specified one. Analogous construction is performed when the space-time

is only one dimensional (i.e. no time dimensions); in this case the con-

struction of <p(a) from the rotation leads one to the Riemann-Hilbert

problem [5]. Also we derive an operator expansion formula for the

product <I)(x)<p(a) in the region where x—a is small.

Chapter 3 is concerned with deformation theory of a holonomic

system [3], [15]. We consider the space WBa^an consisting of double-

valued solutions to the 2-dimensional Euclidean Dirac equation satisfying

suitable growth order conditions at the branch points aif • • • , an and at

oo. After establishing its finite dimensionality we derive a holonomic

system of first order linear differential equations satisfied by a basis of

W%*^t<ln. The coefficients appearing in this system are functions of

#1, •", an and are shown to satisfy a completely integrable system of

total differential equations (the deformation equations). These results

are extended to the case of the space W^1.?, OB (A) which consists of

multi-valued solutions with the prescribed monodromy property and the

same growth order conditions. The holonomic systems and the deforma-

tion equations have their 1-dimensional analogues, which are the Fuchsian

systems of first order ordinary differential equations and the celebrated

Schlesinger's equations [6], respectively.

In chapter 4 we construct solutions to these holonomic systems and

the deformation equations in terms of the ^-expectation values <( X

introduced in chapter 1 of the products of our field operators <p's and
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0's [3], [15]. It is shown that by a suitable choice of < X and various

combinations of the operators we obtain a basis of solutions to the rele-

vant holonomic system. This provides the relation between the coeffici-

ents of the system, which are solutions to the deformation equations, and

the n-point functions (<p(a^) •••^?(^n))>K of the #>'s. In this way we obtain,

in one hand, an n(n — T)/2 parameter family of solutions to our 2-di-

mensional deformation equations (cf. [7]), and in terms of their solutions,

on the other hand, closed expressions for n-poiut functions of the q>'s

[3], [8]. Moreover the monodromy structure of the basis construct-

ed in this way is apparent in the rotations T9^ prescribed beforehand.

Thus the above scheme gives, in the one-dimensional case, a constructive

solution to the Riemann's problem on the complex sphere and also to

the Schlesinger's deformation equations.

In subsequent chapters we study the holonomy structure of the n-

point functions [2] and the lattice field theory. We shall give the norm

of the spin operator of the 2-dimensional Ising model below and above

the critical temperature, and exact expressions of their ra-point correla-

tion functions [9], [8], [10], [11], [12]. Their scaling limits cpF and

(pF are shown to be obtained as special cases of the construction in

chapter 2. Also we shall calculate the asymptotic fields and the ^-matrix

for <pF [2].

/
A Summary of Results in Chapter 1

§ 1. 1. Generalities on Clifford algebra.

Let W be a vector space over C equipped with a non-degenerate

inner product (w, w'y. We call W an orthogonal vector space. We

denote by A(W) the Clifford algebra over W', an associative algebra

generated by W with defining relations ww' + w'w = <(w9 w'y. Let e

denote the automorphism of A (W) characterized by e (w) = — w for

ws=W. We denote by G(W} the Clifford group {g^A(W^g~1

^A(W)9gWs(g}~1=W}. g belongs to G(W) if and only if g = wl---wl

where wk&W and w\=^=0 (k = !,•••,/). The spinorial norm nr(g) is
i

given by nr(g) = JI(— wl). Tg\ W-+W, w*-+Tgw = gwe(g)~1
9 belongs

to the orthogonal group O(W)9 and we have an exact sequence
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(1.1.3) 1

A holonomic decomposition of a 2r dimensional orthogonal space W

is a decomposition W = V^@ V into two holonomic ( = maximal isotropic)

subspaces V* and V. There is a unique isomorphism

(1.1.4) Nr:A(W) -> A(W}

of left A(V^) and right A(V) bi-modules such that Nr(l)=l. Here

denotes the exterior algebra over W. Nr(a) is called the norm

of <zeA(W). In physicist's terminology an element of V^resp. V) is

called a creation operator (resp. an annihilation operator), the inverse

of (1.1.4) Nr"1 is called "the normal ordering" of NT (a) and a is

called "the normal product" of Nr (<z). In notations a — : Nr (a): .

The residue class of 1 in A(W)/A (W) V (resp. A(W)/V*A(W))

is called the vacuum and is denoted by |vac)> (resp. <(vac|). We have

A(W)^End (A(Wr)|vac»^End«vac|A(T^)). The constant term of

NT (a) e^((W) is called the vacuum expectation value of a and is de-

noted by <vac|a|vac> or in short ^#)>.

§ 1. 2. Norms and rotations.

Let W=V rt@V be a holonomic decomposition, and let (v\9 • • • , vl,

Vi9--9vr) be a dual basis: (v\, v^ = 0, (v^, v^ ==• 0 and (v]l9vj} = 8ltl,.

( T T\
T3 TJ'

and set f * *J = f "~i / ( 1 f-i) (7^ i )' assuming that T4 is invert-

ible. Then <{?> and Nr(g) are given by

(1.2.7) <g>2=nr(g)detT4

(1.2.8) Nr(g):

M\

with p= (v\, • • - , vl, vl9 • • - , vr)R

\Vrl

( -S S —1\
i c e1 )•1—04 os /

In general the norm of an element g in G(W) is of the form

cwl--wke
p/2 with ceC, Wi, • • • , w fce W and pe^2(PF) (Theorem 1. 2. 8),
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and the relation between Nr ((/) and Tg is given in Proposition 1. 2. 6

and Proposition 1. 2. 7.

As an example £N= : e(c~1)N: is discussed where N is the number
r

operator defined by Nr (N) = ]Tj v\Vp. Finally we shall give the relation
0=1

between the norm of a and the matrix elements (yl9 • •• , Vn\
a\/ti9 "', ftm)

= (vsLC\vt,1'-vVnav]tl'-vl[m\vacy (Proposition 1.2.11).
def

§1.3. The closure of G(W).

Let W be a vector space of N dimensions. We shall prove that
N

G = U G * where Gk= {cw^ ••<&*€*/z\c<=C9 wl9 - • - , wks= W and p e A Z ( W ) }

is closed in A(W) (Theorem 1. 3. 2). This immediately implies that the

closure G(W) of G(W) coincides with {: cw1~-wke
p/2:\c&C9 wl9 •••, wk

£=W9peA2(W) and £ = 0,1,2, •••} (Theorem 1. 3.1).
N 1 N

Let (vly • • • , v&) be a basis of W and let ze;1"-te;fce
/>/2= ]T] —r 2j

m=0^i AI,-JB»=I

Pm(Ai, •••,^m)^ro"'^1. An explicit form of pm(^i, •••, ̂ m) in terms of

the Pfaffian of a skew-symmetric matrix is given in Proposition 1. 3. 8.

§1.4. Product in G(W).

Let W°°(y = l, •••,«) denote a copy of an orthogonal vector space

W, and let A denote an n X n symmetric matrix (A^)^,,,^...^ with App = l
n

(v = l, • • - ,#) . Let W(A) denote the orthogonal vector space

equipped with the inner product <((T^(I), ••• , w(w)), (ze;/cl), •••,

= I] ^,<^(/t), ^/(")>- Let gW be an element in G(W(">)
A.V=I

An explicit formula for Nr((7(1)---<7(w)) is given in Theorem 1.4.3 and

Theorem 1. 4. 4.

§ 1. 5. £-norms and transformation law.

Let W* denote the dual space of W and let W=W@W* be an

orthogonal vector space equipped with the inner product ((w, ̂ ), (w''9 y'y)

= fl(w'} +y'(w). Let K:W-*W* be a linear homomorphism such that

K(w)(w')+K(w')(w)=<w9w'y, and set /c

Then the /c-norm is defined by

(1.5.1) NrK:A(W) A A(ic(W» ^
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This is a generalization of the norm Nr.

The formulas (1. 2. 7) and (1. 2. 8) are restated in terms of /C-norms

(Theorem 1.5.3). The constant term of NrK(a) is denoted by <#>*.

There exists a unique element gaeG(W) such that trace gK = ~L and

OX = trace QKa.

A transformation law of /C-norms are given in Theorem 1. 5. 7, which

gives a natural proof of the product formula in § 1. 4.

Chapter 1. Theory of Rotations in an Orthogonal Vector Space

§ 1.1. Generalities on Clifford Algebra

Let W be an orthogonal vector space over C, a vector space over

C equipped with a non-degenerate symmetric inner product (w, w').

The dimension of W is denoted by N.

Let T(W) be the contravariant tensor algebra over W and let I(W)

be the two-sided ideal in T(W) generated by [w, ze/]+-—(«;, t£/> (w,

w' e W). Here we denote by [w, w']+ the anti-commutator wiv' + w'w.

A(W)=T(W)/I(W) is called the Clifford algebra over W.
def

There is a unique automorphism #i-*e(tf) of A(W) characterized

by £(» = -z£; for we W. We set A±(W) = {<Z<EE A(W)|e (a) = ± a}.

An element of A+ (W) (resp. A"(W}} is called an even (resp. odd)

element.

There is a unique anti-automorphism <7f-»g* of A (W^) characterized

by w* = w for w^W.

We define trace: A(W)—>C to be the linear map characterized by

the following conditions: For any x, y^A(W) (i) trace xy = trace yx,

(ii) trace £ (x) = trace x and (iii) trace 1 = 2N/Z.

We denote by G(W) the Clifford group {ge A(W)\^g-1^ A(W),

gW&(gYl=W}. For geG(W) we denote by Tg the linear transforma-

tion of W induced by g:

(1.1. !)*> W > W
lil HI

T:w . > Tw

* In [2], [13], [14] the representation of G(W) is defined by w^>gwg~\ (1.1. 3) is not
valid for odd N under this definition.
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J£:gi-»Tg defines a representation of G(W) on W. Since (Tg(te;))2 =

~Tg(w}s(Tg(w}) = -gws(g}-l$(g}(--w}g-l = gw*g-l = w\ Tg is a

rotation of W, i.e. Tff belongs to the orthogonal group O(W) over W.

w&W belongs to G(W} if and only if ^w9wy=^=Q. In fact

£ (w)~1= — w~1 = 2-j — - — r- and
<w, w>

(1.1.2)

Tw fixes the hyperplane {w' & W|<je>, w'y = Q} and transforms fw to

— -ze;, hence it is a reflection with respect to the above hyperplane.

Proposition 1. 1. 1. We have the following exact sequence of

group homomorphisms :

(1.1.3) l

If we set G ± (WO=G(WOnA ± (P IO f we have G(W")=G+(W)

Lemma. If an odd element a anti-commutes with any w e W,

then a = 0.

Proof. If JV is even, an element of A(W) which anti-commutes

with any te;eW is a constant multiple of VI--VN, where (vi, • • • , VN)

is an orthonormal basis of W. Since a is odd, this implies <z = 0. If

j?V is odd, we embed W into an JV+1 dimensional orthogonal space

Wi = Cvi H ----- h Cvjy+i. Here (t/j, • • • , 77^) is a basis of W and <z>#+i, Vy> = 0

(j = 1? . . >9 JV) . Then a e A (W) C A ( Wi) anti-commutes with any

ze;eWi. Hence a = cvi--vN+1. This is possible only if c = 0. (The

assumption that a is odd is unnecessary in the case N is odd. If a

anti-commutes with any w e W the even part of a must vanish.)

Proof of Proposition 1.1.1. Since O(W) is generated by reflec-

tions with respect to hyperplanes, £ is surjective. Now assume that

Tgw = w for any w e W. This implies that g+£(g)eA + (W) belongs

to the center of A(W). Hence g+£(g)^C, or equivalently, g — c-\-a
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where c e C and a e A~ ( W) . Moreover a must anti-commute with any

w e W. This implies that a = 0. Thus we have proved that the kernel

of Z is G£(l, C). Now let geG(W). Since Tg is a product of re-

flections, g itself is a product of elements in W. Thus we have proved

the proposition.

Let Q = WI---WI be an element of G(W). Then we have 06 (0)*

= « (g)*0 = H ( - »5) e GL (1, C) . nr (g) = ge (fir)* = S (g) *g is called the
/=! def

spinorial norm(*} of g, and gi->nr(g) defines a group homomorphism

»GL (1, C) . We note that, for c e= GL (1, C) C G (W) , nr (c} = c2

and that e(g)-J = - 7~N~0*- The definition of the spinorial norm is

extended to the closure G(W} of G(W); in fact for g£=G(W) -G(W)

nr(g) =0. Also we have nr (g) = nr (e (g) ) and Tg = Ts^g).

Let ^(W) denote the subspace of A(W) generated by elements
ft

of the form ]T] Cjl.:jfWjl'"Wjtl9 where wl9 • • - , w^e W and, for /^> 2,
Ji,";Jt=l

Cjv..jft^C is skew-symmetric with respect to j\, ••• , J^. We have A(W)
^r

= © A^CW"). This is the irreducible decomposition of the representa-
/C-O

tion of G(W) on A(W), which is induced by T\ namely T g(a) =gag~l

(as=A+(W)), =gas(gYl(as=A-(W)}. We denote by G* the projec-

tion A (W) -+A1* (W) . In particular trace a = 2*/V (a) for a e A (W) .

trace (ae(<z)*) (<ze A(W)) is a quadratic form invariant under the
above representation. The Schur's lemma implies that trace (<ze(tf)*)

= !!(-)* trace (^ («) <rf («)*) - (Note that (^ (a)* = ( - y*rV (a) .)
/l=0

Proposition 1.1.2. Le^ gj, g2 ^ elements of G(W) such that

TgiT0it = TgaTgt. Then gi and g2 either commute or anti-commute.

Proof. From (1.1.3) it follows that g^ — cgzQi for some constant

c. Taking the spinorial norm of both sides, we have nr(gj)nr(g2)

= nr (g!g2) = nr (cg2gi) = c2 nr (g2) nr (gj) . Hence c2 = 1 and either g^2 = g^
or

A subspace V of W is called isotropic (resp. orthogonal) , if (w,

(HO Note that our definition here differs from [2], [13], [14] by sign.
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= 0 for w e V (resp. if the inner product is non-degenerate in V) . A

maximal isotropic subspace is called holonomic.

Now assume that N is even: N = 2r.

Let W = Vf0 V be a decomposition into two holonomic subspaces

V1" and V. A(W) is a semi-direct product of two exterior algebras

and A(V) . More precisely, A(W) is generated by 1 as a left

and right A(V) bi-module.

Definition 1. 1. 3. There is a unique isomorphism

(1.1.4) Nr:

of Gi(V9,^(V)) bi-modules such that Nr(l) =1. We call Nr(» the

norm of

V (resp. V*) generates a maximal left (resp. right ) ideal A(W)V

(resp. V*A(W}} of A(W). The quotient module A(W)/A(W)V

(resp. A(W)/VtA(W)) is generated by the residue class of 1, which

is called the vacuum and is denoted by |vac> (resp. <(vac|). We have

,l(F)|vac> = 0 and A(W)|vac> = A(V^ |vac>^^(Vrt)> in particular,

dimA(Wr)|vac> = 2r. The representation of A(W) on A(TF)|vac> in-

duces an isomorphism: A(W) =End(A(W)|vac)>). Similarly we have

<vac\A(V*)=Q and <vac| A(W} =<vac|^l(Vr) =A(V).

A(W) is the direct sum of subspaces AP(W) (p = 0, 1, • • • , 2r): A(W)

= 0 AP(W). The projection of Nr(a) €=A(W) to the summand A°(W)
p=0

= C is called the vacuum expectation value of a and is denoted by

<vac|<z|vac]>. The bilinear form

<vac I A ( W) X A ( W) | vac> -* C
UJ UJ

is well-defined and non-degenerate. Thus <vac|A(W^ and A(W)|vac^>

are canonically dual to each other. We often abbreviate <vac|tf|vac^> by

In general, let W be a vector space of N (even or odd) dimensions
k

and let (vl9 • • • , vk, v k+l9 • • • , VN) be a basis of W. We set W1 =
1
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N

and W2= Xj Cvf. We denote by aL _____ , „ the image of
j=k+I

by the natural projection A(W) ->A(W)/A(W) Wl^A(W2).

Let (y\, ••-, v$) and (vl9 • • • , vr) be mutually dual basis of Vf and V,

respectively. This means that (v\9 vv) = S^. Since V* and V are holonomic,

(p\> vly = 0 and (v^, v^ = 0. Hence the table J of the inner product

of the basis (t;f, • • - , v$, vl9 • • • , Vj) of W reads as follows:

0 1

1 0

A(W)|vac) (resp. <vac|A(PF)) is spanned by elements of the form

w,1--vlllt) (^ = 0,1, 2, •••)
def def

and these elements constitute a mutually dual basis:

f 0 if
(1.1.5) <X •••,#m |vn , •••,»!> =

[ det (Sft^j} iif m = n .

The identity transformation leEnd (A(W)|vac» is decomposable as

follows:

r -I ra "1 /"*\ "1 I \ / I i X—\ •*• % 1 I \ / ..I.1.6) l=|vac><vac|+2 —.^ J] J^, • • - , V*><V4, • • - , Vi|

where |^i, • • • , Vfc><Vfc, • • - , ̂ | denote the element |vlf • • - , P*)®^*, •• - , Vi|

in

§ 1. 2. Norms and Rotations

The explicit formula for Nr(gr) expressed by the rotation Tg was

obtained by the first author [1]. Before explaining it we prepare the

notion of conjugate transformation.

Let W be a vector space and let (V+, V_) be an ordered pair of

its subspaces such that W=V+®V-. We denote by E+ (resp. J5L) the

projection operator onto V+ (resp. V_) .

Definition 1. 2. 1. Let TeEnd(W) and assume E+ + TE_ is
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invertible. We define the conjugate transformation S to T with

respect to (V+9 V_) by

(1.2.1) S=(E+ + TEJ-l(E. + TEJ.

Remark. We note that if we rewrite (1. 2. 1) as

(1.2.2) (£+

the invertibility of E+ + TE_ follows. In fact, we have (E+ + TE.)

X (E+ + SEJ)=E+ + CE_+7\E+)-E- = l. Moreover this means that S

is conjugate to T if and only if T is conjugate to S. It is also easy to

see that if T and T"1 have the conjugates S and 5' respectively then

Set T = l — 2P and 5 = 1 — 2(2. The following proposition gives an

alternative characterization of conjugate transformations in the special

case T2 = l.

Proposition 1.2.2. Set E = E+ — E_. The following are equiva-

lent.

(i) T and S are mutually conjugate and T2 = l.

(ii) T and S are mutually conjugate and S2 = l.

(iii) PQ = Q and PEQ = PE.
(iv) QP = P and QEP^QE.

Proof. The equivalence (i) 4=^ (ii) follows from the above remark.

(iii) in terms of T and S reads

(l+T) (E+ + £_) (1-5) =0, (1-T) (£+-£_) (1+5) =0,

or equivalently

Then it is easy to see from the above remark that this is equivalent to

(ii) . Hence we have also (ii) 4^ (iii) . Similarly we have (i) «=» (iv) ,

hence we have proved the proposition.
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Proposition 1.2.3. Take a basis (vf, • • - , v^ (resp.(z>f, • • • ,
of V+ (resp. V_) and represent T and S as block matrices;

(Tvt, -, lt , , . , -., ,, , , ,
-^ 4X

Then T and S are conjugate to each other if and only if

n „ ,v /T, T2\ /I -5A/5! W 1 N / ^ - ^ A - W , -5A-'(1-2>3) Ir.rJ I iA 5 4 -JUi/-V a-5. 54-
or equivatently

(1.2.4) (*
^

Proof. (1. 2. 4) is rewritten as

(1.2.5) /1T2W.W2\ /T, N
V ^ \ Tj \StSj \T. l /

This is nothing but the matrix form of (1. 2. 2) .

Remark 1. The assumption that £+ + TjE_ is invertible is equi-
valent to that T4 is invertible.

Remark 2. The decomposition (1. 2. 3) is unique and independent
of the choice of a basis, hence it defines a canonical decomposition of T:

T=T'T/'T* where Tx, Tx/, T* correspond to (X ~52V (5l V

^ ), respectively. In fact, T7 = 1 - £+££_, T" = (E+ + E_SE_)-1

x(E_ + E+SEJ and T^ = l + £>5£+.

Remark 3. From the decomposition (1. 2. 3) it follows that

det (p £') =det T4 det (T, - T2TrlT8)

and
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/i\ T A - 1 / i wsr1 wi s*\( sr1 sr's, \
\T3 TJ \-S* lA sj\ I/ \-5s5r1 Si-SJS^sJ'

Similar formulas are available when Tx or T2 or T3 is a non-singular

matrix.

Now we go back to the orthogonal vector space W and its holono-

mic decomposition W = V*@ V. The conjugate transformation will be

used with respect to (Ff, F). We take a mutually dual basis (vl, • • • , vl,

Vi9 • • - , z>r)
 and represent a linear transformation as in Proposition 1. 2. 3.

We denote by E+ (resp. £_) the projection onto V* (resp. V) and by

w(+) (resp. w^) the image .E+te; (resp. E^w) for

Proposition 1.2.4. Le£ T a#<f S be mutually conjugate linear

transformations of W. Then T is orthogonal if and only if

a O C£\ C' — ^ O ^ C* — O ^ O — O«. Oy Oi"~~ O4) Oo ^~" "~™ *^2> *^8 ~~ ~~"*J3 .

Proof. Denote by T* the adjoint transformation of T with respect

to the inner product in W\ T is orthogonal if and only if (T*)~J = T.

The uniqueness of the decomposition (1.2.3) yields that (T*)"1 = T

if and only if (T'*)-1 = T'9 (T//*)~1 = T// and (Tff*)~1 = TJff. Since in

matrix representations (^ '* ^ '2}=J-1t 1 8)J" we have the pro-
V(T*)8 (T*V VT2 'TV '

position.

Theorem 1.2.5. Let g be an element in G(W) and let Tg and

( T T\1 2J be the induced orthogonal transformation (1.1.1) and its
T3 TJ

matrix representation9 respectively. We assume that T4 is invertible.
IS S\Denote by Sg and ( 1 2) the conjugate to Tg and its matrix repre-
\33 »J4'

sentation9 respectively. Then we have

(1.2.7)

and

(1.2.8)
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P= (v,..., v, Vl,..., »r) r
5' Si~I)
— 04 Os /

Conversely, if g^A(W) is given by (1.2.8) with Sl9 S29 S& and
3^ satisfying (1.2.6) and if S4 is invertible, then g belongs to G(W}
and its induced orthogonal transformation Tg is given by the conju-
gate to Sg.

Lemma 1. For a, b&A(W), we have

(1.2.9) «'A

The proof is straightforward.

Lemma 2. If Nr (gO = exp (— f± (-S2\vvlvl) with 'S2=-S2, g1
\ 2 t*>v—i '

/I —S^and the matrix representation of T?1 is f 2

Proof. Since [1 S (-52)^X, vl] =0 and [1 f] (-50^1 vjf
L 2 *."=i J L 2 A»»-I

A =][]( — ̂ X* A ̂ > tne lemma follows from Lemma 1.
J ft

Similarly we have the following lemma.

Lemma 3. If Nr(gs)=exp(— X3 (S^v with ^=-53, gs
\2 ^»=i

G(W) and the matrix representation of T % is f J.
\Os I/

4. If Nr (g2) = exp (JL f] (^-l),^^^! f] (!-&),»
\ Z /«.»'=!1 ^ fl,»=l

XVpVl) where ^1 = 54 is invertible, then gz&G(W) and the matrix
IS \representation of Tffz is f 1 _J. Moreover nr (g2) = det St = det T^1.
\
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Proof. If we prove the lemma when Si is diagonalizable, the non-

diagonalizable case follows from the continuity of Nr. Assume that

PStP-1 is diagonal. If we define (f>I, • • - , f?J, vly ~',vr} by z>J = £] t^P^
fl=i

T

and vv=^v/t(
tP~1)ftV9 it is also a mutually dual basis and the lemma

£=i
reduces to the case r = l. Now a direct computation shows the lemma.

(See Proposition 1. 2. 9.)

Proof of Theorem 1. 2. 5. If we set g = g\giQ^ we have g

Nr(f7)=<?'/2 and the matrix representation of Tf = TgiTg2Tg8 is (Tl T*\.
\T3 TJ

This proves the second half of the theorem. Since Tg = Tg, g = cg with

some constant c. Taking the vacuum expectation value, we have <(g)>

= c(gy = c. Taking the spinorial norm, we have nr (g) = c2 nr (g) = <

det 7Y1. This proves the first half of the theorem.

/ R R "Remark. We often use the skew-symmetric matrix R== l 2

of 5>

Proposition 1.2.6. Let g be an element of G(W) and let

( T T \1 2J be the matrix representation of Tg. We assume that KerT4Ts T4/

=£ {0} . Take w = f] v\c\ + £ vftcft e P7 5«cA ^Aa^ w2 = XI ̂ I^¥=0 and
/- \1 \• £Im T4.*

} 5^ g' = ivg and denote by ( l 2) *&e matrix& & " " 1'

representation of Tg,. Then we have Ker T4Z)Ker Ti <2«J dim Ker T4/

KerT^=l. TA^r^ exist v<=V and v*GV* such that Tgv=-v^ and
(w^ t;t> = i. Then

(1.2.10) g=v\

( T T \1 2j is orthogonal in the
Ts TV
1 /T1 T1 \ /n i\ XT' T1 \ /n i\

(1. 2.11) (L 1 12) (° ^ ( • * J •* M = (° -1),
XT, T/Xl 0/XT3 T/ Xl o/

sense

*} c]i does not mean the complex conjugate of CM.
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we have

(1. 2.12) Im T4 = (T2 (Ker T4) ) -
1.

Proof. Since fTl T*\ is non-singular, Ker T2nKer T4 = {0}. From

(1.2.11) it follows that 'T2T4 + 'T4T2 = 0, hence, Ker 'T4 = T2 (Ker T4).

This yields that Im T4= (Ker £T4)-
L= (T2(Ker

Proof o/ Proposition 1.2.6. Take a vector c' = • eCr andu/
set t;' = 2t;X.eV. Then we have (IV*') (~} = (T.T,*')*"0*3--^/e=i — ter

(T4c
/),i. Hence

Since c^ImT4, Ticx = 0 if and only if T4c
x = 0 and scT2c

/ = 0. From

the lemma it follows that 8cT2(Ker T4) ^0. Thus we have proved that

KerT4DKerTi and dim Ker T4/Ker Ti = 1. Tgv=-v^ means gv =

. Hence if <w, ̂ > = 1, s( /)^= = e(7 : £ ;) s()^

Proposition 1. 2. 7. Le£ Nr (gx) = Wj • • • wk Nr (g) where Wj =

13 ̂ 14/1 + S ^^/^ e W" (j = 1, — , *) a^ d gs=G ( W) . TA^w g' belongs
/!=»! /l = l

(T* T\1 2J denote the matrix representation of Tg, and

'c, c
= • . Then we have

(1.2.13) nr(0')= : i

Now assume that nr(g/)=^=0. TAgw (7 /^G(W), i2^J (f tc;̂  denote by

( T* T'\J M 2A0 matrix representation of Tg,, we have
TB TJ

Q 2 141(1-2'14)

• - 'cjT.c, \ -1 /'Cl + 'cIT,, 'cf T«

'dT4cJ Vc. + 'clT,. 'c
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In particular

(1.2.15) 7VwJ->=-wJ+>

and

(1. 2.16) Ker TJ = £J Ccy©Ker T4.

Lemma 1. Assume that Nr (g') = tv Nr (g) where g, g' e G (TF) and

w e W. Then Tg, O
(->) = - w(+).

Proof. gx = t«;(+)g -f fi (g) w(~) = (te;(+) + Tg (w
(~}) ) g. Hence we have

X '

Lemma 2. Let g, gx be as in the proposition, then A = gxg 1 is a

polynomial of

Proof. We prove the lemma by induction on &. & = 0 is trivial.

We assume that the lemma is proved for & — 1. Then we have

q' = w(^ : w2> • -wk Nr (g) : + e ( : zev • • wfc Nr (g) : ) wf^

where A' is a polynomial of w^ -\- T g (w^) (j = 2, •-, K). Hence

wJ-O is a polynomial of te;$+) + Tg (wJ->)

Proof of Proposition 1.2.7. By embedding W" into a higher

dimensional orthogonal space, we may assume that r>Jz. We prove the

proposition by induction on k. k = 0 is trivial. Suppose that the pro-

position is proved for k — 1. Without loss of generality we may assume
* \ / - 'cjTV, - - 'c!7>* \

that det : : ^=0 and det : : =5^=0.
V-'clT.c,- -'dTtcJ \-'ci7Vv -'

Then we have

X(e ( : wt'-wkNT(g):)*w^ + wi^: w2-.-z£;fc Nr(g):*)
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= -nr(: w2-wk Nr(g):)<ze;<+>, T:Wa.

= -nr (: ze>2-• -to* Nr (g):)

-T4c2,»., -7W

/_'clT4c2--'

"Is

+ \T. T4/J W

= det|

X {-'cIT4Cl- (-'cIT4c2, ..-, -
£

x :
\-V*T4c2... -'

= det •nr(gr).

Now we shall prove (1. 2. 14) . Lemma 1 implies that when re-

stricted to C(^) + - + C(°)» (1-2.14) is valid. Weset W,= {wsW|

<>$+> + TjCw^.TX^O for j = l, ~-,k}. Then wf-1, • • - , wjf> and

Wt span W. From Lemma 2 it follows that when restricted to Wj

(1. 2. 14) is valid. Thus we have proved the proposition.

Summing up, we have the following theorem.

Theorem 1.2.8. Let geG(W) and set & = dimKerT4. k is

even (resp. odd) if g is even (resp. odd). Nr(gr) is of the form

cw1---ivke
pft with ceC, Wi, •••, wk& W and pe^!(W). Moreover -we

have

(1. 2. 17) S CwJ-' = {v e V| Tf t»
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and Tgw^~')= —wjf^. cw^-Wk is determined uniquely by g. L is
k

unique up to modulo Y] w*W. Conversely if Nr(g) is of the form as
y=i

above and if nr(g)=£0, then g belongs to G(W), dimKerT4 = £ and

(1. 2. 17) is valid.

We shall give several examples.

There exists a unique operator N e A ( W) satisfying

(1. 2. 18) [N, t;*] = V* for *t e VT

[N, t;] = — v for

and

If we take a dual basis (vl, ••', fj, fj, • • • , wr) of W=Vt®y, we have

(1.2.19) Nr(N)=I>X-
,«=!

N is diagonalizable and its eigenvalues are 0, 1, ••• , r. The eigenspace

of N with eigenvalue k is 2 C|/*i, • • • , #*X This means that
i;£Ai<-Oft£r

(1.2.20) N|A, -,/4.> = *Ui,-,^>.

In this sense we call N the number operator.

The number operator depends on the choice of the holonomic de-

composition 1^=1^0"^", but T(_)N does not. In general, we have the

following proposition.

Proposition 1.2.9. Nr(cN) =^(C~1>N, and if c=£Q the matrix re-

( c \).
c~v

Lemma 1. Let ( ) denote the operator -—N(N -"!)•• -(N--w 4-1).
\mi ml

Then we have Nr( ( N )W— NTO.
\\m'' ml

Proof. We prove the lemma by induction on m. m = Q is trivial.

Assume that the lemma is proved for m. Then (1. 2. 18) yields
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N
m m + 1 (m + 1)!

Lemma 2. Let <z, ^eA(P7) satisfy [#, &]=£# with ^eC, and let

P(a) be a polynomial in a. Then P(a)b = b P(a + c).

The proof is straightforward.

Proof of Proposition 1. 2. 9. By Lemma 1 we have CN = (1 + (c - 1)) N

= Il(N)(c-l)TO = i: (g~1)m: 1ST: =:g (c"1>N: Applying Lemma 2 for
m=0 \^/ m»0 m f

fl = N, i = ze;eT^ and P(N) =^N= S f N) (c-l)m, we have ^Nze;
m = 0 \ W /

c^+l if ze; e Ff,

^N-1 if

(— -)N is characterized up to the signature by the following conditions:

TGW= — 1 and sjr = l. We call such &w an orientation of W. (dim W

is even or odd.) The pair (W, Qw) of an orthogonal space W and its

orientation Qw is called an oriented orthogonal space. A holonomic de-

composition W=V^@V is called positive (resp. negative) if ( — ̂  = sw

(resp. ( — ) N = — STF). We have nr(S|,r) = ( — )r and trace £^ = 0. (See

(1.5.19) below.)

Taking an orthonormal basis vl9"-9vN we have ew=±v1~-vN.

Proposition 1. 2. 10. | vac> <vac | = [ v = 0N = : *r N : .

Proof. Comparing the action on ^(V^lvac^ of both sides, we have

the first equality. The second one follows from (1. 2. 20) and the last
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one follows from Proposition 1. 2. 9.

We shall give here the relation between the norm and the matrix

elements of an element a of A (W). We mean the matrix elements

those in matrix representation in ^(Ff)|vac>. Let <pm)n(jUl9 ••-,#,»; Vi, ••• ,

Pn) denote the matrix element <ylf • • • , Vn\a\{tl9 • • • , #m>. Then a is written

as follows:

X z>JB • • • zjjj | vac> <vac | 77^- • • v^ .

Proposition 1.2.11. Let a^A(W) be written in two different

forms-,

(1.2.21) ^=f]J--JT ± P.,.(A,-»f/<.;Vi, •••,*.)
m,»=0 7^1 ^1 /e lf...f pm,

(1.2.22) a= E -- ; ^nte,-,^;^,-..,^)
m,n=0 ml U\ fli.'",flm,»l,"',»n=l

X vln- - -vlt I vac> <vac| v^ • -v^ .

Then the relation between pmin's and <pmfn
9s is as follows:

(1. 2. 23) <pmjn({tl9 • • - , A»; vlf -, Vw)

min(m, n)

= 2] Sx
Z=0 <r,r

where the summation J]' w over (Te@TO aw^f re@n w^A the restriction

(1. 2. 24) pm,n(ftl9 •-, /«m; Vj, • • • ,

min(m, n)
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where the summation 2' i$ as above.
ff.T

Proof of (1. 2. 23) . We apply (1. 1. 6) .

«= -HT-
m,n=0 ml n\ li. •

= a
H

r -I -i rmin(m,n) r

= S A^T S II E'
m,n=Qml nl L Z=» /(t* —*/(«• ^«r

^rd)? *"> ^(D/M

r 1 1 1 1
E JL JL JL JL J. v; — i ^ — i/ ^_____ > ' / seen (f ssn

«,m,»=o(;!)2
TO! «! A /n + A i , , . , . Trf

)( z )""-""*'=1

X Pm,n(Atf(l), '", ^(T(m>; ^r

X wj. • • • vjt I vac> <vac 1 1^- • • vft .

The proof of (1. 2. 24) is analogous to that of (1. 2. 23) . We apply

Proposition 1. 2. 10 instead of (1. 1. 6).

§ 1.3. The Closure of

The closure G(W) of G(W) is characterized by the following
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theorem.

Theorem 1. 3. 1. G ( W) coincides with { : cw^ • • wke
p/z : \c e C,

wl9 —9wkGW9peA*(W) and £ = 0,1,2, •••}.

Since Nr is a linear isomorphism, it is sufficient to prove the follow-

ing theorem. (See § 1.5 as for the case N is odd.)

Theorem 1. 3. 2. Let W be a vector space of N dimensions

and A(W) be the exterior algebra over W. Denote by Gk the set

{cw1-"Wke^\c^C9wl9'"9wk^W and ps=A*(W)} and set G=IJG*.
fc=0

Then the Zariski closure G in A ( W) coincides "with G. We set A+ ( W)

and G±

fcreven fcrodd

= (G±— {0})/GL(1, C) is a non-singular protective variety in

P (A± (W) ) of —N (N - 1) dimensions. {P (G*) } (A = 0, 1, • • • , AT) gives
£i

a stratification of P(G). P(G*) is a fiber bundle over MN,k(C) with

the fiber A2(CN~k). Here -we denote by MN}k(C) the Grassmann

manifold consisting of k dimensional subspaces in CN. In particular,

we have dim P(G*) =— N(N-l) -— *(*-!).

Before the proof we prepare some notation.
( W-+C |

Let T^* = Homc(Wr,C)=]^|^: Uj UJ [be the dual space of W.
I w K> fi (w) J

An orthogonal structure is introduced to W0W"* so that W and W"*

are holonomic and (w,yy = y(w) for w^W and f] e W*. We denote

by W the orthogonal space thus obtained.

W=W@W* gives a holonomic decomposition. We identify A(W)

with A(W) |vac> where |vac> means the vacuum of A(W}/A(W) W*.

A(W) acts on A(W) in this sense.

Proof of Theorem 1. 3. 2. Let (v1} • • • , VN, gl9 • • • , $N) denote a dual
^ N i N

basis of W. An element a of ^f(W) is written as <z = ]T] - ^
m=0 m!/«l.-.Am=l

Pm(A, •••,^m)^m-"^1 where pm(^, • • - , /£m) is skew symmetric. Assume

that P&(V!, • • • , Vfc) =^=0, and let W = Wi0W* be a holonomic decomposition
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given by W1= %} Cv,+ £J c$» and

ffit#lt~.,9t V=»l,'",Vlt #¥-»l. •"."ft »=J>1, •",!>*

Let Nrj, : :j and < X denote the norm, the normal product and the

vacuum expectation value with respect to this decomposition.

We set (cf. p. 10, lines 1~2)

^ «.„«

where

( ff if A = Vif — , V * .

We have pj = <^?Vl • • -S^i = P* (^i, • • •, V*) ¥=0. Reciprocally we have

a = Nr(#iWl(fc'"t^)|£Vi_..._£^_0. From Theorem 1.5.7 below it follows

that if geG, Nr,(jr^.
Hence we have

0 if m is odd,

1 T ^ f / Y - X / X N X T

/CA>-i Pfaffianto (/», y))»-».....^ if ^ is even.

(See (1. 3. 7) below.) This implies that in a neighborhood of g^G such

that p»(v l f-,V*)¥=0 (y1<-"<^,^-NrCZSf--l) elements {pm(A, — , AOI
2

fli<~'<P» and {^, .--, /«m} = {vlf ..-, Vk} U {A!, A2} - {% •-, ^fc} H {^, A2}

for some A! and A2} together with Pt(viy •••, V*) constitute a set of local

parameters of G.
N 1 *

Now let (7=2 - 2 Pm(#i> ••*, /O*W"*Vi ^e an element of
m=0 7ft! fli,»>,ftm=l

G such that pfcO^, • • - , Vfc)=^=0 and pm(A, ••• , /^m) =0 if w<^. Then we
have

flTi = pj lexp (L 2 pj (A, #2) t^O } (^i \PO fi<f» n

where

Hence

=:{exp(l E PJCV.A)^.)}:!-
I \Po/^*l.'".»* /)
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where

and
P2

constitute a set of local parameters of the base space MN)k(C) and of

the fibre ^(C*-*), respectively.

Theorem 1. 3. 3. Let W be an orthogonal space of dimensions
N. For an element geG(W) we define

(i. 3. i) fft (
/e=0

If g&G(W), we have

(1. 3. 2) nr (<T, (g) ) det Tg = nr (g) det (* + Tg) .

Proof. We shall prove the case where N = 2r is even and

geG*(W). Other cases are proved in a similar way.

Without loss of generality we may assume that the eigenvalues

^i, •", Ajr of Tg are distinct. We label them so that ^^ = 1, • • • , /2r-i^2r

= 1. Let wfi=£Q denote an eigenvector: Tgw/6=i/tivft9 and set Wft

= Cw2/t_1 + Cw2ft. Then W is the direct sum of these orthogonal sub-

spaces: Wr = Wr
10---0Wr and W^WV if {£=£».

g is decomposable as g = gi"'gr so that g/t^G+(W^). Let a* denote

the eigenvalues of g^ as an element of G+(WJ =GL(19 C)2cGL(2, C)

such that A2^_i = aJ/aj.

Note that nr(g) =nr(gO -"nr(gr) and det (t + Tg) = det (t + Tgi) • • •

. On the other hand we have
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Therefore (1.3.2) reduces to the case r = l, which is then obvious.

Remark 1. Here we quote the results in § 1. 5. Let £0 denote the
1 N

linear homomorphism £: W-*W* such that K= — J. Then Nr*t = © W,

where W: A'(W) -*A*(W) is given by id*( £J c^^w^
/e /i.-.Jf-l

= 2j cJr»J*wJi'"wsf when c^...^ is skew symmetric with respect to

If we take a basis (^i, '", v,r) of W' so that J = l,
rp _ 1 \

(1.5.8) reads R = 2 - J Hence, if Nr^Cgi) =ze;1---«;A;e
/'/2 with Wj, ••• ,

wk^W and pe^!2(W), we have

(1. 3. 3) Nr,§(<T,(ff)) = (l + O^-^Cl-O^Wi-w. exp (1
\ &

If gELG(W} and det (1 + 7» =^=0, (T{(g) also belongs to G(W).

More precisely we have

(1.3.4) T,,(<7)

The proof of (1. 3. 4) also reduces to the case when JV = 1 or 2 and then

it is easy. In particular, we have

«Ti (ff)=2''V (JT) = trace

and

( * s~\ if( ,. fft(g)
J ™~p~

I S^V-*'-1**-1'
if

Proposition 1.3.4. TJ = 1 ff ^<i o»/y if g^Ak(W}, where k

is the multiplicity of the eigenvalue —I of Tg.

Proof. T'g = l implies that the eigenvalues of Tg are ±1. Then
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from (1. 3. 7) it follows that Tfft(g^ is independent of £, or equivalently

°"t (00 is a constant multiple of g. Hence g belongs to Ak (W) for some k.

Conversely, if g e G ( W) fl A* ( W) , Nrffo(0) =^Wi---w* with c^C

— {0}, wlt • • - , ze;fce W. (See the above remark.) We may assume that

(wi, • • • , wky WK+I, • • • , te>#) constitutes an orthonormal basis. Then Wj

commutes or anti-commutes with g according as ( — )*£/ is positive or

negative. Here £y = l if j& {1, • • • , k}, =— 1 if ,/e {1, ••- ,£}. Hence we

have the proposition.

Proposition 1. 3. 5. The coefficients of nr (fft (g) ) belongs to the

coordinate ring A^W) of G ( W) .

Le£ N = 2r be even. If geG+(W), £~r nr((^(g)) zs written as

t~r nr((Tj(g)) =a0(g)5 rH ----- h <zr-i (g) * + #r (g) wAm? 5 = ^ — 2 + ^. Iw

particular, aQ (g) = nr (g) and ar (g) = (trace g)2. aQ (g) , • • • , ar_! (g) ,

Var(g) are algebraically independent and the polynomial ring C[a0(g),

• • • , a r_j (g) , v7 ar (g) ] coincides with the subring {f (g) e AS(vn i / (g)

= / (hg A-1) /or vA e G (P7) } . I/ g e G~ ( W) , tl~r (1 - ^2)^ nr (fl, (g) ) w

written as tl~r (1 — t2)'1 nr ((Tt (g) ) = a0 (g) 51""1 H ----- h ar-i (§f) where s = t

— 2 + t~1 and <z0 (g) = nr (g) . a0 (g) , • • • , <zr-i (00 #r0 algebraically inde-

pendent and the polynomial ring C[a0(g), • • • , ar_!(g)] coincides with

the subring {/(g) e A8.(TF)|/(g) =f(hgh~1) for v/,eG(PF)}.

If N = 2r+l is odd, t~T (1 ± ^) -1 nr ((Tt (g) ) A«5 similar properties

according as g e G* ( W) .

Proo/. If N = 2r and g e G+ (W) , nr (<T, (g) ) = Itrace (fl. (g) (T, (g)*)
£

= — 2 (1 + 0 '^"^ (1 - 0 2* trace ̂  (a) ̂  (g)*- Hence the coefficients of2r*=o
belong to

Using the notations in the proof of Theorem 1. 3. 3, we have

) = f[aja;f trace g = f[ (aj + a;) and det(*+Tp) =n(*+aja;-1)
JK = 1 /* = ! 0 = 1

-1). Thus we have t~r nr((T8(g)) =f[ [(aj + a^)f + aja^]. In
^=1

particular a0(g) =nr(g) and ar (g) = (trace g) 2.

Next we shall show that

G+(W) - >Cr+1

UJ UJ
g H* (tf0(g), • • - , ar_i(g), trace g)



250 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

is surjective. This implies that <z0((7), "', <Zr-i((7)> trace g are algebraically

independent. Let (£„, •••, &r-i, br) eCr+1 and assume that b0= ••• = &g_i = 0

and bt=f=Q. Taking at = - • • = o£_i = 0, we have a0 (g) = • • • = a«_j (g) = 0.

Hence we may assume that 5 = 0. Since we can give arbitrary values to
~\ 2

n eiement

(gO =£r-i and ar(g) =bl. Then g or — g is the one we need.

Now let /(g)eAg+(Wr) satisfy /(g) = f(hgh~1} . The polynomial

on CXG+(T*0 is written as /(ty) = £j *'/>(g) , where />(ff)

satisfying //(g) =//(AgA~1) is homogeneous of degree j. Then f j ( g } /

(trace g)-^ is determined by the eigenvalues of Tg, hence it is a rational

function of — 1^LL9 ...? »'W> Thus /*(g) is a rational function of aQ(g),

r) and trace g. Since G(W) >Cr+1 is surjective, f(g) be-
UJ ID

g H> (<z0 (g), • • •, tfr-i (g), trace g)
longs to C[>o(g), ••• , tfr-i(g), trace g].

Other cases are proved similarly.

Proposition 1.3.6. Let W, W'*, W, etc. be as in Theorem

1.3.2. We take a dual basis (vl9 • • • , VN, ft, • •• , fF) o/ W". Le£ J? ie

an N X N skew-symmetric matrix, and set g = ep/z where p = — (v^9 • • • ,

M\ 27

t>#)2? • . Z^^ yj — !Llcj,ii£r 0 = 1, •",-K) fe elements of W*9

set r=( • • I. Then the constant term of iJi'-yKg is equal to
\CIN--CKNI

Pfaffian(-V2?r).

Proof. If ^i!--^x = 0 or K is odd, the above statement is trivial.

If 7i-"7jr=^0, without loss of generality we may assume that ^ = £1, ••• ,

^K — ̂ K' The constant term of £i'-?KQ is equal to the coefficient of

VK---VI in the expansion of ( ]Tj ( — -R/lfcl) vklv^ ••• ( £]

(—RjK , skK ,^vkK/2v^ / 8). Hence we have the proposition.

Ler jR be a 2rx2r skew-symmetric matrix, and consider an element

of A(W) defined by
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N i N
(1.3.5)

where p = (vl9 v,

Proposition 1. 3. 7. Le£ £ denote the canonical isomorphism

C:W->W*, t(w®7ft(w'®y')=<w@'tj>w'®y'y. Then we have for

(1.3.6) Wi---
^

The proof is straightforward.

Proposition 1.3.8. Let ge^d(W) be given by g — wl--zvke
p/2.

I where Wj = 2 ^/*^y ^ -^^ ^^ denote the N com-
CI,N~ •**,*]

ponent column vector (Sv^)v=slt...iN.
N -1 N

If we write g = S — r E Pm(A, ••• , Pj *>»>'••**, the coefficient

(1. 3. 7) p. (A, .... /O =Pfaffian('e J ("* X) (e J,

— e
-r

<e ]
V

1
- i iz j

/ / 1
/Pfaffianf

Proof. We apply Proposition 1.3.6 taking W", expf — P + ]C£/»^/
\ ^ /i=i

and f J as W", g and r, respectively. Then from (1. 3. 6) follows

(1.3.7).

§1.4. Product in G(W}

Since G(W) is an algebraic subgroup in A(W), 6(1!̂ ) is a semi-
group. We shall give a formula to compute Nr(g(1)-"g(B>) for gm

t • • • ,
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when Nr(g(1)), • • • , Nr(g(n)) are given. (Though we treat

only the even dimensional case, the results in § 1. 5 enables us to give

analogous formulas in odd dimensional case.)
r r

First we consider a simple case. Let w = 2 v\c\ + 2 ^V*7/* and

Wi , • • • , wfc be elements of W and let 0= (vL ••• vL vl9 ••• vr) ( l 2)
' ' ' ' ' VR8 RJ

( R R\1 2J is skew-

symmetric.

Theorem 1.4.1. Let Nr(g) =w1--wke
p/2 'with wl9--,wk and p

as above. Then we have

(1. 4.1) Nr(wg) = (f] (-y-'zev^

where w(1) = u> — ̂ v]t(Rlc)/t--Jlv/t(RtC)fl9 and
/*=! fl=l

k

(1. 4. 2) Nr(gw) = (2 (-)fc"" i /w;i---Wy

where w(2') = w + ̂ v]l (R2tf) ^ + S ^^ (-RiC1) ,,. Her^ w^ have set
v=i fi=i

(cl\ (Cl\
CT = '• and c = : .Uj/ UJ

Remark. Since ^cl> = ]Tj ( — )y lwl'-wj..i(wWjyWj+i--wk or ^(2)

— )*~i/w1---te;/_i<fze;yte;^te;f+1---t£;fc is a &—-1 form in w^ -• • tvk, it is
=i

a monomial. We have

k

4 Q\ J if there exists te;0
(1) e 2 Cze;^ such that

2, if
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A A\ if there exists ivf* €= ]£] Cwj such that

») =Wi'"W]eW^ep/2
9 if (wjWy = Q for

The proof of Theorem 1. 4. 1 is given in § 1. 5.

Let Wr<"> = yt(")0y(") ( y z s l ^ - . ^ n ) denote copies of an orthogonal

space W with holonomic decomposition W = V^@ V. Let yl denote an

nXn symmetric matrix (A^^v-i....^ with AP>,= 1 (v = l, • • • , ri) . Let W"^)
re

denote the vector space @WW equipped with the inner product
v=l

(TOW ... w(»))f (W'd) ... W'W)>,= fj Aw^ w'w>. If det

W(A) is an orthogonal space. W (A) = (©Ft(y))©(® v(v)) gives a
v=l v=l

holonomic decomposition of W (A) . We denote by <( ^ the vacuum

expectation with respect to this holonomic decomposition. We note that

the nattiral inclusion £ ( M ) : W(p)— >W(yl) preserves not only the inner

product but also the holonomic decomposition.

Since (c^(w)~^Cw(w),cW(w')yA = Q for any w, w'^W, we

have the following proposition.

Proposition 1.4.2. If gr( /6)eG(W( /4))> for any w^W we have

(1. 4. 5) r,(,, (^
tf) (w) - V> (w) ) = C<v> (w) - A^^> (w) .

Hence, in particular, g(l*} belongs toG(W(A)}.

Take a dual basis (vl, • • • , vj, t>i, • • • , tfr) °^ W- We denote by

(^I00, •", ^J(><), v?\ • • - , ̂ v)) the corresponding dual basis of W00.

Let g^ be an element of 5(W(IP)) with the norm Nr(gw) =<g(v>>^''Cl')/2

where

JJP RP
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We assume that R(v

denote 2nrX2nr sk<

/jR(1> \
and

/n(i») ZPOOx
> = ( 1 * ) is skew-symmetric. Let jR and A (yi)

vR^ R^l
sw-symmetric matrices

2 j TJ^ J { 'C'' A\
~~" A«1 ^V1 * * * "~~ Am « t ^V t U J

/o o\
where -SC < = ) .

U o/

Theorem 1. 4. 3. Under the above assumptions, we have

(1. 4. 6) <g(1>-gw>, = <g(1>>-<g(n)>(det(l- A(A)R)?/2

(1. 4. 7)

AV-1
where R (A)

v^
'R(A)n'"R(A)ln\

': i is given by R(A)=R(I-

The proof of this theorem is given in § 1.5.

Let wf = ̂  *44?2 + Zj vi*cT,n (V = l, • • • , «; ^' = 1, • • • , &00) be elements

of W(v\ We set Nr(g(p>) =<g(v)>ze;1
(l')---ze;a)^

/)(>')/2. Let c}w and cf denote

• and : , respectively. Let r denote the 2rnxk matrix

eft,

^ITilPTP J? — ^ ' *''"'W11CJ.C fv •"" Xi /v .
V = l
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Let (v\, • • • , vln, vl9 • • • , vrn) denote the basis OP, • • • , vj(1), • • • , t>I(n),
. 7,t(») 7,(1) ... 7.GO ... 7,(

n> ... TiC^ T Pt £t ... ^t £ • •• P "• &,9 vr , Vl , , ^r , ,^1 , , vr j . l^et »!, , »r, ^1, , ^r, , ^r(n-l) + l>

•> ^L, ^r(n-i)+i, '", ^m denote the 2rn component column vectors,

, etc., respectively.

Theorem 1. 4. 4. If we write

f 1^
0
0

6 ,

9

f ° l
1

0

6

j

f 0)
0
1
0

6

i/ie coefficient is given by

(1.4.8) p»m,(Ai, ••• , /«„; V,, •-,

/Pfaffian /

where e=

(1. 4. 9) p.., (A, -,A.; v,, • • - , v.O =<<7a>---gwX<

xPfaf f i an(~ )( "v" " — - -~v--" Ue

\ tr]\-(l-A(A)Rr1 (l-A(A)R)-1A(A)]\ r

In particular

(1. 4.10) <J7C1>• • -g(B)> = <gr(1>• • -g(B'> Pfaffian 'r (1

k — k' = rank V (1 — A (./I) J?)~x A (^i) r, and choose a kxk non-

singular matrix (Xly -X"2) (X± is a k X &r matrix and X2 is a kx (k — k')

matrix) so that

Then we have
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(1.4.11) Nr(0(1>-0(»>)

,„(!> ,n)\Pfaffian 'X/r (1 - A (A) K)-*A (A) rX2

where wf = £] v\c} ft + vfic/)ft is given by 1>rn

v]?»

X A (A) rX J-"XtV (1 -

The proof is given in § 1. 5.

Remark 1. If we set A^ = l and identify all the W°° with W" in

Theorem 1. 4. 4, we have a formula to compute products in G ( W) .

Remark 2. Let us denote by ||J5"|| the norm of an mXm matrix

X; namely \\X\\ = £j \xit\. If ||A(^)2?||<1, (1.4.10) is rewritten as
i, /a=l

(1. 4. 12) <^(1> • • -g(B>> = <^(1)> • • • <0<n>> Pfaffian 'r g (A (A) R)1A (A) r

X exp |- fj — trace (A (A) R) 4 .
( «-a 2t )

We shall give an example. Let Nr(gr) =ivl---wk e
f/t vdth

and
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—04

fj

Then we have

with w?=sEiv\c$i+i±v*c%t c/=i, —,*)
^-••4\

where
I/W-'St,

and

with te;(2) = y~j v^ c®*^ + T] ^ c(2) ( / = 1 • • • ^&)

where '"* "" ' '~ '^'"^

and p(2> = (vl, ...9vl9Vl9...9 Vr)

§ 1. 5. ff-Norms and Transformation Law

Let W, W* and W be as in the proof of Theorem 1. 3. 2. Let

K: W-+W* be a linear homomorphism and denote by Jc the induced in-

jective homomorphism

K: W >W
UJ IU
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We assume that the inner product in W is non-degenerate when it is

restricted to WK — K(W), and identify W with the orthogonal space WK.
def

Definition 1. 5. 1. The K-norm is the folio-wing linear isomor-

phism :

(1.5.1) ^r

We denote by : :K the inverse of Nrff : a = : Nr« (a) :K. The constant

term of Nrff (a) is called the /^-expectation value and is denoted by (a)K.

Take a basis (yi9 •",&#) of W. We denote by K the matrix

and set J = K+'K and H = K-tK.

Remark 1. Let W = Vf0V be an orthogonal space and its holonomic

decomposition. We define 1C by K(W) (t£/) =(wzv'y. Then the orthogo-

nal structure on W induced by K coincides with the original one and

the £-norm coincides with (1.1.4). If we take a dual basis (t;J, --9vl,

^i, "S^r), we have J=( J and K=( j.

Remark 2. Let *ic denote the adjoint of K, i.e. ^(w^tjv')

= K(iv')(w). Then the following alternative coincides with (1.5.1).

Nr* : A (W)

where <fvac*| denotes the residue class of 1 in A(W)/W*A(W).

Proposition 1. 5. 2. If w e W and a&A (W) ,

(1.5.2) Nr

and

(1.5.3) T3*

The action of /c(w) (resp. *A;(W)) is understood on A(W)|vae> (resp.
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<vac*|A(W-)).

In particular we have

(i. 5. 4) «v • • wk = ] I] sgn (%™w
m=0 Ai</i2, •». jKzm-iOzm.

^.-/^fi^W-HJ-CI..-..*}

X ̂ .tOf'Xw^

/or Wj, • • - , w fce W.

1 Ml— (tv-t^-R | IV, w=Xl
2 W/J

#* we «?£ Nr,c(g) =

where tR=—R and c=\ \ , we have
W/

A
(1. 5. 5) N

(1. 5. 6)

Here

The proof is straightforward.

Theorem 1.5.3. Take an element g of G(W). Let T denote

the matrix representation of Tg with respect to the basis (vly • • • ,

Then we have

(1.5.7)

V <9r>*Tt°» we have

(1.5.8)

where R= (T-V> (*KT+K)-\

Remark. If ^gX^O, we have

(1. 5. 9) <gX= nr (g) det (1 + 2f.R)-',
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(1. 5. 10) T= (1-JZ'X)

Lemma. K induces a natural inclusion £: G(W) C-»G(W) .

Proof. We have W=WK@W^K. Since WK_l_W_tK, it(g)w

for w^W.tK. This implies % (g) We ( K (g) ) -1 = W.

Proof of Theorem 1. 5.3. If we take a basis (vl9 • • - , VN, vf, • • • , v%}

where v^= ( y ^ K f y ^ ) } and v*= (v^ — fic(v^)) (# = 1, • • • , JV), the matrix

(
/T~| \

J. The dual basis (v^ • • - , VN>

"', ^N) is given by (v^ • • • , 0^, t?f, ••

J. Thus the matrix representation of Ts(g) with respect to
• K — K'K -K'

/I 1 \ IT \ (
Ls (fj, ••• ?^,r 77, ••• 77,7"} reads I i f I I

• IT ifA —A'
the basis (t>,, -, »,, ft, -, 7») reads (^ M (T ) f 1

V-VJ-1 \ Since

= <^vac | fc (g) | vac^> and Nr/c(g) =Nr(A;(g))|9==o, tne theorem follows from

(1.2.7) and (1.2.8).

The following proposition is sometimes useful in finding R from T.

Proposition 1. 5. 4. Suppose there exist Y± that are invertible

and satisfy

(1.5.11) J-ltK-Y+.J-1K = Q, J-1K-Y_.J-ltK=Q, Y_ = Y+T.

Then we have

(1.5. 12) (K + ̂ T)-1 = Yl1 (J~1K • Y _ + J-1 *K - Y+) J-1

R = (Y+1 - Yl1) ( J~1K -Y. + J-^K- Y +) J-1

Proof. Note that J-ltK-Y+-J-1K = Q (resp. J^jST-T.. J~ltK =

is equivalent to J-ltK'Y+'J-ltK = J-ltK-Y+ (resp. J^K-Y.-J^

= J~1K'YJ). Hence we have

( J~1K • Y. + J-1 'J£ - Y+) J-1 (K + <
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(1. 5. 12) follows from the above equation and (1. 5. 8).

Now we fix an orthogonal structure in W. Let (vl9 • • • , VN) be a

basis of W and set J= (^vft9 z^X,, *=!,...,#. Let g0 be an element of

G(W) such that trace g0=J=Q. Let T0 be the matrix representation of

Tffg with respect to (vl9 • • • , V&). We set

(1.5.13) H = .
1 + To

Then £T is skew-symmetric, and if we set K = — (J + jEZ"), we have
£i

'K = J. Hence there exists a unique K: W-+W* such that K =

(K(v^(v^^miW.

From (1.5.7), (1.5.8) and (1.5.13) we have

(1.5.14)

M\ l-T?
and Nr*(g0) =<go>«^/>0/2 with p0= (vl9 • • • , ^)^?0 : where jRo= —

Proposition 1. 5. 5. Under the above assumptions, we have

(1.5.15) <a
trace

Remark 1. (1. 5. 13) is rewritten as

(1.5.16) TQ = K-UK.

Remark 2. In Proposition 1.5.5 we have restricted g0 i
n G(W).

If we admit g0 to be an element of G (W) such that trace gfl¥=0,

(1. 5. 13) gives a one to one correspondence between K satisfying

K(W) (TX/) +lt(w') (w) =(w9 iv'y and gfl modulo a constant factor. In

fact, if we define K by K(W) (tc/) = trace (g^ivw^ for given g0, we have
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) (w') +/c(te/) (w) = trace (gQww') + trace (gtiv'w) = trace (g0(ww'

*))=(w9w'y. Since (1.5.13) is an algebraic relation, it is valid

even if g0sG(W). Conversely, taking the closure of such elements g0

as in (1. 5. 12) the existence of g0¥=^9 which satisfies <(<aO>/r trace g0

= trace gQa for given £, is obvious. Since trace g0a^09 we have trace g0

¥=0.

We shall denote by gK the unique element in G(W) such that

trace gK = l and <X>/C = trace gKa.

Remark 3. If a holonomic decomposition W = Vf0 V is given,

g^=|vac><vac|:

(1.5. 17) <Vac | a \ vac> = trace ( | vac> <vac | a) .

Lemma. Let g be an element of G ( W) . Then we have

(1. 5. 18) (trace g)2 = nr (g) det (1 + T'1) .

This follows from Theorem 1. 3. 3.

Proof of Proposition 1. 5. 5. It is sufficient to prove (1. 5. 15)

when geG+(W) and nr(g)=l. We also assume that nr(gfl) =1. Let

T be the matrix representation of Tg. The matrix representation of

T00 is K'1 1K. Hence we have

(trace g,g) 2 _ det (l + K'^KT) = det(*KT + K) _

(trace g0)2

Now the proposition follows from (1. 5. 7) .

Proposition 1. 5. 6. If H is invertible, we have

( i
(1.5.19) Nr,(s,r0,)=<e,r0«>«exp - — (»,,•••,

Proof. Without loss of generality we may assume that

Then the matrix representation of BwgK is —K~ltK9 and (1.5.19)

follows from (1. 5. 8) .
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Now we shall give a transformation law to compute the fc'-norm of

an element in G (W) from the £-norm of it. Let K and K' denote the

matrices «v, »„>*)* «-i.»...y and ^^X')*..-!. ....*, respectively.

Theorem 1.5.7. Let g^G(W) be given by Nrff (g) =

h\P = (,Vi9 •", vN)R\ I 'with a skew -symmetric matrix R. Then we
W/

have

(1. 5. 20) <gV = <<7>* (det (1 - (K' - K) R) )V2

—1 K

If ^3>K^^y we have

(1.5.21) Nrjf,(g)

x= (Vl, • • • , VN) R'l \ with R'=R(1- (K'-K)R)-\
\vW

Proof. We note that K + 'K = K' + tK'9 hence we have

= (T - 1) ('JCT + ̂ C)-1 (1 - (K' - K) (T - 1) (*Jf T + X)-1)'1

= (T-i) CKT+K- (K'-K) (T-i))-1

From (1.5.9) it follows that <g>2, = nr (g) det (1 + KR)'1 and <g>2,,

= nr(g)det(l + ̂ /^/)"1. Hence we have

L = det (1 + K'R'Y1 (1 + KR)

= det (1 + K'R (1 - (K' - X) 1?) -1)"1 (1 + KR)

Theorem 1. 5. 8. Notations are as in Proposition 1. 3. 5. We set

(g) = <gXwi' ' " ̂ jb^p/2. ^f w^ 'write



— e
— r

'e
V

-(K'-K) 1
1 7?

/ / 1'/Pfaffian
/ \-l
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Nr^ (g) = 2 -i- S P-(A, ''', /O *W• ' ^
m=0 m!*!."*/'*-*!

£&e coefficient pm(A, •", A»)

(1. 5. 22) p. (Af-.., /im) = (-

X Pfaffian

Proof. Let £ denote the canonical isomorphism C: W-*W*9 c(w)

>/)=(w9w'y. We introduce an orthogonal structure into W* by

(w) 9 c(w')y = (w9 w'y. We denote by W$ the orthogonal space

equipped with the inner product (w@y9 w'©^')> = <(te>, w'y

V9Tl'y. Take a basis (ft, ••-,^) of TF* so that f„(*>„) =*/-• Let £

denote the linear homomorphism £: W-*W* such that (v/tvvy% = (yftvvyK9

0 /*>*>
1

^/*O« = 0, <'?»t;l,)>/c = 0 and <'?«O« = s—\v/., f /»/ & = V. Likewise we
2

define £': W"-^W"*

Let g denote the element of G(W) given by Nrfc(g) =g(K) (see

(1.3.5)). Applying Theorem 1.5.7, we have

and if

where |5/= (vl9 • • • , vN9 £l9 • • - , fy)Jf
^i

/K'-K \/R -IN]'1 I-(K'-K) l^-1

w/ ._. -1\ f/1
with R'=( . )U

,, , _ „, • Then using Proposition_ _
1. 3. 7 and Proposition 1. 3. 8, we have
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*-(K'-K) 1>
1/Pfaffianl

-1

„, .,xPf,ffi.n

^ *)/Pfaffian(
1 JK./ 1 \

/'« \/-(.K'-K) l\-'/e \]
( ,J( _x J ( J

— e

'e \
'r

-(K'-K) 1
1 7?

/Pfaffian

Remark 1. Theorem 1. 4. 3 and Theorem 1. 4. 4 are special cases

of Theorem 1. 5. 7 and Theorem 1. 5. 8; namely we take

K= K,

and

Remark 2. The analogues of (1. 4. 9) ~ (1. 4. 11) are valid in

Theorem 1. 5. 8.

Propositions 1. 2. 6 and 1. 2. 7 are paraphrased in terms of £-norms

as follows. We omit proofs, which are only refrains.

We denote by 1C the linear transformation K: W— >W defined by

def

Note that £+*£ = !. We have

(1.5.23) :K(w}NxK(a}iK = K(w}a--e

(1. 5. 24) : Nr^ (a) ̂  (ze;) :ff = a*K (w) - £ (a) J/c (w) .

Thus (1.5.2) and (1.5.3) read

(1. 5. 25) : w Nr^ (a) :K = 1K (w) a + e(a)K (w) ,

(1 . 5. 26) : Nr K (a}w:K = at (w) + *K (w) (a) .
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In particular, if gf 'eG(W) and Nr/c (g) = w NrK (g') , we have

(1.5.27) g=('£+TH0(«Og'.

If g also belongs to G(W), we have

(1.5.28) ( '£+T,£)(wO=0.

The matrix representation of £ is J~l *K. If we choose a basis so

that J = l, the matrix representation of *£+TgA; is K+T*K. Hence, if

det(J£+T^)=det('XT +.£)=£(), we can apply Theorem 1.5.3 to com-

pute the £-norm of g.

Now assume that Ker (*K + TgK) =^0, and set g' = wg, where te; is

a generic element of W. Then the following conditions i) and ii) for

W are equivalent ;

ii)

Moreover we have Nrff (g) = Wj Nrff (g
x) , where te/! is any element of

W satisfying (*£ + T,£) (w,) = ° and <w, I5w1> = l.

Take a basis (t^, • • • , t;n) of W, and assume that Nr/c(g) =tev -wke
p/2,

N /Vl \
with ?Vj = ̂ v/tCjft (j = l9"-9k) and p= (z^, • • - , t;^) J? : where J? is

skew-symmetric. We set NrK (gO = ef/2. Then we have

(1.5.29) nr(0f)=det«('*+T,1«)(«;/1), TBj(w,) >/.,.=!...,

/'Cl\= det '• l

If nr(g!)=^0, then gi^G(W) and ggf1 is a polynomial of C£+Tgi£) (t

(j = !,-••,*). If nr(g)=^0, geG(TF) and we have

(1. 5. 30) Ker (Vp + Tf fi) = ]
/ = !

If we denote by T the matrix representation of g, we have

(1.5.31) T=(1-JR^)
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( *c \ ) ~1

i1 Kl-^lQ-1 IK fa---**)}

xnja-'KR)-1./.
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