On General Denting Points and the Unique Positive Extension of Certain Positive Linear Functionals

By

Minoru MATSUDA*

Throughout this paper, let X be a completely regular Hausdorff space, $C_b(X)$ the space of all real-valued bounded and continuous functions on X with supremum norm, M(X) the set of all positive linear functionals μ on $C_{\mu}(X)$ such that $\mu(1) = 1$, (M(X) is also the set of all positive, regular finitely additive measures, each of total mass 1, on the algebra generated by zero sets.), A a subspace of $C_{b}(X)$ which separates points of X and contains the constant functions, and A^* the set of all real-valued continuous linear functionals on A. If X is a non-empty closed, bounded and convex subset of an LCHTVS (locally convex Hausdorff topological vector space) E over the field R of real numbers, then we always regard A as the subspace $\{f|_x + r: f \in E^*, r \in R\}$ of $C_b(X)$, where E^* is the topological dual of E, and $f|_x$ is the restriction of f to X. Denote by K(A)the set of all L in A^* such that L(1) = 1 = ||L||. If we consider A^* (resp. $C_{b}(X)^{*}$) in its weak* topology, then K(A) (resp. M(X)) is a non-empty compact convex subset of an LCHTVS $A^*(\text{resp. } C_b(X)^*)$ over R. If a is in X, let $\phi(a)$ be the element of K(A) defined by $\phi(a)(f) = f(a)$ for any f in A, and $\varepsilon(a)$ the element of M(X)defined by $\varepsilon(a)(f) = f(a)$ for any f in $C_{b}(X)$. Note that ϕ is a oneto-one and continuous mapping from X into K(A).

The purpose of this paper is to give a characterization of point a in X with the following property (*).

(*)
$$\{\mu \in M(X) : \mu(f) = f(a) \text{ for any } f \text{ in } A\} = \{\varepsilon(a)\}.$$

Communicated by K. Itô, February 3, 1977. Revised July 14, 1977.

^{*} Department of Mathematics, Shizuoka University, Shizuoka 422, Japan.

In other words, we consider some conditions of the point a under which L_0 is uniquely extended so as to become an element of M(X), where $L_0: A \to R$ is defined by $L_0(f) = f(a)$ for any f in A.

Concerning this problem, Bauer ([1]) has first proved that if X is a compact convex subset of an LCHTVS E over R, then a point a in X satisfies the property (*) if and only if a is an extreme point of X. More generally, making use of this result, it is proved in [7] (Proposition 6.2) that if X is a compact Hausdorff space, then a point a satisfies the property (*) if and only if $\phi(a) \in ext K(A)$, the set of all extreme points of K(A). This point a is called a Choquet point of X with respect to A. Successively, Khurana ([4]) has extended the Bauer's theorem to the non-compact case as follows: if X is a closed, bounded and convex subset of an LCH-TVS E over R, then a point a in X satisfies the property (*) if and only if $a \in Dent X$, the set of all denting points of X. A point a in X is called a denting point of X if for every neighborhood V of $a, a \in cl-conv (X \setminus V)$, the closed convex hull of $X \setminus V$. Choquet ([2]) calls these points strongly extreme points.

In this paper, we attempt to extend above all results to the noncompact case without algebraic structures. We define a topology τ_A on X such that (X, τ_A) is a completely regular Hausdorff space for which a net $\{x_a\} \subset X$ converges to $x \in X$ in the topology τ_A if and only if $\lim_{a} f(x_a) = f(x)$ for any f in A, and for which f in Ais continuous on (X, τ_A) . We define a general denting point of Xwith respect to A as follows, and denote by $D_A(X)$ the set of all general denting points of X with respect to A.

Definition. A point a in X is called a general denting point of X with respect to A if two following conditions are satisfied.

- (1) $\phi(a) \in \text{ext } K(A)$.
- (2) For a net $\{x_a\}$ in X, $x_a \rightarrow a$ in the original topology if $x_a \rightarrow a$ in the topology τ_A .

Then two following examples show that condition (1) and condition (2) are independent. **Example 1.** Here we give an example in which condition (1) does not imply condition (2). In l_2 with canonical basis $\{e_n\}, 0 \in X = \text{cl-conv} (\{e_n\})$. Then X is a weakly compact convex subset of l_2 , and $0 \in \text{ext } X$. Then, by making use of Khurana's theorem (Theorem 2.5 in [3]), we have that $\phi(0) \in \text{ext } K(A)$. If a point 0 in X satisfies (2), then we know that $e_n \rightarrow 0$ in the norm topology, since $e_n \rightarrow 0$ in the topology τ_A . But $||e_n||=1$ for all n, which is a contradiction. Hence $(1) \not\Rightarrow (2)$.

In [5], Looney has given this example in which an exposed point need not be a denting point.

Example 2. Here we give an example in which condition (2) does not imply condition (1). Let X be a compact convex subset of an LCHTVS E over R such that $X \setminus \text{ext } X \neq \phi$. Then a point a of $X \setminus \text{ext } X$ satisfies (2), but does not satisfy (1), since a is in ext X if and only if $\phi(a)$ is in ext K(A) in this case. Hence $(2) \not\Rightarrow (1)$.

Now we obtain a following result concerning the problem stated above.

Theorem. A point a in X satisfies the property (*) if and only if $a \in D_A(X)$.

Before we prove this theorem, we prepare a following lemma.

Lemma. Let $\varepsilon(X) = \{\varepsilon(x) : x \in X\}$. Then (1) $\varepsilon(X) \subset \operatorname{ext} M(X)$, (2) $\operatorname{ext} M(X) \subset \overline{\varepsilon(X)}$.

Proof. To verify (1), suppose that $\varepsilon(x) = t \cdot \mu + (1-t) \cdot \nu$ where μ and ν are elements of M(X) and $0 \le t \le 1$. Let g be in $C_b(X)$ such that g(x) = 0 and $0 \le g \le 1$ everywhere. Then we have that

$$0 \leq t \cdot \mu(g) + (1-t) \cdot \nu(g) = \varepsilon(x)(g) = g(x) = 0$$

which means that $\mu(g) = 0 = g(x)$ and $\nu(g) = 0 = g(x)$. From this it

MINORU MATSUDA

easily follows that $\mu = \nu = \varepsilon(x)$. To verify (2), we recall that M(X) is the closed convex hull of $\varepsilon(X)$. Then, by Milman's converse to the Krein Milman theorem (p. 9 in [7]), (2) holds.

Proof of Theorem. Suppose that $a \in D_A(X)$. Let $N = \{\mu \in M(X) : \mu \in M(X) : \mu \in M(X) \}$ $\mu(f) = f(a)$ for any f in A}. Then N is a non-empty compact convex subset of an LCHTVS $C_{b}(X)^{*}$ over R. Hence we are going to prove that ext $N = \{\varepsilon(a)\}$, which means that $N = \{\varepsilon(a)\}$ by the Krein-Milman theorem. Let $\lambda \in \text{ext } N$. Since $\phi(a)$ is an element of ext K(A), ext $N \subset ext M(X)$. Hence, by the above lemma, there is a net $\{x_{\alpha}\}$ in X such that $\varepsilon(x_{\alpha}) \rightarrow \lambda$. Then $f(x_{\alpha}) \rightarrow \lambda(f) = f(\alpha)$ for any f in A, that is, $x_a \rightarrow a$ in the topology τ_A . Hence, by condition (2), $x_{\alpha} \rightarrow a$ in the original topology, that is, $\varepsilon(x_{\alpha}) \rightarrow \varepsilon(a)$, which shows that $\lambda = \varepsilon(a)$. This proves that ext $N = \{\varepsilon(a)\}$. Conversely, suppose that the property (*) is satisfied. We first prove that condition (1) is satisfied. Let $\phi(a) = t \cdot S + (1-t) \cdot T$ on A, where S and T are elements of K(A) and $0 \le t \le 1$. Since S and T are in K(A), they may be extended to the elements μ_s and μ_r of M(X), respectively, by the Hahn-Banach theorem. Hence we have that $f(a) = \phi(a)(f)$ = $\{t \cdot \mu_s + (1-t) \cdot \mu_r\}(f)$ for any f in A. From this and the assumption we get that $t \cdot \mu_s + (1-t) \cdot \mu_r = \varepsilon(a)$. By the above lemma, we have that $\mu_s = \mu_T = \varepsilon(a)$, which means that $S = T = \phi(a)$ on A, and so $\phi(a) \in \text{ext } K(A)$. We next prove that condition (2) is satisfied. Let $\{x_{a}\}$ be a net in X such that $x_{a} \rightarrow a$ in the topology τ_{A} and μ an arbitrary cluster point of the net $\{\varepsilon(x_{\alpha})\}$. Then there is a subnet $\{x_{\beta}\}$ of $\{x_{\alpha}\}$ such that $\varepsilon(x_{\beta}) \rightarrow \mu$, and so $\mu(f) = \lim \varepsilon(x_{\beta})(f) = \lim$ $f(x_{\beta}) = f(a)$ for any f in A, since $x_{\beta} \rightarrow a$ in the topology τ_A . Hence, by the property (*), we have that $\mu = \varepsilon(a)$. Hence $\varepsilon(a)$ is the only cluster point of the net $\{\varepsilon(x_{\alpha})\}$, and so $\varepsilon(x_{\alpha}) \rightarrow \varepsilon(a)$. It follows that $x_{\alpha} \rightarrow a$ in the original topology by Varadarajan's theorem (Theorem 9 of part 2 in [8]). Thus the proof is completed.

Corollary 1. Let X be a closed, bounded and convex subset of an LCHTVS E over R. Then $a \in \text{Dent } X$ if and only if $a \in D_A(X)$.

Proof. This follows trivially from our theorem and Khurana's theorem (Theorem 1 in [4]) stated above.

Corollary 2 (cf. Remark 4.5 in [6]). Let X be a weakly compact convex subset of an LCHTVS E over R. Then $a \in Dent X$ if and only if a is a point in ext X where the identity map: (X, weak topology) \rightarrow (X, original topology) is continuous.

Proof. We easily see that $a \in \text{ext } X$ if and only if $\phi(a) \in \text{ext } K(A)$ in this case. Hence this corollary immediately follows from our Theorem and Corollary 1.

Acknowledgement. The author expresses his hearty thanks to the referee for suggesting a simpler proof of the theorem.

References

- Bauer, H., Šilovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier, 11 (1961), 89-136.
- [2] Choquet, G., Lectures on Analysis, 1-3, W.A. Benjamin, New York, 1969.
- [3] Khurana, S. S., Measures and barycenters of measures on convex sets in locally convex spaces, 1, J. Math. Anal. Appl., 27 (1969), 103-115.
- [4] Khurana, S. S., Barycenters, extreme points, and strongly extreme points, Math. Ann., 198 (1972), 81-84.
- [5] Looney, C.G., A Krein-Milman type theorem for certain unbounded convex sets, J. Math. Anal. Appl., 48 (1974), 284-293.
- [6] Namioka, I., Separate continuity and joint continuity, *Pacific J. Math.*, 51 (1974), 515-531.
- [7] Phelps, R. R., Lectures on Choquet's theorem, D. Van Nostrand Co., Princeton, N. J., 1966.
- [8] Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. Ser. 2, 48 (1965), 161-228.