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On General Denting Points and the Unique
Positive Extension of Certain Positive
Linear Functionals

By

Minoru MATSUDA*

Throughout this paper, let X be a completely regular Hausdorff
space, C,(X) the space of all real-valued bounded and continuous
functions on X with supremum norm, M (X) the set of all positive
linear functionals g on C,(X) such that p(1)=1, (M(X) is also the
set of all positive, regular finitely additive measures, each of total
mass 1, on the algebra generated by zero sets.), A a subspace of
C,(X) which separates points of X and contains the constant func-
tions, and A* the set of all real-valued continuous linear functionals
on A. If X is a non-empty closed, bounded and convex subset of
an LCHTVS (locally convex Hausdorff topological vector space) E
over the field R of real numbers, then we always regard A as the
subspace {flx+r:f€E*, reR} of C,(X),where E* is the topological
dual of E, and f|x is the restriction of f to X. Denote by K(A)
the set of all L in A* such that L(1)=1=||L||. If we consider A*
(resp. C,(X)*) 1in its weak™ topology, then K(A) (resp. M (X)) is
a non-empty compact convex subset of an LCHTVS A* (resp. C,(X)*)
over R. If a is in X, let ¢(a) be the element of K(A) defined by
é(a) (f)y=f(a) for any f in A, and e(a) the element of M(X)
defined by e(a) (f) =f(a) for any f in C,(X). Note that ¢ is a one-
to-one and continuous mapping from X into K(4).

The purpose of this paper is to give a characterization of point
a in X with the following property (*).

™) {reM(X) : p(f) =f(a) for any f in A} ={e(a)}.
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In other words, we consider some conditions of the point a under
which L, is uniquely extended so as to become an element of M(X),
where L,: A—R is defined by L,(f) =f(a) for any f in A.

Concerning this problem, Bauer ([1]) has first proved that if
X is a compact convex subset of an LCHTVS E over R, then a point
a in X satisfies the property (*) if and only if a is an extreme
point of X. More generally, making use of this result, it is proved
in [7] (Proposition 6.2) that if X is a compact Hausdorff space,
then a point a satisfies the property (*) if and only if ¢(@) e
ext K(A), the set of all extreme points of K(4). This pointa is called
a Choquet point of X with respect to A. Successively, Khurana
([4]) has extended the Bauer’s theorem to the non-compact case
as follows: if X is a closed, bounded and convex subset of an LCH-
TVS E over R, then a point @ in X satisfies the property (*) if
and only if a&€ Dent X, the set of all denting points of X. A point
a in X is called a denting point of X if for every neighborhood
V of a, a€ cl-conv (X\V), the closed convex hull of X\V. Choquet
([2]) calls these points strongly extreme points.

In this paper, we attempt to extend above all results to the non-
compact case without algebraic structures. We define a topology
7, on X such that (X, z,) is a completely regular Hausdorff space
for which a net {z,} CX converges to z&X in the topology 7, if
and only if lim f(x,)=f(z) for any f in 4, and for which f in A
1s continuousaon (X, r,). We define a general denting point of X
with respect to A as follows, and denote by D,(X) the set of all
general denting points of X with respect to A.

Definition. A point a in X is called a general denting point of
X with respect to A if two following conditions are satisfied.
(1) ¢(@)e ext K(4).
(2) For a net {z,} in X, z,—a in the original topology if z,—a in

the topology 7,.

Then two following examples show that condition (1) and condi-

tion (2) are independent.
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Example 1. Here we give an example in which condition (1)
does not imply condition (2). In /, with canonical basis {e,}, 0=
X=cl-conv ({¢,}). Then X is a weakly compact convex subset of
L, and 0 €ext X. Then, by making use of Khurana’s theorem
(Theorem 2.5 in [3]), we have that ¢(0) & ext K(4). If a point 0
in X satisfies (2), then we know that ¢,—~0 in the norm topology,
since ¢,—>0 in the topology z,. But |le,/{=1 for all n, which is a
contradiction. Hence (1) (2).

In [5], Looney has given this example in which an exposed

point need not be a denting point.

Example 2. Here we give an example in which condition (2)
does not imply condition (1). Let X be a compact convex subset
of an LCHTVS E over R such that X\ext X#¢. Then a point a of
X\ext X satisfies (2), but does not satisfy (1), since a is in ext X if
and only if ¢(a) is in ext K(A) in this case. Hence (2)1 (D).

Now we obtain a following result concerning the problem stated

above.

Theorem. A point a in X satisfies the property (*) if and only
ifacD,(X).

Before we prove this theorem, we prepare a following lemma.

Lemma. Let e(X)=1{(x): z€X}. Then
(1) e(X)Cext M(X), (2) ext M(X)C e(X).

Proof. To verify (1), suppose that e(x) =t-p+ (1—£)-v where p
and v are elements of M(X) and 0<¢t<l. Let g be in C,(X) such
that g(x) =0 and 0=g=1 everywhere. Then we have that

O0=t-pu(g) +1—2)-v(g) =¢(z) (g) =g(x) =0

which means that y(g) =0=g(x) and v(g) =0=g(x). From this it
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easily follows that y=v=e(x). To verify (2), we recall that M(X)
is the closed convex hull of ¢(X). Then, by Milman’s converse to
the Krein Milman theorem (p. 9 in [7]), (2) holds.

Proof of Theorem. Suppose that acD,(X). Let N={peM(X):
u(f)=f(@) for any f in A}. Then N is a non-empty compact
convex subset of an LCHTVS C,(X)* over R. Hence we are going
to prove that ext N={e(a)}, which means that N={c(a)} by the
Krein-Milman theorem. Let Aext N. Since ¢(a) is an element of
ext K(A), ext NCext M(X). Hence, by the above lemma, there is
a net {z,} in X such that e(z,)—>4 Then f(z,)—=2()=f(@) for
any f in A, that is, z,—a in the topology z,. Hence, by condition
(2), z,~a in the original topology, that is, ¢(x,) —>¢(a), which shows
that 2z=¢(a). This proves that ext N={e(a)}. Conversely, suppose
that the property (*) is satisfied. We first prove that condition (1)
is satisfied. Let ¢(@)=¢-S+(1—2)+T on A, where S and T are
elements of K(A) and 0<¢<1l. Since S and T are in K(A4), they
may be extended to the elements g5 and g, of M(X), respectively,
by the Hahn-Banach theorem. Hence we have that f(a)=d¢(a) (f)
= {t-ps+ (1—1t) - s} (f) for any f in A. From this and the assump-
tion we get that z-us+ (1—t)-pr=e(a@). By the above lemma, we
have that ps=pr=¢e(a), which means that S=T=d¢(a) on 4, and so
¢(a)cext K(A). We next prove that condition (2) is satisfied.
Let {z.} be a net in X such that x,—»a in the topology 7, and g an
arbitrary cluster point of the net f{e(x,)}. Then there is a subnet
{z;} of {z.,} such that e(z,)—pg, and so u(f)=lm e(z;)(f)=Ilim
f(z,)=f(a) for any f in A, since z,—>a in the topoﬁlogy T, Henée,
by the property (*), we have that g=c¢(a). Hence ¢(a) is the only
cluster point of the net {e(x,)}, and so e(x,)—¢(a). It follows that
z,—a in the original topology by Varadarajan’s theorem (Theorem
9 of part 2 in [8]). Thus the proof is completed.

Corollary 1. Let X be a closed, bounded and convex subset of an
LCHTYVS E over R. Then a € Dent X if and only if acD,(X).
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Proof. This follows trivially from our theorem and Khurana’s
theorem (Theorem 1 in [4]) stated above.

Corollary 2 (cf. Remark 4.5 in [6]). Let X bea weakly com-
pact convex subset of an LCHTVS E over R. Then acDent X if and
only if a is a point in ext X where the identity map: (X, weak
topology) — (X, original topology) is continuous.

Proof. We easily see that acext X if and only if ¢()e
ext K(A) in this case. Hence this corollary immediately follows

from our Theorem and Corollary 1.

Acknowledgement. The author expresses his hearty thanks to

the referee for suggesting a simpler proof of the theorem.
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