Publ. RIMS, Kyoto Univ. 14 (1978), 327-335

On an Invariant Defined by Using $P(n)_*(-)$ Theory

By

Nobuaki YAGITA*

Introduction

In this paper, we shall study stable homotopy invariants s(X) which explain the complexity of the torsion of a finite complex X in such a way that s(X) = 0 if X is torsion free, and s(X) > 0 otherwise.

As an example of such invariants, $\operatorname{homdim}_{BP_*}BP_*(X)$ has been studied by many authors. Especially, Johnson-Wilson [3] proved that $\operatorname{homdim}_{BP_*}BP_*(X) \leq n$ iff $BP\langle n \rangle_*(X) \simeq BP\langle n \rangle_* \bigotimes_{BP_*}BP_*(X)$ where $BP\langle n \rangle_*(-)$ is the bordism theory with the coefficient $BP\langle n \rangle_* \simeq BP_*$ $/(v_{n+1}, v_{n+2}, \ldots)$.

Moreover, Johnson-Wilson [4] defined another invariant t(X) as follows: $t(X) \leq n$ iff there is a BP_* -module isomorphism $P(n)_*(X)$ $\simeq P(n)_* \otimes H_*(X; Z_p)$ where $P(n)_*(-)$ is the bordism theory with the coefficient $P(n)_* \simeq BP_*/I_n = BP_*/(p, v_1, \ldots, v_{n-1})$.

This invariant t(X) appears to have better properties and to be more easily computable than homdim_{BP*} $BP_*(X)$. In this paper, we shall study it in comparison with homdim_{BP*} $BP_*(X)$.

In §1 we shall give the definition of t(X) and consider its geometric meaning. In §2 we shall study the properties of t(X) in connection with skeletons of X, the Spanier-Whitehead duality, cohomolgy operations of $H^*(X; \mathbb{Z}_p)$, the BP_* -module structure of $BP_*(X; \mathbb{Z}_p)$, the smash product, and the cofibering.

I would like to take this opportunity to thank Professor S. Sasao

Communicated by N. Shimada, February 10, 1977.

^{*} Department of Mathematics, Tokyo Institute of Technology, Meguroku, Tokyo 152, Japan.

for his helpful suggestions in preparing this paper.

§1. Definition

In this paper, we shall always assume that X, Y are *finite* complexes.

Let $BP_*(-)$ be the Brown-Peterson homology theory at a prime $p \ge 3$ and denote its coefficient $BP_* \simeq \mathbb{Z}_{(p)}[v_1, \ldots]$. Let $S_n = (p = v_{i_0}, v_{i_1}, \ldots, v_{i_{n-1}})$ be a sequence of elements v_{i_j} . By using manifolds with singularities, we can construct the bordism theory $BP(S_n)_*(-)$ with the coefficient $BP_*/(S_n)$ [11].

Let $P(n)_*(-)$ be $BP(p, v_1, \ldots, v_{n-1})_*(-)$ [4]. By the Sullivan's (Bockstein) exact sequence, it is easily proved [4] that the following (1)-(3) are equivalent.

- (1) $P(n)_*(X) \simeq P(n)_* \otimes H_*(X; \mathbb{Z}_p).$
- (2) $P(n)_{*}(X)$ is $P(n)_{*}$ -free.
- (3) The natural homomorphism i: P(n)_{*}(X) → H_{*}(X; Z_p) is epic.

Let $k(n)_*(-)$ be the bordism theory with the coefficient $k(n)_* \simeq Z_p[v_n] \simeq BP_*/(p, \ldots, \hat{v}_n, \ldots)$. Johnson-Wilson [4] proved also that the following (4) - (6) are equivalent to (1) - (3).

- (4) $k(n)_*(X) \simeq k(n)_* \otimes H_*(X; \mathbb{Z}_p).$
- (5) $k(n)_{*}(X)$ is $k(n)_{*}$ -free.

(6) The natural homomorphism $i: k(n)_*(X) \to H_*(X; \mathbb{Z}_p)$ is epic.

Now we define $t(X) \leq n$ iff (1) - (6) are satisfied. This is well defined, since there is the tower of homology theories [4],

$$BP_*(-) \to P(1)_*(-) \to \cdots \to P(n)_*(-) \to P(n+1)_*(-) \to \cdots \to H_*(-;\mathbb{Z}_p).$$

Geometrically, $t(X) \leq n$ means that all elements of $H_*(X; Z_p)$ can be represented by manifolds with singularities type $I_n = (p, v_1, \ldots, v_{n-1})$ [11]. Let $S = (p, v_{i_1}, v_{i_2}, \ldots)$ be an infinite sequence and let $S_n = (p, \ldots, v_{i_{n-1}})$. We can analogously define an invariant $t_s(-)$, i. e., $t_s(X) \leq n$ iff $BP(S_n)_*(X) \simeq BP(S_n)_* \otimes H_*(X; Z_p)$. However, from the following fact, $t_s(X)$ depends on t(X).

Theorem 1. Let $S = (p, v_1, \ldots, v_{m-1}, v_{i_m}, \ldots)$ and $i_m \neq m$, $i_j < i_{j+1}$. If $n \ge m$, then, $t_s(X) \le n$ iff $t(X) \le m$.

Proof. If $t(X) \leq m$ then it is clear that $t_s(X) \leq n$ by the Sullivan's exact sequence. Let $BP(S_n)_*(X) \simeq BP_*/(S_n) \otimes H_*(X; \mathbb{Z}_p)$. Then, since $S_n \subset (p, \ldots, v_{m-1}, v_{m+1}, \ldots) = (p, \ldots, v_m, \ldots)$, we have an isomorphism $k(m)_*(X) \simeq k(m)_* \otimes H_*(X; \mathbb{Z}_p)$. Hence from (4) we have proved $t(X) \leq m$.

§ 2. Properties of t(X).

Let X^{q} be a q-dimensional skeleton of X. When homdim_{BP*} $BP_{*}(X) \leq 2$, Johnson showed [2] that homdim_{BP*} $BP_{*}(X^{q}) \leq \text{homdim}_{BP*} BP_{*}(X)$. However in general case, it is unknown whether the inequality holds or not. We can easily prove the following theorem by descending induction on q.

Theorem 2. $t(X^q) \leq t(X)$ and $t(X/X^q) \leq t(X)$.

It is known [3] that homdim_{BP}, $BP_*(X)$ is not necessarily equal to homdim_{BP}, $BP^*(X)$.

Theorem 3. Let DX be a Spanier-Whitehead dual of X. Then t(X) = t(DX), i.e., $P(n)_*(X) \simeq P(n)_* \otimes H_*(X; \mathbb{Z}_p)$ iff $P(n)^*(X) \simeq P(n)^* \otimes H^*(X; \mathbb{Z}_p)$.

Proof. If $t(X) \leq n$, then by the definition, the Atiyah-Hirzebruch spectral sequence $H_*(X; P(n)_*) \Rightarrow P(n)_*(X)$ is trivial. Hence, by Lemma 4. 2 in [1], we have

$$P(n)^{*}(X) \simeq \operatorname{Hom}_{P(n)_{*}}(P(n)_{*}(X), P(n)_{*}).$$

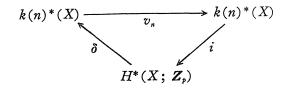
Therefore $P(n)^*(X)$ is $P(n)^*$ -free. The same argument for DX shows that if $P(n)^*(X)$ is $P(n)^*$ -free then $P(n)_*(X)$ is $P(n)_*$ -free.

We now consider the relation of t(X) to the action of cohomo-

logy operations of $H^*(-; \mathbb{Z}_p)$. Let Q_i be the Milnor operation, i.e., Q_0 is the Bockstein operation and Q_i is defined by $Q_{i-1}\mathcal{P}^{p^i}$ $-\mathcal{P}^{p^i} Q_{i-1}$. Conner proved (see [3]) that if $Q_{i_1} \dots Q_{i_n} x \neq 0$ for some element $x \in H^*(X; \mathbb{Z}_p)$ then homdim_{BP}, $BP_*(X) > n$.

Theorem 4. If there is an element $x \in H^*(X; \mathbb{Z}_p)$ such that $Q_n x \neq 0$ then $t(X) \ge n+1$.

Proof. Consider the Sullivan's exact sequence



By [11], $i\delta = Q_n$, and since $i\delta(x) \neq 0$, *i* is not epic. Hence from (6) of the definition, we have $t(X) \ge n+1$.

Remark. The geometrical meaning of Theorem 4 is as follows. First, note that we shall consider in the homology theory taking the Spanier-Whitehead duality. Let x=[A, f], where [A, f] is a manifold with singularities type $(p, v_1, v_2, ...)$ in X. By [11], $Q_n[A, f]$ =[A(n+1), f(n+1)] where [A(n+1), f(n+1)] is the normal factor of (n+1)-th boundary, i. e., $\partial_{n+1}A \simeq v_n \times A(n+1)$ (for details see [11], [9]). Since $[A(n+1), f(n+1)] \neq 0$, [A, f] has the singularity type v_n . Therefore [A, f] is not representable by a manifold with singularities type $I_n = (p, \ldots, v_{n-1})$. Hence t(X) > n.

Examples 1.

(1) Let $L^{2m+1}(p)$ be a 2m+1 dimensional *p*-Lens space. Let $p^{j} \leq m < p^{j+1}$. It is well known [7] that for $0 \leq i \leq m$, $H^{2i}(L^{2m+1}(p); \mathbb{Z}_p) \simeq H^{2i+1}(L^{2m+1}(p); \mathbb{Z}_p) \simeq \mathbb{Z}_p$, and generators are β^{i} and $\alpha\beta^{i}$ satisfying $Q_i \alpha = \beta^{pi}$. Hence from Theorem 4, we have $t(L^{2m+1}(p)) > j$. It is also well known that $BP^*(L^{2m+1}(p)) \simeq BP^*[x]/([p], x^{2m+1})$ where [p] is the *p*-product of the formal group law of BP_* . By using the Sullivan's exact sequence, we can prove that $P(j+1)^*(L^{2m+1}(p)) \simeq$

 $BP^*/I_{j+1}(x \oplus x^2 \oplus \ldots \oplus x^m \oplus y_1 \oplus y_2 \ldots \oplus y_m)$ where $Q_0 y_i = x^i$. Thus we have $t(L^{2m+1}(p)) = j+1$.

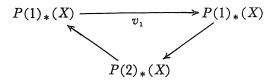
(2) Let V(n) be the finite complex such that $BP_*(V(n)) \simeq P(n+1)_*$. V(n) exists for the following cases: n=0; n=1 and $p \ge 3$; n=2 and $p \ge 5$; n=3 and $p \ge 7$. If V(n) exists then t(V(n)) = n+1 [10].

(3) The converse of Theorem 4 is not true. Indeed, when $X = S^0 \cup_{s^2} e^{i}$, we have $Q_i = 0$ for all *i*, but t(X) = 1.

We next consider the relation of t(X) to the BP_*/p -module structure of $P(1)_*(X) = BP_*(X; \mathbb{Z}_p)$. Let $BP_*/p \supset \mathbb{Z}_p[v_N, v_{N+1}, \ldots]$ $= P[N]_*$. Then we can take N so large that $P(1)_*(X)$ is a free $P[N]_*$ -module [5], [12]. And if $P(1)_*(X)$ is $P[N]_*$ -free then homdim_{P(1)_*}P(1)_*(X) \leq N [4], [12].

Theorem 5. If $P(1)_*(X)$ is a free $P[N]_*$ -module then $t(X) \leq N$.

Proof. Consider the Sullivan's exact sequence



Then v_1 -images of $P[N]_*$ -module generators of $P(1)_*(X)$ are also $P[N]_*$ -module generators except the case of zero. Hence (co) ker v_1 is also $P[N]_*$ -free. Thus $P(2)_*(X)$ is also $P[N]_*$ -free. Continuing this argument, we see that $P(N)_*(X)$ is $P[N]_*$ -free. Since $P(N)_*(X)$ is a $P(N)_*$ -module, it is $P(N)_*$ -free, hence the proof is completed.

Example 2. The converse of this theorem is not true. If $p \ge 5$, by [8], there are a finite complex X and a map $v_2^p: X \to X$ such that $BP_*(X) \simeq BP_*/(p, v_1^2)$ and $(v_2^p)_* = v_2^p$. Since there is a map $v_1: X$

 $\rightarrow X$ such that $(v_1)_* = v_1$, if $Y = X \bigcup_p CX$ then $BP_*(Y) \simeq BP_*/(p, v_1^2, v_1v_2^p)$. Hence $P(1)_*(Y)$ is not $P[2]_*$ -free. However, from the exact sequence

$$\longrightarrow P(2)_*(X) \xrightarrow{(v_1v_2^*)_*} P(2)_*(X) \longrightarrow P(2)_*(Y) \longrightarrow$$

here $(v_1v_2^{*})_{*}=0$ in $P(2)_{*}(X)$, we can prove t(Y)=2.

The behavior of homdim_{BP}, $BP_*(-)$ with respect to the smash product is somewhat complicated, in the following sense.

(1) homdim_{BP*} $BP^*(L^{2p^{j+1}}(p)) = 1$ and homdim_{BP*} $BP^*(L^{2p^{j+1}}(p) \wedge \dots \wedge L^{2p^{j+1}}(p)) \ge j.$

(2) There is a finite complex V such that $BP_*(V) \simeq BP_*/(p^2, pv_1)$ [10]. Then homdim_{BP*} $BP_*(V) = 2$ but homdim_{BP*} $BP_*(S^0 \cup p^2 \wedge V) = 1$.

Theorem 6. $t(X \wedge Y) = \max(t(X), t(Y))$.

Proof. Let $t(Y) \ge t(X)$ and $t(X) \le n$. Then $P(n)_*(X)$ is a free $P(n)_*$ -module. The product of $P(n)_*(-)$ theory [9] induces the following map

$$\mu: P(n)_*(X) \bigotimes_{P(n)_*} P(n)_*(Y) \longrightarrow P(n)_*(X \land Y).$$

By the exact functor theorem [12], $P(n)_*(X) \bigotimes_{P(n)_*} P(n)_*(-)$ and $P(n)_*(X \land -)$ are homology theories with the same coefficient $P(n)_*(X)$. Hence μ is an isomorphism. Therefore we have $t(X \land Y) = t(Y)$. This completes the proof.

Let $S^N \to X \to Y$ be a cofibering. Then Johnson-Wilson [3] questioned whether homdim_{BP}, $BP_*(Y) \leq \text{homdim}_{BP}, BP_*(X) + 1$ holds or not.

Example 3. Let X, Y be complexes defined by the following cofibering

INVARIANT DEFINED BY USING $P(n)_*(-)$ THEORY

$$S^{\circ} \longrightarrow V(1) \longrightarrow Y$$
$$X \longmapsto Y \longrightarrow S^{2p}.$$

Then $BP_*(Y) \simeq \text{Ideal}(p, v_1) \simeq BP_* \sigma \bigoplus BP_* \tau/p\sigma = v_1 \tau$ and $BP_*(X) \simeq BP_{*+2p-1} \bigoplus BP_{*+1}$, so we have $t(X) = t(S^{2p}) = 0$ but t(Y) = 2.

Theorem 7. Let $S^N \to X \to Y$ be a cofibering. Then $t(Y) \leq t(X)$ +m where m is the number of \mathbb{Z}_p -basis of $H_*(X; \mathbb{Z}_p)$.

Proof. Using the Spanier-Whitehead duality, we shall consider in cohomology theories. Let $t(X) \leq n$. Then we have the exact sequence

$$\longrightarrow P(n)^*(S^{\mathsf{M}}) \xrightarrow{f^*} P(n)^* \otimes H^*(DX; \mathbb{Z}_p) \longrightarrow P(n)^*(DY) \longrightarrow F(n)^*(DY)$$

Let $\{\sigma_1, \ldots, \sigma_m\}$ be a system of $P(n)^*$ -basis of $P(n)^*(DX)$ with $\dim \sigma_i \leq \dim \sigma_{i+1}$, and let τ be a $P(n)^*$ -module generator of $P(n)^*(S^M)$. Let $f^*\tau = \sum k_i \sigma_i$ where $k_i \in P(n)^*$.

To prove the theorem, we may assume that $t(DY) \ge n+m$. By induction on t for $1 \le t \le m$, we assume that

 $k_i = 0 \mod (v_n, \ldots, v_{n+i-2}) \text{ for } 1 \leq i \leq i-1.$

Then, by the Cartan formula of r_{α} , $\alpha > 0$ in $P(n)^*(-)$ theory [11], we have

$$0 = f^* r_a \tau = r_a f^* \tau = r_a (\sum k_i \sigma_i)$$

= $(r_a k_i) \sigma_i + \sum_{i>t} k'_i \sigma_j \mod(v_n, \ldots, v_{n+t-2}).$

Hence $r_{a}k_{i}=0 \mod(v_{n}, \ldots, v_{n+i-2})$.

From Proposition 2.11 in [5], we have $k_t = \lambda v_{n+t-1}$ or $\lambda \mod(v_n, \ldots, v_{n+t-2})$ where $\lambda \in \mathbb{Z}_p$.

Suppose $k_i = \lambda \neq 0 \mod(v_n, \ldots, v_{n+t-2})$. Then consider the exact sequence of $P(n+t)^*(-)$ theory

$$\longrightarrow P(n+t)^*(S^M) \xrightarrow{f^*} P(n+t)^*(DX) \longrightarrow P(n+t)^*(DY) \longrightarrow P(n+t)^*(DY$$

Since $f^*\tau$ is a $P(n+t)^*$ -module generator of $P(n+t)^*(DX)$,

 $P(n+t)^*(DY)$ is also $P(n+t)^*$ -free, and so $t(Y) \leq n+t$. This contradicts to the first assumption $t(Y) \geq n+m$. Hence $k_t = 0 \mod (v_n, \ldots, v_{n+t-1})$. Therefore we have $k_i = 0 \mod (v_n, \ldots, v_{n+t-1})$ for $1 \leq i \leq m$.

Consider the exact sequence of $P(n+m)^*(-)$ theory

$$\longrightarrow P(n+m)^*(S^{\mathcal{M}}) \xrightarrow{f^*} P(n+m)^*(DX) \longrightarrow P(n+m)^*(DY) \longrightarrow P(n+m)^*(DY)$$

Since $f^*\tau = \sum k_i \sigma_i = 0$ in $P(n+m)^*(DX)$, $P(n+m)^*(DY)$ is also $P(n+m)^*$ -free. This completes the proof.

Examples 4.

(1) When X is a 2-cell complex, we have $BP_*(X) \simeq BP_* \oplus BP_*$ or $BP_*/\lambda p^i$. Hence $t(X) \leq 1$.

(2) When X is a 3-cell complex, we have $BP_*(X) \simeq BP_* \bigoplus BP_*/\lambda p^i$, $BP_* \bigoplus BP_* \bigoplus BP_*$, or $BP_* \sigma \bigoplus BP_* \tau/p^i \sigma = v_1^* \tau$. Therefore $t(X) \leq 2$.

(3) When X is a 4-cell complex, consider a cofibering $S^{\mathbb{N}} \xrightarrow{f} Y$ $\longrightarrow X$ where Y is a 3-cell complex. If $BP_*(Y) \simeq BP_* \oplus BP_* \oplus BP_*$ then from Theorem 7, $t(X) \leq 3$. Otherwise, let BP^* -module generators of $BP^*(DY)$, $BP^*(DS^{\mathbb{N}})$ be σ_1, σ_2, τ where $\dim \sigma_1 \leq \dim \sigma_2$. Let $f^*\tau = k_1\sigma_1 + k_2\sigma_2$. Then take the operation r_{α} for $|\alpha| > 0$,

$$0 = r_{\alpha}(f^{*}(\tau)) = (r_{\alpha}k_{1})\sigma_{1} + \sum_{\alpha = \alpha_{1} + \alpha_{2}, |\alpha_{1}| > 0} r_{\alpha_{1}}k_{1} \cdot r_{\alpha_{2}}\sigma_{1} + (r_{\alpha}k_{2})\sigma_{2}.$$

From (2), $r_{\alpha}k_1=0 \mod p$, hence $k_1=0 \mod(p, v_1)$ or $k_1 \in \mathbb{Z}_p$, so we have $r_{\alpha}k_2=0 \mod(p, v_1)$. Hence, if $t(X) \ge 3$, $k_2=0 \mod(p, v_1, v_2)$. Therefore, if $t(X) \ge 3$, $f^*=0$ in $P(3)^*(DY)$. Thus we have $t(X) \le 3$.

Question 1. If X is an n-cell complex, $t(X) \leq n-1$?

It is clear that $P(n)_*(X)$ is not necessarily decided by the BP_* module structure of $BP_*(X)$, in fact $BP_*(V(1)^{2p-1}) \simeq BP_*/I_2 \oplus BP_{*+2p-1}$ $\simeq BP_*(V(1) \bigvee S^{2p-1})$ but $P(n)_*(V(1)^{2p-1}) \not\simeq P(n)_*(V(1) \bigvee S^{2p-1})$ for $n \ge 1$.

Question 2. Is t(X) decided by the BP_{*}-module structure of $BP_*(X)$?

References

- [1] Adams, J.F., Quillen's work on formal group laws and complex cobordism, Lecture Note, University of Chicago (1970).
- [2] Johnson, D. C., Skeleta of complexes with low MU projective dimension, Proc. Amer. Math. Soc., 32 (1972), 599-604.
- [3] _____ and Wilson, W.S., Projective dimension and Brown-Peterson homology, Topology, 12 (1973), 327-353.
- [4] _____, BP operation and Morava's extraordinary K-theories, Math. Z., 144 (1975), 55-75.
- [5] Landweber, P.S., Anihilator ideals and primitive elements in complex bordism, Ill. J. Math., 17 (1973), 273-284.
- [6] ——, Homological properties of comodule over $MU_*(MU)$ and $BP_*(BP)$, Amer. J. Math., 98 (1976), 591-610.
- [7] Milnor, J., The Steenrod algebra and its dual, Ann. Math., 67 (1958), 150-171.
- [8] Oka, S., A new family in the stable homotopy groups of spheres, *Hiroshima Math. J.*, 5 (1975), 87-114.
- [9] Shimada, N. and Yagita, N., Multiplications in the complex bordism theory with singularities, *Publ. RIMS*, *Kyoto Univ.*, **12** (1976), 256-293.
- [10] Smith, L., On realizing complex bordism modules II, Amer. J. Math., 93 (1970), 226-263.
- Yagita, N., On the algebraic structure of cobordism operations with singularities, J. London Math. Soc., 16 (1977), 131-141.
- [12] —, The exact functor theorem for BP_*/I_n -theory, Proc. Japan Acad., 52(1976), 1-3.