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Ergodic Decomposition
of Quasi-Invariant Measures

By

Hiroaki SHIMOMURA*?V

§1. Introduction

In this paper we shall consider mainly ergodic decomposition
of translationally quasi-invariant (simply, quasi-invariant) measures
which are defined on the wusual Borel o-field B(R*) of B*. For
the notions of quasi-invariance and ergodicity, we refer [9] or [10].
The set of all probability measures on B(R™) will be denoted by
M(R~), and the subset of M(R™) which consists of all Rf-quasi-
invariant measures will be denoted by M,(R”). R is the set of all
z=(Z,y*+y Z,5+) ER™ such that z,=0 except for a finite number of
n’s. For teR” and y=M(R”), we put g,€M(R”) as follows, g (B)
=u(B—t) for all BEB(R™).

(I) Let pesM,(R=). If pis not Ry-ergodic, then we can decom-
pose it to two mutually singular #/eM,(R”) (j=1, 2) such that gis
the convex sum of g#' and p*. If at least, one of # is not Ry-ergodic,
then we proceed in the same manner and decompose it to two

measures. So the following problem arises naturally.

(P) Let p=M,(R”). Then is pu represented as a suitable sum of
Ry -quasi-invariant and Ry-ergodic measures which are mutually

singular?

Communicated by K. It6, March 16, 1977.

Department of Mathematics, Fukui University, Fukui 910, Japan.

1) The author was a visiting member at the Research Institute for Mathematical Sciences
during a part of the period of this research.



360 HIROAKI SHIMOMURA

The problem (P,) was first considered by Skorohod [8]. He obtained
such a decomposition of g&M,(R”) using the family of conditional
probability measures {¢°}.,es~ with respect to the sub-o-field B...
(See, §2.) Factor measures #° are Ry-quasi-invariant and Ry -ergodic.
But g is not mutually singular with each other. In this paper, we
shall investigate this decomposition in more detail. Roughly speaking,
it will be proved in Theorem 4.2 that changing the parameter space
from R” to R', we can choose mutually singular factor measures
{t} .em. Moreover, Theorem 4.2 assures that not only the R;-quasi-
invariant measures but also the general u=M(R™) can be represented
as a superposition of mutually singular tail-trivial measures. (For the
tail-triviality, see §2.) This decomposition will be called a canonical
decomposition of p.

For peM(R~), we put T,= {teR”|u,~p}, and we shall denote
the maximal vector space of T, by T, Then introducing a suitable
metric, T, becomes a complete separable metric topological vector
space, whose topology is stronger than the induced topology from R>.
(See, [1].) If p&M,(R”), then we always have RCST,. Therefore
it is interesting to investigate the following problems.

(P,) Let p=M,(R”). Then for the factor measures {{}.em CM,(R™)
of a canonical decomposition of p, does TyD Ty hold for all t€R'?

More generally,

(P,) Let RYCOCR” and @ be a complete separable metric linear
topological space, whose topology is stronger than the induced topology
from R”. Let peM(R”) be @-quasi-invariant. Then does T:D®
hold for all teR'?

The problem (P;) will be discussed in §5. A @-quasi-invariant
measure £ M(R”) is said to be @-decomposable if and only if the
problem (P,) is affirmative for g In general, ®@-quasi-invariant
measures are not necessarily @-decomposable. However under the
assumption that @ contains R; densely, we do not yet know whether
the problem (P;) is always aflirmative or not. But we will obtain
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an equivalent condition (in Theorem 5.2) for the @-decomposability,

introducing a notion of strong-@-quasi-invariance.

(I) Before discussing (P,), (P,) and (P;) by probabilistic method,
we shall look again the problem (P,) in view of the theory of von
Neumann algebra.

Let peM,(R”). We form the set L.(R™) of all square summable
complex-valued functions. Let U,(e€Ry, e= (e, -, €,-)) and
V.(tRy) be unitary operators on L.(R™) acting for each fELZ(R‘”)
as follows. U,; f(z) > exp (i(€))-f(x), Vi fla) /4 d“t (@)-
J(x—1t). z(e) is the duality bracket, x(e) =7, e,x,. Let M be a
von Neumann algebra generated by {U,},e,,;’ and {V,},e,,;’ and M,

be its commutant.
Theorem 1.1. M,=M,NM,.

Proof. Since M, is generated by its projection, so it is sufficient
to show that any projection PeM, belongs to M,  Applying the
function 1 (whose values are constantly 1) to the both side of U,P=
PU,, we have [P(exp (iz(e)))](x) =exp (iz(e))P(1) (x) mod g The
family of all finite linear combinations of {exp (iz(e))}.esr is dense
in L (R”). It follows that

(1) Pf(x)=f(zx)-P(1)(x) mod g for all feLli(R").
As Su,Pu) (x)du<x>=SU,P2<1> (x)d#(x)=gPUgP(l) (z)dp(z) =

SU,P(I)(SC)'P(U (x)dp(x), so {P(1)(x)}*=P(1)(x) mod g, which
shows the existence of such A€B(R™) as P(l) (@) =y (x). (a

is the indicator function of A.) Therefore (1) becomes
(2) Pf(x)=yxa(z)-f(x) mod g for all feL2(R).

The operator f(z) — yx,(x)-f(z) belongs to M,, (but the proof
requires additional arguments.) so P&M,. Thus the assertion of
Theorem 1.1 has established. But we shall investigate the set A in
more detail. Applying the function 1 to the both sides of V.P= PV,

from (2) we have \/ (x) xa(x) = \/ (x) xa(x—1t) mod pg. Since
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du,
W(x) >0 mod g, so
(8) p(AG[A—1]) =0 for all t=Ry.

Theorem 1.2. Let p=M,(R™). Then, p is Ry-ergodic, if and
only if M, is a factor. (For the notion of factor, we refer [4].)

Proof. We continue the notation of Theorem 1.1. If g is
Ry-ergodic, from (8) we have p(4)=1 or 0. It implies P=1I or 0
and M,NM,=M,= {al} ,en. Conversely, let M, be a factor. For a
set AEB(R”) which satisfies (8), we set P, ; f(x) — y.(x) -f(x).
Then P,eM,N M, and therefore P,=I or 0, because P, is a projec-
tion. It follows that p#(4)=1 or 0.

Theorem 1.2 implies that an ergodic decomposition of p&M,(R™)
may be derived from the factor decomposition of M,. (See, [5].)
However in this paper we shall discuss the ergodic decomposition

without using the theory of von Neumann algebra.

§ 2. Conditional Probability Measures with Respect to B..

Theorem 2.1. Let X be a complete separable metric space, B
be the o-field generated by its open subset and p be a probability
measure on B. Let W be a sub-o-field of B. Then there exists a
Jamily {p(zx, ¥, *)}.ex which satisfies

(¢, 1.) for any fized z€X, p(x, U, +) is a probability measure

on B.
(¢, 2.) jor any fixed Be®B, p(x, U, B) is an A-measurable func-
tion of z€ X.
(¢, 3.) pn(AnB)= S p(z, ¥, B)du(z) for all Ac€¥ and for all
Be®. ’
Moreover, if another family {*(x, W, <)}.cx exists and satisfies the
above three conditions for the same y, then ' (z, ¥, <)=p(z, A, *)
for p-a.e.x. (We shall say that p(z, %, ) is the conditional
probability measure of p at x with respect to U, and we shall call
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the above fact the decomposition of p with respect to 2.)

Proof is omitted. (See, pp. 145-146 in [6].) We remark that for any
A€ and for any f(2) LX), | f@du@) = (| &)t %, ay))

du(z) and that Sf(y) u(z, %, dy) is an Y-measurable function.

Theorem 2.2. Under the same notation in Theorem 2.1, let
pand v be probability measures on B. Then puv implies that
plz, U, )<v(z, ¥, ) jor pa.e. x.

Proof is omitted. See, [8].

From now on we shall consider the case X=R”. For the general
element xeR™, let x, be its nth coordinate, z= (x,, -+, z,, -=-). The
minimal o-field with which all the functions z,, x,, ---, x,(or z,, j=
n+1, ) are measurable will be denoted by B,(or 8B"), respectively.
Put N;2; B"=B... The tail o-field B.. coincides with the sub-family of
B (R™) which consists of all the invariant sets under all translations
by the elements of Ry. We say that peM(R™) is tail-trivial, if g
takes only the values 1 or 0 on %...

Theorem 2. 3. (Skorohod, [8]) Let p=M(R™). Consider the
decomposition of p with respect to B.. Then there exists £2,E9..,
p(2) =1 such that p(x, Bu, *) is tail-trivial for all x=0,.

Proof. In this proof, we shall sometimes write g*(-) instead of
p(x, B, +), and u(x, B", <) stands for the conditional probability
measure of g with respect to B".

(I) First we shall derive the decomposition of g* with respect to
B.. for each x&R”. Let A=®B.., BES(R”) and Ec®B". We shall

calculate p(ANBNE) in two ways. /z(AﬂBﬂE)=S wr(BNE)du(x).
A
On the other hand, #(ANBNE) :S 4 (x, B, B)du(z) =S S 4(t, %,B)
ANE AJE

dpr(t)dp(x). Hence, for fixed Band E, " (BN E) =S p(t, B, B)dp: (2)
E
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for p-a.e.x. Since B is countably generated, it follows that there
exists 23€®B.. with g(22) =1 such that

(4) for all z=£z, y’(BﬂE)=SE/,e(t, B", B)dy(t) for any E&B".

On the other hand, g° (BﬂE):SEy’ (¢, B*, B)dy (t), so from (4)

(5) for all z€2;, p= (¢, B", B)=p(t, B", B) for p-a.e.t.

B(R”) is countably generated. It follows that there exists 2"=%B.

with ¢(£2") =1 such that

(6) for all z€2", p (2, B", -)=p(, B, -) for pa.e.t.

Using the martingale convergence theorem,

¢)) 11_{28 |p(t, B, B)—p'(B) |[dp(t) =0 for all BEB(R™), and

(8) yﬁﬂ& |1 (¢, B", B)— 4= (t, B, B) |dp(8) =0 for all z=R".

From (7) there exist a subsequence {n;} and T;=B.. with u(Tp) =1

such that

©) for all z€ Ty, 11538 |\u(t, B, B) — i (B)| dpr () =0

Therefore from (6), (8), and (9) we have

(10) for all ze N, 2"N T5, (¢, B, B) =p'(B) for p-a.e.t.

Using the fact that 8 (R™) is countably generated, there exists 2°=%B..

with ¢(2°) =1 such that

(11) for all z&£°, p(¢, B., <) =p(t, B, ) for p-a.e.t.

Equivalently,

(12) for all z=£, /f(AﬂB)=S Y (B)dpy (t) for all A8, and for all
Be®B(R™). ’

(I') We shall prove that for g-a.e.x, g*=y for g -a.e.t. Because,

V1w B = B rar Wap@) =2 e B1ap @~ 2 {r ® (w )

dpr(t)dp(z) =0 for all BE®B(R™). It ensures the existence of S;EB..

with p(S;)=1 such that for all z€S; p(B)=p'(B) for pg-a.e.t.

Again using the countably generated property of B(R”), we conclude
that there exists 2'®B.. with p(2")=1 such that

(13) for all ze£, pr=y for p-a.e.t.
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() We put 2,=2°Nn2". Then from (12) and (13) we have for
all z€92, y’(AﬂB):S pB)dy () =p*(B) -y (A) for all A=®B.. and
for all BE8B(R”). In Aparticular, putting B=A, we have g (4)=1
or 0. Therefore 4 is tail-trivial for all x£,. Q.E.D.

For the remainder part of this section, we shall consider the
application of Theorem 2.3.

Let 2 be the set of all permutations of natural numbers which
shift only finite numbers of n. For each ¢&2, we associate the map
S, on R” such that S,; 2= (2, Zsy-)— (Z,yy Lo ++). We shall
say that p&M(R™) is permutationally-invariant, if S,z=pg for all
o2, Let O(n) be the orthogonal group on R". Naturally O(n)
can be considered as a transformation group on R”. We set O,(o°)
=U;L, O(n). We shall say that p=M(R™) is rotationally-invariant,
if Tu=p for all T0,(0).

Proposition 2.1. Let py=M(R”). Consider the decomposition
of p with respect to %B.. Then, if p is permutationally-invariant
(rotationally-invariant), p* is also permutationally-invariant (rotationally-

invariant) for p-a.e.x, respectively.

Proof. The first assertion is due to the fact that {S,}.ex Is a
countable set. The later one is derived by taking a countable dense
set of O,(0). Q. E.D.

Proposition 2.2. Let p=M(R”) be permutationally-invariant
and be tail-trivial. Then there exists a Borel measure m on R and

u is the product-measure of the same m.

Proof. For each j we put e¢;=(0, 0, ---, O, I, 0, ---), and con-
sider the integral, ﬂ(ylel—i-----i-y,,e,,)=Sexp(ix(2’,‘=1yjej))d,u(x). Then
for any # and &,

At 3,60 = \exp (08 €Xp (Tor 3,21000) dpa() =
{Euexp i) 199 2) - exp (T 3,00 din(2),
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where E,[f|%*](z) stands for the conditional expectation of f with

respect to B*. From the martingale convergence theorem we have,
S]EF[CXP (inuy) [9B*] (2) — E,[exp (iy.,) [B=] (2) |dp(z) —0 (k—0).

In virtue of the assumption of g, E,[exp(iy.z,) [B.](z)= gexp(iylzl) dp(z)
for p-a.e.x. It follows that

pGect -t se) =exp iz dp(@) lim{exp (¢ Tos 3y2100m) dpa(2)
={2(y1el) '/2(3’232"' et Yae.).
Repeating this procedure, we have fg(y.e;+---+y.e.)=1I7_,4(y;e;) for
all » and (91, ¥, ¥.). Let m be the Borel measure on R' such
that # (v) :S exp (fvu)dm (u) = fi(ve,) for all veR'. Then the above
Rl

formula implies that g is the product-measure of m. Q. E.D.

Propesition 2.3. Let peM(R™) be rotationally-invariant and
be tail-trivial. Then there exists 1-dimensional Gaussian measure g,
with mean 0 and variance ¢ and p is the product-measure of the
same g, (, which will be denoted by G.,).

Proof. By Proposition 2.2, the proof will be complete if we
show m=g,. Now for any n and for y=we,+---+y,6,,

5-(5) = exp (i D59, dpa(a) = {exp Gl 2 dp@)
=m(lylD, llyll= it +yD*

a

Since m is symmetric with respect to origin, so 7 is always real-
valued and m(v)=#(|v|) for all v&R'. Therefore from the above

equality,

(14) M (v)= {m(v/V n)}" for all » and for all vER.

Putting #=2 in (14), A (v) =20, and taking 7 sufficiently large,
we understand that #(v) >0 for all veR. It follows that oo>
—log (v) =—1lim 7 log (& (v/Vn)) =lim n (l—m (v/Vn))=
lim 7 S (1—cos(ou/n ))dm (u).

n=>»c0

Therefore Lebesgue-Fatou’s lemma assures that 00>Su2dm (u) =c.

Again applying Lebesgue’s bounded convergence theorem for the
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above equality, we have log 7 (v) = —cv*/2. Therefore m=g..
Q. E.D.

Theorem 2.4 (Umemura,[10], [11]). Let p= M(R~) be rotationally-
invariant. Then there exists a Borel probability measure o on R'
and the following formula holds for all B&®B(R”) and for all
aeR.

wBN ZeR" r@=a)) = GC.(B)du(e).

r(x) is the function defined on R~ as follows,

1im—1~ 2y 2%, if it exists
r(x)={=="
0, elsewhere.

Proof. We decompose p with respect to B.. Then Proposition
2.1 and Proposition 2.3 assure the exitstence of a(x)=R' such that
1(2, By ) =G (+) for paex.  Since a(z) =Sy; 4Gy (v) =
Syi p(z, Bu, dy),so a(z) is a B.-measurable function. Set A,= {r&E
R |r(x)Zc}. Then G.(A,)=1if t<c, and G.(4.)=0 if z>c. So for
all BEB(R™) we have u(BN A,)= SGM (BNA)du(z) = Sxeh..@sdG‘(’) (B)
dp(@) =p(BN LER” ja(z) <c}).

It follows easily that a(x)=r(x) for p-a.e.x. Define a measure
o on B(R) by o(E)=p({zeR”|r(z)E}) for all EEB(R'). Then

we have,
uB4)=\ Go®dp@)={ c.Bdue.

Now the proof is complete. Q.E.D.

§3. R;-Quasi-Invariant Measures and the Tail ¢-Field B~

The content of this section is mainly preparations for our later
discussions. But it will be turned out that .. plays an essential role
for R{-quasi-invariant measures, since the equivalence relation for
these measures are completely determined by the behaviour on ..
(See, Proposition 3.2.) Let peM,(R”). We often refer the follow-

ing fact assured in [9].
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(A) There exists a posiiive sequence {a,} such that T,DH, H,=
(zER" | S5, aigi< o).

(B) There exists & M,(R™) such that o (H,) =1 and o is Ry-ergodic.
(It follows easily that the convolution p+e of p and o is equivalent
with p.)

Proposition 3.1. Let uM,(R™). Suppose that A,=B(R) satis-
fies the relation, p(A,O[4,—t]) =0 for all tR;. Then there exists
AEB. such that pn(ASA,)=0.

Proof. If p(A,)=1 or 0, we take A=R” or . So we shall
assume that 0<lu(4,)<l. Define y,eM(R”) (j=1, 2) as follows.

m(&=% and m(B):% for all BEB(R).

Then in virtue of the assumption, g,€M,(R*). We shall take H,
and o for g stated in (A) and (B). Since H, satisfies the condition
of Theorem 1.3 in [9] and contains Ry densely, so by its Remark,
we have p(4,0[4,—¢])=0 for all t€H, It follows that p; are
H,-quasi-invariant and g;*o=y,;(j=1,2). ThesetA={yesR”|oc(4,—y)
=1} belongs to B.. As p(4)=1, so m*c(4,)=1 and therefore
t(A)=1. Consequently, p(A°‘NA4,)=0. On the other hand, g, (4,)
=0. So the similar arguments derive that (AN A;)=0. Combining
it with the above fact, we have p(A©A4,)=0. Q. E.D.

Remark 1. Let u=M,(R*). We take a c&=M,(R™) which satisfies
(A) and (B). Then, ,u*a(AonB)=S s(B—y)du(y) for all A,&9..
A
and for all BEB(R™). '

Proof. From the proof of Proposition 3.1, we understand that
p(A©A,)=0. (A has the same meaning in it.) Since ¢ is R{-ergodic,
the function ¢(4,—y) of y takes only the value 1 or 0. Thus,

peoAnB = oB-dp) =| sB-1duw). Q.E.D.

Corollary. Let pcM,(R”). If p is tail-trivial, then it is
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Ry -ergodic.

Proof. Let A,€B(R™) be a some set which satisfies g#(4,O[A4,—¢])
=0 for all t€Ry. Then Proposition 3.1 assures the existence of
AE®B.. such as p(A,EA4)=0. In virtue of the assumption, u(4)=1
or 0, therefore the same holds for A.. Q. E.D.

Naturally from Proposition 3.1 a following problem (P) arises.
Let @ be a subset of R™ which satisfies
(Se) @ is a complete separable metric linear topological space. @

contains Ry densely and it is continuously imbedded into R™.

Then,
(P)  For any @-quasi-invariant-measure pucM(R™), B.=DB, mod u?
That is, for any A,EB., does there exist p-measurable set A which

is invariant under all translations by the elements of © and satisfies

#(AQA) =02

We do not yet know if (P) is true or not. Later we shall show
that (P) concerns with the ergodic decomposition of @-quasi-invariant

measures.

Proposition 3.2. Let y, veM,(R”). For pu<v, it is necessary
and sufficient that p<v on B..

Proof. The necessity is obvious. For the sufficiency, we shall
take a ¢ &€ M,(R”) which satisfies y*o=~py and v+o=~v. Suppose that
V(B)=0 for some BEB(R). Then {s(B—2)du(2)=0. The set
A= {z€R”|6(B—x)=0} belongs to B.. and v(A)=1. By the assump-
tion, #(A)=1, consequently g+o(B)=0, so u(B)=0. Q. E. D.

Corollary. Let pu, vEM,(R”) be both Ry-ergodic. For u=~v, it
is necessary and sufficient that p=v on B.. If p and v are not

equivalent, then they are mutually singular.
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Proof. 1t is immediate from the above proposition.

Let B,e®B(R") and u(B,)>0. We define pz&M(R™) such that
_ #(BnBkBy) -
ts,(B) = u(By) for all BEB(R™).
Proposition 3.3. Let pyeM,(R”). For ps € M,(R™), it is neces-
sary and sufficient that B,&%B.. mod p. Further under the assumption
that @ satisfies the condition (S,), if p is O-quasi-invariant, then g,

is also O-quasi-invariant.

Proof. The sufficiency is obvious. Let p €M,(R”). We shall take
a 0€ M,(R~) which satisfies (A) and (B) for ¢ and g, simultaneously.
Since p3,(B)) =1, so putting A= {xER"|o0(B,~x) =1} €8B., we have
t5,(A) =1 and therefore p(A°NB,)=0. On the other hand, in virtue
of Remark 1, ,u*a(AﬂBg)=SA0(Bg—x)d,u(x)=0, so (AN B =0.
Therefore #(A©B;) =0 and it shows B,&8B. mod p.

If g is @-quasi-invariant, then p(AO[A—¢])=0 for all p=®.
(See, [9].) It implies that if u; (B)=0 for some B&®B(R), then
u(AN[B—¢])=0. Consequently, pz(B—¢)=0 for all ¢=®@ and
therefore pp, is @-quasi-invariant. Q.E.D.

Proposition 3.4. Let @ satisfy (S,). Suppose that p, veM,(R™)
and p be O-quasi-invariant. Then v<pu implies that v is @-quasi-

invariant.

Proof. Since v<pg on B., so the Radon-Nikodim derivative g(x)
of v with respect to # on %B.. is defined. The set B,= {zx= R |g(x) >0}
belongs to B.. and wu(B))>0, so we form the measure gz, s,
is Ry-quasi-invariant and g5, ~v on B.. By Proposition 3.2, it
implies p, ~v. Now the assertion is derived from Proposition 3.3.

Q.E.D.

§4. Ergodic Decomposition of R;-Quasi-Invariant Measures

Theorem 4.1. Let uycsM(R™). Consider the decomposition of p
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with respect to B.. Suppose that p is Ry-quasi-invariant. Then
there exists a set 2,%B.. with p(2,)=1 such that p(x, Bu, °) is

Ry-quasi-invariant and Ry-ergodic for all x€8,.

Proof. In this proof we shall also sometimes write p°(-) instead
of p(z, Bw, *). Now we shall take a e=M,(R”) which satisfies (A)
and (B) in §3. From the Remark 1 of §3, for any A=%B.. and for
any BeEB(R™),

wroanB =\ oB-) du@) = Jo By dp »)dn@)
=SA‘u’*a(B)d(‘u*0) (z).

The last equality is due to the fact g=p*o on PB.. The family
{g * 0} .~ satisfies the three conditions of Theorem 2.1, so Theorem
2.2 assures the existence of 2'€%B. with ¢(£2') =1 such that p*+e=p*
for all ze£2'. Since ¢ is Ry-quasi-invariant, so the same holds for
o for all zeR™. Putting 2,=02,N2" (£, is the set in Theorem
2.3), it follows that g* is R{-quasi-invariant and Ry-ergodic (due
to the Corollary of Proposition 3.1) for all z€2,. Q. E.D.

Lemma 4.1. Let (X, B) be a measurable space and B be count-
ably generated. Then there exists a map p from X to R' such that
B coincides with p~' (B(R")). (B(R') is the usual Borel field on R'.)

Proof. Let {4;},... be a countable subfamily of 8 which gener-
ates B. We may assume that this family is closed for the operation
of taking the complement. Put ¢,(x) for the indicator function of
A; for each j and define the map p as p(zx) =2, (x)/2" for all
z€R”. Now consider the binary expansion of each z&(0, 1), =
2 (7) /27 with a;(z) =1 or 0. The set X={r= (0, 1) |, (zr) =0 and
@,(r) =1 occur for infinitely many n and m.} belongs to B(R') and
the range of p is the subset of X. Moreover the binary expansion
is uniquely determined on X. It follows that p™'(B(R')) DB, because
pHre (0, 1) |a;(z) =1} =A,E% for all j. On the other hand, for
the set E(d, &, -, 6,)={r= (0, 1) la,(¢) =0, -, a,(z) =0,.} (6,=1 or
0, 1=j=n), we have p™(E(,, -+, 0,)) =N14%B. (A stands for
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A itself and A° stands for A°.) Since the inverse image of any open
subset G of R' is a countable union of the above sets p~*(E(6,, -+, 3,)),
so p7'(G) eB. Hence it follows easily that p™'(B(R")) =3.

Q.E.D.

Now we shall return to the original p&M(R”). Since Li(R™) is
separable, so there exists a sub-o-field B which satisfies
(a) BCB.., and for any A B.. there exists A =B such that ,u(A@A)
=0.
(b) B is countably generated, and therefore a map p from R to
R' exists such that p7'(B(R")) =%B. According to Theorem 2.1, we
decompose g with respect to 8. Then for any A€®.. and for any
BEB(R), u(ANB)=u@AnB)=| u(, 8, Bdp@) =| u 9 B
du(x). So in virtue of Theorem 2.1, a set 2,&8.. with p(2;)=1
exists such that u(z, B, )=p(z, B, +) for all x=L,. Therefore
for any z€2,nN2, plz, B, ) is tail-trivial. Moreover if g is
Ry-quasi-invariant, then for any z€2,N2,, p(zx, B, +) is Ry-quasi-
invariant and Rf-ergodic. Let {A;};..,. be a countable family of B
which generates $B. Put for eachj, N:=[z=R~” |24, () = p (2, B, A)}
and N=U,_,N,, Then Ne$B and g(N)=0. It is easily checked
that
(x) zeNED pulx, B, p7(E))=x:(p(x)) for all EEB(R) &>
p(z, B, p7 (@) =1

Now it is evident that p(z)=p(y) implies z(z, B, ) =p(, B, ).
Conversely, if z, yeN° and p(x) #p(y), then from (*) we have
p(z, B, -) and u(y, B, ) are mutually singular. Define a measure
o on B(R) by w(E)=u(p'(E)) for all EE®8B(R'). It is known that
there exists a family {¢}.emCM(R™) which satisfies
(x*) for each fixed BEB(R™), x(B) is a B(R")-measurable func-
tion.
() y(Bﬂp“(E)):SE,u'(B)dw(z') for all EE®8B(R') and for all Be
B(R”). (See, [6].)
From (#**) we have for all E€B(R') and for all BE®B(R”), #(BN
p7H(E)) =S (E)y"(" (B)du(x), so that there exists £,&8.. with ¢(2,) =1

P_l
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such that @ () =pu(x, B, -) for all z€2,. We put G=p(2,NnL2:N
2,NN°) in the case of p=eM(R”) and put G=p(2,N2N2NN) in
the case of peM,(R”). Then G is an analytic set, therefore G is
w-measurable and o(G)=1. (See, [6].) Modifying z on a set with
w-measure 0, we have,

Theorem 4.2. Let pcM(R™). Then there exist a family {f}.em
CM(R™) and a map p from R™ to R' such that
(@) p(B) is a B(R")-measurable function for any fixed BEB(R™),
(b) pr is a tail-trivial measure for all t€ R,
() p7'(B(R)) B,
(d) putting w=pu, p(Bﬂp'l(E))=SEp'(B)dw(f) for all E€B(RY
and for all BEB(R™),
(e) there exists a set E,cB(R") with w(E,) =1 such that pr and p
are mutually singular for all =, t,€E, (r;>71,),
(f) moreover, if u is Ry-quasi-invariant, then (i is Ry-quasi-invar-
iant and Ry-ergodic for all t€ R
(We shall call the above fact the canonical decomposition of p and
symbolically write p=[{¢}.em, £]1.)

For the uniqueness,

Theorem 4.3. Let pcM(R™). Consider two canonical decom-
positions of g, [ {5} .ems 221 and [ {5h.ams £1] which satisfy @), (),
(c) and (d) in Theorem 4.2. Then there exist M,eB(R) (j=1, 2)
and a B(R")-measurable map s(z) on R such that
(@ o;,(M)=1 (G=1, 2),

() s(M,) =M, and s is one to one on M,
(&) p=wm® for all teM,,
(d) sop(x)=p,(x) for pa.e.x.

Proof. By the assumption, g is tail-trivial for all 7, so g takes
only the value 0 or 1 on p;*(B(R')). It follows that for any =R},
there exists a unique s(r) €R' such that g;'(s(z)))=1. In a

similar way, for any R, there exists a unique #(r) €R' such that
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L ((r)))=1. The map s and ¢ are B(R')-measurable, because
for any EcB(R"),

sTHE)={reR i (p; " (E)) =1} and t7(E) = R s (p7' (E))) =1}.
We put M= {reR [tes(r) =7, ="} and M,= {reR [sot(z) =T,
=9}, Then &M, implies sotos(r) =s(r) and @ =p=p"*",
therefore s(z) €M,. If t€M,, then tosot(r) =¢(r) and p® =p=p""",
therefore t(z) eM,. It follows that t=sot(r) €s(M,).

Consequently, we have s(M;)=M, and s is one to one on M,
Let A€®., and we put E= {reR' |1 (A)=1}. Then since E°'= {reR
[15(A)=0}, so #(ADP?‘(E‘))=SE¢/-¢§(A)dw(T)=0, pANprt(E)) =
S U (A°)dw(r) =0. Thus, p(ASQp*(E)) =0. It follows from Theorem 4.2

E
that p(ANB) = (s (E) NB) = S»:%m”{‘m (B)du(z) = SA‘u{’l(‘) (B) du (z)
for all Ae®B. and for all BeB(R”). Similarly, p(ANB)=

S 129 (Bydp(z) for all A€®.. and for all BEB(R™). So in virtue
A
of Theorem 2.1, there exists &,&8.. with p(&) =1 such that

(15) ' = pga'® for all x€,.
Now from (*) in the proof of Theorem 4.2, there exist N;(j=1, 2)
eB(RY) with 0;(N;)=0 (w,=p,;#) such that
(16) w:(p7*(z)) =1 for all t€N-.
Put pr'(No)Np'(Ni) N2:=2.  Then wu(2)=1 and therefore
o, (p;(2s)) =1 for j=1,2. If x4, then by (15), (16) and the definition
of s(z), we have

P52 (b7 (P, (x))) = 1= ps® (p7 (s0p, () ) = pefe® (p57 (s0p1 ().

It follows that p,(z) =sop,(z) for all z€82,. Similarly, p, () =top,(x)
for all z€,. From (15), if r=p,(x) €p,(&s), then t=top,(x) =tos(z)
and g=1", so that p,(2,) CM,. Similarly, p,(2,) CM,. Therefore
w;(M;)=1 for j=1, 2. Q. E.D.

§5. ?-Decomposable Measures

Definition 5.1. Let RYCOCR™, and let pcsM,(R*) be a
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O-quasi-invariant measure. Consider a canonical decomposition p=
[{g}cens 1. We say that p is @-decomposable if there exists FEB(R')
with w(F)=1 (o=py) such that p is P-quasi-invariant for all r<F.

The definition does not depend on a particular choice of canonical
decompositions due to Theorem 4.3. In this section we shall study
O@-decomposable measures. From now on we shall demand that @

satisfies the following condition (S).

(S) @ is a complete separable metric linear topological space, @ is

continuously imbedded inio R, and @ contains Ry.

The following example shows that @-quasi-invariant measures are
not necessarily @-decomposable. However under the assumption that
@ satisfies the condition (S,) in §3, we do not yet know whether

@-quasi-invariant measures are always @-decomposable or not.

Example. Sete=(, 1, .-, 1, -~ )ER™ and let GeM(R”) be
the product-measure of the l-dimensional Gaussian measure with
mean 0 and variance 1. We define A& M(R”) such that A(B)=
leG(B—re) dm(z) for all BB (R™), where m is a definite probability
measure on B(EK') which is equivalent with the Lebesgue measure.
It is easily checked reeT, for all r=R'. Moreover, from the
P-quasi-invariance of G, we understand that 1 is @-quasi-invariant,
O={h+re|lhel’ and r=R'}. @ becomes a separable Hilbert space
with the norm [/[-|ll defined by |||a47e!||=V[A[P+7, (||| is the
I-norm.) and the injection from @ to R” is continuous. (But R is
not a dense subset of @.) Let n(x) be the function defined on R~
such that

limi PII 3 if it exists

n(x) =
elsewhere.

Then for any a€R' and for any BEB(R™), A(BN {z=R” |n(x) <a})
=S_ G(B—te)dm(z). It follows that {G..}.cm and n(z) satisfies the
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conditions of Theorem 4.2. Therefore a canonical decomposition
of 2 is [{G.}.em, n(x)]. However, G, is strictly-/*~quasi-invariant.

So 2 is not ®@-decomposable.

Let @ satisfy (S). We shall denote the Borel o-field generated
by open subsets of @ by B(®). Consider a transformation 7 on R~
which is represented as follows. 7T'(z)=z+¢(z) for all xR~ and
¢(x) is a measurable map from (R”, B.) to (9, B(P)). The set
of all such T is denoted by 7 (@).

Definition 5.2. Let pM(R™) and @ satisfy (S). We shall
say that p is strongly-@-quasi-invariant, if and only if pu<Tu for
all Teg (0).

Clearly the strong-@-quasi-invariance implies the usual @-quasi-
invariance. But we do not yet know if the converse assertion is

true, under the assumption that @ satisfies the condition (S,) in §3.

Proposition 5.1. Let @ satisty (S). Suppose that peM(R”) is
strongly-O-quasi-invariant. Then for any A,&B. with p(4,) >0,

s, is also a strongly-@-quasi-invariant measure.

Proof. Let TeJ (0), T(x)=x+¢(x), and T, (B)=0 for some
Be®B(R”). We put ¢,(x) =74, (x)-¢(x) for all x€R” and define
T.€e7 (@) as T, (x)=z+¢,(x). Then T7'(BNA4,)CT*(B)NA4, so
T,u(BNA4,)=0. From the assumption, therefore we have u(BNA4,)
=0. It shows that Ty, =pu, for all T€eJ (0). Q. E. D.

Proposition 5.2. Let © satisfy (S). If p is strongly-@-quasi-
invariant, then u(T'(A)QA)=0 for all TeJ (®) and for all
Ae®..

Proof. We set A,=T'(A)OA. Then O=p, (T(A)NA)=
tana(T7'(A)). Therefore we have ¢(4,N A) =0 by Proposition 5.1. The

set A, does not change if we take A° instead of A. So the same
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arguments derive that p(4,NA4°) =0, and therefore p(4,)=0.
Q.E.D.

Proposition 5. 3. Let @ satisfy (S). Suppose that pe=M,(R”)
and Tyu=p on B.. for all TeT (D). Then p is strongly-O-quasi-

invariant.

Proof. In virtue of Proposition 3.2, we have only to check that
TpeM,(R"). But it is immediate from the fact, 77'(B)+it=
T-'(B+t) for all BE®8B(R™) and for all t=R;. Q.E.D.

Settling these arguments,

Theorem 5.1. Let @ satisfy (S). Then the following conditions
are all equivalent for pe M(R™).
(@) p is strongly-@-quasi-invariant.
(b) p is Ry-quasi-invariant and p(T7'(A)OA)=0 for all TeT (D)
and for all AE%...
(¢) p is Ry-quasi-invariant, and Tp=p on B.. for all TeT (D).
(d) Tu=p for all TeT (D).

Proposition 5.4. Let @ satisfy (S). Suppose that peM(R™)
is O-quasi-invariant and Ry-ergodic (== @-ergodic). Then p is

strongly-@O-quasi-invariant.

Proof. Let TeT (@), T(x)=x+¢(z). We shall denote the nth
coordinate of ¢(x) by ¢,(x) for each n. Then ¢,(z) 1s a B.-mea-
surable function, so the ergodic assumption assures the existence of
v, €R' such that ¢,(z) =¢, for pra.e.x. It follows that (¢, -++5 @, *-+)
=¢p=¢(x) for p-a.e.x and therefore p=®@. Consequently T'(z) may
be regarded as the translation map by ¢, so Tu=pg~pu.

Q.E.D.

Proposition 5.5. Let @ satisfy (S) and (X, B, ) be a measure
space. Suppose that a family {y}.exCM(R™) is given such that p*(B)
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is a B-measurable function of a for any fixred BEB(R”). If p* is
strongly-@-quasi-invariant for A-a.e. a € X, then a measure p=M(R™)

defined by y(B):SXp"(B)dZ(a') for all BEB(R™) is also strongly-

D-quasi-invariant,
Proof. If follows easily from (b) of Theorem 5. 1. Q.E.D.

Thuls, from Theorem 4. 2, Proposition 5. 4, and Proposition 5. 5. the
necessary part of the following theorem has established.

Theorem 5.2. Let @ satisfy (S). Then for pesM(R™), p is
O@-decomposable if and only if p is strongly-@-quasi-invariant.

The proof of sufficiency will be derived from following discussions.
Let u# be strongly-®@-quasi-invariant. Consider a canonical decom-
position of g, u=[{g}.em, 1. For the general element p, p,e M (R™),
we put d(w, t)=sup {SF(x) dp (x) —SF(x) du,(z)}, where F(x) 1is
a B (R”)-measurable Ffunction such that |F(z) |<1. (The metric d

is same with the Kakutani’s metric.)

Lemma 5.1. Let @ satisfy (S). Then d(y, 1) isa B(R") XB(D)-
measurable function of (z, ¢) ER'X®.

Proof. Let F=U,_, p7*(C,(R")), where p;'(C,(R")) is the set of
functions F(z) defined on R~ such that F(x)=f(p,(x)) for some
feC(R"). C,(R") is the set of all continuous functions with compact
support defined on R* and p, is the map,

.73':(1'1, Ly **t5 Lay )ER‘”'—_—) (xls Ty xn)ER"'

Since d (1, 1) =su§S{F(x) —F(z+¢)}dy(x), and F is separable
Fe
IFl=1

in the uniform norm on R”, so for the proof it will be sufficient

that I, (z, go):S {F(x)—F(z+¢)}dwy (z) is a measurable function of
(z, ¢) for each FE%#. Since FE%, so there exists some 7 such
that IF(Tj 90) =IF(T: D1y vy ¢n): where o= (@1) ty Pay )- From the

well-known theorem
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(*) For any fixed t€R', I;(z, ¢, -+, ¢,) 1S a continuous function
of (g, 5 ) ER".

On the other hand, it is evident that

(*+) For any fixed o=@, I;(z, ¢, =, ¢,) is a B(R")-measurable
function of tER'.

Therefore from (*) and (), it follows that I.(z, ¢, -+, ¢,) 1is
a B(R') XB(R")-measurable function, consequently I:(zr, ¢) is a
B(R') XB(D)-measurable function. Q.E.D.

Corollary. 5,,= {(z, ) ER' X @ | and y; are mutually singular.}
is a B(R') XB(D)-measurable set.

Proof. Two measures w, t,€ M(R”) are mutually singular if
and only if d(¢, ) =2. So the proof is immediate from Lemma
5 1. Q.E.D.

Now we shall return to the proof of Theorem 5. 2. Let g be the
projection from R'X® to R'. Then q(S,,)=S,, is an analytic set
of R' (See, [6].), and there exists a map ¢(r) from S, to S,, which
satisfies

(@) go¢(r) =7 for all r€S,,

(b) the set {r&S,|¢(r) =B} is a universally-measurable set for any
Borel set B of R'x®. (See, [5].)

We shall extend the domain of ¢ to R' defining as ¢(r) =(zr, 0)
for 7€S; and denote it by the same letter ¢. Put ¢(v)=
(z, ¢'(r)). Then ¢’ (r) €@ for all r€ R' and the set {r&R'!¢’ (z) €B}
is a universally-measurable set for all Be%(®). It follows that a
Borel map ¢"(zr) from R' to R™ exists and ¢’ (zr) =¢"(¢) for w-a.e.t.
If w(S,) =0, then the proof will be complete. So we shall assume
that ©(S,) >0 and derive a contradiction. We take a set F,eB(R")
such that F,C {reR'|¢' (z) =¢" ()} NS, and o(F,) =v(S,), and define
a map ¢(r) from R' to @ as follows.

@ o' (t) if zeF,
7)) =
¢ 0 if ceF.
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Then ¢(z) is a Borel map and (, go(-r))egﬂ(i. e., Mw and (o are
mutually singular.) for all reF,.

In this step we remark that from (*) in the proof of Theorem 4. 2,
(*) For w-a.e.t, p(x) =7 for y-a.e.x.

Now we put T(z)=z+¢((x)) for all zeR™. Then Te7 (D).
In virtue of (), we have Tp=ff, for w-a.e.r. Since g is strongly-
O@-quasi-invariant, p(T'(p"(E))Op~(E))=0 for all E=B(R'), so
that Tu(p~ (E) mB):S T,u’(B)dw(r):S tiw (B)do(s). Since Tu=p
on B, [{#w}en 2] iz a canonical dechmposition of Ty. Therefore
from Theorem 2.2, Tpu=~p implies g~ for w-a.er. This is a
contradiction. Q. E.D.

Remark 2. We shall discuss the problem (P) in §3 concerning
the above arguments.

Let @ satisfy the condition (S,) in §3. If the problem (P) is
affirmative, we can deduce that any ®@-quasi-invariant measure p&
M(R>) is always @-decomposable as follows. (Consequently, the
notion of strong-@-quasi-invariance coincides with the notion of usual
O-quasi-invariance.) Let pg&M(R™) be ®@-quasi-invariant. For the
O-decomposability, as we have seen in the proof of Theorem 5. 2, it
will be sufficient that T,u~y for any T, (@) which is represented
as T,(x)=z+¢(p(x)), where ¢(z) is a measurable map from (&',
B(R)) to (0, B(D)). Since g is P-quasi-invariant, so for a fixed
00, 1y, and 4 are equivalent for w-a.e.r. Since T,u(B)=
S,u;(,) (B)dw(r) for all BEB(R™), it follows that T,z is also @-quasi-
invariant. Put 2=-T£H2+—ﬂ~- Then using the assumption of the problem
(P) for 4, for any A=®B.., there exists measurable set A which is
invariant under all translations by ¢&®, and satisfies Z(A@A)=O.
Therefore p(AQA)=0 and u(T;'(A)OT; ' (A))=0. Since T;'(A)
=4, so p(T;"(A)OA)=0. It shows that T,u=pg on B., so that
Typ=p.
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