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Ergodic Decomposition
of Quasi-Invariant Measures

By

Hiroaki SHIMOMURA*1'

§ lc Introduction

In this paper we shall consider mainly ergodic decomposition

of translationally quasi-invariant (simply, quasi-invariant) measures

which are defined on the usual Borel tf-field 23 (12°°) of R°°. For

the notions of quasi-invariance and ergodicity, we refer [9] or [10].

The set of all probability measures on 83(12°°) will be denoted by

M(R°°')) and the subset of M(R°°) which consists of all IC-quasi-

invariant measures will be denoted by M0(J2°°). K? is the set of all

x=(xl,-~, xn,'-}^R°° such that xn — Q except for a finite number of

w's. For t^BT and ft^M(R°°), we put #eM(B°") as follows, //,(B)

= /i(B-0 for all BeS3(IT).

(I ) Let {i<^MQ(R°°}. If fi is not JC-ergodic, then we can decom-

pose it to two mutually singular (j ^MQ(R°°) (j=l, 2) such that fi is

the convex sum of fi and //. If at least, one of /^ is not !C-ergodic,

then we proceed in the same manner and decompose it to two

measures. So the following problem arises naturally.

(Px) Let /jt^MQ(R°°). Then is fj. represented as a suitable sum of

R™ -quasi-invariant and R£ -ergodic measures which are mutually

singular?
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The problem (Pj) was first considered by Skorohod [8], He obtained

such a decomposition of //eM0(l2
00) using the family of conditional

probability measures {//*} x€=B°° with respect to the sub-tf-field SSoo.

(See, §2.) Factor measures /j," are IC-quasi-invariant and IC-ergodic.
But ff is not mutually singular with each other. In this paper, we

shall investigate this decomposition in more detail. Roughly speaking,,

it will be proved in Theorem 4. 2 that changing the parameter space

from R°° to jR1, we can choose mutually singular factor measures

{//r}reJBi. Moreover, Theorem 4.2 assures that not only the R~-quasi-

invariant measures but also the general /*eM(R°°) can be represented

as a superposition of mutually singular tail-trivial measures. (For the

tail-triviality, see §2.) This decomposition will be called a canonical

decomposition of /^.

For jueMGR00), we put T,= {t<=R°° |^ — /^}, and we shall denote

the maximal vector space of Tp by T°. Then introducing a suitable

metric, T° becomes a complete separable metric topological vector

space, whose topology is stronger than the induced topology from B°°.

(See, [1].) If jueM0(jr), then we always have «T£7^ Therefore
it is interesting to investigate the following problems.

(P2) Let jJL^MQ(R°°}f Then for the factor measures

of a canonical decomposition of JJL, does T°rIDT° hold for all

More generally,

(P3) Let jK^C^CfS00 and 0 be a complete separable metric linear

topological space, whose topology is stronger than the induced topology

from R°°. Let ^^M(E°°) be ® -quasi-invariant. Then does T°r

hold for all

The problem (P3) will be discussed in §5. A ^-quasi-invariant
measure jJL^M(R°°} is said to be ^-decomposable if and only if the
problem (P3) is affirmative for //. In general, ^-quasi-invariant

measures are not necessarily ^-decomposable. However under the

assumption that 0 contains 1C densely, we do not yet know whether

the problem (P3) is always affirmative or not. But we will obtain
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an equivalent condition (in Theorem 5.2) for the 0-decomposability,
introducing a notion of strong-0-quasi-invariance.

(I) Before discussing (Pi), (P2) and (P3) by probabilistic method,
we shall look again the problem (PJ in view of the theory of von
Neumann algebra.

Let //eM0(E00)a We form the set L^R00) of all square summable
complex-valued functions. Let Ue(e^R^} e=(el!>--,> £„ , - • • ) ) and
Vt(t<=R") be unitary operators on Z/JC*2"0) acting for each

as follows. U. ; /(*) i - > exp (ix (e) ) •/(*) , Vt ;

f(x — f). x(e) is the duality bracket, .r(e) = 27=1 ̂ r Let M^ be a
von Neumann algebra generated by {Ue} e<=R™ and {F(}te*~ and M^
be its commutant.

Theorem 1. 1. M'f = Mf fl M;.

Proof. Since M^ is generated by its projection, so it is sufficient
to show that any projection PeM^ belongs to M^. Applying the
function 1 (whose values are constantly 1) to the both side of UeP —
PUe) we have [P(exp (ix(e}}}1 (x) =exp («r(<0)P(l) (x) mod //. The
family of all finite linear combinations of {exp (ix(e))}e&s™ is dense
in L* (IT). It follows that

(1) P/(*)=/(*).P(l)(*) mod/ / for all /eL;(B°°).

As

, so (P(1)(^)}2 = P(1) W mod ft which

shows the existence of such ^^^8(12°°) as P(l) (x) =%A(x). (%A

is the indicator function of A.) Therefore (1) becomes

(2) Pf(x) = XA (x) -/(*) mod fi for all /eLJ (JT ) .

The operator f ( x ) \ - >%A(-z)'f(x) belongs to M^ (but the proof
requires additional arguments.) so PeM^. Thus the assertion of
Theorem 1. 1 has established. But we shall investigate the set A in
more detail. Applying the function 1 to the both sides of

from (2) we have —- (x) - XA 00 = y -- (^) IA (•£ — 0 mod ft Since
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mod ft so

(3) p(AQ[A-i])=Q for all

Theorem 1.2. Z/e£ fjt^M0(R°°)a Then, p is R"-ergodic, if and

only if Mp is a factor. (For the notion of factor, we refer [4]-)

Proof. We continue the notation of Theorem 1.1. If ft is

JC-ergodic, from (3) we have p(A) = l or 0. It implies P=I or 0

and M^nM^ = M^= {oJ}aeai. Conversely, let M^ be a factor. For a

set 4e$B(B°°) which satisfies (3), we set PA;f(x)\ - >&(*)•/(*).

Then P^eM^flM^ and therefore PA = I or 0, because PA is a projec-

tion. It follows that p(A) = \ or 0.

Theorem 1.2 implies that an ergodic decomposition of

may be derived from the factor decomposition of M^. (See, [5].)

However in this paper we shall discuss the ergodic decomposition

without using the theory of von Neumann algebra.

§ 2. Conditional Probability Measures with Respect to SB*,

Theorem 2.1. Let X be a complete separable metric space, S3

be the a-field generated by its open subset and ^ be a probability

measure on S3. Let 21 be a sub-a-field of S3. Then there exists a

family [fi(x, 21, 8)}*e=x which satisfies

(c, 1.) for any fixed x&X, (JL(X, 21, •) is a probability measure

on S3.

(c, 2.) for any fixed SeS3, //(#, 21, B) is an ^-measurable func-

tion of x e X.

(c, 3.) /Lt(AnB)= \ fi(x9 21, E)dfjL(x) for all Ae2I and for all

Moreover, if another family [f£(x, 21, OKex g^wfc awi? satisfies the

above three conditions for the same //, then //(.£, 21, a)=^t(x9 21, •)

jbr [i-a.e.x. (We shall say that p(x, 21, •) is the conditional

probability measure of [JL at x with respect to 21, and we shall call
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the above fact the decomposition of n with respect to 2L)

Proof is omitted. (See, pp. 145-146 in [6].) We remark that for any

4e« and for any f ( x ) eLJ(X), J/(^K*) = $J$/(30M*> «>

dfi(x) and that \/(^)^(^3 21, <#y) is an 2I-measurable function.

Theorem 2.2. Under the same notation in Theorem 2.1, let

fi and v be probability measures on S3. Then JJL<V implies that

[JL(X, 21, O^K^j 21? •) for p-a.e.x.

Proof is omitted. See, [8].

From now on we shall consider the case X=R°°. For the general

element .reJR00, let xn be its nth coordinate, x= (xly • • - , xn, • • • ) • The

minimal cr-field with which all the functions xly x2, • • - , xn(or xjy /=

72+1, • • • ) are measurable will be denoted by S5B(or S3"), respectively.

Put nr=i 25" = 83 oo. The tail tf-field S3oo coincides with the sub-family of

S3(J£°°) which consists of all the invariant sets under all translations

by the elements of 1C- We say that ^<EM(JT°) is tail-trivial, if /*

takes only the values 1 or 0 on S3oo.

Theorem 2. 3. (Skorohod, [8]) Let /^M(jr°). Consider the

decomposition of {JL with respect to $8^. Then there exists

(^, See, e) Z5 tail-trivial for all

Proof. In this proof, we shall sometimes write //*(•) instead of

^(^, S3 oo, o)5 and /^(x, 83", 8) stands for the conditional probability

measure of /* with respect to S3".

( I ) First we shall derive the decomposition of (JLX with respect to

Soo for each .re IT. Let A^®^ B^^3(R°°) and £<EES3B. We shall

calculate / / (AnBn£) in two ways. ^(Ar\BnE^>=( j u x ( B n E ) d ] L t ( x ) .
JA

On the other hand, fi (A n 5 R £) = \ // (*, SM, B) ̂  (a:) = ( { ft (t, S3re,B)
JARE JAJE

d/jtx(t)d[jt(x}. Hence, for fixed Band £,
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for fjt-a. e. x. Since 83" is countably generated, it follows that there

exists <0£ea3oo with //(£?£) = ! such that

(4) for all xE^Ql, [ i x ( B f t E } = ( u(t, S3n, B)dux(t) for any £eE83M
e

JE

On the other hand, /£*(Bn£) = ^ [ix(t, 83% B)dux(t), so from (4)
JE

(5) for all x^Ql, fjix(t, SB-, B) =//(*, S3", B) for /r'-a.e.t

$8(12°°) is countably generated. It follows that there exists 5Be83oo

with fji(Qn) = l such that

(6) for all x^Q\ /r*(£, S3", - )=^(^ 83% 8) for /^-a.e.t.

Using the martingale convergence theorem,

f, 83% B)-(jf(E) \dp(t)=Q for all 5^83(12°°), and

$8", B)-/f(t, %~, B) \dff(f)=0 for all ^eU~.

From (7) there exist a subsequence {nj and TBe83oo with //(TB) = 1

such that

(9) for all * e TB, lim\ | p (t, ffl"/, B) - // (5) | ̂  (0 - 0.
y->ooj

Therefore from (6), (8), and (9) we have

(10) for all ^enr=i^ nnTB 3 f f ( t , Soo, B)=/£'(B) for //--a. e. t.

(7) linA
n-*oo J

(8) lim(
n-»oQj

Using the fact that 33(12°°) is countably generated, there exists

with /£(fl°) = l such that

(11) for all .r<E£°5 ^(^, S3.,, - )=^(^ s^ 8) for //*-a. e. t.

Equivalently,

(12) for all x^Q\ [ix(Ar\B) = ( fjf(B)dff(t) for all AeSS. and for all

5GE83 (JT).

(I) We shall prove that for ^-a.e.x, //* = /*' for //'-a.e.t. Because,

(B) \*dtf(f)dti(x) = 2 ̂  {^(B)}'4u W - 2 J^(B) J^(B)

=Q for all BeSSC/T). It ensures the existence of 5BeSoo

with ^(5B) = 1 such that for all ^e5B //'(B)=^'(B) for ^-a.e.t.

Again using the countably generated property of S3(JR°°), we conclude

that there exists S'sEgL with f t ( 8 l ) = l such that

(13) for all ^efl1, //* = //' for ^'-a.e.t.
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(I) We put Q^&nO1. Then from (12) and (13) we have for

all x e Qu ff(Af}B) = ff (B) dff (0 = ff (B) • ff (A) for all A e ». and
J A

for all BeSSCR00). In particular, putting jB = A, we have [f(A) = \

or 0. Therefore ft* is tail-trivial for all xeA- Q.E. D.

For the remainder part of this section, we shall consider the

application of Theorem 2.3.

Let 2 be the set of all permutations of natural numbers which

shift only finite numbers of n. For each aEE.S1, we associate the map

Sa on R°° such that Sa'y x= (xlyx2,~-)\ - >Cr,(1), x.w,—). We shall

say that /n^M(R°°) is permutationally-invariant, if S.fji= ft for all

a^I. Let O(ri) be the orthogonal group on 12". Naturally O(ri)

can be considered as a transformation group on R°°. We set O0(°°)

= Ur=i O(ri), We shall say that /jt^M(R°°) is rotationally-invariant,

if TfJL=fJt for all TeO0(oo).

Proposition 2. 1. L^^ ju^M(R°°). Consider the decomposition

of fj, with respect to S3oo. Then, if fi is permutationally-inva riant

( rotationally-inva riant} 9 fj.x is a Iso pe rmutationally-inva riant ( rotationally-

invarianf) for fi-a.e.x, respectively.

Proof. The first assertion is due to the fact that {S.} ,<=•£> is a

countable set. The later one is derived by taking a countable dense

set of O0 (oo). Q.E.D.

Proposition 2. 2. Let /^M(J?°°) be permutationally-inva riant

and be tail-trivial. Then there exists a Borel measure m on R1 and

IJL is the product-measure of the same m.

^Proof. For each j we put ey= (0, 0, • • - , 0, 1, 0, • • • ) 5 and con-

sider the integral, /JCv^H ----- hjvO = ^exp(^(2];=13;^))^(^). Then

for any n and k,

^1^1) exp (z'£"=2 yjXj+t
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where Ef[f\W](x) stands for the conditional expectation of / with

respect to S3*. From the martingale convergence theorem we have,

In virtue of the assumption of //, E^cxp(iylxl) \

for /^-a.e.x. It follows that

H ----- t- 3> A) •

Repeating this procedure, we have /K^iH ----- \-ynen) = Tln
j=lfi(yjej) for

all n and (^ 3V", 3O» Let w be the Borel measure on R1 such

that ?n(v) = \ exp(ivu)dm(u)=fl(ve1) for all v^R1. Then the above
J R

formula implies that /^ is the product-measure of m. Q. E. D.

Proposition 2. 3. Let /.t^M(R°°) be rotationally-inva riant and

be tail-trivial. Then there exists l-dimensional Gaussian measure gc

with mean 0 and variance c and n is the product-measure of the

same gc (, which will be denoted by Gc).

Proof. By Proposition 2.2, the proof will be complete if we

show m=gc. Now for any n and for y = yie1-i ----- Vy^^

Since m is symmetric with respect to origin, so m is always real-

valued and m(v}=m(\v\} for all v^R1. Therefore from the above

equality,

(14) m(v)= {m(v/^}}n for all n and for all v

Putting n = 2 in (14), m(z>)^0, and taking n sufficiently large,

we understand that m(^)>0 for all v^R1. It follows that °o>

— log m (v} = — lim n log (m (u/V n )) = lim n (1 — m (v/V n)) =

lira n \ (l — cos(vu/^n))dm(u).
«-*oo J/jl ~

Therefore Lebesgue-Fatou's lemma assures that oo^>\uzdm(u) =c.

Again applying Lebesgue's bounded convergence theorem for the
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above equality, we have log m(v) = —cvz/2. Therefore m=gc.

Q. E. D.

Theorem 2.4 (Umemura, [10], [11]). Let fjt<=M(R00') be rotationally-

invariant. Then there exists a Borel probability measure co on H1

and the following formula holds for all B^%$(R°°) and for all

r(x) is the function defined on R°° as follows,

1 2 ., .
lim—z_i 7=1 •^•j? v ^£ existsn-,oo n

0, elsewhere.

Proof. We decompose fj. with respect to S3oo. Then Proposition

2.1 and Proposition 2.3 assure the exitstence of a(x)^Rl such that

^(XSSoo, °) = Ga(a : )(
o) for /^-a.e.x. Since «(^) = \y\ dGaM(y) =

Wi ^(^r, S3oc5 ^), so a(^:) is a Soo-measurable function. Set Ac= [xEi

R°°\r(x)<^c}. Then Gr(^e) = l if r^c, and G r(A c)=0 if r>c. So for

It follows easily that a(x} = r(x) for //-a.e.x. Define a measure

o) on S3CJ21) by o>(£) -^({^eE00 \r(x) e£}) for aU ££»(»). Then

we have,

Now the proof is complete. Q. E. D.

§ 3c l^r-Quasi-InYariaiit Measures and the Tail ® -Field S°°

The content of this section is mainly preparations for our later

discussions. But it will be turned out that Sex, plays an essential role

for !C-quasi-invariant measures, since the equivalence relation for

these measures are completely determined by the behaviour on S3oo.

(See, Proposition 3.2.) Let /*(=M0(K°°). We often refer the follow-

ing fact assured in [9],
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(A) There exists a positive sequence [an] such that T^H^ Ha =

(B) There exists ff^M0(R°°) such that 0(Ha) = I and a is R~-ergodic.

(It follows easily that the convolution [JL*G of fj, and a is equivalent

with /*.)

Proposition 3.1. Let n^MQ(R°°}. Suppose that A0eS3(IT) satis-

fies the relation, fi(AQQ{_AQ — f\) = 0 for all t^R~. Then there exists

such that fjt(AQAQ)=0.

Proof. If //(A0) = l or 0, we take A = R°° or 0. So we shall

assume that 0<^(A)<1- Define fj.j^M(R00} (/=!, 2) as followse

and (B)=. for

Then in virtue of the assumption, nJ^MQ(R°°), We shall take Ha

and a for fj, stated in (A) and (B). Since Ha satisfies the condition

of Theorem 1.3 in [9] and contains 1C densely, so by its Remark,

we have f£(A0Q[A0 — t])=Q for all t<=Ha. It follows that //y are

ff«-quasi-invariant and ^j*a^.fJLj(j= 1, 2). The set A= [y^R°° \a(A0—y)

= 1} belongs to Soo. As fjt1(A0) = l, so fji1*a(A0) = l and therefore

^(A) = l. Consequently, // (Ac fl A0) = 0. On the other hand, ^2(^o)

= 0. So the similar arguments derive that fjt(AnAc
0)= 0. Combining

it with the above fact, we have fjt(AQAQ)=Q. Q. E. D.

Remark 1. Let ^eM0(J2°°). We take aff^M0(R°°) which satisfies

(A) and (B). Then, ^a(AQ^B} = ( o(B-y}d[i(y} for all A^®*,

and for all SeS3(ir).

Proof. From the proof of Proposition 3.1, we understand that

fji(AQAQ)=Q. (A has the same meaning in it.) Since a is !C-ergodic,

the function 0(AQ— y) of y takes only the value 1 or 0. Thus,

fi*0(A0nB)=(a(B-y)d[jt(y)={ a ( B - y ) d f j t ( y ) . Q. E. D.
JA JAQ

Corollary. Let ^eM0(B°°). If £t is tail-trivial, then it is
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R~-ergodic.

Proof. Let AQ^$d(R°°) be a some set which satisfies // (A0© [A0 — *] )

= 0 for all feRJ8. Then Proposition 3. 1 assures the existence of

AeS3oo such as ^(A0©A)=0. In virtue of the assumption, /£(A) = 1

or 0, therefore the same holds for AQ. Q. E. D.

Naturally from Proposition 3.1 a following problem (P) arises.

Let 0 be a subset of 12°° which satisfies
(S0) 0 is a complete separable metric linear topological space. 0

contains R~ densely and it is continuously imbedded into R°°.

Then,

(P) For any 0-quasi-inva riant-measure /^eM^IS00), S3 00 = 830 mod JJL?

That is, for any A0eS3oo, does there exist ^-measurable set A which

is invariant under all translations by the elements of 0 and satisfies

We do not yet know if (P) is true or not. Later we shall show

that (P) concerns with the ergodic decomposition of 0-quasi-invariant

measures.

Proposition 3.2. Let /*, v^MQ(R°°). For [*<», it is necessary

and sufficient that /^<y on S3«>.

Proof. The necessity is obvious. For the sufficiency, we shall

take a c7eM0(IO which satisfies [Ji*o~p, and V*G~V« Suppose that

y(J3)=0 for some 5eS(R°°). Then \a(B-x)dv(x)=Q. The set

A= {x<=R°° \a(B — x)=0] belongs to 2L, and v(A) = l. By the assump-

tion, //(A) = l, consequently f j i * a ( B ) = Q , so //(B)=0. Q. E. D.

Corollary. Let p, v<=M0(R°°) be both R~ -ergodic. For IJL — V, it

is necessary and sufficient that ft = v on ^S^. If p and v are not

equivalent, then they are mutually singular.



370 HIROAKI SHIMOMURA

Proof. It is immediate from the above proposition.

Let Bo^SCR00) and ^(B0)>0. We define //floeAf(B°°) such that
o) for all

Proposition 3.3. Let ft^MQ(R°°}. For ftBQ(=MQ(R°°), it is neces-

sary and sufficient that S0GE83oo mod ft. Further under the assumption

that 0 satisfies the condition (S0), if ft is ^-quasi-invariant^ then ftBQ

is also 0- quasi-invariant.

Proof. The sufficiency is obvious. Let ftB^M^(R°°} . We shall take

a ere M0 (I?
00) which satisfies (A) and (B) for ft and ftBQ simultaneously.

Since /jLBo(B0) = l9 so putting A= {x<=R°° \a(BQ — x) = 1} e^L, we have

f£BQ(A) = l and therefore ft(Ac n50) =0. On the other hand, in virtue

of Remark 1, ft*a(A^Bl) = { a(Bc
Q-x}dft(x}=Q, so ft(A^Bc

Q) = 0.

Therefore ^(^050)=0 and it shows B0eS3oo mod ft.

If /^ is 0-quasi-in variant, then ft(AQ\_A — <p\) =0 for all <p^@.

(See, [9].) It implies that if //Bo(B)=0 for some BeS(E°°), then

ju (AnLB — p])=0. Consequently, ^o(5-^)=0 for all £>ed> and

therefore /^BO is ^-quasi-invariant. Q. E. D.

Proposition 3.4. Le£ 0 satisfy (S0). Suppose that p, v<=M0(R°°)

and ft be 0- quasi-invariant. Then v<ft implies that v is ^-quasi-

invariant.

Proof. Since v<ft on Soo, so the Radon-Nikodim derivative g(x)

of v with respect to ft on 33^ is defined. The set BQ= [x^R°° \g(x) ^>0}

belongs to S3oo and ^(B0)>0, so we form the measure ftBQ. ftBQ

is jR~-quasi-invariant and fts^ — ̂  on S3oo. By Proposition 3.2, it

implies fts^ — ̂ - Now the assertion is derived from Proposition 3.3.

Q. E. D.

§ 4. Ergodic Decomposition of 1C -Quasi-Invariant Measures

Theorem 4.1. Let ft<=M(R°°}. Consider the decomposition of ft
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with respect to 93TC. Suppose that JJL is R™ -quasi-invariant. Then

there exists a set £?2e93oo with /*(fl2) — 1 such that f i ( x , $8^, •) is

R™ -quasi-invariant and R^-ergodic for all x^Q2.

Proof. In this proof we shall also sometimes write /**(•) instead

of fjt(x, 93oo3 •). Now we shall take a a<=MQ(R°°) which satisfies (A)

and (B) in §3. From the Remark 1 of §3, for any A<E93oo and for

any Be 23 (IT3),

= \
JA

The last equality is due to the fact fjt = /jL*a on 93oo* The family

{(ix * a} a-ejjoo satisfies the three conditions of Theorem 2.1, so Theorem

2.2 assures the existence of $1e930o with p.(Ql} — \ such that /Ltx*a~/J,x

for all xEzQ1. Since a is .R^-quasi-invariant, so the same holds for

lf*a for all x<=R°°. Putting O2 = Q1r(Q1 (^ is the set in Theorem

2.3), it follows that JJLX is ftr-quasi-invariant and 12^-ergodic (due

to the Corollary of Proposition 3.1) for all x^Q2. Q. E. D.

Lemma 4.1. Let (X, 83) be a measurable space and 95 be count-

ably generated. Then there exists a map p from X to R1 such that

$8 coincides with p~l(^8(R1^. (23 (K1) is the usual Eorel field on B1.)

Proof. Let [Aj] J=liZt be a countable subfamily of S3 which gener-

ates 93. We may assume that this family is closed for the operation

of taking the complement. Put &j(x) for the indicator function of

Aj for each j and define the map p as p(x} = 2r=i£j(-r)/2J for all

x^R°°. Now consider the binary expansion of each re(0, 1), r —

Sr-i«jto/2' with a,(r) = l or 0. The set X= {r^(03 1) |aw(r)-0 and

««W = 1 occur for infinitely many n and m.} belongs to 93(11?) and

the range of p is the subset of X. Moreover the binary expansion

is uniquely determined on X. It follows that ^~1(93(l:21)) D93, because

p-l[TG(Q9 1) |ay(r) = l}=4,.eS3 for all/. On the other hand, for

the set E(dl9 4, -, a.)={re(0, 1)1^(0=3,, .-, an(r) =dn.} (dj=l or

0, l^/^»), we have p~1(E(dl, -, 3J) = nj-^eJB. (A1 stands for
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A itself and A° stands for Ac.) Since the inverse image of any open

subset G of R1 is a countable union of the above sets p~1(E(d1) • • - , <5n)),
so /r'COeSS. Hence it follows easily that /r'OBCB1)) =83.

Q. E. D.

Now we shall return to the original /jt^M(R°°). Since LJ(K°°) is
separable, so there exists a sub-ff-field $J which satisfies

(a) SdSoo, and for any AeSSoo there exists JL<E$ such that p(AQA)
= 0.
(b) $& is countably generate d, and therefore a map p from IS00 to
Rl exists such that ^(^CE1)) =& According to Theorem 2.1, we
decompose /^ with respect to $. Then for any Ae93oo and for any

Beffl(IT), j t iOAnB)=A£C£nB) = \ JM(*> $5 B)4M(*) = \ /*(*, ®, B)
J4 JA

dfjt(x). So in virtue of Theorem 2.1, a set <Q3eS3oo with //(£3) = 1
exists such that JJL(X, S, °)=[i(x, Soo? •) for all x^Q3, Therefore

for any .reAflA, /^(^, S, e) is tail-trivial. Moreover if fj, is
I^-quasi-invariant, then for any x^Q^Q^ JJL(X, S, •) is IC-quasi-
invariant and Br-ergodic. Let (Ay}y=l i2 i. be a countable family of $
which generates & Put for each j, JV}= {^eE°° !&,-(*) =^fe S, Ay)}
and N= Uy=1JVy. Then ATeS and fjt(N)=0. It is easily checked
that

^(PW) for all

Now it is evident that p(x)=p(y) implies /i(x, S, O)={i(y3 $$, 8)«
Conversely, if x, y^Nc and p(x)^p(y)9 then from (*) we have
[JL(X, %$, •) and ^(jS ̂  °) are mutually singular. Define a measure
o> on S3(J?) by o)(E) =^(p~1(E)) for all £ea3(fP). It is known that
there exists a family {{/} re*iCM(IO which satisfies

(**) for each fixed BeS3(JO, //(£) is a S3 (H1) -measurable func-
tion.

(***) MSn/'-1^))^ f^T(B)do)(T) for all £(ES3(JP) and for all

»(«"). (See, [6].)
From (***) we have for all E^^8(R1) and for all 5eS(B°°)

^-! (£) ) = ̂  ^U) (5) ̂  (a:) , so that there exists Q, e »oo with ^ (J24) = 1
~
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such that fjt™(-)=(jL(x, $, •) for all x^Q,, We put G=

fl4nNc) in the case of ^M(R°°) and put G=p(Q2f\ QzftQ^Ne) in

the case of n^M^(R°°}. Then G is an analytic set, therefore G is

^-measurable and <w(G) = l. (See? [6].) Modifying [f on a set with

cy-measure 0, we have,

Theorem 4. 2, Let jt£eM(R°°)- Then there exist a family {/f}tGSi

CM(I2°°) and a map p from R°° to Rl such that

(a) /*rCB) is a $8 (JR1) -measurable function for any fixed

(b) {/ is a tail-trivial measure for all TEES1,

(c) ^-1(S(I21))CS00,

(d) putting w=pfr [i(Bnp-l(E^=( //(B)dco(r) for all

and for all BeS(K°°),

(e) there exists a set E0^^8(R1) with o>(£0) = l such that /r1 and /f2

are mutually singular for all r1? r2^E0 (r1^T2))

(/) moreover, if fj, is R™ -quasi-invariant, then jf is R™ -quasi-invar-

iant and R"-ergodic for all r^R1.

(We shall call the above fact the canonical decomposition of JJL and

symbolically write fi= [{^r}r€Efii, p~\.}

For the uniqueness,

Theorem 4.3. Let ^eM(B°°). Consider two canonical decom-

positions of p, [{/^l}rejRi, A] and [{^}re«i5 p2~\ which satisfy (a), (b)9

(c) and (d) in Theorem 4.2. Then there exist M;.eES3(I?) O'=l, 2)
and a S3 (JR1) -measurable map s(r) on K1 such that

(a) a,,(M,) = l (y=l, 2),

(6) 5(M!)=M2 anJ 5 is one to one on M13

(c) /« = jwj(r) /or a// reMls

(d) sopl(x)=pz(x) for [jt-a.e.x.

Proof. By the assumption, //I is tail-trivial for all r, so /£ takes

only the value 0 or 1 on A"1 (S3 (S1) ) . It follows that for any r^R\

there exists a unique s(r)^Rl such that /^(^(X^))) — !• In a
similar way, for any reE/P, there exists a unique ^(r) efS1 such that
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^(pr1 (*(*"))) — 1- The map s and t are SS^1) -measurable, because

for any

J-1(£) = {reHl|^(pa-
1(£)) = l} and r1^) = {relP I^Cpr1^))) = 1}-

We put M1={rei21 |fo5(r)=T, //; = //;(T)} and M2= {relP |$of(T) =r,
/4 = /4(r)}- Then reMj implies so£os(r) =5(7) and juJ(r) = # = /£l° l (T) ,
therefore *(r) eM2. If reM2, then tos°t(r) = t(r) and ^JCr) = /« = ̂ o lW ,
therefore ^(r)eM le It follows that r = 5of(r) e^CMJ.

Consequently, we have s(Mi)=M2 and s is one to one on Mle

Let A<ES3oo, and we put E= [r^R1 \pl(A) = 1}. Then since £c =

|^(A)=0}, so jM(AnA-1(^))=\ A«(-A)doi(r)=0, IJL (A*
JEC

{ n\(Ac}dw(r} =0. Thus, p(AQpil (E)) =0. It follows from Theorem 4.2
J£

that f * ( A n B ) =V(PT1(E) nB) - ^flw^lU)(B)^(j:) - ^/ifiw(B) ^ (a:)

for all Ae^ and for all 5<ES3(jr°). Similarly, ^ (An^)^

^ fjf^(B)d[jL(x) for all AeSoo and for all B^SQ(R°°). So in virtue
JA

of Theorem 2.1, there exists £?5eS3oo with ^(J25) = l such that

(15) tfiw = /#w for all j:efl6.

Now from (*) in the proof of Theorem 4.2, there exist Nj(j=l, 2)
(ESSCfS1) with o)j(Nj)=0 (o)j=pj[jt) such that

(16) /iJ(P71W) = l for all TE=N',.

Put A"1W)nA"1W)n-05 = ̂ 6. Then ^(A) = l and therefore
^(A-(A)) = 1 for j = 1,2. If x^Q69 then by (15), (16) and the definition
of s(r), we have

^'(s) (A"1 (P.

It follows that p2(x}=sopl(x} for all x^Q&. Similarly, pl(x) =top2(x)
for all x<=Q&. From (15), if r=pl(x) e/j^fig), then T = top2(x) =fos(r)

and $ = $M
9 so that A(-°6) cM^ Similarly, p2(Q6)dM2. Therefore

oiy(My) = 1 for j= 1, 2. Q. E. D.

§ 5. ^-Decomposable Measures

Definition 5. 1. Let R^dQciR00, and let ^eM0(!2
00) be a
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^-quasi-invariant measure. Consider a canonical decomposition /JL=

[{^r}TeJzi, />]. We say that fj. is 0-decomposable if there exists

with w(F} = l (co=pfjt) such that {f is ^-quasi-invariant for all

The definition does not depend on a particular choice of canonical
decompositions due to Theorem 4.3. In this section we shall study
^-decomposable measures. From now on we shall demand that 0
satisfies the following condition (S).

(S) 0 is a complete separable metric linear topological space, 0 is

continuously imbedded into R°°, and 0 contains R™a

The following example shows that ^-quasi-invariant measures are
not necessarily ^-decomposable. However under the assumption that
0 satisfies the condition (S0) in §3, we do not yet know whether
^-quasi-invariant measures are always ^-decomposable or notB

Example. S e t e = ( l , 1, • • - , 1, - -O^R 0 0 and let GeM(R°°) be
the product-measure of the 1-dimensional Gaussian measure with
mean 0 and variance 1. We define ^^M(R°°) such that 1(B} —

\ G(E — re)dm(r) for all JBeS3(R°°), where m is a definite probability
J R

measure on 33 (I21) which is equivalent with the Lebesgue measure.
It is easily checked re^T^ for all r^R1. Moreover, from the
/2-quasi-invariance of G, we understand that 1 is $-quasi-invariant,
0= [h + Te \h^l2 and T^R1}. 0 becomes a separable Hilbert space

with the norm | | | - | l l defined by \\\h + r e !|| = Vf|A| |2+T2 , (||-|| is the
/2-norm.) and the injection from 0 to 12°° is continuous. (But RJJ0 is
not a dense subset of 0.) Let n(x) be the function defined on R°°
such that

i- 1 ^i»Inn—2j*=i^ ii it exists-»oo n

0 elsewhere.

Then for any a^R1 and for any B^^8(R°°)3 ^(Bn [xeR°° \n(x) ^a})

= \ G(B — r e)dm(r). It follows that {Gre}rGRi and n(x) satisfies the
j —°°
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conditions of Theorem 4.2. Therefore a canonical decomposition

of /! is [{Gr.}r6ai, n(x)~\. However, Gte is strictly-/2-quasi-invariant.

So Z is not ^-decomposable.

Let 0 satisfy (S). We shall denote the Borel tf-field generated

by open subsets of 0 by 23(0). Consider a transformation T on J2°°

which is represented as follows. T(x) =x + <p(x} for all x^.R°° and

y(x) is a measurable map from (R°°, 83*,) to (0, S3(<P)). The set

of all such T is denoted by

Definition 5. 2. Let jLt<=M(R°°) and 0 satisfy (S). We shall

say that fi is strongly-0-quasi-inva riant, if and only if [JL<T(JL for

all

Clearly the strong-0-quasi-in variance implies the usual (P-quasi-

invariance. But we do not yet know if the converse assertion is

true, under the assumption that 0 satisfies the condition (S0) in §3.

Proposition 5.1. Let 0 satisfy (S). Suppose that {i<=M(R°°)

strongly-0-quasi-inva riant. Then for any AoEzSQ^ with fjt(AQ)^

JUAQ is also a strongly-0-quasi-inva riant measure.

is

Proof. Let T<E<r(0), T(x)=x + (p(x), and 7>Ao(JB)=0 for some

. We put ^ (x) = %AQ (x) - <p (x) for all x<=R°° and define

as Ti(x)=x + <pl(x). Then T^(Bn A0) dT~l(B) n A, so

) — 0- From the assumption, therefore we have ^(fin-Ao)

-0. It shows that T^A>^AQ for all T^^(®}. Q. E. D.

Proposition 5.2. Le^ (P satisfy (S). // /^ w strongly-0-quasi-

invariant, then ^(T'l(A)QA) =0 for all T<E^~(0) anJ /or a//

We set A0=T'l(A)QA. Then 0 = ̂ 0(r'
1(A) n A) =

)). Therefore we have fi(AQr\A) =0 by Proposition 5.1. The

set AQ does not change if we take Ac instead of A. So the same
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arguments derive that // (A0 fl A
e) = 0, and therefore /*(.A0)=0.

Q. E. D.

Proposition 5. 3. Let 0 satisfy (S). Suppose that fjK=MQ(R°°)

and TIJL—IJL on S3o= for all Te^"((P). Then fjt is strongly-0-quasi-

invariant.

Proof. In virtue of Proposition 3.2, we have only to check that

7>eM0GR°°). But it is immediate from the fact, T~l(B)+t =

T~l(B + f) for all BeS3(R°°) and for all t^R~. Q. E. D.

Settling these arguments,

Theorem 5.1. Let 0 satisfy (S). Then the following conditions

are all equivalent for fjt^M(R00').

(a) fj. is strongly-0-quasi-inva riant.

(b) n is R~ -quasi-invariant and ^(T~l(A)QA) = 0 for all

and for all A^SB^.

(c) IJL is R™- -quasi-invariant, and T[i = [i on SSoo for all

(d) Tti~n for all

Proposition 5.4. Let 0 satisfy (S). Suppose that

is ^-quasi-invariant and R~-ergodic (==> 0-ergodic). Then JJL is

strongly-0-quasi-inva riant.

Proof. Let T^3T(0}, T(x) =x + p(x). We shall denote the nth

coordinate of <p(x) by <pn(x) for each n. Then <pn(x) is a 25 oo -mea-

surable function, so the ergodic assumption assures the existence of

<pn^Rl such that <pn(x}=<pn for /^-a.e.x. It follows that (</>ly • • • , ^n, • • • )

= <p = <p(x') for //-a.e.x and therefore <p^.0. Consequently T(x) may

be regarded as the translation map by (p, so T[J. = [JLV~H.

Q. E. D.

Proposition 5. 5. Let 0 satisfy (S) anrf (X, S, ^) 6^ a measure

space. Suppose that a family {//} a^xdM(R°°} is given such that //CB)
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is a ^-measurable function of a for any fixed B&%}(R°°). If ff is

strongly-@-quasi-invariant for 2-a.e. a£EX, then a measure fjtEE.M(R°°)

defined by f*(B) =( fitt(B)dl(a} for all B{E$8(R°°) is also strongly-
J X

0-quasi-inva riant,

Proof. If follows easily from (6) of Theorem 5. 1. Q. E. D.

Thus, from Theorem 4. 2, Proposition 5. 4, and Proposition 5. 5. the

necessary part of the following theorem has established.

Theorem 5.2. Let 0 satisfy (S). Then for {jt<=M(R°°), j>t is

^-decomposable if and only if ft is strongly-® -quasi-invariant.

The proof of sufficiency will be derived from following discussions.

Let fj. be strongly-0-quasi-in variant. Consider a canonical decom-

position of ft, fjL=[[fjf}teMi9 p\. For the general element ^13 fjt2^M(R°°),

we put d(fii9 fjt2)=sup{\F(x)d/jt1(x) — \F(x)dfjt2(x)} , where F(x) is

a S3 (Jf2°°) -measurable function such that \F(x) ^1. (The metric d

is same with the Kakutani's metric.)

Lemma 5. 1. Let 0 satisfy (S). Then d(&, //) is a ?5(Rl) x83((P)-

measurable function of (r,

Proof. Let ^= UB = = 1 p~l(CQ(Rn^, where p^(CQ(Rn}} is the set of

functions F(x) defined on R™ such that F(x)=f(pn(x')} for some

f^C0(R
n). C0(R

n) is the set of all continuous functions with compact

support defined on Rn and pn is the map,

Since d(ffv9 /S) = sup \ {F(x) — F (x + <p)} d [j? (x) , and ^ is separable
FGJS" J
\F\gl

in the uniform norm on R°°, so for the proof it will be sufficient

that IF(T, <p} = \{F(x) —F(x-\-<p)}d[j?(x} is a measurable function of

(T, <p) for each F^^. Since F^^, so there exists some n such

that IF(r, p)=/F(r, pls • • - , p.), where p=(^i, • • • , ^«5 • • • ) • From the

well-known theorem
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(*) For any fixed reR1, IF(r, </)19 • • • , <pn} is a continuous function

of Oi, • • • , fOeW.
On the other hand, it is evident that

(**) For any fixed p^0, Ip(T9 9n '"> <Pn) is a %$(Rl) -measurable

function of T^R1.

Therefore from (*) and (**), it follows that IF(?, <PI, •-, ^») is

a S3 (R1) X $8(12") -measurable function, consequently IF(T, (p) is a

S3 (R1) X S3 (0) -measurable function. Q. E. D.

Corollary. Sft= {(T, <p) ^R1 x 0 \fj? and $ are mutually singular}

is a aSCR1) x 85 (0) -measurable set.

Proof. Two measures ^13 ^2eM(R°°) are mutually singular if

and only if d(fjtly //2)=2. So the proof is immediate from Lemma

5. 1. Q.E.D.

Now we shall return to the proof of Theorem 5. 2. Let q be the

projection from R1 X 0 to R1. Then q(Sp)=Slt is an analytic set

of R1 (See, [6].), and there exists a map 0(r) from S^ to ^ which

satisfies

(a) go0(r)= r for all re5w

(b) the set {r e S^ \ $ (r) e B} is a universally-measurable set for any

Borel set B of R1 X 0. (See, [5].)

We shall extend the domain of <p to IS1 defining as 0(r) = (r, 0)

for re 5^ and denote it by the same letter (p. Put $(r) =

(r, £/(r)). Then ^(0 ^$ for all r^lg1 and the set {r^R1 \<p (T) ^B}

is a universally-measurable set for all BeS3(<P). It follows that a

Borel map ^"(r) from R1 to 12°° exists and (p (r) = ^ (r) for o)-a.e.r.

If ft>(*S'AI)=0, then the proof will be complete. So we shall assume

that <w(5/,)>0 and derive a contradiction. We take a set FQ^$8(Rl)

such that F,c:{T^Rl\(p'(T*)=<p"(T}} fl ̂  and <y(F0) =^(5,), and define

a map ^(r) from K1 to 0 as follows.

fp'(r) if
<P(T) = {* to if
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Then p(r) is a Borel map and (r, 9(r))e^(L e., /£Ct) and /f are
mutually singular.) for all reF0.
In this step we remark that from (*) in the proof of Theorem 4. 2,

(*) For <y-a.e.r, p(x)=r for /f-a.e.x.

Now we put T(:r)=* + p(pGr)) for all *eR°°. Then Te^((P).
In virtue of (*), we have T// — /4(r) for tw-a.e.r. Since ^ is strongly-
0-quasi-invariant, ^(T-l(p-l(E}}Qp-l(E}}=Q for all £effl(IP), so

that Tfjt (p-1 (E) nB)=( Tff (B) da> (r) = ^ #w (B) <fa> (r) . Since 1> = /i
JE J E

on SSoo, [{^wlrsizij ̂ ] is a canonical decomposition of T/L Therefore
from Theorem 2.2, T/jt^fjt implies ff — ffy^ for cy-a.e.r. This is a
contradiction. Q. E. D.

Remark 2. We shall discuss the problem (P) in §3 concerning
the above arguments.

Let 0 satisfy the condition (S0) in §3. If the problem (P) is
affirmative, we can deduce that any 0-quasi-invariant measure fjt€=.
M(R°°) is always ^-decomposable as follows. (Consequently, the
notion of strong-0-quasi-in variance coincides with the notion of usual
0-quasi-invariance.) Let /^M(jR°°) be CP-quasi-in variant. For the
^-decomposability, as we have seen in the proof of Theorem 5. 2, it
will be sufficient that Tp{*~fi, for any TP^J~(@) which is represented
as Tp(x)=x + <p(p(x))y where <p(r) is a measurable map from (I?,

to (0, S3($)). Since ^ is (^-quasi-invariant, so for a fixed
, /fvQ and (f are equivalent for w-a.e.r. Since Tp/jt(B) =

(r) for all B^^(R°°), it follows that 7> is also 0-quasi-

invariant. Put A = — p o • Then using the assumption of the problem

(P) for /I, for any ^4eS3oo, there exists ^-measurable set A which is

invariant under all translations by ^e$, and satisfies A(AQA)=Q.
Therefore p(AQA)=0 and fi(T?(A)QTjl(A»=Q. Since Tjl(A)
= A, so fi(T~l(A)QA)=Q. It shows that TpjLt = /i on Soo, so that
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