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On an Invariant Defined by Using
Pm)«(-) Theory

By

Nobuaki YAGITA*

Introduction

In this paper, we shall study stable homotopy invariants s(X)
which explain the complexity of the torsion of a finite complex X in
such a way that s(X)=0 if X is torsion free, and s(X)>0 other-
wise.

As an example of such invariants, homdim,, BP,(X) has been
studied by many authors. Especially, Johnson-Wilson [3] proved
that homdim,, BP,(X)=n iff BP{n).(X)=~ BP{n).&QBP,(X) where
BP{n),(—) is the bordism theory with the coefﬁcie;:t* BP{n),~BP,
/(Vatis Untzs o 2)e

Moreover, Johnson-Wilson [4] defined another invariant ¢(X) as
follows: t(X) =z iff there is a BP,-module isomorphism P(n),(X)
~P(n) QH.(X; Z,) where P(n),(—) is the bordism theory with
the coefficient P(n) s =BP,/L[,=BP,/(}, Uiy « vy Vp_y).

This invariant £(X) appears to have better properties and to be
more easily computable than homdim,, BP,(X). In this paper, we
shall study it in comparison with homdim,, BP,(X).

In §1 we shall give the definition of #(X) and consider its geo-
metric meaning. In §2 we shall study the properties of #(X) in
connection with skeletons of X, the Spanier-Whitehead duality,
cohomolgy operations of H*(X; Z,), the BP,-module structure of
BP,.(X; Z,), the smash product, and the cofibering.
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§1. Definition

In this paper, we shall always assume that X, Y are finite comp-
lexes.

Let BP,(—) be the Brown-Peterson homology theory at a prime
p=3 and denote its coefficient BP,~=Z,[v, ...]. Let S,=(p=wui,
Uiy «.., Vi,—,;) be a sequence of elements v:i;. By wusing manifolds
with singularities, we can construct the bordism theory BP(S,).(—)
with the coeflicient BP,/(S,) [11].

Let P(n)+(—) be BP(p, vy ..., v,1)«(—) [4]. By the Sullivan’s
(Bockstein) exact sequence, it is easily proved [4] that the follow-
ing (1) —(8) are equivalent.

(1) P(n)«(X)=P(n).QH.(X; Z,).

(2) Pn)«(X) is P(n).free.

(8) The natural homomorphism i: P(n),(X) - H,(X; Z,) is

epic.

Let k(n),(—) be the bordism theory with the coefficient k(%) .,
=Z,[v,]=BPy/(ps.-+5 Duy...). Johnson-Wilson [4] proved also that
the following (4) — (6) are equivalent to (1) —(3).

1) k) (X)) =k(n) RQH.(X; Z,).

(5) k(n)«(X) is k(n) free.

(6) The natural homomorphism 7 : 2(n) . (X) —>H,(X; Z,) is epic.

Now we define t(X)<n iff (1) — (6) are satisfied. This is well
defined, since there is the tower of homology theories [4],

BP, (=) =P() (=)= =Pm) (=)= P+ 1) (=)= —H\ (= 5Z,).

Geometrically, ¢t(X) =n means that all elements of H,(X; Z,) can
be represented by manifolds with singularities type I,=(, vy, ...,
v,-,) [11]. Let S=(p, vi, Vi ...) be an infinite sequence and let
S.,=(@®, ..., vi,-,). We can analogously define an invariant t;(—),
e, ts(X)Zn iff BP(S,)«(X)=BP(S,).QH.(X; Z,). However, from
the following fact, t5(X) depends on #(X).
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Theorem 1. Let S=(p, vy ..oy Uty Vimy ...) and i,#Fm, ;<
i,00. If n=m, then, ts(X) =n iff t(X)=m.

Proof. If t(X)<m then it is clear that t;(X) <z by the Sullivan’s
exact sequence. Let BP(S,) 4 (X)=BP,/(S,)Q®H.(X; Z,). Then,
since S, C(Pyevys ety Ungrseo) =(Ps+vvs Upy...), we have an iso-
morphism k& (m) , (X) =k(m) QH,.(X; Z,). Hence from (4) we have
proved (X) =m.

§ 2. Properties of t(X).

Let X° be a g-dimensional skeleton of X. When homdim;,, BP4 (X)
<2, Johnson showed [2] that homdimgp,BP, (X") <homdimg,,BP, (X).
However in general case, it is unknown whether the inequality holds
or not. We can easily prove the following theorem by descending

induction on q.
Theorem 2. ((X*) <t(X) and t(X/X") =:(X).

It is known [3] that homdim;;, BP,(X) is not necessarily equal to
homdim;;, BP* (X).

Theorem 3. Let DX be a Spanier-Whitehead dualof X. Then
H(X)=t(DX), i.e., P(n)(X)=P(n) RQH(X; Z,) iff P(n)*(X) =
P(n)*QH*(X; Z,).

Proof. If t(X)=mn, then by the definition, the Atiyah-Hirzebruch
spectral sequence H,(X; P(n).)>P(n).(X) is trivial. Hence, by
Lemma 4. 2 in [1], we have

P(n)*(X) =Homs, (P(n) 5 (X), P(n)y).

Therefore P(n)*(X) is P(n)*-free. The same argument for DX
shows that if P(n)*(X) 1s P(n)*-free then P(n).(X) is P(n) -
free.

We now consider the relation of #(X) to the action of cohomo-
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logy operations of H*(—; Z,). Let Q. be the Milnor operation,
l.e, @, is the Bockstein operation and Q; is defined by Q,_, 7"
—Z* Q,.,. Conner proved (see [3]) that if Q;...Q:x#0 for some
element z€H*(X; Z,) then homdimg, BP,(X) >n.

Theorem 4. If there is an element xcH* (X ; Z,) such that Q,x
#0 then t(X)=n+1.

Proof. Consider the Sullivan’s exact sequence

k(n)*(X) k(n)* (X)

U,
/

H*(X; Z,)

)

By [11], i0=@Q,, and since d(x) #0, ¢ is not epic. Hence from (6)
of the definition, we have #(X)=n+1.

Remark. The geometrical meaning of Theorem 4 is as follows.
First, note that we shall consider in the homology theory taking the
Spanier-Whitehead duality. Let =T[4, f], where [4, f] is a mani-
fold with singularities type (p, v, v, ...) in X. By [11], Q,[4, f]
=[A(n+1), f(n+1)] where [A(n+1), f(n+1)] is the normal factor
of (n41)-th boundary, i. e., 0, A~=v,XA(n+1) (for details see
[117, [9]). Since [A(n+1), f(n+1)]#0, [A, f] has the singularity
type v,.. Therefore [A4, f] is not representable by a manifold with
singularities type I,=(,..., v,-,). Hence t(X) >n.

Examples 1.

(1) Let L*™'(p) be a 2m-+1 dimensional p-Lens space. Let p’
=m<p*'. It is well known [7] that for 0=Zi<m, H* (L' (p) ; Z,)
~H* (L (p) ; Z,) = Z,, and generators are S5 and af’ satisfying
Q.a=p". Hence from Theorem 4, we have (L™ (p))>j. It is
also well known that BP*(L**'(p)) =BP*[x]/([p], x«™*') where [p]
is the p-product of the formal group law of BP,. By using the
Sullivan’s exact sequence, we can prove that P(G+1)* (L' (p)) =
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BP*/1;1,(x®2*®D. . . Dx"BnDy,. . .Dy.) where Quy;=z'. Thus we
have t(L*™*(p)) =j+1.

(2) Let V(n) be the finite complex such that BP,(V(n))=
P(n+1),. V(n) exists for the following cases: n=0; n=1 and p=
3; n=2 and p=5; n=3 and p=7. If V(n) exists then t¢(V(n))=
n+1 [10].

(3) The converse of Theorem 4 is not true. Indeed, when X=
S°U,2e‘, we have @Q;=0 for all 7, but ¢#(X)=1.

We next consider the relation of ¢(X) to the BP,/p-module
structure of P(1),(X)=BP,.(X; Z,). Let BP./pDZ,[Uy, Uiy - .-]
=P[N].. Then we can take N so large that P(1),(X) is a free
P[N]4-module [5], [12]. And if P(1).(X) is P[N]4free then
homdimzq, P(1) «(X) =N [41, [12].

Theorem 5. If P(1),(X) is a free P[N],-module then t(X)<
N.

Proof. Consider the Sullivan’s exact sequence

P(1)«(X)

N

P(2).(X)

P(1)«(X)

U

Then v-images of P[N],-module generators of P(1)4(X) are also
P[N].-module generators except the case of zero. Hence (co) ker v,
is also P[N]4-free. Thus P(2)4(X) 1s also P[N]4free. Continu-
ing this argument, we see that P(N).(X) is P[N],-free. Since
P(N).(X) is a P(N)4module, it is P(N),-free, hence the proof is
completed.

Example 2. The converse of this theorem is not true. If p=5,
by [8], there are a finite complex X and a map v{: X— X such that
BP,(X)=BP./(p, ¥}) and (v{),=vl. Since there is a map v,: X
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— X such that (v)s«=7, if Y=X U, CX then BP,(Y)=BP,/(p, vi,
2,v?). Hence P(1)4(Y) is not P[2§i-free. However, from the exact

sequence

| P)«(X) -—= PD)u(X) ——P@2)+(Y) ——

0,08) &

here (,v2)+=0 in P(2).(X), we can prove £(Y)=2.

The behavior of homdimg,, BP,(—) with respect to the smash
product is somewhat complicated, in the following sense.
(1) homdimgp. BP* (L*'*1(p)) =1 and

homdimgp. BP* (L* 1 (p) A. . . AL**+1(p)) =

j-factors

(2) There is a finite complex V such that BP, (V) =BP,/(¢* pv;)
[10]. Then homdimss, BP,(V)=2 but homdimss, BP, (S°U,e'/\ V)
=1.

Theorem 6. ¢(XAY)=max((X), £()).

Proof. Let t(Y)=t(X) and ¢#(X)=n. Then P(n).(X) is a free
P(n)-module. The product of P(n).(—) theory [9] induces the
following map

©: P(n)(X) P((? P(n) «(Y)——P(n) . (XA\Y).

By the exact functor theorem [12], P(n)+(X) (@ P(n),(—) and
P(n),

P(n),(X/N\—) are homology theories with the same coefficient
P(n),(X). Hence pis an isomorphism. Therefore we have t(XAY)
=t(Y). This completes the proof.

Let S">X—Y be a cofibering. Then Johnson-Wilson [3] ques-
tioned whether homdimgs, BP (Y) <homdimss, BP,(X) +1 holds or

not.

Example 3. Let X, Y be complexes defined by the following

cofibering
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Se— V(1) — Y

X— Y — 5%
Then BP,(Y)=Ideal(p, v,)=BP,c@PBP,t/po=vir and BP,(X)=
BP, 2,y @®BP, ,,, so we have t(X)=t(5")=0 but t(¥)=2.

Theorem 7. Let S—>X—Y be a cofibering. Then t(Y)=t(X)
+m where m is the number of Z,-basis of Hy(X; Z,).

Proof. Using the Spanier-Whitehead duality, we shall consider
in cohomology theories. Let #(X)=<n. Then we have the exact

sequence

—P(n)*(S") 7:—>P(n) *QH*(DX; Z,)—P(n)* (DY)——

Let {oy,..., 0,} be a system of P(n)*-basis of P(n)*(DX) with
dime; £dimo;,,, and let = be a P(n)*-module generator of P(n)*(S¥).
Let f*r= ) k.0, where k,cP(n)*.

To prove the theorem, we may assume that :(DY)=n+m. By

induction on ¢ for 1<t<m, we assume that
k;=0 mod (v,y..., Vy4i—z) for 11521,
Then, by the Cartan formula of 7,, >0 in P(n)*(—) theory [11],
we have
O=f*rio=r.f*r=r,(2ko;)
=(rk)o,+ Y kic; mod (Vs . v vy Vppes).
i>t

Hence 7.k,=0 mod(v,,..., Upiss).
From Proposition 2.11 in [5], we have k =2v,,,-/ or 4 mod(v,,
«vs Upp-n) Where 1€Z,.

Suppose £, =2%#0 mod(v,,..., V,4—s). Then consider the exact
sequence of P(n+4t)*(—) theory

——P(n+t)* (SM)”JFPP("H)*(DX) —P(n+)*(DY)—

Since f*r is a P(n+t)*-module generator of P(n+t)*(DX),
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P(n+t)* (DY) is also P(n+t)*-free, and so t(Y)=n-+tz This contra-
dicts to the first assumption #(Y)=n+m. Hence £,=0 mod (v,,...,
VUo4:-1). Lherefore we have £2,=0 mod (v, ... Upimwoy) for 1=i=m.

Consider the exact sequence of P(n+m)*(—) theory

—>P(n+m)*(S™) F»P(n—l—m)* (DX) —P(n+m)* (DY)

Since f*r=) ko,=0 in P(n+m)*(DX), P(n+m)* (DY) is also
P(n+m)*-free. This completes the proof.

Examples 4.

(1) When X is a 2-cell complex, we have BP,(X)=BP,DBP,
or BP,/4p*'. Hence t(X)<1.

(2) When X is a 3-cell complex, we have BP,(X)=BP,®
BP, /%', BP,®BP,.DBP,, or BP,o@BP,t/p'c =vir. Therefore t(X) =2.

(3) When X is a 4-cell complex, consider a cofibering S*——Y
—— X where Y is a 3-cell complex. If BP,(Y)=BP,®DBP.DBP,
then from Theorem 7, £(X) <3. Otherwise, let BP*-module generators
of BP*(DY), BP*(DS") be ., 0,, 7 where dimo,<dims,. Let f*r=
ko, +k,0,. Then take the operation 7, for |a| >0,

O0=r.(f* (@) =(rk)o+ X Toki® 7001+ (7.k2) 0.

a=ay+ay, la1]>0

From (2), 7.,.,=0 mod p, hence %£,=0 mod(p, v,) or /,EZ,, so we
have r.k,=0 mod(p, v,). Hence, if t¢(X)=3, £2,=0 mod (p, v, v,).
Therefore, if t(X)=3, =0 in P(3)*(DY). Thus we have #(X) <3.

Question 1. If X is an n-cell complex, t(X)=<n—17

It is clear that P(n).(X) is not necessarily decided by the BP,-
module structure of BP, (X), in fact BP,(V(1)*™") =BP,/I,(DBP, s,
~BP,(V()\/S*™) but Pn) (V)2 )EPH)(V()\/S*) for
n=1.

Question 2. Is t(X) decided by the BP.-module structure of
BP.(X)?
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