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Theory of Division Games
Dedicated to the memory of Professor Taira Honda

By

Yohei YAMASAKI*

Abstract

Lehman [9] generalized the Shannon's switching games to those on Boolean functions.
We discuss in this paper, the theory of division games which contain Lehman's games and
their reverse games. The theory of Lehman's games is analyzed and rearranged in this
paper. Our results for division games contain naturally those for the classical ones as Hex,
Bridg-it and their reverse games. Especially for the reverse games, we introduce several
concepts dual to those introduced before, and obtain concise reformulations.

The most significant feature of this paper is that we adopt the notion "assignment"
to deal with generalized games in which the principle of alternate move does not necessarily
hold. The classical results will be accordingly purified and divided into four theorems,
i. e., Theorems 2, 3, 4 and 5, which indicate the dualities about points and about
assignments, with respect to signature and to players. It is also a virtue of this gener-
alization that we can characterize in a game theoretical argument the triple systems and the
block designs Wn and Wlz whose automorphism groups are Mathieu groups Mn and M12.

Introduction

Consider Hex. Two players, say White and Black play on a Hex

board consisting of n rows and n columns of hexagons arranged in

a rhombus. We colour each pair of opposite side of edges white and

black respectively. They play alternately, placing a counter of their

colour on an unoccupied hexagon. Each player wins if he forms a

chain of adjacent counters that joins his side of the board to the

opposite side. A game in case n = 4 is illustrated in Figure 1, where
Black has won.

Communicated by S. Hitotumatu, February 14, 1977.
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Figure 1

For every n the game of Hex has the following properties :

(Pi) No draw is possible,

(P2) There exists a winning strategy for the player who moves

first.

In Sections 1 and 2, we prepare several terminologies on division

spaces, extending Lehman's idea. A division space is defined as a

pair of a finite set and a decision of winners, just like, in Hex, a

Hex board yields the set of hexagons and a winner can be decided by

a final position of hexagons occupied entirely,, Here we give the

definition of a division space. Let a set 77 of two players T and _L

be given. Let X be a finite set. Then we call a mapping from X

to H a division on X. The set of divisions on X is denoted by ©x*

Let x* be a mapping from S)xx77 to {—1, 1} such that

Z,6l,jr(b, ,0=0 vbeE®x.

Then we call the pair @*(X9 %*) a division space. One can char-

acterize the division space for Hex by some properties defined in

general on division spaces.

After these sections, we study various games played on division

spaces, where the moves are not necessarily made alternately. Our

situation is as follows. Let @*=(X, #*) be a division space. Then

a mapping from the set N\z\ of positive integers not exceeding the

number \X\ of elements of X to U is called an assignment over &*.
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A pair F=(@*, a) of a division space ^ * and an assignment a over

it is called a division game. The division game F is played in the

following way. For each number i of N\x\9 the player a (i) occupies

an unoccupied point on X, at the z'-th stage. At the final stage the
points are occupied entirely and we regard a division b has occured,

where b is given by

b (x) = TT iff x is occupied by TT.

Then the player TT such that %* (b, TT) = 1 is regarded as the winner.

We prepare an induction theorem and four other duality theorems,

which cause us to generalize the results concerning winning strategies

for classical games. Here we give Theorem 4, the key theorem of

this paper, in a colloquial style.

Theorem 4, Let &*=(X, %*) be a division space with X non-

empty and a and a assignments over it such that

a( X|)=a '( l)

and

) l^v''< X

Suppose that a(\X\) has a winning strategy for the division game

(&*, a). Then he has one for the division game (&*, a').

In the forthcoming paper we shall discuss the graph theory of

generalized games of Hex and Bridg-it, by a different approach from

that of Shannon's switching games. We shall define a class of graphs

called "connex" and study the possibility of embedding it into a

manifold.

Now we mention here the history of division games. The idea

of division games was first seen in Lehman [9]. He has remarked

briefly a fact concerning with the games over regular division spaces

along alternate assignments in our terminology cf. Section 7. This

idea is developed by Yamasaki [11]. After several discussions

with Mr. Masahiko Sato of RIMS, Kyoto University*, the author

His present address is Dept. of Math., College of General Education, University of Tokyo.
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presented a wider class of games containing Hex, which he named
division games, and stated several propositions. Mr. Sato appreciated
these results and was interested in the theory. They agreed in a
view that there should exist a tendency to win or to lose for a player
in certain types of division games. Some of the formulations were
improved by Sato [10], For instance, he suggested the author the
definition of divisions in the present style and the idea to calculate
the value of judge. After these improvements the author completed
the duality theorems and gave new proofs in arithmetic arguments.

The author thanks Mr. Sato for his valuable suggestions and his
contribution to found the theory of division games.

§ 1. Division Space

As usual "iff" means "if and only if". We denote by Z> N
and N the set of integers, that of non-negative integers and that
of positive integers, respectively. We also denote by Nn the set of
positive integers not exceeding n for n^N. Let 77 be a set consist-
ing of three elements T, _L and 6. We call T and J_ the players
and 6 nobody. II denotes the subset of It consisting of two players.
An element of U in general is denoted by n. We denote by /\ the
involution of II without fixed points, i. e., T — -L and _L = T«

For any sets X and Y we denote by [X-»Y] the set of mappings
from X to Y and by \X\ or #X the number of elements of X when
X is a finite set.

Let X be a finite set. We set Sz=[X->/7] and $r=[X-*#].
An element b of ®x is called a division, and one 3 of ^JJX is called
a position on X. A mapping #* : S)xX/7 ->{—!, 1} is called a judge
on X if

A pair @*=(X, %*) is called a division space. The letter X may
be omitted while it is fixed.

Let @*=(X, %*) be a division space, 9 a position on X and 3'
a position on 3~1(0). Then we compose a position 31J3' on X by
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the following equation :

If ba is a division on d~l(0), then 3Ub a is a division on X,

Proposition 1. Let &*=(X, x*) be a division space and d a

position on X. We define a pair @£=(Xa, x?) °f a finite set X3

and a mapping x* : SxgX #-*{!? —1} as follows:

X3 = d-*(0)

X9*(ba, 7r) = x*(9Ub a , *) vbae®XgB

Then &* is a division space.

The proof is easy. The division space <2)f corresponds to the

situation where each player TT has occupied the subset d~l(x) of X,

Let @*=(X, x*) be a division space. Then ^* is said to be

regular if

VOODOO implies x* (bw *) ^%* 0>25 *),

mis ere if

br'WzDbr^Tr) fm^Ztw %*(b13 7r)^x*(b23 *),
and trivial if

When ^ * is regular (misere or trivial) the symbol * may be replaced

by +(~ or °). A subset S of X is said to be regular, misere or

negligible if &* is regular, misere or trivial for any position 3 on X

such that

A point x of X is said to be regular, misere or negligible if [x] is

so. We denote by X+, X~ and X° the set of regular points, that of

misere points and that of negligible points of X.

Proposition 2. Let @*=(X, x*) be a division space. Then X+

(X~ or X°) is the maximal regular (misere or negligible, respectively}



342 YOHEI YAMASAKI

subset of X, and

Proposition 3. Let @*=(XS %*) be a division space. Then 0*

is regular or misere if and only if the set X itself is so, and @* is

trivial if and only if X is negligible.

These propositions are easily verified and their proofs are omitted.

Here we give a brief comment on the correspondence between

Hex and division spaces. Hex game often finishes with many hexa-

gons unoccupied. But a game can be continued, until the hexagons

are occupied entirely. The winner remains unchanged even if the

decision is made at the final position. So we can regard a Hex

game to be finished when all hexagons are occupied. Now let X be

the set of hexagons on the Hex board and let %+ be the mapping

which sends each pair (b, TT) to 1 if TT is the winner at the final

position where TT has occupied b-1(V)? and to — 1 if he is the loser.

Then it is clear that 3P+=(X, %+) is a regular division space.

Similarly for Reverse Hex, we naturally have a division space ffl~n —

§ 2. Homomorphism

Let &* and @f=(Xt, %*) (j:=li2) be division spaces. A pair /=

(fx, sgn /) consisting of a mapping fx : Xl->X2 and a permutation

sgn / of II is said to be a pseudo-homomorphism if the following

diagram commutes :

X*

{-1,1}
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where /® is given by

A pseudo-homomorphism /— (/x, sgn /) is said to be a pseudo-im-

mersion if fx is injective, a pseudo-contraction if fx is surjective, and

a pseudo-isomorphism if /x is bijective. A pseudo-isomorphism / from

&* to &* is called a pseudo-automorphism. The prefix "pseudo-"

is omitted if sgn /— id/j and replaced by "anti-" if sgn /=/\. The

set jtfut &* of pseudo-automorphisms naturally admits a group struc-

ture. The set 3tfuSn@* of automorphisms is a normal subgroup of

stfut &* of index 1 or 2. They are called the pseudo-automorphism

group and the automorphism group of &*. A division space &* =

(X, %*) is said to be impartial if the index above is 2, and strongly

impartial if (idxy /\) is an anti-automorphism.

The theory of Hex and Reverse Hex will be developed in that

of regular impartial division spaces and that of misere impartial ones.

Furthermore there is an analogous theory in case ^* is impartial,

even if S* is neither regular nor misere.

§ 3. Division Game

From now on we study various games played over a division

space, where the moves are not necessarily made alternately. Our

statements are often expressed using double signs ± and T. They

take the upper signs or the lower signs consistently.

For NeJV, an element of [-ZV^-*/?] is called an assignment of

length N. Let @*= (X, %*) be a division space. Then an assignment

of length \X\ is called one over &*5 also. Let a be an assignment

over ^*. Then the pair F=(@*,a) is called a division game.

Now the division game F is played by the two players T and _L as

follows :

i) a(i) is assigned to make the z"-th move,

ii) a(i) occupies an unoccupied point as the z'-th move,

iii) after the last (i. e., the |X|-th) move is made, we consider

that a division b occurs and that TT wins if %* (b, TT) = 1
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where the division b: X-*II is defined by

b(x)=ic iff ic has occupied x.

As in the theory of finite games we easily see that for any division

game F there exists a player who has a winning strategy.

Let F be a division game. Then we define two functions a)+

and or by

1 if ic has a winning strategy

( — 1 if ft has a winning strategy.

Let ST and S± be arbitrary subsets of X with ST fl S± = 0- Then

we define a position 3 as follows:

T if x<=ST

0 otherwise,

This position is denoted by 2«ezA'tf> G^T° T + S± • _[_). In the above

expressions, Ss can be replaced by x if S, consists of exactly one

point x, and Sx*ic can be omitted if Sa is empty.

We define the permutation SN of NN for NG:N by

Let a be an assignment of length N with N^N. Then we put

a + k = a \ N f f _ k and a.k=(aosk
NylNN_k for k<=NN. We put also a±=a±1.

When N^ly the player a(l) is called the starting player and denoted

by ic+(a). The player a(N) is called the closing player and denoted

by ?r_(a). When N^29 we simply write a+_ and a_+ instead of (<^+)_

and (a_)+ respectively.

§ 4. Induction Theorem

Lemma 1. L^^ X be a finite set with \X\^2 and f a mapping

from XxX to {— 1, 1}

Then we have
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_UJ f(x9 y) ^max,exminsex_{y} f(x9 y).

Proof. We fix pairs (xl9 yj and (x29 y2) with xi^yi for each z

where / attains the mini-max value and the maxi-min value. First

suppose x^y2. Then we have

f(xl9 30 ̂ /(X, >'2) ^f(x29 yj .

Next suppose xl = y2. Then we have

which proves our lemma.

Theorem 1. Let r=(<&*, a) = (X, x*3 a) fee a division game

with \X\^0. Then we have the fallowings:

<0®, a, 7r=

( — ) ft>"(^*3 a, 7r)£>max,eza>~(^?..> ^+3 ^) if K-(a}=n.

Proof. The first assertion ( + ) is evident since it is just an

inductive definition of co+. We shall prove the second assertion ( — )

by induction on |X|.

Step 1. When |X| = 1, the assertion is evident

Step 2. We assume that the assertion is valid for |X| — 1.

First suppose that n+(a)=7t. Then by the induction hypothesis and

the assertion ( + ), we have

Next suppose that TT+ (a) = TT. Then by the induction hypothesis, the

assertion ( + ) and Lemma 13
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Now our proof is accomplished.

§ 5, Duality Theorems

Theorem 2. Let <&* = (X, %*) be a division space with

x and y be elements of X± and a an assignment of length \X\ — 1
Then we have

in other words :

**, a, TT)

Proof. We shall prove this assertion by induction on \X\.

Step 1. If \X = 1, then the assertion is easily seen.
Step 2. We assume that the assertion is valid for X\ — 1.

If # = ;y the proof is easy. Then we have to see the assertion only in

case where x3=y. It suffices to show the assertion in case n+(a}=K.

Case ( + ). By the induction hypothesis, Theorem 1 and the
fact that x, y^X+ we have

<*>*(&*.., a, *)

Case (— ). The induction hypothesis. Theorem 1 and the fact
that x, y^X~ give us

a>-(&2.,, a, TT)

Now our proof is completed.
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Theorem 3. Let @*=(X!> %*) be a division space with |X j^0 3

x a regular point, y a misere point in X and a an assignment of

length |X| —1. Then we have

Proof. We give the proof of the assertion by induction on \X

It is easy to see that this assertion is equivalent to

It suffices to prove this assertion only in case

Step 1. If |X| = 1, the proof is easy.

Step 2. We assume the assertion is valid for |X| — 1.
Case x+(a)=7r. We have

o>+(0*., a, TT)

by induction hypothesis and Theorem 1.
Case 7T+(a)=7r. We have

fl>+(^,*-., a, TT)

x_{a:}co+(^ *„+,.„ a_5 TT)

by induction hypothesis. Theorem 1 and the facts x^X+ and

Now our proof is accomplished.

Theorem 4. Le£ ^*=(X, %*) fc^ a division space and a an

assignment of length |X| + 1 with rc+(a) =7c_(a). Then we have
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if TT+ (a) = TT_ (a) = it.

Proof. The proof is easy when |X|=0. We suppose \X\=£Q.

Then we have

by Theorem 1. This inequality is equivalent to what we have to

prove.

Proposition 4. Let @*=(X9 %*) be a division space with \X\
=£0 and let a be an assignment over &*. Then

Proof. We easily find an assignment a of length |X| + 1 such
that a'+=a and aL=aoslxl. Now the assertion follows easily by the

previous theorenio

§ 68 Game Theory over a Regular or Misere Space

In this section we deal with a regular or misere division space
only,

Theorem 5. Let ^^—(IL^ %*) be a regular (misere) division
space and let a and a be assignments over it satisfying

a(n) = ~T ora'(n) = l_

Then we have

Proof. We have only to show this assertion when a(n) coincides
with a (n) for each n^N\x\ with a sole exception. In such a case
the assertion follows by Theorem 2 in an inductive argument.
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From the previous theorem and Theorem 1, we easily obtain the

following proposition.

Proposition 5. Let @±=(X, %*) be a regular (misere) division

space and let a be an assignment over it. Let S be a subset of X.

Then we have

Especially if S is negligible, then for each player x

a* (#£., a±isi, ff)=a)±(^±, a, TT).

Proof. It suffices to show the assertion only in case |5| = 1.

Case 7rT(a)=7r. By the previous theorem and Theorem 1, we

have

ct)±(^±
3 a, TT)

xfl^C^.,, a±, TT)

Case 7TT(a)— -ft. We put a'±=a± and ^T(a')=7r. Then by the

previous theorem and Theorem 1, we have

z ^ . , , a , n

Now our proof is completed.

§ 1, Division Games over Impartial Spaces (1)

In this section we deal with impartial spaces, after we introduce

the Lehman's remark on games over regular spaces. First we define

several terminologies on assignments.

Let p^N and N^N. Then an assignment a of length N is

said to be 2'p+-periodic if

a(f)=a(O ^ = Z m o d 2

and 2 >p~ '-periodic if
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t"~] A oJ mod 2,

where [ ] denotes the integral part of the entry. A 2 -^-periodic

assignment a is said to be 2°p-periodic in case N=0 mod 2p and

alternate in case p=l. We understand that the sole assignment of

length 0 is alternate.

Let & + =(X, %+) be a regular division space with \X\=£Q.

Then there are two alternate assignments, say a and /s°a, over it.

Lehman [9] remarks that

For a misere division space &~=(X, %") with |X|=£0, we have

flT(^~, a, ?r_(a)) ^o>"(S~, x\oa, ?r_(a)).

These results follow immediately from Proposition 4 and Theorem 5.

From now on3 in this section, every division space ^* is assumed

to be impartial, namely, the index |j/«^ @*/<$?uSn &*\ = 2. Then

it is easy to see that \X\3=Q.

Lemma 2. Let @* be an impartial division space and a an

assignment over it. Then we have

*, a,

It is easy to prove this lemma.

Theorem 6. Let &*=(X9 /*) be an impartial division space

with \X\ even and p a divisor of |X|/2. Let a be a 2«p-periodic

assignment over &*. Then

i.e.,

(*)-(&*, a

Proof. We have
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@*, aoslxh 7r+(a))

by Proposition 4. On the other hand ^* is impartial and

/\oa. Therefore we easily obtain by Lemma 2

c»+(^*5 ao5fxb 7r+(a))

= w+(S*5 a, £+(*))
--a>+(^*,a, *+(a)).

Now we have

.e.,

Theorem 7. Let @±= (X, %*) be an impartial and also regular

(misere) division space and let a be a 2°p± -periodic assignment of

length \X\ for a positive integer p. Then we have

Proof, Assume that there exists an anti-automorphism o of ^±.

Adding several negligible points to 2$^ we obtain a division space

@f±=(X', %/:t) such that X' \ =0 mod 2p, where there is a natural

immersion from ^>± to ^/i:. The anti-automorphism a is naturally

extended to that over @f± which fixes X'— X pointwisely. We denote

by a the 2 ̂ -periodic assignment with TZ± (a') = TT± (a) . We have

by the previous theorem and Proposition 5. Thus our proof is com-

pleted.

Corollary"*" (Hein and Nash). In a usual Hex game, the starting

player has a winning strategy.

Corollary". In a usual Reverse Hex game, the opponent of the
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closing player has a winning strategy.

It is said that O. Winder also has obtained this corollary (see

Gardner [5]). It seems that the properties 2e£+-periodic and 2-/>~-

periodic in Theorem 7 can be replaced by the following properties

respectively :

and

However we shall give a counter example in the last section.

§ 8. Division Games over Impartial Spaces (2)

In this section we are going to show some detailed results over

certain type of division spaces. We first introduce the following

notion.

Let a division space &*=(X, %*) be fixed. Let a be an assign-

ment over it and K a player. Then we put

\a\ + = #{nE^N\a(i)=n for *i^n]

and

Now we put

\S\=\a\*9

Proposition 6. Let &* be a division space and a an assignment

over it. Then we have

)^0 iJfli+(^*, a, 7r) = l

)^0 implies a)~(@*, a, 7r) = l.

This assertion is an immediate consequence of Theorem 1.

Theorem 8. Let p^N. Let @±=(X, %*) be a division space



THEORY OF DIVISION GAMES 353

with \X\^2p having an anti-automorphism a= (ax, sgn <?), and let

a be a (i°p± -periodic assignment over ^±. Assume that there exist

two subsets A and B of X satisfying the following:

= 05 \A\=\B =p,

and

where XQ is the set of negligible points of the division space. Then

Z±±w(a)3)A.

Proof. By Theorem \ and Theorem 53

)

9 7r±(a))

,)=F,, ^±(«))

).

Here we have a±# = x\oaq:#. Then by Lemma 2

Now we obtain

Therefore

i. e.,

CoroIIary+(Beck). 7/z a w^z/a/ ^Xn Hex game for n^2, the

starting player has no winning strategy making the first move to one

of the acute corners.

Corollary"". In a usual nXn Reverse Hex game for n^2, the

opponent of the closing player has no winning strategy reserving a
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fixed acute corner for the closing player.

Corollary (Evans). In a usual nXn Reverse Hex game for an

even n, the starting player has a winning strategy making the first

move to one of acute corners,

These corollaries follow easily, since an acute corner can be

made negligible if one occupies a certain point adjacent to it, and

since 7r+(a_) =7r_(a) =x_(a+) for an alternate assignment a of even

length.

§ 9o Division Games and Block Designs

Let (t, v, &, X} be a 4-tupple of non-negative integers such

that v^k^t and D = (X, S3, I) a triplet of finite sets X, S3 and a

subset I of XxS3. Suppose that D satisfies the following conditions:

\X\=v

and

#{£eS3 (y, B) e/,

for any subset Y consisting of t points of X. Then D is called a

block design of parameter (t, v, k, 2). D is called also a ^-design

of parameter (v9 k, X) or more simply a t-(v9 k, X) design* An

element x of X is called a point and one B of S3 is called a block.

As is easily seen, a ^-design is also a ^'-design for t' ̂ t. A 2-(v, 3,

A) design is called a triple system. It is known that there exists a
v— 1triple system of given parameter (v, /I) if and only if both ^°-y — r

1 9 —
and /lo-^ — r.-= — pr are integers (cf. Hall [7] and Hanani [8]).

k— 1 &— 4
Let D=(X9 S3, /) be a block design. For any block B, we

denote by (B) the set {x<=X\(x, B)<=I}. Then D is said to have

no repetition if (BJ = (52) implies Bl = B2. If 1? has no repetition,

then (5) is identified with B. Let D'=(X'9 S3', /') be another block

design. Then D and D' are said to be isomorphic if there exists

bijections fx : X^X' and /• : as-*®7 such that
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Let TT be a player, v and k non-negative integers such that v^k.

We set

for any division space ^*=(Z? %*). Let ®f(Xl9 %f) and ^2* =

(Z2, #2*) be division spaces satisfying \Xl\ = \X2 =v. Then &? and

S2* are said to be (TT, k} -equivalent if there exists a bijection /x :

X,->X2 such that

/"(©?*)=©!•*,

where /" (b2) =b2°fx for b2e®;'*. We obtain a 1: 1 -correspondence

between (TT, k) -equivalence class of division space &*=(X.> %*) satis-

fying \X\=v and isomorphism class of Q-(v, k, X) designs without

repetition given as follows :

[(X, x*)]-»[(X, S)"4, I)]

where (.r, b) el if and only if b(:r)=;r,

[(^, X*)]<-[(^, S3, 7)]

where %* (b, x) = 1 if and only if b"1^) forms a block. We call this

correspondence the (TT, k) -correspondence.

Theorem 9. Le£ x be a player,, (t, v, 2) a triplet of non-negative

integers such that v^t+X+l and D= (X, S3, /) a 0-(u, ^+13 ^)

design without repetition satisfying

We denote by &*=(X, %*) a division space of the class (TT, £+1)-

corresponding to the class \_D~\. Then D is a t-(v, t+l, X) design

if and only if

where the assignment a0 of length v is defined by

a0(i)=7r iff i<,t or i = t
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Proof. First assume a)+(@*, a, TT) = — 1. Suppose that n has

occupied a set Y consisting of t points of X. Then TT is to win if

he occupies a suitable X points say ^u- - - , xx of X— Y for him.

Now any block B containing Y coincides with some YU {x{} . Thus

for any subset Y consisting of t points of X, we have

Summing up, we obtain

*On the other hand we have assumed |S3 |^ /(*+ 1). Then

#{B(ES3|(;y, S) e/ v3/eY} must be exactly ^ for any subset Y consist-

ing of t points of X. Namely, D is a t-(v, t+1, 2) design. Next

assume that D is a t-(v, t+l, X) design. Suppose that TT has occu-

pied a set Y consisting of t points of X. Then ft finds ^ blocks

A,--, BH containing Y, and occupies U J=1(B,.— Y). After it TT finds

no way to win.

Proposition 7. We Aave a 2 (6, 3, 2) design without repetition,

which is defined in the following way. Let X be the set of vertices

of an icosahedron and a the antipodal permutation on X. We denote

by X the orbit space with respect to the group <(a)> and by <a)>\ the

natural mapping from X to X. Let $8 be the family of subsets B consist-

ing of three elements of X such that «a>\)"1(J^— B) consists of vertices

of an antipodal pair of 2-simplices of the relevant icosahedron. We

define as usual a subset I of Xx$j by

(x9 B)<El iff

Then D=(X, 23, I) forms a 2- (6, 3, 2) design without repetition.

Therefore fixing a player TT, we have

a 7r =

for a division space of the class (zr, 3) -cor 'responding to [J9] and the

assignment a0 of length 6 such that

a,(0=* iff »=1, 2, 5.
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Proof. We easily see that |S3| = 10. By Theorem 9 we have to

show only that D is a 2-(6, 3, 2) design without repetition. For

any pair (x, y} of distinct elements of X, «a>\)"1({^3 3>}) is the

set of vertices of an antipodal pair of 1-simplices. Therefore D is

a block design of desired parameter. Now our proof is complete.

x

Figure 2

The above ^* is (TT, 3) equivalent to a minimal example with respect

to | X J 5 of a regular impartial division space @ + =(X, %+) such that

a)+(@+, a05 7r) = -l

for an assignment aQ of length \X\ satisfying

0(0 =*} ^%{i^n \aQ(i) =fi] * ' n.

As is also known, there exist the sole 4- (11, 5, 1) design Wu

and the sole 5- (12, 6, 1) design Wlz, whose automorphism groups

are Mathieu groups Mn and M12. These Wn and W12 also form

remarkable examples of block designs characterized in a game theo-

retical argument of Theorem 9.
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