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On a Certain Semilinear Parabolic
System Related to the Lotka-Volterra

Ecological Model

By

Masayasu MlMURA* and Takaaki NlSHIDA**

Abstract

A mathematical model proposed to explain the horizontal structure of prey and predator
populations is represented by a semilinear parabolic system of equations. In this paper
some mixed problems for this kind of system, Lotka-Volterra system, are considered and
asymptotic behaviors of the solutions are investigated by use of Energy Method.

A remarkable fact is that, in opposition to Steele's conjecture (see [3]), the solution in
the case of the Neumann boundary condition is asymptotically spatially homogeneous but does
not tend to any constant steady state solution.

§ 1. Introduction

In 1930, a great mathematician, Vito Volterra published a book con-
cerning the mathematical theory of the biological struggle for life
[1]. His simplest model can be given in the form

u= (s.—kv^u(1-1)
^ Vt=(~82+ku)v. <*>

Here u and v are the population densities of the prey and the
predator respectively, the positive constants £15 £2 and k are the
growth rate of u, the death rate of v and the frequency of encoun-

ters. It is well known that the phase of (1-1) are closed with
the center u = ez/k and v = £1/k, if the initial data are positive.
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Now it is interesting to consider (1-1) in the spatial inhomoge-

neity, because the majority of actual populations migrate in a given

domain. If the flux of individuals is assumed to flow from higher

densities to lower ones, then it is natural to introduce diffusion

effects into (1-1). For a one dimensional spatial case, (1-1) may be

written as

ut = dluxx+ fa-kv^u

where the diffusion coefficients dl and d2 are both positive constants.
Steele [3] proposed this system to explain the horizontal structure

of prey and predator populations in a turbulent sea. In the sea,
the phytoplankton and herbiovorous zooplankton are the prey and
predator relationship. A main effect of plankton's movement is the

current and turbulent lateral diffusion. However, Cassie [4] noted

that plankton populations display spatially heterogeneity in spite of

diffusion processes. These phenomena are called patchiness for
planktons. From an ecological point of view, it is important to

analyze the mechanics of patchiness effects [6]. Steele considered
the initial-boundary value problem of (1-2) with zero flux boundary

condition and conjectured that spatial inhomogeneites would appear,
keeping the balance of the nonlinearity and diffusion effects. Hadeler,
Heiden and Rothe [5] showed from thier numerical evidences that
(1-2) had a non-trivial steady state solution with zero boundary
condition. On the other hand, Murray [7] treated the same problem
as Steele 's under the same diffusion coefficients. Although his proof
is not given in detail, he negatived Steele 's conjecture.

This paper is motivated by Murray' paper and concerns with

asymptotic behaviours of the solution of (1-2) under the appropriate
initial-boundary conditions by using the well known ENERGY

METHOD. The key of our result is the use of the conservation
form derived from the Lotka-Volterra's model.



LOTKA-VOLTERRA SYSTEM 271

§ 2. Generalized Lotka-Volterra System with the

Diffusion Effect.

If Ui(t, x) (i= 1, 2, . . . , ri) denote the population densities of the

interacting /-species, then the generalized system including (1-2)

may be constructed as follows ;

(2-1) ui=diu, + fe + &-1LMjK.,
t ss j = 1

for /=!, 2,. . ,3 n, where the diffusion coefficients dt are all positive

constants, the constants ef- are the birth rates (if £t->0) or the

death rates (if s,-<0) of the /-species and {&,-,-} is an anti-symmetric

constant matrix. If ku^>Q (resp. <CO), the /-species is a predator

(resp. prey) to the /-species and /-species is a prey (resp. predator)

to the /-species. Finally ^r1 are positive constants named "equiva-

lence" numbers.

For the system (2-1), we consider some mixed problems with

the domain (t, x) ^ (0, +oo)x (0, L). Here the initial conditions

are given by

(2-2) w,.(0, x)=uiQ(x}, x^[Q, L],

and the boundary conditions by

(2-3) ut(t, Q)=ht, u{(t, L)=gi,

(2-4) uig(t, Q)=uig(t9 L)=Q9

or

(2-5) * , f eO) =,,(,,*),
ufg(t, Q)=ulg(t, L),

where h{ and gs are non-negative constant for /=!, 23 . . . , n. The

conditions (2-3) and (2-4) mean a population reservoir and a bar-
rier.

The local existence and the uniqueness of the solution of each

mixed problem can be proved easily, so we do not write them down.
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§ 3. Asymptotic Behaviours

First of all we assume the following properties ;
(1) (2-1) has at least one positive equilibrium state, that is, there

exist positive constants {u} such that

&e,+ Z*,,fl/ = 0 (f = l, 2 , . . . , n).
y=i

(2) the initial values {uiQ(x)} are positive and bounded in x e [0,

L-].

3-1. Dirichlet Condition

Let us consider the mixed problem (2-1), (2-2) and

(3-1) ut(t, 0)=w,(*, L)=fl,.

Now we introduce the following integral forms E(f)9 El(t) and

(3-3) j

and

(3-4) 1

which play an important role in our discussions. We shall give some
lemmas.

Lemma 3-1. Let u{(t, x) be a smooth solution of the mixed
problem(2-1), (2-2) and (3-1). If we assume that u^t, x)^Kuifor
some positive constant K, then there exist positive constants C^K) and
C2(K) such that

(3-5)

and
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(3-6) S1(f7(0),-C2(JSO£1(t/(0)^0.

Proof. Differentiating (3-2) with respect to t, and using (3-1),

we have

(l-uju^u, (t, x)dx

.di[l-ai/ui)ui}f-'dilli(ui/uiy](t9 x)dx.
i=i Jo * *

Thus, if we put

(3-8) Q(X) -

then (3-5) can be obtained. In a similar manner, noting that u{ =0

at ^ = 0 and x = L from (3-1), we have

(3-9)
+ fcl^kij(ujui + uiuj)ui) (t, x)dx.

Therefore, if C2(K) may be taken as C2(K) =2-max(|e,. | +2^2 \ k t j \
i j = l

xK&i), (3-6) is obtained.

Lemma 3-2. In addition to the assumption of Lemma 3-1, if we

assume uJK^u^t^ x} for K^19 then there exists a positive constant

C3(£) such that

(3-10) £(t/(0)-Cs(X)JE l(t7(0)^0.

Proof. Under the assumptions w.£"^w t(£, x)^n./K9 it holds that

^{Ui-Ui-Utlvg^Ju^y^K^ (ut-u^dx^ (Uiydx
Jo Jo *

and

(ui~u:)'i^(lKui{ui-ui-ui log (w,-/fl.)}.

From the above inequalities, we obtain (3-10). Here it suffices to

take C,(K) as C3(^)=4K3L2 -max(A/fl,).
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Theorem 3-1. Consider the mixed problem (2-1) , (2-2) and

(3-1). Let the solution u{(t9 x) be uJK^u^t, x)^Kuf for some

positive constant K(^>1). If

and

then u{(t, x) approach ui asymptotically with exponential order for

i=l , 2, . . ., n.

Proof. Combining (3-5) and (3-6), we have

From (3-10) and (3-11), we obtain

where C,(X) =C1(X)/{C,(X)C2(X) + C3(X) + C1(X)}. Thus (3-12)

implies

( J— 1/5 )

that is, E(U(t)) and ^([/(O) tend to zero as £-> + oo. Conse-

quently, Uf(t, x) approach u{ asymptotically, because

(3-14) {utfa *)-fl

hold for i=l9 2, . . ., n. Thus the proof is completed.

From the above discussions, we find that it is essential to get the

uniformly boundedness of u{(t9 x) such that u{/K^Ui(t9 x}^Kuia

Lemma 3-3 (Murray). If the diffusion coefficients dt are all equal,

that is, di = dyQ, then the mixed problem (2-1), (2-2) and (3-1)
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has the a priori estimate uJK^u^t, x) ^Ku{ for some positive constant
K which depends on the initial data.

Proof. We first define the functional S(U) as

(3-15) 5(C7) - 2/3, {u-u-u, log (uju,}} .
t=i

If the solution «,-(£, x) are substituted into (3-15), it follows that

(3-16)

= ̂ Z A {«,.-«,.-«,. log («,/«,)}„- 48, S«,(«, /«,)'
i = 1 i = l *

Therefore, we get the mixed problem with respect to S as follows ;

S, = dS.,,-s?(t, x) (t, x)e(0, +oo)X (0, L),

(3-17) 5(0, ar) = i;j8 l[tt l l l(a;)-fl(-fl(log {u,.^)/!?.)}], *e[0, L],

where 2:2= 2&-Si (wi • /^i)2' By use of the well known Comparison
i=i *

theorem to the problem (3-17), we have

for (t, x) e (0, +oo)x(0 ? L). Thus we find that there exists a

positive constant K such that u./K^ut(t9 x) ^Ku{ for z= l , 2, . . . , n,

Proposition 3-1. Let the diffusion coefficients dl be equal. If

and

then the solution ut(t, x) approach to ui asymptotically with exponen-

tial order for i=l, 2, . . . 3 n.

Proof. The proof follows from Theorem 3-1 and Lemma 3-3

directly, so we omit the details.
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In the general case that d{ are different, we have no complete

answer. At present our results are the folio wings ;

Lemma 3-4. //JE(£7(0)) and ^([/(O)) are sufficiently small,

then there exists some positive constant K such that

^Ku{ for (t, ,r)e(0, + oo) x (0, L).

Proof. Suppose that ^i/K^u{(t9 x)^Kui} we have

from (3-14). Hence, using (3-13), we obtain

for (*, -r)e(0, +00) X (0, L). Now, taking the values of J5(C7(0))

and 1^ (£7(0)) sufficiently small, we can get the number K satisfy-

ing

and 1- V, iM(

where VKtEiE (0) is positive. These conditions are consistent with

&i/K^Ui(t9 x)^Kut. Thus, the lemma is proved.

Proposition 3-2. Consider the mixed problem (2-1), (2-2)

and (3-3). // £(Z7(0)) and E,(U(0)) are sufficiently small, then

U i ( t 9 x ) approach ui asymptotically with exponential order for i=l9

2 , . . . , n.

Proof. It is trivial to prove this proposition, so we omit it.

3-2. Neumann Condition

Let us consider the mixed problem (2-1), (2-2) and (2-4). The

discussions in this part are almost the same as those of section 3-1.
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Lemma 3-5. Let u f ( t , x) be a smooth solution of the mixed problem

(2-1), (2-2) and (2-4) and satisfy u f ( t 9 x)^Ku{ for some positive

constant K. If £([/(0))< + °o and ^(E/WX + oo, it holds that

Proof. In view of the boundary condition (2-4), (3-9) holds and

gives

(3-19)

and

(3-20) |

where d=mm(dl, du . . . , d,~) and cZ=max(<f19 d2, . . . , dn). From

(3-5) and (3-19), we obtain

(3-21)

Hence3 we have

(3-22)

Consequently, (3-20) and (3-22) give

(3-23)

Here c^fr))^ is used- Then we have
o

which completes the proof.

If L is small, we can represent Lemma 3-5 more precisely,

Proposition 3-3. Under the assumption of Lemma 3-5, if C2(K)
4d<^-^-, then E1(U(t)) tends to zero with exponential order as £— »oo.
.L/

Proof. Noting the Poincare's inequality
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(3-24) £,(17(0) ^^-

we have from (3-19)

(3-25)

which gives the proof directly.

Lemma 3-6. // E(U(0)) and El(U(Q)} are sufficiently small,

there exists some positive constant K such that uJK^u^t, x)^Kui

for (t, x)^(0, + oo)x(0 3 L).

Proof. For any fixed number se[0, L], we have

^3~26) ' of' r / 1 -i , ftw*= 2\ [Ui(t, g)—Ui}Ui (t, ?)rff.
J^

Supposing that u^^u^t, x}^Kuiy then (3-26) gives

(3-27) [ut(t, s)-a{}*^.

Integrating (3-27) from 0 to L with respect to x, we get

(3-28) [u{(t, 5)-w,}2^

Choosing £(C7(0)) and ^((7(0)) sufficiently small, we find that

u{ (t, x) are consistent with u./K^u^t, x^^Ku^ by using the

procedure analogous to that of Lemma 3-4. Therefore the proof is

given.

Theorem 3-2. I/£([7(0)) and ^(17(0)) ar^ sufficiently small,

then the solution u f ( t , x) of the mixed problem (2-1), (2-2) and

(2-4) become to be spatial homogeneous asymptotically and

lim («,(*,*), «,(*,*),... , «.(*, a:))

Proof. For some fixed number ^e[03 L]3 it follows that
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(3-29)

Hence, by using Lemma 3-5, we find that &,•(£, x) become to be

spatially homogeneous for i=l9 2 , . . . , n, as £-» + ooo On the other

hand, S(U(t, x}) is continuous in x, so there exists some number

xQ(f) depending on t, such that

(3-30) S(U(t, *„(*))) =-j

Thus, it follows that

(3-31) S(U(t, x»-
L,

and that

(3-32) \S(U(t, x))
Li

which implies the proof.

Proposition 3-4. Let the diffusion coefficients d{ be all equal.
I/£(C7(0))< + oo and ^([/((^X+oo, then the solution u,(t, x)

has the same property as that of Theorem 3-2.

Proof. The proof is obvious, so we omit it.

From Theorem 3-2 and Proposition 3-4, we can get the follow-

ing remark;

Remark 3-2. Let the solution u{(t, x) satisfy uJK^u^t, x} ̂ Ku{.

J/£(C7(0))<+oo and El(U(ty}<+&>, the necessary and sufficient

condition of lim u{(t, x)=ui is £(t/(oo)) =0.

Proposition 3-5. Let ut(t, x) satisfy uJK^u^t^ x}^Kui for

some positive constant K. If E(U (0)), JB1(L/r(0)), u{ and d{ are so

chosen as
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E ( £7(0) ) > 4Jl_C^(K) Ei ( C7(0) ) and 4d>UC2(K),

where Ct(K)=2K2max (MM), then it follows E(t/(oo))>0.
i

Proof. From (3-25), we get

(3-33)

Combining (3-33) and £(C7(0),^-C4(X)£1(t7(t)), we have

(3-34)

Here ^--C2(K)>0 is used. Thus (3-34) gives the proof directly.Li

§ 4. Concluding Remarks

By applying arguments similar to those used in this paper, we

can treat the asymptotic problem in the case of the periodic bound-

ary condition (2-5).

We could not argue about the Dirichlet boundary condition
(2-3) deeply. When the non-trivial solution w{(x) of the boundary
value problem (2-1) and (2-3) exist in the neighbourhood of uiy

we can prove the following;

Theorem 4-1. Instead of the assumptions of {K^} , let us assume

that {fiTluikij} is an anti-symmetric matrix^ Assume that there
exist Wi(x} satisfying

wi(Q)=hi, u{(L)=gi

such that

\wi(x}-ui\^M for .r<E[03 L] and 4^-L2C5(M)>03

(*) If kij is sufficiently small, we can remove this condition.
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where C5(M) =4max (j8r l |*,yl)Mn. // ^(V(0)) =-- S {««.(*) -
»,/ 4 1 = 1 Jo

wi(x}}2dx and El(V(Q)) are sufficiently small according to M, the

solution u{(t9 x) of the mixed problem (2-1), (2-2) and (2-3) tend

to w{(x) with exponential order for i=\, 2, . . . , n.

Proof. Substituting v f ( t , x)=ui(t) x ) — w f ( x ) into (2-1), we get
the following system with respect to v{ ;

(4-1) *,=<!& + (ei + p-l£kiiui')vi + ^ilkijwiv1.
t ** j=l J==1

Here the initial conditions are given by

(4-2) v, (0, x) = uiQ (x) - w{ (x) x e [0, L]

and the boundary conditions by

(4-3) v, (t, 0) = v, (t, L) = 0 t^ 0.

Supposing that \u{(t, x)—u{ <^M for (t, x} e (0, +°o)x[0, L],

we get

(4-4) E0(V(t»t^-2dEl(V(t» +C5(M)E0(y(0)

Let M choose as 4d-L2C5(M) >0. Then, by use of Poincare's
inequality, E0(V(t)) can be estimated by

(4-5)

for some positive constant 5. By using the same argument as EQ,
we have

where [ WJ = max (max | w; (a:) | ) . From (4-4) and (4-6), it follows

(4-7)

Here we choose A>0 as 4 ^ - C 5 ( M ) A L + s>0. Then, for some
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, (4-7) can be rewritten as

(4-8)

where p=^-+C5(M)(l+^- W,\. Applying (4-5) to (4-8),

can be estimated as follows;

m

or

Hence, if E0(F(0)) and E^FCO)) are choosen as sufficiently small,
77,- (t, x} tend to zero with exponential order, because of

Thus3 the proof is completed*
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