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On Local Characterization of Wave Front
Sets in Terms of Boundary Values

of Holomorphic Functions

By

Kimimasa NlSHIWADA*

§ 1. Introduction

Let / be a distribution defined in an open set X in Rn. L.
Hormander [4] introduced the notion of the analytic wave front
set WFA(f) of / as a subset of the cotangent space T*(X)\0 whose
projection to X coincides with the analytic singular support of /.
His definition relies on the use of the Fourier transform of /. In
this paper we present an alternative definition of WFA(f) in terms
of boundary values of holomorphic functions which we now shortly
describe.

Let Q be an open subset in Cn. Then we shall denote by 0 (Q}
the space of holomorphic functions in Q.

Definition 1.1. Let U be an open subset of X, U a complex
neighborhood of U such that Ur\Rn=U and P an open convex
cone in Rn with vertex at the origin. We say that a function /EE
0 ( f rnTCO) admits the boundary value f(x + iFO) in 2'(U) if the
limit of f(x + iy} exists in ®f(IT) as F'^y-^Q for every proper
subcone F'^F. Here we have put T(F)=Rn + iF.

In this article the boundary values of holomorphic functions are
always considered in the distribution sense defined above. We can
now state our main result.
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Theorem 1.2. Let f^&'(X) and (*0, f0) eT*(-X)\0. Then

(x0} f0) ^ WFA(f) if and only if there exists a finite family {Fa} of

open convex cones in Rn, a complex neighborhood U of XQ and a

decomposition of f

(1. 1) /(*) - TJ.(x+iFjy) near XQ

with such /Be 6 (t/n T(FJ) that fa is analytic close to XQ for every

a satisfying Facfo>;<;y, c0>^0}.

It was M. Sato [7] that first introduced the concept of hyper-

function defined a priori as a sum of boundary values of holomor-

phic functions. On the other hand, the theory of distribution

boundary value of holomorphic function is developed by A. Martineau

[5].
If in (1. 1) no growth condition on each fa(x+iFO) is posed,

this leads to a definition of microanalyticity for hyperfunction and

then to the theory of sheaf # (see [8]). The microlocal study in

the distribution boundary value case was investigated in Bros-

lagornitzer [1], however the relation to the analytic wave front

set was not discussed there.

In § 2 of this paper, we give a simpler proof to one of the

fundamental results in [5]. As well as the result, some part of its

proof will be useful in the proofs of Theorem 1. 2 and other results

in § 3.

A summary of this paper was given in [6] with an application

to the theory of partial differential equations.

The author would like to express his sincere gratitude to Professor

S. Matsuura and Dr. N. Iwasaki for valuable advice and kind

interest.

§ 2. Boundary Values of Holomorphic Functions

In this section we shall examine Martineau's criterion for the

existence of distribution boundary value from a new viewpoint.

First we need the following lemma whose implication (a)=>(b) is

known (see [3]).
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Lemma 2. 1. Let U be an open set in X and U a complex neigh-

borhood of U such that UnRn=U. Then the following statements

are equivalent for a function z^eCj(C7).

(a} weCTCCT)

(b) There exists an extension u(x + iy}^Cl(U) of u such that

(2.1) sup\3u(x + iy)\^CN\y\N
3 tf=l, 2, . . . ,

x^U

where 3 is the Cauchy-Riemann operator,

Proof, First assume that u&C™(U). Then one can construct

as follows.

where the function X^Q0 (Rn) is chosen so that %(y} = I if \y\ ^^

and 2c(y)=0 if \y\ ^1 and the positive increasing sequence {bn}"=Q

so that UM(X) (iyYl^b^y) are bounded in O (U) for every j. It

follows then that u^C™ and that the functions

are bounded by C* \y \N, N=l, 2,

Conversely we assume the existence of u^Cl
0(U) satisfy in g (2. 1).

In order to express u as a function of du, we use the plane wave

expansion formula of Dirac function, that is

•'—"• j if 1=1

where a>(£) = S (- D^f^f.A- • .A^y-iA^+l. . -A^.- (2. 2) means

for any (pe.C?(U) and its extension peCr(U) satisfying (2.1)

Here the last equality follows from the application of Stokes formula
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if we set

B= z =

with a continuous vector field y^ on Sn~l admitting <;y0 £»0

and give the orientation by dt/\dx/\w(^)<^0. In view of (2.1)

the integral (2.3) is absolutely convergent. Taking suitable approxi-

mations <pn >u and <pn->u in C1,^ we have thus

«(*)-<*(*-*'), «(*')>

= -(*-!)! f gflCOA<fe'Aa»(g)

for suitable J3'. This shows weQ0 and completes the proof.

We shall now prove a fundamental result of Martineau [5].

Theorem 2.2. Let U, U and F be as in Definition 1. 1. Then

the following conditions are equivalent for a function /e 0 (f/fl T(F))m

For any co^U and any convex cone F'^F;

(a) the limit of f(x + iy) as F/:By->Q exists in &'(CD) that is, f

admits the distribution boundary value f(x + iFQi).

(6) the functions \f(x + iy}} of x^w with small y^F' form a

bounded set in <£}'(a)).

(c) there exist positive numbers k, d and C such that

(2.4) f(x + iy}9(x, y}dxdy\^C sup

for all

(d) there exist positive numbers C and M such that

(2.5)

for small

Remark. If / satisfies (2.5), then it follows from Cauchy's

integral formula that with another constant C

1) We may define (pn = u*xpi/1l employing the usual mollifier.
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(2.6)

for small

Proof. The implication (a)=^>(b) is obvious. To prove

we note that the functions f(x + iy) with small y^F' are equicon-
tinuous on Cj° (oi) since they are bounded. This implies with small

(2.7) \f(x + iy)9(x9 y)dx\^C sup \D-fp (x9

where C and & are independent of y^F'. Thus, integrating (2.7)
in y variables, we obtain (2. 4) .

Next assume (c) is valid and choose CM' and F" so as to be co +
+ir. One can find small £>0 so that for any z =

', dist(^:, SCM') >s and dist (3;, dF") >£ |j; . Take a function

admitting 0(r) = 1 if |r|^-| and ^(r)=0 if |r ^e.

Then the Cauchy's integral formula (in the form of Theorem 1. 2.
1 in [2]) gives

Applying this formula to (2.4), we have (2.5) for suitable con-
stants C, M.

It remains now to prove (d)=>(a). In view of Banach-Steinhaus
theorem, we have only to show the existence of the limit of (f(x
+ iy), <p(x^y as F'^y-*Q for each ^eC0°°(^). Let (p^Cl(U) be
the extension of c/? into the complex domain constructed in Lemma
2.1.

For a fixed vector O^F', we have

(2.8)

where B=[z = x + it6; x^R",t>0}. If / satisfies (2.5), (2.8)
converges to the absolutely convergent integral
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uniformly when F'^y->$, This completes the proof of Theorem

2,2.

§ 3. Wave Front Set

We start with recalling the definition of analytic wave front set

(see Hormander [4])»

Definition 3.1. Let fe&'(X). Then the analytic wave front

set WFA(f) of /is defined as the complement, in T*(Z)\03 of the

points (.TO, £0) such that there is an open conic neighborhood V of

fo and a bounded sequence {fN} in £' (X) which is equal to /in

a common neighborhood of XQ and satisfies the estimates

(3.1) |/*(?) I ACCOST/ |f |)^ feF, N=l, 2, . . . .

Let T^A (/•)!,.= {£ e K»\0; (*0, OeWF^C/)} be the fibre over *„.

It is remarked that WFA(f)\XQ is completely characterized by the

sequences of type fN = $Nf where [$N] is a bounded sequence in

CJTC-X) which is equal to 1 in a common neighborhood of XQ and

satisfies

(3,2) \D"+^N\^Ca(CN)M if I^I^AT.

For the existence of such functions we refer to Lemma 2.2 in [4],

We need to extend $N into the complex domain and require more

precise estimates than (2. 1).

Lemma 3. 2. Assume that (3. 2) is valid for the sequence of

functions <f>N(x) £=^C™ (U). Then there exist the extensions

eC{(C7) of $2N which satisfy the estimates

(3. 3) sup \Dtf$1N(x+iy)
x

Here C is indepent of N and y.
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Proof. With the same function % as in the proof of Lemma 2, 1,

we put

&N (x + iy) = E $$ (x) (h) "X (b\*\y) /a I .
a

Here, in this case, we make a different choice of the sequence

bj}. In fact we set

and determine the value of b0 so that supp $2N (x) X (bQy) C U. Then

it is easy to check

\y\~N\Di £ {^+1>^)toO-(z(*...:y)
lalStf

(x}(iyYbMb^y}} \/2al

Taking the remaining part of the sequence, bN<^bN+l<^. . . , to be

increasing fast enough, we have that <f>2NEiCl(U) and also that

This completes the proof of Lemma 3. 1.

Theorem 1. 2 stated in the introduction is an easy consequence
of the following theorem.

Theorem 3. 3e Let {Va} be a finite family of open convex proper

cones in Rn and {Fa} a family of dual cones of Va. Then the

following statesments are equivalent for any distribution f defined

near x0&Kn.

(a) The fibre WFA(f) \ XQ is contained in U Va.

(b) There is a neighborhood U of XQ, its complex neighborhood U

and are functions /ae 0 (f/n T(T^)) for some open cones rf
a^Fa such

that

(3.4) f=Ef.(* + irf
mO) in
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Moreover, under the assumption (a), the decomposition (3,4) is

carried out in the space of C°° functions, provided that f is C°°.

Proof. We first prove (b)=>(a). To do so it is obviously suffi-

cient to show the following; let g(x) =f(x + irQ) for given /e 0 (U

DT(T)) satisfying (2.5), then WFA(g) |,0C-F where F is the dual

cone of -T. We put ^ = ^2(isr+M) and $N = $2(N+M) obtained in Lemma
3.2. Let 6&F and f be in a small conical neighborhood of 0 on

which <jy, f><0 is valid for some y^T. Since

t>Q

we obtain in view of (2. 6) and (3. 3)

E .a!

This implies ^^ WFA(/) |,0.

For the converse verification, it should be noted that one may

assume ^0 = 0 and /eC7. In fact let W be an open cone such that

(3.5)

and set with a function <p having small support and equal to 1 near

0,

(3.6) *(*) = (2*)

where we take the last integration in the distribution sense. This

integral can be written in a sum of boundary values of holomorphic

functions from the directions of dual cones of Wf) Va. By the

implication (b)=>(a) just proved (or rather by a direct proof) the

second equality implies WFA (g) \ Q C W. On the other hand the first
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x\
implies g(x)^C°° for one may assume supp <p is so small that

is rapidly decreasing on Wc. If g has a corresponding decomposition

as in (3.4)5 then f( = $f near 0) has too. Thus our claim is justified.

One can now take a bounded sequence \fN] in C7 which satis-

fies (3.1) on Wc (W introduced in (3,5)) and fN =f in the re-

gion [x ; \x ]2<a} for small a>0. We shall consider the Fourier

transform of /(.r)exp( — ?0 \x ]2) with additional dual parameter f0.

This idea is due to Bros-Iagornitzer [1]. We have

(3.7)

where c0 varies in the interval [1? °°). The first term of the right

hand side of (3. 7) is bounded by C,.(l+ |? |)"yfte"5°B for the sequence

{/— /N] is bounded in C™ and has support in [x ; !^i2^a}. Since

the Fourier transform of exp( — ?0 !•£ |2) is equal to (7r/f0)n/2exp(— \f]\2

/4f0)5 it follows

(3.8)

If fe^=(LJ FJC and ^eW we have |f-)y | ̂ c( |£ |+ (7 |) for some

c>0. On the other hand when |f — 9 |<-s-(l? |+ M) we have
1

"2" If K I3? I- Hence we can estimate (3.8) by

Furthermore it is easy to see

Summing up the estimates obtained, we have with other constants

and CJ9

(3. 9) /(^)exp(-f0 k \2-i<x,
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when £e.F and 1^£.^|£|.
Keeping this estimate in mind, we shall consider a kind of in-

verse Fourier transform. We define the n-form

(3. 10) W (/) = (2^)-exp (£. |* |' + i <*, £» Z (- 1)' Wi (/) (£., £, *)

where

W.(/) = J/(y)exp(-£. |y I'-'X*

W, (/) = J/Cv) exp ( - f . |y I1 - *<y, £ » ft (y,

We set jOj(y, a:) =i(xl+yk) so that

^o. * W(f) = (2ff) -exp (f, k

Since /Oi(y, a;) with l^^^w and \x |2<C& are uniformly bounded

holomorphic functions on every bounded set in C", one may assume
that Wt also satisfy (3. 9) with the same constants when \x \

The Fourier inversion formula gives

(3.11) /(*)= W(f).

One can write when \x \

with C°° functions ha(x + ifaQ} which are the boundary values of
holomorphic functions ha from the directions fa the interior of /\.

The remaining part of the integral domain of (3. 11) can be
distorted as

(3.12) W(f) = W(f)+ W(f)Jf0=i.eeF wy Jise0skUeaF vy J f 0 =le l ,eeF wy

if x is small. In fact, since W(f) is closed3 the difference between
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the both sides of (3B 12) is the limit as R-^oo of the integral of

W(f) on the domain l^? 0 r^ |£ | = R, ^£=.F. This integral must have

the bound

which tends to 0 as jR->oo and \x

Now the first term in the right hand side of (30 12) is written

in a sum of C°° functions which are the boundary values of holomorphic

functions from the fa directions in the above sense when \x \2<^b.

It is also easy to see that (3. 9) implies the second term is real

analytic when \x \2<^b. Hence we have a desired decomposition

of / from the directions ftt. To obtain a decomposition in terms of

the cones F'^F^ we have only to shrink Va suitably in the above

argument. Thus the proof of Theorem 3. 3 is completed.

Finally we give a characterization of C°° wave front set, which is

an analogue of Theorem 1. 2.

Theorem 3. 4, Let f^&'(X) and (x05 f0) e T* (X) \0. Then

(x^ f0) (£ WF(f) if and only if there exists a finite family {Fa} of open

convex cones in Rn and a complex neighborhood U of XQ such that

one can write

(3.13) /

in a neighborhood of XQ with such /ae (9 (Ur\ T(FJ) that fa(x + iF,ff)

near XQ for every a satisfying Fad{yi

Proof. Suppose that (3.13) is valid for such cones {Fa}, Tak-

ing the subfamily {/3}c{a} of indices defined by / ^ n t v ; <y, fo>

<0}^^5 we see by Theorem 1.2 that (XQ) f0) ̂  WFA(^(x + iFfi})

and then that (XQ) f0)^WF(/).

Conversely assume that WF(f) \XCL U Va in an open neighborhood
a

U of x0 for a finite family [Va] of open convex proper cones such

that <?0^= U Va. Then choosing a function %EiC™ having support in

U and equal to 1 near x^ we have close to XQ
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S\

lf(^e><
U"«
a

where F=(UVa)
c.

a

The first term of the right hand side is indeed C°° and written
in a sum of C°° boundary values of holomorphic functions from

some directions. The second term is decomposed into a sum of
boundary values of holomorphic functions from fa directions. Here

since £0£V« the open dual cone fa meets the set [y; <3>5?o><0},
which completes the proof of the theorem.
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